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Abstract. As a supplement or an alternative to classification of hyperspectral image data linear and semi-parametric
mixture models are considered in order to obtain estimates of abundance of each class or end-member in pixels
with mixed membership. Full unmixing based on both ordinary least squares (OLS) and non-negative least squares
(NNLS), and the partial unmixing methods orthogonal subspace projection (OSP), constrained energy minimiza-
tion (CEM) and an eigenvalue formulation alternative are dealt with. The solution to the eigenvalue formulation
alternative proves to be identical to the CEM solution. The matrix inversion involved in CEM can be avoided by
working on (a subset of) orthogonally transformed data such as signal maximum autocorrelation factors, MAFs,
or signal minimum noise fractions, MNFs. This will also cause the partial unmixing result to be independent of
the noise isolated in the MAF/MNFs not included in the analysis. CEM and the eigenvalue formulation alternative
enable us to perform partial unmixing when we know one desired end-member spectrum only and not the full set
of end-member spectra. This is an advantage over full unmixing and OSP. The eigenvalue formulation of CEM
inspires us to suggest an iterated CEM scheme. Also the target constrained interference minimized filter (TCIMF)
is described. Spectral angle mapping (SAM) is briefly described. Finally, semi-parametric unmixing (SPU) based
on a combined linear and additive model with a non-linear, smooth function to represent end-member spectra
unaccounted for is introduced. An example with two generated bands shows that both full unmixing, the CEM,
the iterated CEM and TCIMF methods perform well. A case study with a 30 bands subset of AVIRIS data shows the
utility of full unmixing, SAM, CEM and iterated CEM to more realistic data. Iterated CEM seems to suppress noise
better than CEM. A study with AVIRIS spectra generated from real spectra shows (1) that ordinary least squares
in this case with one unknown spectrum performs better than non-negative least squares, and (2) that although
not fully satisfactory the semi-parametric model gives better estimates of end-member abundances than the linear
model.

Keywords: least squares regression, spectral angle mapping (SAM), orthogonal subspace projection (OSP),
matched filtering, iterated constrained energy minimization (CEM), generalized eigenvalue problem, target con-
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1. Introduction

In ordinary discriminant analysis which is often used
to classify for instance multi- or hyperspectral remote
sensing image data it is assumed that each observation
(or pixel) is a member of one and only one of a num-
ber of pre-determined classes. Spectral mixture mod-
els allow us to estimate the abundance of each class
in pixels with mixed class membership (Marsh et al.,

1980; Kent and Mardia, 1988; Settle and Drake, 1993;
Nielsen, 1998, 1999a, 1999c).

This article gives a brief overview of several methods
for full and partial unmixing described in the literature.
Also, several new ideas are presented, namely (1) the
inclusion of a constant term (α0 below) and interac-
tions between spectra in the linear mixture model, (2)
an eigenvalue formulation of constrained energy min-
imization, (3) partial unmixing by constrained energy
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minimization in MAF/MNF space (MAF: maximum
autocorrelation factor, MNF: minimum noise fraction)
to avoid matrix inversion and to exclude noise iso-
lated in high order MAF/MNFs, (4) an iterated con-
strained energy minimization scheme, (5) simultaneous
partial unmixing of several spectra by applying (a) non-
negative least squares with special constraints or (b) a
new semi-parametric unmixing (SPU) model which in-
cludes a non-linear, smooth function to represent spec-
tra unaccounted for in the selected end-members.

Section 2 describes the linear mixture model and
regression analysis. Section 3 very briefly describes
full unmixing. Section 4 describes partial unmixing in
some detail. Several methods are dealt with, namely
orthogonal subspace projection (OSP), constrained en-
ergy minimization (CEM), an eigenvalue formula-
tion alternative to CEM, iterated CEM, and the tar-
get constrained interference minimized filter (TCIMF).
Section 5 briefly describes spectral angle mapping
(SAM). Section 6 briefly introduces the reader to ad-
ditive models and describes the semi-parametric un-
mixing (SPU) model. Section 7 briefly describes some
useful computer programs to carry out this type of anal-
ysis. Section 8 gives two cases, one is based on simple,
generated data with two spectral bands, the other case
uses AVIRIS data. Section 9 concludes.

2. Linear Mixing

We assume that the signal measured at each pixel
consists of a linear combination of p so-called
end-members. End-members are pure pre-determined
classes with 100% abundance of one element and with
no mixtures. We think of our l-dimensional signal
for end-member i as a vector mi = [mi1 . . . mil]T ,

i = 1, . . . , p and represent the end-members by a
matrix

M = [m1 . . . mp] =




m11 · · · m p1

...
. . .

...

m1l · · · m pl


 (1)

with one column for each end-member. l varies over
wavelength λ and p varies over end-members. We write
each observation r(x, y) = [r1(x, y) . . . rl(x, y)]T

as a linear combination of the end-members M; the
abundances α(x, y) = [α1(x, y) . . . αp(x, y)]T are
the coefficients we wish to estimate

r(x, y) = Mα(x, y) + n(x, y) (2)

where n(x, y) = [n1(x, y) . . . nl(x, y)]T is the resid-
ual or the noise, i.e., the variation in r(x, y) not ex-
plained by the model. The noise is independent, identi-
cally distributed (iid) Gaussian with expectation value
E{n} = 0. This is the linear mixture model. The term
linear means linear in the coefficients. Interactions be-
tween the end-member spectra, if for instance the influ-
ence of one spectrum depends on the level of another
spectrum, can be allowed for by including products be-
tween the spectra. In linear models a constant term α0

is often introduced (from now on we omit (x, y) from
the notation). Here, α0 represents effects not explained
by the chosen end-members as far as these can be rep-
resented by a constant. If we introduce α0 we get

M =




1 m11 · · · m p1

...
...

. . .
...

1 m1l · · · m pl


 (3)

α = [α0 α1 . . . αp]T . (4)

Sometimes the column of ones is replaced by a column
of zeros. This represents the end-member “total shade.”

To solve the system of equations involved we mini-
mize the sum of squared residuals nT n or more gener-
ally nT Σ−1

n n where Σn is the dispersion or covariance
matrix of the residuals. This is done by setting the par-
tial derivative ∂(nT Σ−1

n n)/∂α = 0. The result is

α̂ = (
MT Σ−1

n M
)−1

MT Σ−1
n r. (5)

The estimator α̂ is central (E{α̂} = α) with dispersion
(MT Σ−1

n M)−1. WhenΣn = σ 2I where I is the l×l unit
matrix and σ 2 is the variance of all residuals, V{ni } =
σ 2 (this is the ordinary least squares (OLS) case)

α̂ = (MT M)−1MT r (6)

with dispersion σ 2(MT M)−1.
To evaluate the goodness of the model we use R2 =

(r̃T r̃ − nT Σ−1
n n)/r̃T r̃, the coefficient of determination

(if M contains the column of ones r̃ is r centered, if
not r̃ = r), and the estimate of residual variance, s2 =
(nT Σ−1

n n)/(l − p − 1). s is the root mean square error,
RMSE. l − p − 1, the number of degrees of freedom,
must be positive. If an extra column is added to M p is
replaced by p + 1.

