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CHAPTER 4 
 

THE CHANGE DETECTION AND ESTIMATION 

SYSTEM  
 
   In the previous chapters it was accounted for how the changes in the engine condition are 
sensed by sensors and transformed into feature signals expressing the engine condition 
changes. At this point feature signals are provided and from these it might be possible to 
detect and segment the engine condition changes. This chapter will investigate the next step in 
the automatic condition monitoring system, which is segmentation. As mentioned in chapter 2 
the segmentation task is divided into three sub-tasks, which are: 
 

• On-line change detection algorithm. 
• Off-line hypothesis testing. 
• Off-line change point estimation. 

 
These sub-tasks will be described, and in the end of the chapter, a short discussion on a term 
called panel of experts is provided. 
 

4.1 Deviation of mean and deviation – on-line change detection 
algor ithm 
 
   The main objective with this work is to develop a system that detects changes in the scalar 
parameters of a Gaussian distributed signal without knowing the parameters of the new 
distribution, i.e. unknown change detection. During the first period of the work focus was on 
several known change detection algorithms and few unknown change detection algorithms 
suggested by [1]. One could wonder why the known change detection algorithms were not 
skipped, since unknown change detection plays the most important role in this thesis. 
However, it was decided that this could act as a good point of development to understand the 
unknown change detection issues. This decision caused both good and bad experiences.  
 
   Among the good things, quite a lot of change detection definitions and problems were 
experienced. On the other hand it turned out that only a couple of the known change detection 
algorithms could be modified to unknown change detection algorithms. There is a problem in 
that the change detection problem is split in three cases: 
 

• Change in the mean value of the Gaussian distributed signal. The variance is constant. 
• Change in the variance. The mean value is constant. 
• Change in both mean value and variance. 

 
   Only the first case  (change in the mean value) is considered, but it is possible to derive the 
decision functions of the other cases too. The problem for these unknown change detection 
algorithms is that they must know which case the change is, and this is not feasible since the 
new distribution is unknown. If you know which case is present, you also know that a change 
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has occurred, and why then run an algorithm, which decides whether a change has occurred or 
not?  
 
   Therefore, these algorithms were abandoned and a new unknown change detection 
algorithm was developed. The algorithm is called the Deviation of Mean and Deviation 
(DMD) algorithm. During the investigations on the before mentioned algorithms a very 
interesting property was observed, which turned out to be the first key point in the new 
algorithm, 
 
 
Key point 1: 
    
    The empirical deviation of a Gaussian distributed signal shows significantly peaks when 
the signal changes from one distribution to another. 
 
 
   This property is also applied in the Filtered Derivative Algorithm (FDA) [1], but only for a 
change in the mean value. The discrete deviation of a Gaussian distributed signal is visualized 
in figure 4.1-3 for the three cases. Good ratios1 are chosen in order to give a better 
understanding of the idea. In the case of a change in the mean value (figure 4.1) it is clear that 
a peak appears in the neighborhood of the change point. This is also the case in figure 4.3 – 
change in both mean value and deviation.  
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Figure 4.1: Change in the mean value of a Gaussian distributed signal and the empirical 
deviation of the Gaussian distributed signal. 

                                                
1 I.e. very clear difference between the conditions. 
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Figure 4.2: Change in the standard deviation of a Gaussian distributed signal and the 
empirical deviation of the Gaussian distributed signal. 
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Figure 4.3: Change in the mean value and the standard deviation of a Gaussian distributed 
signal and the discrete deviation of the Gaussian distributed signal. 
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   If we look at the second case of changes, figure 4.2, we are faced with a new situation since 
the change does not correspond to a peak but a change in level from high deviation to low 
deviation. This is in fact a problem if the system only searches for peaks in the decision 
function (in this case the empirical derivative of the Gaussian distributed signal). Figure 4.4 is 
the same as figure 4.22, except that a threshold is inserted above the high deviation with the 
aim of detecting a peak. This mission will never succeed since the deviation changes to a 
lower level beyond the threshold. At this point the second key point in the DMD change 
detection algorithm emerges, 
 
 
Key point 2: 
 
   The feature signal y(x), i.e. a Gaussian distributed signal, is split in two signals: The mean 
value µ(x) and the standard deviation σ(x). Next, the standard deviation of µ(x) andσ(x) is 
calculated giving two new signals σµ(x) and σσ(x). Whenever a change in the mean value 
happens in y(x), a peak occurs in σµ(x), and whenever a change happens in the deviation of 
y(x), a peak occurs in σσ(x).  
 
   From this, the name of the algorithm is given, since it searches for changes in the mean 
value and the deviation of a feature signal by means of the deviation of the mean value and 
the deviation of the feature signal. 
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Figure 4.4: Same situation as in figure 4.2, but here a threshold is inserted in order to detect 
a peak corresponding to a change. This fails. 

                                                
2 Read: The log-likelihood ratio is the same. The sequences of pseudo-random numbers are not equal, but this is 
irrelevant in this context. 
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4.1.1 DMD parameters 
   The DMD algorithm has four main parameters, which are, 
 

• mwl: Main Window Length: The empirical mean value and the empirical standard 
deviation of the feature signal are calculated at each cycle from the mwl recent cycles 
of the feature signal. 

