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Resume

Intelligente computer-baserede systemer, som behandler tekstdokumenter
er et aktivt forskningsomr̊ade. Søgemaskiner er højst sandsynligt det bedst
kendte eksempel p̊a, at anvendelsen af statistisk analyse af ustruktureret
tekst kan være særdeles effektiv. Men der findes et væld af andre mulige
anvendelser, hvor statistisk tekst modellering vil være velegnet. Et andet
eksempel er matching af jobansøgere og job. Arbejdsgivere bruger mange
resourcer p̊a at finde den rette ansøger, og jobansøgere bruger tilsvarende
mange resourcer i søgningen efter det rette job. Intelligente systemer, som
automatisk og p̊alideligt kunne matche ansøgere og job ville spare mange
kræfter. Dette eksamensprojekt er blevet inspireret af jobmatching-problemet
og lignende matching-problemer. Målet er at finde frem til velegnede statis-
tiske modeller for matching-problemer og at udføre en grundig analyse af
disse modeller - b̊ade teoretisk og eksperimentielt.

Søgemaskiner hører til indenfor Information Retrieval. Vores studier
af dette omr̊ade viser, at der har været en del fokus p̊a modeller, som
beskæftiger sig med linkstrukturer. Med linkstrukturer menes dokumenter,
som er indbyrdes forbundet med links. I forbindelse med matching-problemer
kan det vise sig meget interessant, fordi et link minder meget om et match.
Probalistic Latent Semantic Indexing (PLSI) er en model som kan udvides
til, udover ord, ogs̊a at repræsentere links. I dette eksamensprojekt bliver
det vist, at PLSI er i stand til at ”forst̊a” semantik i tekstdokumenter. Ud-
vides PLSI dernæst med links, er modellen ogs̊a til en vis grad i stand til
at forudsige hvilke links et dokument burde have udfra dets tekstindhold.
Dette virker bedst, hvis linkstrukturen er rimelig tæt. Intentionen er, at
den insigt i statistisk tekstmodellering, som formidles i denne rapport vil
vise sig nyttig under design af intelligente computersystemer for matching-
problemer.

Keywords: Statistisk tekst modellering, Probalistic Latent Semantic
Indexing, PLSI, PLINK, Supervised PLSI, Job matching.
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Abstract

Automatic systems dealing with text is an active area of research. Search
engines are probably the most successful and well-known area where statis-
tical analysis of unstructured text documents have proven very useful. But
there are a vast amount of potential applications, which are suitable for
statistical text modelling. One such application is the matching of job ap-
plicants with job offers. Large amounts of human resources are used today
on the search for future employees and - from the applicant’s perspective
- on the search for the right job. Successful automatic systems would be
very welcome in this area. This master thesis has been motivated by the job
matching problem and related matching problems. The objective is to find
suitable models for matching problems and to perform a thorough analysis
of these models from a theoretical and from an experimental perspective.

Search engines belong to the area of Information Retrieval. In Infor-
mation Retrieval there has been a lot of focus on models dealing with link
structures - that is, documents interconnected by links - and links are in-
teresting, because a link is very similar to a match. The Probalistic Latent
Semantic Indexing (PLSI) model is a model, which can be extended to in-
corporate link information. This thesis shows that PLSI is a model capable
of capturing semantics in text documents. Furthermore when extended with
link information it is capable of predicting links to some degree in environ-
ments where link information is not too sparse. It is the hope that the insight
and the capabilities of the models presented here will turn out useful when
building automatic systems for matching problems or related problems.

Keywords: Statistical text modelling, Probalistic Latent Semantic In-
dexing, PLSI, PLINK, Supervised PLSI, Job matching.
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Chapter 1

Introduction

1.1 Statistical modelling and Matching problems

This work focuses on investigating statistical models for text documents.
The reason for looking at these models is that currently there are a number
of problems dealing with the understanding of text documents that we don’t
have very successful automatic systems for. On the other hand the human
mind is very successful in the area of text understanding. That is, there is a
large gap between the capabilities of computer systems and the capabilities
of humans in this field. In this work we are not specifically aiming at mod-
elling the human mind in order to build models that work like the mind.
Rather we seek for models that can compete with the human mind in this
area. A side effect might be to gain a better understanding of the human
mind, but that is not our specific purpose.