In some cases l is not large enough for the number
of degrees of freedom to be positive. Maselli (1998)
suggests the use of SAM (Section 5) as a preprocessor



Spectral Mixture Analysis 19

to identify a so-called optimum end-member subset by
choosing from the total set only the few end-members
with the largest projections for a given observation.

3. Full Unmixing

To perform full unmixing one needs to know the spectra
for all end-members present in the scene. In this case
we demand that the the non-negative abundances add
to 100%, i.e.,

p∑
i=1

αi = 1Tα = 1 and αi ≥ 0, (7)

where 1 is a p × 1 vector of ones. The first constraint
can be dealt with by introducing a Lagrange multiplier
−2λ and minimizing F = nT Σ−1

n n + 2λ(1Tα − 1)

without constraints. The solution obtained by setting
the partial derivatives ∂ F/∂α = 0 and ∂ F/∂λ = 0 is

[
MT Σ−1

n M 1

1T 0

] [
α

λ

]
=

[
MT Σ−1

n r

1

]
. (8)

The latter constraint can be dealt with by means of
methods from convex quadratic programming, see
Section 7 on computer programs.

In van der Meer (1999) an iterative scheme for full
unmixing based on the RMSE image is suggested. This
image can be used to select additional end-members or
replace an existing end-member with one from a region
of maximum RMSE.

Often, knowledge of all end-member spectra is not
available. Therefore partial unmixing methods where
we estimate the presence of one or a few desired, known
spectra only are important. α0 with a column of ones
in M above will to some extent reflect the presence of
end-members not accounted for in M and so will R2

and RMSE.

4. Partial Unmixing

Partial unmixing builds on the usual linear mixture
model in Eq. (2). We split the Mα term into two terms,
one which is the desired, known end-member d with a
corresponding abundance αp (without loss of general-
ity we place d in the last column of M), and one which
consists of the undesired (and often unknown) end-
members U with a corresponding (p − 1) × 1 vector,
γ, of abundances. U contains the first p−1 columns of

M and γ contains the first p − 1 elements of α. Hence

r = Mα + n

= dαp + Uγ + n. (9)

Uγ is often termed the interference. In partial unmixing
we want to develop methods to eliminate or minimize
the effect of U and γ. Often the term matched filtering
is applied to such methods.

Alternatively, we can set up simultaneous partial un-
mixing constraints in convex quadratic programming
by demanding that the non-negative abundances add to
a quantity less than or equal to 100%, i.e.,

p∑
i=1

αi = 1Tα ≤ 1 and αi ≥ 0. (10)

4.1. Orthogonal Subspace Projection (OSP)

The idea in OSP (Miller et al., 1992; Harsanyi and
Chang, 1994) is to project r onto a subspace orthogonal
to U. If we inspired by Eq. (6) apply the l × l matrix
P = I − U(UT U)−1UT we obtain

Pr = Pdαp + Uγ − U(UT U)−1UT Uγ + Pn

= Pdαp + Pn. (11)

γ and U are removed from the linear mixture model
but as with full unmixing we need U, i.e., we need
all the end-member spectra, both desired (known) and
undesired (typically unknown). However, OSP can be
used to remove the effect of known spectra collected
in U. Another way of removing undesired signal based
on band ratios is hinted by Crippen and Bloom (1999).

Settle (1996) it is shown that full linear unmixing
and OSP as used above and described by Harsanyi and
Chang (1994) are identical (except that OSP is compu-
tationally slightly more expensive).

For a noise subspace projection method, see Tu et al.
(1998).

4.2. Constrained Energy Minimization (CEM)

Constrained energy minimization, CEM (Resmini
et al., 1997; Stan, 1997; Nielsen, 1998; Jacobsen et al.,
1998), builds on the linear mixture model in Eq. (9). In
CEM we project r onto w with the intent to highlight
presence of the desired end-member, and to suppress
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the presence of the undesired end-members and noise.
We do this by requesting the following

1. we want the output (the projected value) to be one
when we project the desired spectrum, d, i.e., we
want wT d = 1;

2. in general, we want the output to be close to
zero, i.e., we want its expected value to be 0 or
E{wT r} = 0;

3. also, we want to minimize the expected value of
the squared difference between the output, wT r,
and the desired output, 0, i.e., we want to minimize
E {(wT r − 0)2}.

Since E{wT r} = 0 we get E{(wT r − 0)2} = V{wT r}.
Hence the job is to minimize V{wT r} = wT Σw with
the constraint wT d = 1. Σ is the dispersion matrix of
r. To do this we introduce a Lagrange multiplier −2λ

and minimize F = wT Σw+2λ(wT d−1) without con-
straints. This is done by setting the partial derivatives
∂ F/∂w = 0 and ∂ F/∂λ = 0. This leads to[

Σ d

dT 0

] [
w

λ

]
=

[
0

1

]
(12)

or

w = Σ−1d

dT Σ−1d
(13)

with λ = −1/dT Σ−1d. (wT r)2 the expectation of
which is minimized is often termed “energy”, hence
the name CEM.

Note that nothing in the above ensures the ideal:
0 ≤ wT r ≤ 1. On the contrary, we have requested that
E{wT r} = 0 which means that some projections must
necessarily be negative.

As opposed to OSP and full linear unmixing, CEM
does not require knowledge of all end-member spectra.
Only the desired spectrum is needed.

4.3. An Eigenvalue Formulation Alternative to CEM

As an alternative approach to CEM consider Eq. (9)
and the projection wT r again

wT r = wT dαp + wT Uγ + wT n. (14)

Consider the variance of wT r

V{wT r} = V{wT dαp} + V{wT Uγ} + V{wT n}
+ 2 Cov{wT dαp, wT Uγ} (15)

where we assume no covariation between the abun-
dance of the desired spectrum and noise, and the abun-
dances of the undesired spectra and noise. Cov{·} de-
notes covariance. This can be written as

wT Σw = V{αp}wT ddT w + wT U D{γ}UT w

+ wT Σnw + 2wT d Cov{αp,γ}UT w

= V{αp}wT ddT w + wT Ew (16)

where E represents all undesired effects, namely dis-
persions of interference and noise, and covariance be-
tween abundances of desired and undesired spectra. E
is unknown. D{·} denotes dispersion. From this we get

1 = V{αp}wT ddT w
wT Σw

+ wT Ew
wT Σw

. (17)

To minimize the variance of all the undesired effects
we must minimize the last term on the right-hand-side
of Eq. (17) and therefore since the sum is constant and
V{αp} ≥ 0 we must maximize the Rayleigh coefficient
in the first term. Since ddT is rank 1 we get one so-
lution only namely the w that satisfies the generalized
eigenvalue problem

ddT w = ρΣw. (18)

The solution w is proportional to Σ−1d which gives
ρ = dT Σ−1d. If we want wT d = 1 we get the same
solution as in Eq. (13) with ρ = −1/λ.

For hyperspectral data these operations can be per-
formed on (a subset of) orthogonally transformed
data such as signal maximum autocorrelation fac-
tors, MAFs, or signal minimum noise fractions, MNFs
(Switzer and Green, 1984; Conradsen et al., 1985,
1991; Green et al., 1988; Ersbøll, 1989; Lee et al.,
1990; Pendock and Nielsen, 1993; Nielsen and Larsen,
1994; Nielsen, 1994, 1999b; Strobl et al., 1996; Larsen
et al., 1997; Nielsen et al., 1998a). In this case ma-
trix inversion is not needed since ΣM = I. Hence
wM = dM/dT

M dM where the subscript M denotes dis-
persion, projection vector and desired spectrum after
the MAF or MNF transformation. If the data are not
sampled on a regular grid MAF/MNF analysis as de-
scribed by Nielsen (1994) and Nielsen et al. (1997a,
1997b, 2000) can be applied.