 
• cal_wl: CALibration Window Length: The DMD algorithm uses cal_wl cycles for 

calibrating or training to the normal condition. 
 

• swl: Small Window Length: The empirical deviation of the empirical mean value and 
the empirical deviation is calculated as the numerical difference between the mean 
values of the cycles in two small windows of length swl separated from each other.  

 
• sw_dist: The distance between the two small windows. 

 
Figure 4.5 shows the DMD parameters. One could argue that a single window can replace the 
two small windows and the deviation in this window can be estimated. However, this has 
been investigated, and the result was not adequate, since the peak in the decision functions 
was too poor to use as detection point. 

 
Figure 4.5: The four main DMD parameters. 
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4.1.2 Estimating the beginning of the new condition 
   For this work a major central problem is to pick out a window of cycles and use it for off-
line investigations1. It is not enough just to detect the first change point (the cycle where the 
engine leaves the normal condition) and then assume when the new engine condition begins. 
This is because both abrupt and non-abrupt signal changes are present in the feature signals, 
see figure 4.6. If any assumption on the second change point is made, one have to know more 
about how this point is related to the first change point, a priori. This is not realistic when 
only a single test is run on the test engine, which is the case in the work.  
 
   Therefore, it was decided to estimate the second change point. In the following the first 
change point is denoted cp1, and the second change point cp2. The key idea in change point 2 
estimation is to use the property that, when a sub-feature signal changes from one condition to 
another, it will give rise to a peak in the empirical deviation of the sub-feature signal. If we 
look at figure 4.7 it is clear that cp1 corresponds to the start of the peak, and that cp2 
corresponds to the point where the peak has reached its maximum value.  
 
It is far easier to detect cp1 since we know more about the normal condition than the new 
condition. E.g. one could investigate the decision function in the initialization period and from 
this set a threshold for cp1. This is unfortunately not true for cp2 since we do not know from 
the normal condition where the peak in the decision function is placed. To find a maximum 
value, one classical approach is to calculate the gradient and solve when it equals zero. This 
was the first idea, but it was realized that there was a potentially risk in this method, because 
the peak very seldom is smooth enough. This will result in estimated change points that are to 
early with relation to the true change point, i.e. false alarms occur. It was chosen to use the 
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Figure 4.6: Full feature signal from sensor no. 1. The mean values of the cycles are used. 
Notice the long change in experiment no. 1 (oil off) and the abrupt change in experiment no. 6 
(oil on). 

                                                
1 Off-line hypothesis testing and off-line change point estimation. 
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Figure 4.7: The two change points can be estimated by means of the peak in the empirical 
deviation of the sub-feature signals. 
 
same threshold for cp2 as for cp1, since there at this stage in the work was no need of precise 
detection of cp2.  
 
   Using the same threshold for both change points has the direct consequence that cp2 is 
detected later in most cases. But this is no major problem at the moment, because we have to 
use a number of samples after cp2 in order to gain good performance of the off-line parts of 
the change detection system. However, in the future it is preferred that cp2 is estimated as 
good as possible, since this will make it easier for the off-line parts to do their job. 
 
4.1.3 The Boost function 
   In change detection, one of the most central problems is how to place a proper threshold on 
the decision function so that the probability of false and unseen alarms is low and the 
probability of true alarms is high. This problem is often solved by means of a ROC curve, 
where different thresholds are applied on the decision functions and the response on the true, 
false and unseen alarm probabilities is shown.  
 
   However, in some cases there is a small clearance for a threshold, i.e. it should be within an 
interval that is very narrow. In figure 4.8 a feature signal is plotted together with its sub-
feature signal, the discrete mean value of the feature signal, and the corresponding decision 
function, the discrete deviation of the sub-feature signal. The feature signal is generated by 
means of the randn() function in Matlab, and consists of a normal condition which is a N( 0, 
(0.38m)2 ) distribution, a new condition which is a N( 1, (0.38m)2 ) distribution and a linear 
drift from the normal condition to the new condition. All three regions are 100 cycles long.  
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   From figure 4.8  it is clear that one can place a threshold properly, but the ratio between the 
peak corresponding to the true alarm versus the peaks corresponding the false alarms is  not 
very good, i.e. the probability of false alarms is likely to be too high. The boost function 
improves this ratio in the way that sub-feature signal samples lying within a specific interval 
is diminished and the samples lying outside the interval are enhanced. 
 
   Figure 4.9 shows the effect of using the boost function on the sub-feature signal. The 
clearance for the threshold is increased significantly, which can be measured directly by 
calculating the ratio between the peaks from the false alarms and the true alarm. 
Unfortunately, the improved clearance causes a later detection of the first change point if one 
want to exploit the full clearance. However, this is not a major problem if the whole change 
detection system is considered, and not only the on-line change detection part – the important 
thing here is to detect the two change points, when the engine leaves the normal condition and 
when it enters the new condition. Then the off-line change point estimation part will improve 
the alarm times. 
 