My interest in statistical models for text documents is motivated by
a problem, which seems to repeat itself in different areas. The problem
can be characterized as a matching problem. Some examples of matching
problems are job matching and dating profile matching. If we consider the
job matching problem, then on the one hand we have a number of job offers
and on the other hand we have a number of applicants. The job matching
problem is to find the best match between job offers and applicants. Seen
from the applicants perspective we want to find the job offers that provide
the best match. And from the employer’s perspective we want to find the
applicants that provide the best match to the job offer. Matching dating
profiles are concerned with a number of people described by profiles who are
looking for other people that match their profile. What has to be fulfilled
for a good match is not obvious, but it is not a trivial task, since e.g. some
people might be looking for other people that do not necessarily resemble
themselves.

Another area where good matching solutions can be applied is in Peer-
to-peer (P2P) networks used for sharing all sorts of things such as music,
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movies, software, electronic books and so on. P2P networks can have mil-
lions of users and searching through all users in order to find what one is
looking for is not possible. The approach of a web search engine would be to
crawl the items of all users and build a central index of all items, which can
then be looked up at search time. But in P2P networks no central server
exists so no central index exists (since Napster [24]) in which to look up the
items of everyone at the time of the search. If we assume that other users
with similar interests are more likely to have what the user is searching for
then matching users with similar interests would be very helpful. The profile
of users is the items that they possess, and this profile can be matched with
other users.

Text modelling seems to be a good way of approaching the matching
problem, because the objects that we have looked at so far, which need
to be matched can be described as text ”documents”. Even the profile of
peers in P2P networks can be described by a textual list of items. Therefore
we shall be working under the assumption that statistical models for text
documents will be useful for the matching problem.

The introductory chapter will give an overview on the application of
statistical text modelling. We will be interested in the kind of problems
that statistical text modelling has been applied to in order to draw on ex-
perience from problems similar to the matching problem. After that we
will dig deeper into some specific statistical models in order to get a deeper
understanding of how they are constructed, what the ideas behind them
are and how well they work. We shall be analyzing the statistical models
from a theoretical perspective as well as from an experimental perspective.
The models will be implemented and used on experiments to get a deeper
understanding of how they work.
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1.2 Applications of statistical text modelling

1.2.1 Information Retrieval

The objective of this section is to give an introductory survey to the area
of information retrieval. The survey will focus on practical applications.
That is, we want to know what the tasks are that information retrieval tries
to solve. Furthermore we want to know how successful the application of
information retrieval is. What are the results of experiments in this field
so far? And how well can we expect a state-of-the-art information retrieval
system to perform?

A very good source of information on information retrieval is the web
site of the TExt Retrieval Conference (TREC) [4]. The conference is held
once a year and research groups from all over the world present their newest
results in this field. But TREC is not like most conferences where you can
pick any task that you want to solve and be accepted to the conference. In
order to be able to compare the results of different research groups the tasks
are well defined and the data sets that have to be used for a specific task
are specified and provided by TREC. The tasks are divided into different
areas of information retrieval called tracks. Thus each track has a couple
of tasks and data sets, which all the participants have to work and present
their results on. The methods of evaluation are also specified in advance,
such that it is possible to compare the results. TREC is a good starting
point for us in the information retrieval domain, because it can provide the
inside into what tasks are being worked on and what the state-of-the-art
results are. The tracks at the TREC conference are used in the following
survey providing an overview on common information retrieval tasks.

Web searching

The web track at TREC deals with World Wide Web (WWW) search tasks.
This is basically the playground for new search engine proposals. The doc-
ument collection is, in principle, the entire WWW and the tasks deal with
matching a given query from the user with the documents on the WWW.
Two very important tasks exist for search engines:

Topic distillation Given a query find the best set of home pages describing
the topic indicated by the query.

Named page finding Given a query find the particular page that the user
is looking for.

The method of evaluation for the topic distillation task at TREC is precision
score, which is defined as

Precision =
Nrelevant documents retrieved

Ndocuments retrieved
(1.1)
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In the web track the precision score is computed for the first 10 documents
retrieved by the searching algorithm. Thus it is judged manually how many
out of the first 10 documents retrieved are relevant to the query. This score
is called P@10 [6]. The reasoning behind this score is probably that search
engine users tend not to look at more than the first 10 results, so the most
relevant documents have to be among those 10.

For the TREC-2002 conference the best result obtained for the topic
distillation task was a P@10 score of 0.2510 [6]. That is, around 25% of the
10 first documents were relevant to the query. The data set used for the web
track was a crawl of the ”.gov” domain retrieving 1.25 million web pages.
For most topics the number of relevant documents was a number between
0 and 50, and the maximum number of relevant documents was under 200.
The point is that out of 1.25 million documents to find those 0 - 50 relevant
documents and return 2-3 out of 10 is not an easy task.