4.4. Iterated CEM

From Eq. (17) we see that for the first term on the
right-hand-side which represents the desired spectrum
to dominate over the second term which represents un-
desired effects, we could estimate Σ from the pixels
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where d is present rather than over the entire image.
Thus Σ in a second iteration could be estimated by
weighting with wT r from the first iteration or we could
threshold wT r and estimate Σ only where wT r is large.
Of course, more iterations could be performed (and
stopped when relative changes become small).

4.5. Target Constrained Interference Minimized
Filter (TCIMF)

In case we have several desired spectra, say t , as well as
several undesired spectra, say q , we project r onto w to
highlight all the desired spectra written as columns in
the l × t matrix D, to null all the undesired spectra writ-
ten as columns in the l × q matrix U and to minimize
noise. This is done by replacing the CEM constraint
wT d = 1 with wT [DU] = [1T 0T ] where [DU] is an
l × (t + q) matrix of desired and undesired spectra as
columns, 1 is a t × 1 vector of ones and 0 is a q × 1
vector of zeros. This leads to

w = Σ−1[DU]([DU]T Σ−1[DU])−1

[
1

0

]
. (19)

In Ren and Chang (2000) this is called the target con-
strained interference minimized filter or TCIMF. Ob-
viously this filter can be applied in a MAF/MNF sub-
space also. Also iteration applies in this case.

5. Spectral Angle Mapping (SAM)

As a supposedly more physically oriented way of es-
tablishing a measure of closeness to a desired spec-
trum, spectral angle mapping, SAM, has been sug-
gested (Kruse et al., 1993). In SAM the angle between
the desired spectrum, d, and the spectrum in each pixel,
r, is measured. This angle is the inverse cosine of the
normalized inner product dT r/(‖d‖ ‖r‖). Apart from
the scaling this inner product corresponds to CEM with
Σ = σ 2I, i.e., CEM without allowing for the covari-
ance between the spectral bands. The result from SAM
is ideally insensitive to illumination effects.

6. Semi-parametric Unmixing (SPU)

As an extension to the ordinary linear model

Y = ( α0 + )

p∑
i=1

αi Xi + ε (20)

consider an additive model

Y =
p∑

i=1

fi (Xi ) + ε, (21)

where fi which can subsume α0 if present are smooth
functions, typically (cubic smoothing) splines but (lo-
cally weighted) running-line or kernel smoothers could
be used also. Based on the conditional expectations
E{Y − ∑

k �=i fk(Xk) | Xi }, i = 1, . . . , p where fk can
be initialized by ordinary least squares regression, we
see that the additive model can be estimated by so-
called backfitting: fit the smooth functions fi one at
a time by smoothing the residuals Y − ∑

k �=i fk(Xk)

against Xi using a 1-D smoother. Known in numer-
ical analysis as the Gauss-Seidel algorithm the pro-
cess is repeated until convergence is obtained. Back-
fitting is also known as iterative smoothing of partial
residuals.

Here, consider the simpler combined linear and addi-
tive model with only one non-linear term, the so-called
semi-parametric model

r(x, y) = Mα(x, y) + f (x, y) + n(x, y), (22)

where f (x, y) which can subsume α0(x, y) if present
consists of combined unknown spectra described by
a smooth function (of wavelength λ), again typically
a spline. We note that although written as in the full
unmixing case this model specifically allows for un-
known spectra through the covariate f . We do not con-
sider the estimation of f itself interesting but in the
presence of unknown spectra we need to estimate f
ideally to avoid bias in α. As in the fully linear case, ni

is white noise, i.e., ni is independent, identically dis-
tributed (iid) Gaussian with zero mean and variance σ 2,
n ∈ N (0, σ 2I). The semi-parametric model can be esti-
mated directly without iteration (Hastie and Tibshirani,
1990).

For further description of (generalized) additive
models see Hastie and Tibshirani (1990), Chambers
and Hastie (1992), Venables and Ripley (1999), and
Sadegh et al. (1999). Sadegh et al. (1999) also intro-
duces mean weighted least squares as an alternative to
backfitting.

Other non-linear techniques for solving the mixing
problem not described here include the expectation
maximization algorithm (Dempster et al., 1977) and
artificial neural networks (Bernard et al., 1997).
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7. Computer Programs

Eight computer programs written at IMM are useful
in this type of analysis, maf, osp, project, tcimf,
seed, eqndist, spam and unmix.
maf finds principal components, (rotated) princi-

pal factors, maximum autocorrelation factors, mini-
mum noise fractions, canonical discriminant functions,
(multiset) canonical variates and linear combinations
that give maximal multivariate differences of two sets
of variables (Nielsen et al., 1998a). All covariance ma-
trices are found by the method of provisional means
(Dixon, 1985). The eigenvalue problems associated
with the analysis are solved by means of LAPACK rou-
tines (Anderson et al., 1995). For a fuller description,
see Nielsen (1994).

osp performs orthogonal subspace projection of one
or more spectra, Eq. (11). Typically this is done to
reduce the influence of undesired spectra.

project projects data in feature space onto a unit
vector representing a desired end-member spectrum.

tcimf performs target constrained interference min-
imized filtering, Eq. (19), including constrained
energy minimization, Eq. (13).

seed grows a training area from one or a few pixels by
requesting spatial as well as spectral closeness. Spa-
tial closeness is ensured by requesting 8-neighbor
connectivity. Spectral closeness is ensured by re-
questing low Euclidean or Mahalanobis distance in
feature space. For a fuller description, see Nielsen et
al. (1998b), Larsen et al. (1999, 2000), Flesche et al.
(2000).

eqndist performs a Wishart distribution based test
to check if pairs of data classes simultaneously have
equal mean and dispersion, see Anderson (1984).
Here this is done to check that no two regions grown
by seed actually represent the same class.

spam performs spectral angle mapping, Section 5.
unmix performs full unmixing either without con-

straints or with the natural constraints that the non-
negative abundances sum to one, and marginal (one
spectral band at a time) or simultaneous (more bands
at a time) partial unmixing with the natural con-
straints that the non-negative abundances sum to
a quantity not greater than one. The unconstrained
OLS problem (Eq. (6)) is solved by LINPACK rou-
tines (Dongarra et al., 1979). The constrained NNLS
problems (Eq. (7) and (10))) are solved by a lin-
early constrained least squares algorithm, LSSOL

(Gill et al., 1986), which solves the problem: mini-
mize 1

2‖r − Mα‖2 over α in this case with αi ≥ 0
and 1Tα = 1 respectively 1Tα ≤ 1. By working
in MAF/MNF space we allow for inter-variable co-
variances in the spectral distance measure rather than
working with simply the Euclidean distance. The si-
multaneous partial unmixing can be performed itera-
tively as described for the marginal partial unmixing,
Section 4.4.

The above computer programs are written to comply
with the HIPS standard (Landy, 1993; Landy et al.,
1984a, 1984b).