   A passing remark to figure 4.9 is that the decision function has a smoother peak, which 
intuitively should make it more possible to use a gradient method to find the second change 
point faster, than using the same threshold for the two change points. 
 
   Before proceeding with the description of the boost function it is necessary to explain that 
the sub-feature signal undergoes a kind of normalization before the boost function is applied 
on it. The mean value of the first cycles are subtracted from the sub-feature signal. In this way 
the upper and lower thresholds are equal in numerical value, and this makes it far easier to 
solve the succeeding steps in the boost function, as will soon be shown.  
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Figure 4.8: The clearance of the threshold for the decision function is relatively small. 
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Figure 4.9: The clearance of the threshold for the decision function is increased when the 
boost function is applied on the sub-feature signal. 
 
   The main criteria for the boost function are as follows: 
 

• When a sample xi lies inside a decided interval, it must be multiplied by a factor 
between 0 and 1. 

• When a sample xi lies at the boundary of the decided interval, its value does not 
change. 

• When a sample xi lies outside a decided interval, it must be multiplied by a factor 
larger than 1. 

 
   Several functions can be used, but the hyperbolic tangent of x, tanh(x), is chosen from 
intuitive arguments that it moves towards a fixed value when x→ ∞  and x→- ∞  and that it 
changes smoothly from the low level to the high level. In order to fulfill the main criteria 
previously mentioned, some modifications have to be made with tanh(x). Figure 4.10 shows 
the changes. The first plot in the figure is the original hyperbolic tangent of x. Here it is clear 
that tanh(x) → 1 and tanh(x) → -1 when x → ∞  and x → - ∞ , respectively. This is not enough 
to fulfill the criteria so two things remain. First of all 1 is added to tanh(x), thereby moving 
the function upwards, so that tanh(x)+1 → 2 and tanh(x)+1 → 0 when x → ∞  and x → - ∞ , 
respectively. Now we have a function with minimum value equal to 0. The next thing is to 
shift this function to the right, since x must be positive. It seems reasonably to shift the 
function by 3, because then tanh(x-3)+1 is close to zero when x is close to zero. 
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Figure 4.10: Modification of the tanh(x) function into a useful boost function. 

 
    Next, the boost function parameters A, h0, and hA/2 are introduced: 
 

• A: The maximum value of the boost function. At the moment A = 2. 
• h0: The threshold for the interval in which samples are likely to be, if they belong to 

the normal condition. 
• hA/2: The threshold where the sample is multiplied by A/2. 

 
   Figure 4.11 shows the three boost function parameters. To avoid future confusion about the 
axis, x is replaced by ycon(x), since the sub-feature signals magnitude has to be boosted, and 
this is given on the y-axis, not the x-axis. The index con is used to distinguish between y(x) 
and the argument to the boost function, since some modification on y(x) has to be done before 
it is transferred to the boost function. 
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Figure 4.11: The boost function and its three main parameters. 
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   The next task is to connect the boost function to the sub-feature signal, i.e. determine the 
connection between y(x) and ycon(x), and this is not easy. First of all only positive values of 
the sub-feature signal is considered, but since the mean value of the sub-feature signal from 
the normal condition is subtracted from the sub-feature signal, the same can be done with 
negative values, if the sign of the sub-feature signal sample is remembered. Three points are 
defined for the boost function, aboo, bboo, cboo, and three similar points are also defined for the 
sub-feature signal, asub, bsub, csub - figure 4.12. These two set of points are related to each other 
by the following, 

  
y(x) = asub � yboo(x) = asub 

. boost(aboo) = asub, 
y(x) = bsub � yboo(x) = bsub

. boost(bboo) = bsub
 . A/2,              (4.1) 

y(x) = csub � yboo(x) = csub 
. boost(cboo) = csub

 . A, 
 
where the new boosted sub-feature yboo(x) is defined as, 
 

       yboo(x) = y(x) . boost( ycon(x) )                (4.2) 
 
where ycon(x) denotes the connected sub-feature signal value and where the boost points are 
related to the boost function by, 
 

boost(aboo) = 1, 
boost(bboo) = A/2,               (4.3) 
boost(cboo) = A. 

 
   The main idea of boosting the sub-feature signal is that the further away y(x) is from asub, 
the higher the boost( ycon(x) ) should be. In some cases, y(x) can be so large that y(x) always 
will be multiplied with A. This will not improve the ratio between the false alarm peaks and 
the true alarm peak in the decision function, since they will all be multiplied by A.  
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Figure 4.12: The boost function versus the sub-feature signal. 
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   One solution to avoid this is first of all to skip the c-parameters and only connect the boost 
function and the sub-feature signal with each other by using the a- and b-parameters. Next, 
asub is determined by setting it equal to the 100th percentile3 of the sub-feature signal 
distribution in the calibration period. For determining bsub it is important to realize that the 
closer bsub is to asub, the higher is the risk of “saturation” , i.e. boost( ycon(x) ) ≈ A. On the other 
hand, if bsub is far away from asub, no boost will occur because boost( ycon(x) ) ≈ 1 in this case. 
There is no satisfactory answer to this problem, but bsub was set equal to 1.5 times asub in this 
section. In the future work the determination of bsub must be investigated, but for now it works 
fine though the risk of “saturation” is high since bsub is close to asub. 
 