The objective of the named page finding task is to return the one par-
ticular page relevant to the query as one of the first results returned. If
the pages returned are ranked such that the first page returned has rank 1,
the second page returned has rank 2 and so on, then the measure of per-
formance is the Mean Reciprocal Rank (MRR). The best result obtained
for the TREC-2002 conference was an MRR score of 0.719 [6], which means
that the one relevant page was returned as number 1

0.719 = 1.39 on average.

The statistical models participating in the web track differed in what
features they extracted from the document collection, but the most com-
mon features used were document structure, anchor text and link structure.
Document structure refers to the structure of web pages imposed by HTML.
E.g. this facilitates the possibility of weighting different types of contents,
such as body text, title, meta text and different fonts, in the document dif-
ferently. For instance large font text might be considered more important
than normal text. E.g. that approach is taken by the Google search engine
[3]. Anchor text refers to the text, which is displayed by a page when linking
to other pages. This is the text that one has to click on in a browser when
surfing to a different page. In Google the anchor text is added to the docu-
ment, which is linked to, because often the anchor text is a good description
of the target page. Link structure of the document collection is also used in
several models, which is interesting, because models capable of representing
link information might be suitable models for matching problems. We will
discuss that further in section 1.3.

Question Answering

The question answering track at TREC focuses on information retrieval as
opposed to just document retrieval. The user seeks an answer to a specific
question and the system returns a single answer as opposed to a ranked
list of documents like in the web track. The tasks used in the TREC-2002
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question answering task were the following [29]:

Find single answer to a question The system is supposed to return ex-
actly one answer to each one of 500 test questions. One example of a
test question is ”What river in the US is known as the Big Muddy?”.
Furthermore the answers are ranked according to the confidence that
the system has in its answers such that the answer for which the system
is most confident is ranked first and so on.

List task The list task required systems to assemble an answer from in-
formation located in multiple documents. One example is ”Name 22
cities that have a subway system”. In this case the system is required
to return 22 answers.

A lot of issues come into play when moving from returning documents to
returning actual answers. For instance it is more difficult to judge whether
an answer is correct, because there are multiple ways to put an answer
as opposed to a particular document. In TREC-2002 the requirements for
returning exact answers became more strict than at previous TREC con-
ferences. E.g. redundant information not answering the particular question
was not accepted in a correct answer requiring the system to understand the
answer content to a higher degree than earlier. But basically a correct an-
swer is a personal judgement, and different people might judge it differently.
The TREC conference had humans assessing the exactness of the answers.

Two main approaches were used when building models for the question
answering task. One was a data-driven approach and one was a logic rep-
resentation approach. The system achieving the best results for both tasks
mentioned here was a logic representation system, but the runner up used
a data-driven approach [29]. Statistical models use a data-driven approach.
On the other hand Logic representation systems e.g. use first order logic to
represent knowledge and to make inferences when trying to answer the given
question. Logic representation systems are related to the field of expert sys-
tems. These are out of the scope of this work, since we are concerned with
statistical models. But it is worth noting that in the question answering task
a subtle difference in the question such as using the word ”not” changes the
meaning dramatically. In a logic representation approach it might be easier
to distinguish between such cases than in a statistical oriented system.

Typically all systems classified an incoming question according to prede-
fined question types as a first step, and further processing was then question
type specific. E.g. the classes of questions used in [26] corresponded to the
types of answers expected, which were abbreviation, entity, description, hu-
man, location and numeric.

A number of performance measures were used for the single answer to
question task. The ”confidence weighted score” for instance, rewards the
systems’ abilities to give good rankings of the answers according to confi-
dence. Here we shall only report the rate of correct answers score. The best
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system achieved answering 83% out of the 500 questions correctly. The level
of difficulty of the questions is of course a crucial factor for the success of
the participating systems. For instance the TREC-2002 question answering
track contained no definition questions such as ”Who is Duke Ellington?”,
which are among the most difficult questions but also the answers are among
the most difficult ones to evaluate, and that’s why they were left out [29].
Still the 83% success rate gives us an idea about the performance of the
state-of-the-art question answering systems.

For the list task the measure of performance was the average accuracy.
E.g. out of the 22 answers returned to the question ”Name 22 cities that have
a subway system”, how many answers were correct? The average accuracy
is then taken over a total of 25 test questions. The best result obtained
according to [29] was an average accuracy of 65%. That is, the best system
found 65% of the list items on average.