Estimation in the semi-parametric model is done by
means of the S/S-PLUS gam function (Chambers and
Hastie, 1992).

8. Case Studies

Two sets of data are used in the case studies. One is
based one simple generated data, another on hyper-
spectral imaging spectrometer data. The generated data
are well suited for simple tests of both full and partial
unmixing methods because the truth is known. On the
other hand the data generated are so simple that the re-
sults do not reflect a realistic behavior of the methods.
Therefore also real data are applied.

8.1. Simple Generated Data

The data used consist of two bands, one with a centered
horizontal bar and one with a centered vertical bar. The
images are 130 × 130 pixels with 10 pixels wide bars.
Both bands have Gaussian noise with standard devi-
ation equal to half the difference between foreground
(which equals 1.0) and background (which equals 0.0)
added. Figure 1 shows the two bands without noise in
the first column, the two bands with noise in the second
column, the CEM results (Eq. (13)) stretched linearly
from minimum to maximum in the third column, and
the CEM results stretched linearly from 0 to 1 in the
fourth column. In spite of the high noise level CEM
nicely picks up the two desired spectra.

Iterated CEM images (second iteration, Section 4.4)
are shown in columns two and four in Fig. 2. Σ in the
second iteration is estimated by weighting with wTr
from Eq. (13) stretched linearly from 0 to 1. To facili-
tate comparison the original CEM images are shown
again in columns one and three. In the top row all
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Figure 1. Two generated bands (without noise in column one, with
noise in column two) and the CEM results, Eq. (13) (columns three
and four).

Figure 2. Two generated bands, original CEM results, Eq. (13)
(columns one and three) and iterated CEM results, Section 4.4
(columns two and four).

Figure 3. Two generated bands, original CEM results, Eq. (13)
(columns one and two), TCIMF results, Eq. (19) (columns three and
four) and differences (column five).

quantities are stretched linearly between minimum and
maximum, in the bottom row all quantities are stretched
linearly between 0 and 1. Iterated CEM seems to sup-
press noise better than ordinary CEM at the cost of
missing true positives.

TCIMF images (Eq. (19)) with one desired and one
undesired spectrum are shown in columns three and
four in Fig. 3. Columns one and two repeat the CEM
results. Columns two and four are stretched linearly be-
tween 0 and 1. As the results are very similar column
five shows the CEM result subtracted from the TCIMF
result. Columns one, three and five are stretched lin-
early between minimum and maximum. In this exam-
ple we see that since dark gray levels represent low

Figure 4. Two generated bands, full unmixing without constraints
based on OLS, Eq (6).

Figure 5. Two generated bands, full unmixing with constraints
based on NNLS, Eq. (7).

values TCIMF tends to suppress what is not desired
rather than put extra highlight on what is desired.

Figure 4 shows results from a full unmixing without
constraints based on ordinary least squares, Eq. (6).
Column one is abundances of band 1, column two is
abundances of band 2, column three is R2 and column
four is RMSE. In the top row all quantities are stretched
linearly between minimum and maximum, in the bot-
tom row all quantities are stretched linearly between
0 and 1 (which makes no sense for RMSE). Figure 5
shows the same results for the full, constrained unmix-
ing based on non-negative least squares, Eq. (7).

Both full unmixings are carried out with three vari-
ables, namely the two generated bands and their pro-
duct. This causes the cross-shaped appearances of the
R2 and RMSE images. Compared to unconstrained un-
mixing we see that the constrained unmixing in this
case better suppresses the undesired spectrum at the
cost of more false positives.

8.2. AVIRIS Data

The data used here is the 30 bands subset of AVIRIS
data (Vane and Goetz, 1988; Vane et al. 1993; AVIRIS),
over a small part of the Mojave Desert, California,
USA, that come with the LinkWinds software (Jacob-
son et al., 1994). These bands cover the spectral range
0.52–2.33 µm. The images have 180 rows and 360
columns. Figure 6 shows every other of the 30 bands
(row-wise). AVIRIS (the Airborne Visible/Infra-Red
Imaging Spectrometer) from NASA/JPL features 224
approximately 10 nm wide channels measured by
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Figure 6. Every other of the 30 bands subset of AVIRIS data over the Mojave Dessert, California, USA.

4 detectors covering the spectral range from 0.370–
2.500 µm. Pixels are 20 m × 20 m.

The data are used in four different ways. First
(Table 3), we generate new spectra from measured

spectra by adding known abundances of spectra for
end-members 1, 3 and 5. These spectra are used to test
unmixing by OLS (Eq. (6)) and NNLS (Eq. (10)) in
situations with known abundances and with different
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Table 1. Dispersion and correlation matrices of the six end-member spectra.

EM1 EM2 EM3 EM4 EM5 EM6

EM1 1645.927 2125.770 1608.495 2780.741 2641.368 2809.189

EM2 0.9366 3129.980 2154.799 3696.108 3121.738 3758.973

EM3 0.9530 0.9257 1730.953 2829.628 2609.729 2753.942

EM4 0.9859 0.9503 0.9783 4833.341 4505.905 4823.767

EM5 0.9568 0.8201 0.9219 0.9525 4629.797 4467.913

EM6 0.9890 0.9596 0.9454 0.9910 0.9378 4902.158

Table 2. Eigenvalues and amount of variance explained by principal components of dispersion and correlation
matrices of the six end-member spectra.

PC1 PC2 PC3 PC4 PC5 PC6

Dispersion matrix 1.999 · 104 7.021 · 102 1.479 · 102 2.609 · 101 8.977 · 100 5.961 · 10−1

95.8% 3.36% 0.709% 0.125% 0.0430% 0.00286%

Correlation matrix 5.737 0.1826 0.06645 0.01169 0.002441 0.0001492
95.6% 3.04% 1.11% 0.195% 0.0407% 0.00249%

levels of independent, identically distributed (iid)
Gaussian noise added. Second, (Table 4), similarly
generated spectra are used to test unmixing by OLS
(Eq. (6)), NNLS (Eq. (10)) and SPU (Eq. (22)) in situ-
ations with known abundances and with different levels
of iid Gaussian noise added, this time with one spec-
trum considered as unknown. Third, (Table 5), to avoid
problems that may arise from results based on just one
realization of the iid Gaussian noise added, generated
spectra based on 100 noise realizations are used to test
unmixing by OLS (Eq. (6)) and SPU (Eq. (22)) in situa-
tions with known abundances and with different levels
of iid Gaussian noise added, again with one spectrum
considered as unknown. Finally, the AVIRIS data are
used directly to illustrate results of different partial un-
mixing methods.

To establish which regions in the image contain ex-
treme values and therefore are potential end-members
we look for the minimum and maximum values in the
MAFs. The first 14 MAFs are shown in Fig. 7 (row-
wise).

Since we don’t want our partial unmixing results to
be based on possible noise spectra we use training areas
grown from the pixels with extreme values as seeds to
calculate average spectra instead of using the spectra
from the extreme pixels themselves directly (Nielsen
et al., 1998b; Larsen et al., 1999, 2000; Flesche et al.,
2000). To ensure that training areas do not represent the
same class a Wishart distribution based test to check

that no pair of classes simultaneously have equal mean
and dispersion is performed (Anderson, 1984).