   The remaining problem now is to find ycon(x) when y(x) ≠ asub and bsub. This is illustrated in 
figure 4.13. Two axis are shown, the upper with the y(x) values and the lower with the ycon(x) 
values. The a and b parameters are plotted on their respective axis, and a specific value of 
y(x), i.e. y (xi), is also plotted on the y(x)-axis. Then the first of four lengths, L1, is calculated 
as the distance from asub to bsub. The second length, L2, is calculated as the distance from asub 

to y(xi). The third length, L3, is calculated as the distance from aboo to bboo. Then it has to be 
found out which value ycon(xi) corresponds to y(xi), which is easy, since the ratio between L2 
and L1 must be equal to the ratio between L4 and L3. Thus ycon(xi) is equal to L4 + aboo. 

 
   At this point one question arises: Why is it necessary to modify the sub-feature signal before 
passing it to the boost function? Will it be enough to say that yboo(x) = boost( y(x) )? If one 
chooses to do so, it is clear that yboo(x) will be in the range 0 to A, and when the range of y(x) 
in the new condition is unknown, there is a risk of saturation. In this case the second alarm in 
the on-line change detection algorithm will be set too soon, i.e. in the drift. This causes that 
no proper window is transferred to the off-line algorithms, and thereby no reliable change 
detection and change point estimation can be done. If the boost function is used as a “ factor”  
function, no true saturation will occur, since the range of yboo(x) will be in the range from 0 to 
A . y(x). The only thing that happens is that the ratio between the peaks in the decision 
function from the false alarms and the true alarm wont be improved more. 
 
   Another question is which effect it will have to increase A. Is the clearance for the threshold 
thereby increased? Unfortunately an increase from A to F.A, where F is a factor, will not 
improve the clearance for the threshold, since both the false alarm peaks and the true alarm 
peak will be multiplied with F. This means that the ratio between the peaks will be constant, 
and thus no improvement is feasible. The only way to increase the clearance is to shift bsub 
away from asub

4, and at the same time avoid saturation. In fact the only effect of increasing A 
is that the peaks within the threshold interval h0 are diminished more, and the peaks outside 
the interval are enhanced more.  
 
   One of the advantages with the boost function is to improve the log-likelihood ratio of the 
sub-feature signals, but the new condition does not need to be raised to a very high level to 
provide an acceptable log-likelihood ratio. Therefore, the temporary investigations suggest 
that max(A) should be no more than 20. The minimum value must be greater than 1 since 
boost(aboo) is defined to be 1. A is set equal to 10 in the generation of the figures in this 
section.
                                                
3 Other percentiles have also been investigated, but at this point it seems reasonable to use the 100th percentile. 
4 The result is the same if bboo is shifted towards aboo. 
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Figure 4.13: How to connect the boost function and the sub-feature signal. 
 
 
4.1.4 Code of boost.m 
function [yboo] = boost(a_sub, b_sub, y) 
 
% Define A and the shift on the axis: 
A     = 10; 
shift = 3; 
 
% Calculate a and b parameters for the boost function: 
a_boo = atanh(2/A -1) + shift; % boost( a_boo ) == 1 
b_boo = atanh(4/A -1) + shift; % boost( b_boo ) == A/2 
 
% Calculate lengths: 
L1 = b_sub  - a_sub; 
L2 = abs(y) - a_sub; % Notice the absolute value of y 
L3 = b_boo  - a_boo; 
L4 = (L2/L1)*L3; 
 
% Find the connected y: 
y_con = a_boo + L4; 
 
% Return the boosted sample: 
yboo = y*(A/2)*( 1 + tanh(y_con-shift) ); 
 
4.1.5 The DMD plot 
   At this point all the principles in the on-line change detection algorithm, developed for the 
automatic condition monitoring system in this work, have been described. An important issue 
has not been discussed. How the parameters in the algorithm influence the overall algorithm 
performance? This has not been highly prioritized, but here, a short discussion on the choices 
of the parameter values made for the thesis, follows: 
 

• cal_wl is set to 30 cycles due to the Central Limit Theorem (CLT), [3]. In the 
calibration period the boost function is initialized. The longer the calibration period is, 
the more fluctuations of the feature signal in the normal condition are included. Thus, 
false alarms are less likely to occur. However, if the calibration period is too long, 
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there is a risk of not detecting the next engine condition change, since this can be 
included in the calibration period. 

 
• mwl is also set to 30 cycles due to CLT. The longer the main window is, the less 

abrupt is the drift, since the cycle corresponding to the engine condition change will 
give a smaller change in the empirical mean value and the empirical deviation (the 
sub-feature signals) of the feature signal. The smaller the main window is, the less 
smooth the sub-feature signals will be. 

 
• swl is set to 10 cycles. It must be relatively small in order to detect a change in signal 

level. 
 

• sw_dist is strongly related to the drift length. The longer drift, the longer distance. 
However, because of short amount of time in the normal conditions, the distance must 
be short, therefore it is set to 30 cycles. 

