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CHAPTER 3 
 

PRE-PROCESSING AND FEATURE EXTRACTION 
 
   In this chapter it is discussed how to provide feature signals. The primary objective is to 
find a method that gives proper feature signals, i.e. signals in which the engine condition 
changes are detectable. The point of development is that the human eye must be able to see 
the engine condition changes in the feature signals in order to make the change detection 
automatic. If a change is hidden for the human eye, then it is also hidden for the automatic 
change detection. Two approaches are described, the mean value and the standard deviation of 
the cycles, and the residual error when applying principal components analysis. Also a 
tempting approach, which might improve the feature signals, will be described. 
 
   As mentioned in the above section, the primary objective is to find adequate feature signals. 
This chapter will not include optimization of the methods in order to improve the feature 
signals, because chapter 4 will have a main focus on the segmentation task. Of course, some 
considerations have to be done, but as soon as a proper feature signal is determined, 
investigation on the method stops. 
 

3.1 Mean value and standard deviation 
 
   In the introduction the motivations behind choosing this method were given. The hypothesis 
was that when the engine changes condition, the number of AE’s increases, causing the AE-
RMS signals also to increase. If the hypothesis is true, then the engine condition changes will 
be directly observable in the mean value of the cycles. Figure 3.1-4, show the mean values of 
the cycles from the four AE-RMS sensors. From this it can be concluded that all experiments, 
but the unstable region “experiment”  can be observed, thus there is a good chance of making 
an automatic detection of the experiments. However, sensor no. 2 and 4 show clearer changes. 
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Figure 3.1: Mean value of cycles from sensor no. 1. All the changes but the unstable region 
can be observed. 
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Figure 3.2: Mean value of cycles from sensor no. 2. All the changes but the unstable region 
can be observed. This is one of the clearest mean value feature signals. 
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Figure 3.3: Mean value of cycles from sensor no. 3. All the changes but the unstable region 
can be observed. 
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Figure 3.4: Mean value of cycles from sensor no. 4. All the changes but the unstable region 
can be observed. This is one of the clearest mean value feature signals. 
 
   The standard deviation of the cycles is shown in figure 3.5-7. Comparing these feature 
signals with the feature signals in figure 3.1-4 reveals that more engine condition changes are 
observable in the mean value feature signals. Thus, it could be argued that only the mean 
values should be used as features, but will not be discussed in this thesis. All eight feature 
signals are investigated in the test section, chapter 5. 
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Figure 3.5: Standard deviation of cycles from sensor no. 1. Not all changes can be observed. 



Chapter 3 - Pre-processing and feature extraction 
 

 44 

0 500 1000 1500 2000 2500
0.015

0.02

0.025

0.03

0.035

0.04

0.045
Standard deviation feature signal for sensor no. 2

[Cycles]

[Vo
lts]

Oil off

From 25%

At 50%

Begin unstable

End unstable

From 50%

At 75%

Oil on

 
Figure 3.6: Standard deviation of cycles from sensor no. 2. Not all changes can be observed. 
Again sensor no. 2 provides a feature signal, which is clearer than the feature signals from 
the other sensors. 
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Figure 3.7: Standard deviation of cycles from sensor no. 3. Not all changes can be observed. 
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Figure 3.8: Standard deviation of cycles from sensor no. 4. Not all changes can be observed. 
Again sensor no. 4 provides a clear feature signal. 
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Figure 3.9: Time plot of the AE-RMS cycles from sensor no. 2. Notice that the peaks seem to 
shift in the unstable region, but keep their magnitudes. Thus the mean value and the standard 
deviation remains almost constant. 
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   The mean value and standard deviation approach is a very simple approach, which reduces 
the input dimensionality from 2,048 to 2. However, since it fails to ” respond”  to the unstable 
region, which in fact is an error that can occur in reality, then another approach is wanted. 
From figure 3.9, it can be suggested why the approach fails. The figure shows the AE-RMS 
cycles from sensor no. 2. When the unstable region is reached, the cycles undergo some kind 
of shift, but they keep their magnitudes. If the mean value and the standard deviation are 
calculated in these cycles, they will be quite similar to the cycles just before the unstable 
region. In this way the unstable region will be unobservable1. 
 

3.2 Pr incipal components analysis – residual er ror  
 
   PCA is a classical dimension reducing method. It shows good performance when there is a 
high correlation between the observations (cycles). Usually PCA is used to set up a model for 
the observations and optimizing this model by minimizing the residual error2. However, in 
this thesis only a change in the residual error is sought. Thus, optimization is not a crucial 
part, but of course realistic models must be applied. Next, a short description on how PCA is 
applied in this thesis. 
 
   The principle steps in PCA are from [2]: 
 
1. Select N examples (cycles) as the training set X. 
2. Center the training set by subtracting the mean value of the training set. The centered 

training set is denoted X
~ ∈ ��2,048× N.  

3. Calculate the covariance matrix of the centered training set. 
4. Calculate the eigenvectores of the covariance matrix. The eigenvectors are denoted as the 

column vectors in the matrix U∈ ��2,048× 2,048. 
5. Calculate the eigenvalues of the covariance matrix. The eigenvalues are the diagonal of 

the matrix �
�

∈ ��2,048× N. 
6. From the eigenvalues, choose the number c of principal components. 
7. Project the cycles on the c eigenvectores corresponding to the c largest eigenvalues. 
8. The outcome of step 7 is called the principal components (PC’s). 
 
In fact, what we are looking for are the eigenvalues and the eigenvectors. These can be found 
by applying a very simple procedure called the Singular Value Decomposition (SVD). This 
approach is described in [25], and used for this thesis. SVD decomposes the centered training 
set into the following, 
 

T~
VU�X ½= ,               (3.1) 

 
where T denotes matrix transposition and V = XX

~~ T ∈ ��N× N can be ignored in this content. 
Then the principal components are given by, 
 

                                                
1 The shift is not observed in the corresponding time plots of sensor no. 1 and no. 3, but here no change is 
observable at all. The second sensor being nearer to the point of AE generation in the unstable region could 
explain this. 
 
2 The residual error is the difference between the true observations and the observations given by the model. 