This is a “true remote sensing situation”, we don’t
know what is on the ground. Our aim here is to illus-
trate the unmixing methods and not to classify or iden-
tify material on the ground. We arbitrarily choose six
potential end-members corresponding to the extreme
values of MAFs 1–3. Figure 8 shows the six train-
ing areas grown from these extremes by seed, see
Section 7.

Table 1 shows dispersion and correlation matrices
for the six end-member spectra. Numbers on and above
the diagonal are from the dispersion matrix, num-
bers below the diagonal and in italics are from the
correlation matrix. The high correlations in Table 1
are confirmed by the two eigenanalyses shown in Ta-
ble 2. In both cases more than 95% of the total varia-
tion is explained by principal component one. Figure 9
shows all pairwise scatterplots of seven variables,
namely wavelength and the six end-member spectra.
Again the high correlations between the end-member
spectra are confirmed but although correlations are
high there are large differences in the levels between
the six spectra especially in the 0.5 µm < λ < 1.7 µm
region.

Table 3 shows results of unmixings of generated
spectra by means of ordinary least squares regression
(OLS, Eq. (6)) and non-negative least squares regres-
sion with weights adding to ≤ 1 (NNLS, Eq. (10)).
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Figure 7. The first 14 MAFs of the AVIRIS data.

The spectra are constructed as weighted sums of end-
members 1, 3 and 5 with different amounts of iid
Gaussian noise. The true α0 = 0 in this case and the
true abundances are listed along with their estimates

in Table 3. Also the true α5 = 0 here. The noise con-
tent is characterised by the signal-to-noise ratio (SNR)
defined as the variance of the signal relative to the vari-
ance of the noise. Coefficients are listed whether they
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Figure 8. Seed grown training areas under which average spectra are calculated shown in white on top of MAF1. The plotting order is (row-wise)
min MAF1, max MAF1, min MAF2, max MAF2, min MAF3, max MAF3.

Figure 9. All pairwise scatterplots of wavelength and the six end-member spectra. The first column shows the actual spectra.
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Table 3. Abundances and RMSEs estimated from generated spectra by means of ordinary least squares (OLS, Eq. 6) and
non-negative least squares with weights adding to ≤ 1 (NNLS, Eq. 10). The spectra are constructed as weighted sums of
end-members 1, 3 and 5 with different amounts of iid Gaussian noise.

OLS NNLS

α1 α3 α5 SNR α̂0 α̂1 α̂3 α̂5 RMSE α̂0 α̂1 α̂3 α̂5 RMSE

0.00 1.00 0.00 1000 0.05 −0.03 0.98 0.03 1.50 0.01 0.00 0.97 0.02 1.52

0.10 0.90 0.00 1000 0.05 0.07 0.91 0.01 1.63 0.01 0.07 0.91 0.01 1.63

0.20 0.80 0.00 1000 −0.37 0.22 0.80 −0.01 1.27 0.00 0.66 0.31 0.02 1.54

0.30 0.70 0.00 1000 1.17 0.30 0.70 −0.01 1.08 0.00 0.29 0.71 0.00 1.15

0.40 0.60 0.00 1000 0.03 0.44 0.60 −0.02 1.51 0.00 0.39 0.61 0.00 1.59

0.50 0.50 0.00 1000 −1.48 0.49 0.51 0.01 1.04 0.00 0.50 0.49 0.01 1.16

0.60 0.40 0.00 1000 0.56 0.57 0.42 0.00 1.06 0.00 0.56 0.43 0.01 1.07

0.70 0.30 0.00 1000 1.13 0.67 0.30 0.02 1.50 0.01 0.66 0.31 0.02 1.54

0.80 0.20 0.00 1000 −0.53 0.79 0.22 −0.00 1.26 0.00 0.78 0.22 0.00 1.29

0.90 0.10 0.00 1000 0.65 0.87 0.10 0.02 1.14 0.01 0.86 0.10 0.02 1.16

1.00 0.00 0.00 1000 0.43 1.01 −0.03 0.01 1.26 0.01 0.98 0.00 0.01 1.33

0.00 1.00 0.00 100 −0.50 −0.10 1.05 0.03 4.00 0.00 0.00 1.00 0.00 4.12

0.10 0.90 0.00 100 −3.49 0.04 0.92 0.03 5.36 0.00 0.06 0.90 0.03 5.49

0.20 0.80 0.00 100 −0.76 0.28 0.85 −0.08 3.78 0.00 0.17 0.83 0.00 4.17

0.30 0.70 0.00 100 1.87 0.37 0.66 −0.03 4.18 0.00 0.32 0.68 0.00 4.27

0.40 0.60 0.00 100 −0.72 0.39 0.66 −0.03 4.64 0.00 0.35 0.65 0.00 4.69

0.50 0.50 0.00 100 −3.54 0.52 0.50 0.01 2.85 0.00 0.53 0.47 0.01 3.10

0.60 0.40 0.00 100 −0.10 0.65 0.31 0.04 3.58 0.00 0.65 0.31 0.04 3.58

0.70 0.30 0.00 100 −2.13 0.68 0.27 0.05 5.16 0.00 0.69 0.26 0.04 5.21

0.80 0.20 0.00 100 3.41 0.92 0.15 −0.06 4.75 0.00 0.82 0.18 0.00 5.02

0.90 0.10 0.00 100 −4.59 1.08 0.05 −0.06 4.02 0.00 1.00 0.00 0.00 4.55

1.00 0.00 0.00 100 −0.39 0.95 −0.04 0.06 3.84 0.00 0.91 0.00 0.05 3.89

0.00 1.00 0.00 10 −15.17 0.09 1.18 −0.09 11.84 0.00 0.00 0.99 0.01 13.22

0.10 0.90 0.00 10 −2.65 0.11 0.97 −0.06 15.28 0.00 0.04 0.93 0.00 15.35

0.20 0.80 0.00 10 −0.31 −0.01 0.92 0.05 13.52 0.00 0.00 0.92 0.05 13.52

0.30 0.70 0.00 10 7.43 0.04 0.81 0.04 14.26 0.07 0.06 0.87 0.05 14.49

0.40 0.60 0.00 10 3.55 0.69 0.54 −0.14 11.74 0.00 0.39 0.58 0.03 12.32

0.50 0.50 0.00 10 5.13 0.45 0.39 0.08 14.22 0.05 0.43 0.44 0.08 14.33

0.60 0.40 0.00 10 −0.81 0.62 0.53 −0.09 13.07 0.00 0.49 0.50 0.00 13.21

0.70 0.30 0.00 10 −4.05 0.50 0.38 0.10 11.94 0.00 0.52 0.35 0.09 12.02

0.80 0.20 0.00 10 0.94 0.99 0.29 −0.16 13.38 0.00 0.68 0.31 0.01 13.92

0.90 0.10 0.00 10 −6.55 0.72 0.10 0.13 13.04 0.00 0.75 0.05 0.12 13.23

1.00 0.00 0.00 10 −5.16 1.13 −0.20 0.08 13.28 0.00 0.92 0.00 0.04 13.82

0.00 1.00 0.00 1 −0.86 0.47 0.42 0.14 38.84 0.00 0.44 0.41 0.15 38.84

0.10 0.90 0.00 1 −47.68 0.41 1.53 −0.42 48.21 0.00 0.00 0.91 0.00 51.93

0.20 0.80 0.00 1 −3.46 0.04 0.53 0.35 41.16 0.00 0.05 0.50 0.34 41.18

0.30 0.70 0.00 1 −16.81 −1.46 1.72 0.53 55.07 0.00 0.00 0.87 0.13 57.04

0.40 0.60 0.00 1 −1.26 0.37 0.74 0.01 39.79 0.00 0.10 0.74 0.16 39.94

0.50 0.50 0.00 1 −44.75 0.83 0.18 0.24 43.46 0.00 0.80 0.00 0.15 46.21

(Continued on next page.)
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Table 3. (Continued).