 
With these parameters the DMD algorithm has been applied on a few feature signals, and the 
results are given in the following figures. These figures are called DMD plots, since they plot 
how the DMD algorithm works on the feature signals. The first signal in the DMD-plots is the 
feature signal. The next two signals are the sub-feature signals, i.e. the empirical mean value 
and the empirical deviation. Here the red signal is the boosted signal of the original sub-
feature signal. A zoomed DMD-plot is given in figure 4.16-17 in order to visualize the 
difference between the boosted sub-feature signals and the originals. The two decision 
functions are shown next, in some cases with a threshold. The last signal is the alarm signal. 
When no alarm has been set, the alarm signal is zero. When the first alarm is set, the alarm 
signal is set to 1, and when the second alarm is set, the alarm signal is set to 2.  
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Figure 4.14: DMD-plot of experiment no. 1, sensor no. 3 (oil off). 
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Figure 4.15: DMD-plot of experiment no. 5, sensor no. 3 (oil on). 
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Figure 4.16: Zoomed DMD-plot of experiment no. 1, sensor no. 3 (oil on). 
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Figure 4.17: Zoomed DMD-plot of experiment no. 5, sensor no. 3 (oil on). 

 

4.2 Off-line hypothesis test 
 
   When the on-line change detection algorithm has detected that the engine has changed 
condition, the second sub-task in the segmentation task is activated. The motivation is that the 
on-line change detection algorithm not necessarily has detected a change for real. It could be a 
false alarm, since the on-line algorithm is very simple and fast. Therefore, a hypothesis test is 
created in order to improve the overall systems reliability on whether an engine condition 
change has occurred or not. 
 
   The hypothesis is: “The engine has change condition” , and when the hypothesis is tested, 
the outcome will be that the hypothesis is either true or false (success or failure). Using an 
off-line hypothesis test in the automatic condition monitoring system, offers possibilities of 
regulating the on-line change detection algorithm. If the off-line hypothesis test is very 
reliable, then the thresholds for the decision functions in the on-line algorithm can be updated 
as time goes on. Imagine the situation where a large number of false alarms are present in a 
short amount of time. Here it could be preferred to enhance the threshold in order to increase 
the number of false alarms. However, one has to be careful doing this, since there is a risk of 
increasing the number of unseen alarms if the threshold is enhanced. In this thesis there will 
be no correspondence between the on-line change detection algorithm and the off-line 
hypothesis test due to lack of appropriate data set. The off-line hypothesis test applies a 
classical tool from statistics, the log-likelihood ratios, which will be explained in the next 
section.  
 
4.2.1 The log-likelihood ratio for Gaussian distributed signals    
   When dealing with change detection in signals, one has to consider how to characterize a 
change. Several kinds of changes exist such as changes in the frequency, changes in the 
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magnitude, etc. In this thesis all feature signals are regarded as Gaussian distributed with a 
mean value µ and a variance σ2, and changes in the feature signal are found by searching for 
changes in µ and σ2. The mean value and the standard deviation are defined from [3] by, 
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where X is a random variable and pX(x) is the probability density function of X. Since the 
variances of the feature signals are very small, it was decided to use the standard deviation σ 
instead of the variance. This also reduces the programming, since the outcome (almost every 
time) was that the standard deviation was used rather than the variance. 
 
   The log-likelihood ratio is a tool, which can be used to detect changes in a signal. In this 
work it is used also to measure how “good”  a change is. E.g., the larger the difference 
between the mean value of the normal condition and the mean value of the new condition is, 
the easier it is to detect the change – this is a  “good”  change. This chapter offers a description 
of the changes in a feature signal, which is assumed to be Gaussian distributed and how the 
log-likelihood ratio is used in this project to characterize the different types of changes. 
 
4.2.2 Feature signals and Gaussian distributions 
   Changes in the feature signals are treated as changes in the Gaussian distribution, i.e. 
changes in the mean value and the standard deviation. One could consider whether this 
approach is feasible in every situation or not, but this has shown to be true with this work. The 
argument is that given any feature signal, when no change occurs in the engine condition the 
feature signal must be in a certain region, which can be directly measured as a mean value 
with a standard deviation. When the engine condition changes, this should be responded by a 
change in the feature signal. Otherwise it is a poor feature signal. If the engine condition 
change is followed up by a new “stable”  engine condition, then the feature signal in the same 
way also must respond by being “stable” , and in a new region, which also can be regarded as 
a Gaussian distribution. In this way it is reasonable to regard the feature signals as Gaussian 
distributed signals, and the engine condition changes as changes in these Gaussian distributed 
signals. This simplifies the types of changes into three main cases, which are plotted in figure 
4.18: 
 

• Change in the mean value µ. The standard deviation σ is constant. 
• Change in the standard deviation σ. The mean value µ is constant. 
• Change in both the mean value µ and the standard deviation σ. 

 
   In fact eight cases of changes exist, since a change in the mean value can be to a lower level 
or a higher level. The same is true for the standard deviation, and therefore there are four 
cases of changes, when both parameters change. These eight cases are gathered in table 4.1 
and plotted in figure 4.19-20. When e.g. a change occurs in a parameter from a lower value to  



Chapter 4 - The change detection and estimation system 
 

 70 

0 50 100 150 200 250
0.00
5

0.01

0.01
5

Change in Gaussian distributed signal, y(x).

0 50 100 150 200 250
0

0.00
5

0.01

0 50 100 150 200 250
0

0.00
5

0.01

0.01
5

x

y(x
)

Figure 4.18: The three main cases of changes. Upper: Change in µ. Center: Change in σ. 
Lower: Change in both µ andσ. 
 
a higher value, “L”  for the normal condition parameter and “H”  for the new condition 
parameter denote this. “ -”  means that the parameter does not change.  
 
   It is necessary to realize that in order to create a reliable and adequate change detection 
system, one has to consider how the change detection system perform in each of the eight 
cases. Imagine the situation when the mean value changes from a low value to a high value. If 
only this type of changes is assumed, only a single threshold is necessary. When the feature 
signal exceeds this threshold, the alarm is set. But if the change detection system also must 
detect changes from a high to a low level of the mean value, another threshold must be 
established.  
   

Case µ0 µ1 σ0 σ1 
1 L H - - 
2 H L - - 
3 - - L H 
4 - - H L 
5 L H L H 
6 L H H L 
7 H L L H 
8 H L H L 

Table 4.1: All eight change cases.  
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Figure 4.19: The four first change cases from table 4.1. 
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Figure 4.20: The four last change cases from table 4.1. 
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4.2.3 The log-likelihood ratio 
    Given a feature signal y(x) which is Gaussian distributed and contains a change in the scalar 
parameter θ, the log-likelihood ratio is from [1] defined by, 
 

( )
( )
( )yp

yp
ys

0

1

�

�

ln= ,                (4.6) 

 
where θ = θ0 before the change and θ = θ1 after the change and where ( )yp
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distributed, which from [1] is defined by, 
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   Figure 4.21 shows a feature signal that is Gaussian distributed and contains a change in both 
scalar parameters µ and θ  (LH : LH). The probability density functions of these two Gaussian 
distributions are also plotted. The idea behind the log-likelihood ratio is, that if no change is 
present in the signal, the probability density function remains constant, which causes the log-
likelihood ratio to be zero. On the other hand, when a change is present, the probability 
density function of the normal condition is small and the probability density function of the 
new condition is high. This causes the log-likelihood ratio to be high. In figure 4.22 this 
property of the log-likelihood ratio is shown. 
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Figure 4.21: Gaussian distributed feature signal and its probability density functions.
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Figure 4.22: Gaussian distributed feature signal and the corresponding log-likelihood ratio. 
When the engine changes condition, the ratio changes from app. zero to a high value. 
 
   Now it is clear that the log-likelihood ratio is a powerful tool to detect changes in signals, 
but it is very important to notice, that the procedure presented in the above figure only works 
for off-line algorithms. One has to know both the normal condition distribution parameters 
and the new condition distribution parameters, and this is not the case in on-line algorithms. 
 
    In the figure above the change was in the mean value of the feature signal with a specific 
set of distribution parameters. What happens with the log-likelihood ratio if other distribution 
parameters are used? This is investigated in the proceeding sections for the three main change 
cases, change in the mean value, change in the standard deviation and change in both 
parameters. 

 
4.2.4 Case one: Change in the mean value 
   In this case only a change in the mean value is considered, thus s(y) is, 
 

             ( )
( )

( )y�p

y�p

ys

0

1ln= .                             (4.8) 

 
When the two distributions are assumed to be Gaussian, s(y) is, 
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With algebra this is shown to be, 
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Next, indices are introduced to help visualizing the behavior of y and s(y), that is the change 
in the mean value, and yi is now assumed to be samples drawn from the normal distribution 
with mean equal to 0 and variance equal to 1, 
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To investigate si for various combinations of µ0, µ1 and σ one could just sweep all three 
parameters through realistic intervals. This is, however, not efficient since it is only necessary 

to sweep a single parameter, i.e. �
���

. This is collected in postulate 1. 

 
 
Postulate 1: 

   If the ratio �

���

 remains constant in the case of a change in the mean value of a Gaussian 

distributed signal, then the log-likelihood ratio also remains constant.  
 
 
Proof: 

   Given a ratio �
���

 the log-likelihood ratio is from (4.11), 
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This is the same as, 
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If �
���

 is constant then the ratio can be extended by a constant c, 
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Introducing the extension in (4.13) gives, 
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since the standard deviation no longer is σ but cσ and the mean values of condition 0 and no 
longer are µ0 and µ1 but cµ0 and cµ1. In (4.15) all c’s balance each other and it is easy to 
conclude that (4.15) is equal to (4.12). QED 

   At this point a question arises: What is the range of the ratio �

���

? The ratio must be 

different from 0 since this corresponds to no change in the mean value. But what happens if 
the change is from a high to a low mean value, that is negative ratios? Will postulate 1 still be 
valid? The answer is yes, which can be seen from (4.16), 
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From this and by applying the extension of �

���

−  by c, it can be confirmed that postulate 1 is 

still valid. Thus the range of the ratio �
���

 is, 
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4.2.5 Case two: Change in the standard deviation 
   When a change in the standard deviation is considered the log-likelihood ratio is defined in 
the same manner as with a change in the mean value, 
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Insertion of Gaussian distributions gives, 
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It can be shown that this is the same as, 
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Introducing indices and regarding y as samples drawn from the normal distribution gives, 
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Again, it is postulated that it is only necessary to sweep a single parameter, i.e. the ratio 

between the two standard deviations 
1

0
�

�

. This is summarized in postulate 2. 