OLS NNLS

α1 α3 α5 SNR α̂0 α̂1 α̂3 α̂5 RMSE α̂0 α̂1 α̂3 α̂5 RMSE

0.60 0.40 0.00 1 18.44 0.47 0.29 0.05 30.28 0.08 0.40 0.45 0.07 30.93

0.70 0.30 0.00 1 −19.06 0.70 0.91 −0.35 32.46 0.00 0.23 0.66 0.00 34.04

0.80 0.20 0.00 1 21.48 0.87 0.09 −0.12 31.93 0.09 0.64 0.26 0.00 32.82

0.90 0.10 0.00 1 −9.35 0.53 0.38 0.11 32.32 0.00 0.56 0.30 0.09 32.48

1.00 0.00 0.00 1 11.09 −0.20 0.59 0.33 41.40 0.15 0.00 0.58 0.27 41.64

are significant or not. We see that apart from the inter-
cept estimates in this situation with all end-members
known OLS and NNLS perform fairly similarly for
reasonable SNR levels (1000 and 100).

Table 4 shows results of simultaneous partial un-
mixings of generated spectra by means of ordinary

Table 4. Abundances and RMSEs estimated from generated spectra by means of ordinary least squares (OLS, Eq. (6)), non-negative least
squares with weights adding to ≤1 (NNLS, Eq. (10)) and semi-parametric unmixing (SPU, Eq. (22)). The spectra are constructed as weighted
sums of end-members 1, 3 and 5 with different amounts of iid Gaussian noise. End-member 5 is considered as unknown (and is therefore not
estimated).

OLS NNLS SPU

α1 α3 α5 SNR α̂0 α̂1 α̂3 RMSE α̂0 α̂1 α̂3 RMSE α̂0 α̂1 α̂3 RMSE

0.00 0.90 0.10 0.50 0.14 0.92 2.04 0.00 0.00 1.00 7.46 −0.51 0.09 0.97 0.82

0.45 0.45 0.10 0.50 0.59 0.47 2.04 0.00 0.25 0.75 6.63 −0.51 0.54 0.52 0.82

0.90 0.00 0.10 0.50 1.04 0.02 2.04 0.00 0.70 0.30 6.63 −0.51 0.99 0.07 0.82

0.00 0.90 0.10 1000 1.15 0.15 0.91 2.39 0.00 0.00 1.00 7.37 4.05 0.05 0.98 1.62

0.45 0.45 0.10 1000 1.14 0.58 0.48 2.54 0.00 0.23 0.77 7.05 10.78 0.46 0.53 1.78

0.90 0.00 0.10 1000 −0.45 1.04 0.03 2.07 0.00 0.72 0.28 6.31 −2.17 1.01 0.06 1.67

0.00 0.90 0.10 100 0.90 0.13 0.92 4.49 0.00 0.00 1.00 7.82 −11.78 0.10 1.00 4.23

0.45 0.45 0.10 100 2.33 0.67 0.39 4.54 0.00 0.29 0.71 8.42 −3.12 0.67 0.40 4.37

0.90 0.00 0.10 100 1.78 1.02 0.02 4.73 0.00 0.71 0.29 7.53 38.18 0.76 0.08 3.31

0.00 0.90 0.10 10 7.44 0.12 0.89 10.62 0.00 0.00 1.00 13.14 −6.25 0.15 0.92 11.01

0.45 0.45 0.10 10 −4.32 0.63 0.49 13.97 0.00 0.21 0.79 16.12 39.37 0.28 0.61 14.62

0.90 0.00 0.10 10 4.961 1.19 −0.19 14.29 0.00 0.99 0.01 14.84 −42.01 1.27 −0.05 14.65

0.00 0.90 0.10 1 17.51 0.43 0.53 46.09 0.00 −0.00 1.00 47.34 357.59 −1.79 1.00 43.32

0.45 0.45 0.10 1 −10.80 −0.07 1.21 40.84 0.00 0.00 1.00 41.96 191.96 −1.40 1.51 40.17

0.90 0.00 0.10 1 −1.12 0.96 0.20 38.03 0.00 0.14 0.86 41.06 −8.33 1.19 0.03 40.25

0.00 0.80 0.20 1.00 0.29 0.84 4.07 0.00 −0.00 1.00 14.92 −1.02 0.17 0.93 1.64

0.40 0.40 0.20 1.00 0.69 0.44 4.07 0.00 0.01 0.99 13.27 −1.02 0.57 0.53 1.64

0.80 0.00 0.20 1.00 1.09 0.04 4.07 0.00 0.41 0.59 13.27 −1.02 0.97 0.13 1.64
0.00 0.80 0.20 1000 0.66 0.29 0.84 4.19 0.00 0.00 1.00 14.93 5.56 0.14 0.93 1.97

0.40 0.40 0.20 1000 0.64 0.69 0.43 3.93 0.00 0.04 0.96 12.85 −5.25 0.61 0.52 1.96

0.80 0.00 0.20 1000 1.97 1.08 0.03 4.41 0.00 0.41 0.59 13.30 5.34 0.93 0.14 2.07

(Continued on next page.)

leastsquares regression (OLS, Eq. (6)), non-negative
least squares regression with weights adding to ≤1
(NNLS, Eq. (10)) and semi-parametric unmixing (SPU,
Eq. (22)). The spectra are constructed as weighted sums
of end-members 1, 3 and 5 with different amounts of
iid Gaussian noise (here we have a situation with no
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Table 4. (Continued).

OLS NNLS SPU

α1 α3 α5 SNR α̂0 α̂1 α̂3 RMSE α̂0 α̂1 α̂3 RMSE α̂0 α̂1 α̂3 RMSE

0.00 0.80 0.20 100 1.45 0.31 0.80 5.19 0.00 0.00 1.00 14.18 10.14 0.09 0.94 3.42

0.40 0.40 0.20 100 1.01 0.71 0.42 5.93 0.00 0.00 1.00 14.97 −1.43 0.65 0.48 5.40

0.80 0.00 0.20 100 6.33 1.07 0.01 4.46 0.00 0.38 0.62 13.73 −3.21 0.97 0.14 2.93

0.00 0.80 0.20 10 16.73 0.20 0.80 11.29 0.00 0.00 1.00 18.69 −23.25 0.18 0.97 9.17

0.40 0.40 0.20 10 10.54 0.57 0.44 16.10 0.00 0.09 0.91 18.62 83.35 0.00 0.58 14.65

0.80 0.00 0.20 10 10.86 1.06 0.00 13.57 0.00 0.31 0.69 19.65 50.40 0.80 0.04 14.11

0.00 0.80 0.20 1 −46.01 0.43 1.00 45.91 0.00 0.04 0.96 49.27 41.91 −0.07 1.09 46.65