 
 
Postulate 2: 

If the ratio 
1

0
�

�

 remains constant in the case of a change in the standard deviation of a 

Gaussian distributed signal, then the log-likelihood ratio also remains constant.  
 
 
Proof: 
   The ratio between the standard deviations can be extended by a constant c, 
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This is inserted in (4.21) and we notice that µi is equal to µ, since there is no change in the 
mean value, 
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This is rearranged to, 
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From this it can be confirmed that the c’s balance each other and that (4.24) is equal to (4.21). 

Thus only a sweep in 
1

0

�

�
 is necessary. QED 

 

   The range of 
1

0
�

�

 can’ t be negative since one of the standard deviations then will be 

negative, and this can not be true. The ratio can not be 1 since this corresponds to no change 
in the standard deviation. To avoid division by zero in (4.21) neither σ0 nor σ1 can be zero. 

Thus, the range of 
1

0
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 is, 
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4.2.6 Case three: Change in both mean value and standard deviation 
   Now the log-likelihood ratio is defined with two change parameters, 
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Since Gaussian distributions are assumed this is the same as, 
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Again with algebra is done, thus giving, 
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When indices are introduced and y is samples drawn from the normal distribution we have, 
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Not surprisingly a single sweep parameter is sufficient to calculate the log-likelihood ratio for 
all legal combinations of the four parameters. 
 
 
Postulate 3: 

   If the ratio �
	
� �

 remains constant in the case of a change in both the mean value and the 

standard deviation in a Gaussian distributed signal, then the log-likelihood ratio also remains 
constant.  
 
 
Proof: 

   The ratio �
�
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 is extended by a constant c, 
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Then the log-likelihood ratio is, 
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which is the same as, 
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Since the c’s balance each other (4.32) is equal to (4.29), thus Postulate 3 is valid. QED 
 

   The ratio �
	
� �

 must not be 0 nor ±∞ since this corresponds to no change in the mean value 

and the standard deviation, respectively. Neither σ0 nor σ1 can be zero since division by zero 
in (4.29) must be avoided. Therefore the range of the ratio is, 
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4.2.7 The basic principles in the off-line hypothesis test 
   Now the basic principles in the off-line hypothesis test can be listed: 
 

• The off-line hypothesis test receives a window of cycles of the feature signal. In this 
window a change can be present or a no-change can be present. 

 
• Then it is assumed that there is a change in the mean value of the windowed feature 

signal, and the corresponding ratio is calculated by means of the estimated 
distributions in the beginning and the end of the window. From a “critical value”  it is 
decided whether the ratio is good or bad. If the ratio is good, then a change in the 
mean value has happened – the hypothesis is true. Otherwise, no change has 
happened. 

 
• Then it is assumed that a change has occurred in the deviation, the corresponding ratio 

is calculated again, and the process continues in a similar way as before. 
 

• Finally, a change in both the mean value and the deviation is assumed, and the process 
continues again as before. 

 
If just one of the above three “sub”  -hypothesis is true, then the main hypothesis will be 
accounted for as being true. If no sub-hypothesis is true, then the main hypothesis neither will 
be true. 
 

4.3 Off-line change point estimation 
 
   The last sub-task in the segmentation task is to estimate the change points suggested by the 
on-line change detection algorithm more precisely when the off-line hypothesis test is a 
success, i.e. it is very probable that there is a change in the feature signal. In contrast to the 
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on-line change detection task, the literature, [1], [2] suggests several approaches, since the 
issue has changed from unknown detection to known detection. Some of these approaches are: 
 

• Shewhart algorithm. 
• Geometric Moving Average (GMA) algorithm. 
• Finite Moving Average (FMA) algorithm. 
• Filtered Derivative (FD) algorithm. 
• CUSUM algorithm. 

 
All algorithms are described in Basseville et al. [1], and have been implemented and 
investigated in the beginning of the project. Especially the Shewhart algorithm has been 
applied in this work, because it is the simplest algorithm and one of the first change detection 
algorithms in history. It uses the log-likelihood ratio described in the off-line hypothesis test 
section, to determine the change point.  
 
   However, non of the algorithms are used in the final automatic change detection system, 
since they all share a single major disadvantage, which is that a threshold must be determined 
by a technician. This is not preferable, since the technicians then must gain even more 
knowledge about the different changes and their responses in the feature signals. The basic 
idea behind unknown automatic condition monitoring in this work is that standardization must 
be used as the point of development. Thus, the fewer decisions made by technicians, the better 
unknown automatic condition monitoring system. 
 