0.40 0.40 0.20 1 28.90 0.00 0.80 49.89 0.00 0.00 1.00 51.02 72.15 −1.13 1.57 48.79

0.80 0.00 0.20 1 6.96 1.27 −0.19 29.50 0.00 0.54 0.46 32.49 84.62 0.90 −0.20 30.87

0.00 0.90 0.30 1.51 0.43 0.75 6.11 0.00 −0.00 1.00 22.38 −1.53 0.26 0.90 2.46

0.35 0.35 0.30 1.51 0.78 0.40 6.11 0.00 0.00 1.00 20.32 −1.53 0.61 0.55 2.46

0.70 0.00 0.30 1.51 1.13 0.05 6.11 0.00 0.11 0.89 19.90 −1.53 0.96 0.20 2.46

0.00 0.90 0.30 1000 1.57 0.40 0.78 6.52 0.00 0.00 1.00 23.02 2.93 0.21 0.92 3.38

0.35 0.35 0.30 1000 1.74 0.83 0.36 6.01 0.00 0.00 1.00 20.57 2.23 0.63 0.51 2.82

0.70 0.00 0.30 1000 0.46 1.15 0.09 6.14 0.00 0.12 0.88 20.24 −5.73 0.99 0.19 2.38

0.00 0.90 0.30 100 1.03 0.42 0.76 6.98 0.00 0.00 1.00 21.94 10.41 0.12 0.97 3.83

0.35 0.35 0.30 100 −1.98 0.81 0.42 7.17 0.00 0.00 1.00 22.41 15.89 0.57 0.68 4.81

0.70 0.00 0.30 100 2.75 1.11 0.07 7.44 0.00 0.06 0.94 20.88 −6.80 0.96 0.22 3.94
0.00 0.90 0.30 10 2.58 0.66 0.55 12.12 0.00 0.00 1.00 27.16 −54.74 0.86 0.62 11.32

0.35 0.35 0.30 10 9.78 0.62 0.51 14.47 0.00 0.00 1.00 25.76 5.88 0.47 0.63 14.23

0.70 0.00 0.30 10 −2.32 1.17 0.04 15.72 0.00 0.17 0.83 24.41 34.59 0.75 0.21 13.81

0.00 0.90 0.30 1 −8.35 0.71 0.63 37.26 0.00 0.00 1.00 48.71 −278.16 2.14 0.58 36.20

0.35 0.35 0.30 1 −12.94 0.83 0.55 46.40 0.00 0.00 1.00 54.83 −214.52 2.03 0.45 47.05

0.70 0.00 0.30 1 −4.26 0.38 0.83 43.21 0.00 0.00 1.00 47.55 −84.99 1.34 0.29 44.31

noise added also). End-member 5 is considered as un-
known, i.e., only abundances of end-member spectra 1
and 3 are estimated (but in the presence of end-member
spectrum 5). We see that OLS in this situation with one
unknown spectrum performs better than NNLS. Also,
the RMSEs for OLS are lower than for NNLS. SPU
tends to perform slightly better than OLS for reason-
able SNR levels (1000 and 100) with high abundance
(30%) of the unknown component. In all cases with
reasonable SNR (1000 and 100) the RMSEs for SPU
are lower than for OLS.

Table 5 shows results of simultaneous partial un-
mixings of 100 realizations of generated spectra
(see Fig. 10) by means of ordinary least squares re-
gression (OLS, Eq. (6)) and semi-parametric unmixing
(SPU, Eq. (22)). The spectra are constructed as imme-
diately above, this time with 100 realizations of the iid
Gaussian noise. Again, end-member 5 is considered

as unknown. We see that SPU correctly tends to give
more equal but not satisfactory estimates of α1 and α3

than OLS. Also, we see that the RMSEs for SPU are
generally lower than for OLS especially for high SNR.

To give an impression of the appearance of
some smooth functions in the semi-parametric model
(Eq. (22)) Fig. 11 shows residuals from OLS with
examples of differently smoothed versions of f , see
Section 6.

Figure 12 shows results from a non-negative least
squares (NNLS) simultaneous partial unmixing (i.e.,
the non-negative abundances add to a quantity not
greater than one, Eq. (10)) of the six chosen end-
member spectra. Abundances and R2 are stretched lin-
early from 0 to 1. No intercept term is estimated in this
case. Where RMSE is high R2 is low and vice versa.
High RMSE regions potentially hold additional end-
members.
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Table 5. Abundances and RMSEs estimated from 100 realizations of generated spectra by means of
ordinary least squares (OLS, Eq. (6)) and semi-parametric unmixing (SPU), Eq. (22). First rows give
mean values, second rows give standard deviations. The spectra are constructed from end-members 1,
3 and 5 with different amounts of iid Gaussian noise. End-member 5 is considered as unknown (and is
therefore not estimated).

OLS SPU

α1 α3 α5 SNR α̂0 α̂1 α̂3 RMSE α̂0 α̂1 α̂3 RMSE

0.45 0.45 0.10 1000 0.36 0.59 0.47 2.48 −0.82 0.53 0.52 1.59

0.74 0.02 0.02 0.26 4.91 0.04 0.03 0.24

0.45 0.45 0.10 100 0.57 0.59 0.47 4.82 −0.07 0.53 0.52 4.40

2.43 0.07 0.06 0.64 16.24 0.11 0.08 0.64

0.45 0.45 0.10 10 0.71 0.60 0.46 13.73 0.41 0.54 0.51 13.65

7.86 0.19 0.19 1.88 42.84 0.32 0.26 1.95

0.45 0.45 0.10 1 −2.79 0.57 0.51 43.66 −27.91 0.65 0.56 43.55

24.06 0.79 0.77 5.40 174.92 1.15 0.95 5.58

0.25 0.25 0.50 1000 2.49 0.97 0.34 10.29 −2.34 0.68 0.58 4.47

1.01 0.03 0.03 0.36 5.88 0.04 0.03 0.28

0.25 0.25 0.50 100 2.46 0.98 0.33 11.30 −2.27 0.70 0.56 6.57

2.91 0.08 0.08 0.97 17.69 0.14 0.10 0.78

0.25 0.25 0.50 10 2.37 0.94 0.36 19.56 −2.15 0.64 0.62 17.17

8.06 0.28 0.28 2.88 60.01 0.41 0.30 2.54

0.25 0.25 0.50 1 3.35 1.05 0.26 54.34 13.23 0.82 0.38 53.71

33.46 0.82 0.80 7.96 186.46 1.33 0.96 7.75

Figure 10. 100 realizations of generated spectra with different amounts of iid Gaussian noise. α1 = α3 = 0.45 and α5 = 0.10.
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Figure 11. Examples of residuals from the ordinary least squares regression model. The thin line is a local linear regression of these residuals,
dashed lines are different smooths that can be chosen by the back-fitting algorithm with the actually used smooth as the fat line.

Figure 12. Results from a non-negative least squares simultaneous partial unmixing (i.e., the non-negative abundances add to a quantity not
greater than one, Eq. (10)) of the six chosen end-member spectra. Row-wise: abundances of the six end-member spectra, R2, and RMSE.
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Figure 13. CEM abundance estimates stretched linearly from 0 to 1, Eq. (13).