4.3.1 Maximum likelihood 
   Fortunately, a classical and well-known solution exists to the problem of estimating the 
change points off-line without using a threshold. The solution is called maximum likelihood 
and is described in both [1] and [2]. The principle in the maximum likelihood approach is to 
create a likelihood function, which is a function of certain parameters and the data. The 
optimal parameters are then the parameters, where the likelihood function is maximal. 
 
   In this thesis, the parameters are the two change points cp1 and cp2. The first change point 
corresponds to the cycle where the engine leaves its normal condition, and the second change 
point corresponds to where the engine enters the new condition. Now the likelihood function 
L can be created as, 
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Here y is the windowed feature signal with length N selected by the on-line change detection 
algorithm and where the off-line hypothesis test has confirmed that a change is present. It is 
assumed that the change is abrupt, i.e. the change is over a single, or very few cycles. p0 and 
p1 are the probability density functions of y in the normal condition and the new condition, 
respectively. The probability density functions are in the interval [0; 1]. Thus L is also in this 
interval. Usually, the majority of the values in L are very small, and therefore, it is normal to 
apply the negative logarithm of the likelihood function, 
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4.3.2 Maximum likelihood implementation 
   The log-likelihood function in (4.35) assumes that the drift from the normal condition to the 
new condition is abrupt. This is very inappropriate to assume, since the feature signals 
generated in chapter 3 consist of both abrupt and non-abrupt changes. If the assumption is not 
changed, the off-line change point estimation task only has a chance of working adequately in 
the case of abrupt changes. Therefore, a more realistic situation is assumed, which is, 
 
 
Assumption 
 
The feature signal is assumed to consist of three parts, a normal condition, a new condition 
and a linear drift from the normal condition to the new condition. 
 
 
The two “steady”  conditions, the normal and the new, are assumed to be Gaussian distributed 
with a mean value and a standard deviation. The linear drift is defined to be a condition where 
the beginning of the condition has the same mean value and deviation as the normal 
condition, and the end of the condition has the same mean value and deviation as the new 
condition. The increase in the mean value and the deviation follows a straight line between 
the beginning and end parameters. An example of such a feature signal is given in figure 4.23. 
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Figure 4.23: The feature signal is assumed to consist of a normal condition (100 cycles), a 
new condition (100 cycles), and a linear drift (100 cycles) between the conditions. 
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The log-likelihood function is in this case, 
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This is the first maximum likelihood method applied in this work. When it was tested on the 
feature signals in chapter 5 it showed good performance in some cases, but unfortunately not 
in all. It also suffers from the assumptions that the normal condition and the new condition are 
steady, and that the drift is linear – this is not an adequate assumption. One solution to 
overcome the linear drift assumption was implemented. This is referred to as the second 
maximum likelihood method.  
 
   In the second method it is still assumed that the normal and the new condition are “steady” , 
but the drift between the conditions is ignored. Then the two change points are estimated 
separately by modifying the log-likelihood function so it regards the feature signal to consist a 
normal condition and “ the rest” , i.e. something that does not belong to the normal condition. 
In other words we search for the point where the engine leaves its normal condition. Then the 
log-likelihood function is, 
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When the first change point has been estimated, the process is repeated, but is now started 
from the end of the feature signal and goes backwards in order to estimate the second change 
point. In fact it is far easier to flip the feature signal in Matlab and then use the same code as 
was used for estimating cp1. This is also done in the off-line change point estimation code. 
 
   Both maximum likelihood methods are tested in the test section. It is worth mentioning that 
the result is that non of the methods works good enough in all cases. A good outcome is, 
however, that the second method got rid of some of the problems with the first method.  
 

4.4 Panel of exper ts 
 
   In this thesis, four sensor signals were provided, each providing at least two feature signals5 
to the change detection system. The idea with this work is to apply the automatic change 
detection system on each of the feature signals in order to detect and estimate the changes in 
the feature signals. Since an AE is present in only a short space around its generation point, 
and since the AE sensors are placed at different positions on the engine, it is very likely that 
some types of engine condition changes can not be observed in all feature signals at the same 
time. Thus a situation can rise where one detection system applied on one feature signal will 
set an alarm and other detection systems applied on other feature signals wont set an alarm. 
The question is then: “Has the engine changed condition or not?”  
 
   This is a very interesting problem, which is referred as the panel of experts. To explain the 
name, one can regard the automatic change detection systems as experts who look at some  
                                                
5 If the mean value and deviation approach is used. 
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Figure 4.24: Panel of experts. The feature signals help the experts to provide statements. A 
“ judge”  combines the multiple statements down to a single statement. 
 
kind of material (the feature signals) and from this material they provide statements like: “The 
engine changed condition at this particular cycle” , or “The engine is still in the normal 
condition”, etc. Then the problem is how to combine these multiple statements down to a 
single statement on the engine condition.  
 
   This has not been investigated in this work. However, at this point it seems reasonable to 
choose that if just a single expert states that a change has occurred, then this is true. The 
reason is the before mentioned damping property with AE’s. This will of course demand the 
change detection system to be very reliable. Research has shown that implementation of a 
majority voter system [9], [18], which is a type of expert panel, in fact improves the system 
performance. In figure 4.24 a proposal on a panel of experts is given. 
 
    