Figure 14. Iterated CEM abundance estimates stretched linearly from 0 to 1, Section 4.4.
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Figure 13 shows the resulting abundance images as
estimated from the first nine MAFs by CEM (Eq. (13))
stretched linearly from 0 to 1.

Figure 14 shows second iteration abundance im-
ages as estimated from the first nine MAFs by CEM
(Section 4.4) stretched linearly from 0 to 1. Σ in the
second iteration is estimated by weighting with wT r
stretched linearly from 0 to 1.

Figure 15 shows the spectral angles from a SAM
analysis (Section 5). Obviously, the spectral angle is
small where the abundance is high.

With stretching from 0 to 1 the CEM abundance
estimates give a more distinct and visually pleasing
impression of the spatial distribution of spectrally sim-
ilar material than does spectral angles. SAM seems to
give information on what is very different from the
desired spectrum whereas CEM seems to give infor-
mation on what is very similar to the desired spectrum.
Unlike CEM results there is no obvious stretching to
be applied to SAM results.

Again, this is a “true remote sensing situation”. With
no knowledge of “the truth” it is difficult to make
hard statements on the above results on the AVIRIS
data. However, the partial simultaneous constrained
unmixing based on non-linearleast squares (Eq. (10)
and Fig. 12), and the partial marginal unmixing based

Figure 15. Spectral angles, Section 5.

on (iterated) constrained energy minimization (Eq.
(13), Section 4.4, and Figs. 13 and 14) all agree on
the locations of the highest and to some extent also the
lowest abundances. There are large differences between
the three results for the intermediate abundances. Espe-
cially the iterated CEM method gives smaller target ar-
eas for the six end-member spectra used. This complies
with the results from the example given in Section 8.1
on simple generated data where this characteristic
is seen to be coupled with the cost of missing true
positives.

9. Conclusions

CEM and a new eigenvalue formulation alternative en-
able us to perform partial unmixing when we know
the desired end-member spectrum only and not the
full set of end-member spectra which is a very real-
istic situation. This is an advantage over full unmix-
ing and OSP. Based on the eigenvalue formulation a
new iterative scheme for calculating CEM is suggested.
Results from the first iteration shows promising results
for both the case with generated data and for the case
with AVIRIS data where it seems to suppress noise
better than the ordinary CEM method at the cost of
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missing true positives. When applying the CEM
method or the eigenvalue formulation alternative to
MAF or MNF transformed data, matrix inversion
is not needed and also the noise isolated in the
MAF/MNFs excluded from the analysis does not influ-
ence the matched filtering performed. In a very simple
2-spectrum example TCIMF tends to suppress the un-
desired spectrum rather than put extra highlight on the
desired spectrum. Compared to unconstrained full un-
mixing by OLS the constrained full unmixing by NNLS
in the same simple example better suppresses the un-
desired spectrum at the cost of more false positives.
A study with generated AVIRIS spectra constructed as
weighted sums of real spectra and different amounts of
iid Gaussian noise shows (1) that ordinary least squares
in this case with one unknown spectrum performs bet-
ter than non-negative least squares, and (2) that unmix-
ing based on the semi-parametric model with backfit-
ting gives better but still not satisfactory estimates of
end-member abundances than linear unmixing. Hope-
fully, future work on mean weighted least squares esti-
mation in the semi-parametric model will improve on
this.
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Zürich, Switzerland, pp. 309–316.

Jacobson, A.S., Berkin, A.L., and Orton, M.N. 1994. LinkWinds:
Interactive scientific data analysis and visualization. Communica-
tions of the ACM, 37(4):42–52. http://linkwinds.jpl.nasa.gov/.



36 Nielsen

Kent, J.T. and Mardia, K.V. 1988. Spatial classification using fuzzy
membership models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(5):659–671.

Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B.,
Shapiro, A.T., Barloon, P.J., and Goetz, A.F.H. 1993. The spec-
tral image processing system (SIPS)—Interactive visualization
and analysis of imaging spectrometer data. Remote Sensing of
Environment, 44:145–163.

Landy, M.S. 1993. HIPS-2 software for image processing: Goals
and directions. In Proceedings of the SPIE 1964 Applications of
Artificial Intelligence 1993: Machine Vision and Robotics, K.L.
Boyer and L. Stark (Eds.), pp. 382–391. http://www.cns.nyu.edu/
home/msl/hipsdescr.cgi/.

Landy, M.S., Cohen, Y., and Sperling, G. 1984a. HIPS: A UNIX
based image processing system. Computer Vision, Graphics
and Image Processing, 25(3):331–347. http://www.cns.nyu.edu/
home/msl/hipsdescr.cgi/.

Landy, M.S., Cohen, Y., and Sperling, G. 1984b. HIPS: Image pro-
cessing under UNIX. Software and applications. Behavior Re-
search Methods, Instrumentation, and Computers, 16(2):199–216.
http://www.cns.nyu.edu/home/msl/hipsdescr.cgi/.

Larsen, R., Nielsen, A.A., and Conradsen, K. 1997. Restoration of
hyperspectral push-broom scanner data. In Proceedings of the 17th
EARSeL Symposium on Future Trends in Remote Sensing, P. Gud-
mandsen (Ed.), Lyngby, Denmark, pp. 157–162.

Larsen, R., Nielsen, A.A., and Flesche, H. 1999. Sensitivity study
of a semi-automatic supervised classifier applied to minerals from
X-ray mapping images. In Proceedings of the Scandinavian Im-
age Analysis Conference (SCIA’99), Vol. 2, B.E. Ersbøll and P.
Johansen (Eds.), Kangerlussuaq, Greenland, pp. 785–792.

Larsen, R., Nielsen, A.A., and Flesche, H. 2000. Sensitivity study
of a semi-automatic training set generator. Pattern Recognition
Letters, 21(13/14):1175–1182.

Lee, J.B., Woodyatt, A.S., and Berman, M. 1990. Enhancement of
high spectral resolution remote-sensing data by a noise-adjusted
principal components transform. IEEE Transactions on Geo-
science and Remote Sensing, 28(3):295–304.

Marsh, S.E., Switzer, P., Kovalik, W.S., and Lyon, R.J.P. 1980. Re-
solving the percentage of component terrains within single reso-
lution elements. Photogrammetric Engineering and Remote Sens-
ing, 46:1079–1086.

Maselli, F. 1998. Multiclass spectral decomposition of remotely
sensed scenes by selective pixel unmixing. IEEE Transactions
on Geoscience and Remote Sensing, 36(5):1809–1820.

Miller, J.W.V., Farison, J.B., and Shin, Y. 1992. Spatially invariant
image sequences. IEEE Transactions on Image Processing, 1(2):
148–161.

Nielsen, A.A. 1994. Analysis of regularly and irregularly sam-
pled spatial, multivariate, and multi-temporal data. Ph.D. Thesis,
Department of Mathematical Modelling, Technical University of
Denmark, Lyngby. http://www.imm.dtu.dk/∼aa/phd/.

Nielsen, A.A. 1998. Linear mixture models and partial unmixing in
multi- and hyperspectral image data. In Proceedings from the 1st
EARSeL Workshop on Imaging Spectroscopy, M. Schaepman, D.
Schläpfer, and K. Itten (Eds.), Zürich, Switzerland, pp. 165–172.
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