Filtering

Filtering is an information retrieval task in which the information need of
the user is stable. The system knows the user profile and monitors a stream
of information filtering out the information relevant to a user. That is, for
every piece of information the system has to make a binary decision whether
the information is relevant to the user.

TREC has a filtering track consisting of three tasks [25]. They are con-
cerned with documents as the type of information. The tasks are

Adaptive filtering The task is designed such that the user arrives with
a few relevant documents for each of a number of topics. The sys-
tem builds a preliminary user profile based on those documents. New
documents arrive sequentially and the system must decide for every
document whether or not to retrieve it. If it decides to do so, it receives
relevance feedback from the user on whether or not the document was
relevant to the user. Based on the relevance feedback the system can
adapt the user profile and thereby enhance performance on future
documents. In the TREC task the relevance feedback is simulated by
releasing a pre-existing relevance judgement for the document.

Batch filtering and Routing In these tasks a larger training set is made
available to the system including relevance judgements. The system
is then evaluated on a test set for which it has to retrieve relevant
documents. The difference between batch filtering and routing is that
the results returned by the routing system are ranked.

For the adaptive filtering task a number of measures of performance were
used. Here we shall focus only on one called F-beta, because the interpre-
tation of the results are the easiest. F-beta is a trade-off between precision
and recall, where precision was defined in equation 1.1 and recall is defined
as
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Recall =
Nrelevant documents retrieved

Nrelevant documents
(1.2)

The TREC-2002 weighted precision higher than recall, such that the
measure becomes

1.25 · Nrelevant documents retrieved

Nretrieved documents + 0.25 · Nrelevant documents
(1.3)

As an example, retrieving 5 relevant documents out of 10 relevant doc-
uments in total and 10 documents retrieved gives an F-beta score of 50%.
The F-beta score is calculated as a mean over the 50 topics used in the task
in TREC-2002. The best results for the adaptive filtering and batch filtering
tasks can be seen in the following table:

Task Adaptive Filtering Batch Filtering

Best Mean F-beta score 0.45 0.55

The routing task used a different measure of performance, and the re-
sults are not reported here, because the task is very similar to the batch
filtering task. Summarizing the results we can conclude that a state-of-the-
art filtering system can achieve about 50% of ”precision”. Where precision
is loosely defined to mean the F-beta score.

A lot of different models are used for the filtering task [25]. One feature,
which seems to be common to systems is the use of classifiers. The system
has to make a binary decision on whether to retrieve a document or not,
which seems to require a binary classifier. A lot of classifiers exist, though,
and a lot of different classifiers were used for the filtering task. Support
Vector Machines (SVM) seem to be a popular choice of model for the systems
participating in the filtering task. For an introduction to SVM see e.g. [22]

Other Information retrieval tasks

Other Information retrieval tasks besides web searching, question answering
and filtering of course exist. An overview of the remaining tracks at the
TREC conference can provide some insight.

Information Retrieval from multimedia sources such as video is also con-
sidered at TREC. The Video track is a new track at TREC. In 2002 it
featured three tasks: Shot boundary determination, high-level feature ex-
traction (e.g. indoor/outdoor) and searching for a shot with a given content.

In domains where huge amount of data exists finding the right infor-
mation is particularly difficult and automatic Information Retrieval is very
welcome. Such a domain is genomics - huge databases exist with articles
describing new functions found concerning specific gene sequences. The
Genome track at TREC considers retrieving information from these data
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bases - e.g. finding articles about a gene that describes aspects of its func-
tion.

The Cross-Language Track at TREC is concerned with the ability
of information systems to retrieve relevant documents independent of the
language in which the document is written. Most research in Information
Retrieval deals with the english language, but we have to recognize that
information retrieved in english is not very useful if the user doesn’t under-
stand english. Therefore the Cross-Language Track is relevant.

A few other tracks exist at TREC but the tasks are quite similar to the
ones that we have already presented.

1.2.2 Link models for ranking relevant pages

In this section we shall explore models for link structure more deeply. We
encountered such models in the web searching task in section 1.2.1. The link
models presented here are motivated by the application of statistical models
to ranking relevant pages returned from a web search. Furthermore these
models are interesting, because we want to find models, which are capable
of predicting links. More on that in section 1.3.

Using link structure has shown to be useful in ranking relevant pages
in a web search. In the web searching track at the TREC-2002 conference
two different tasks were considered: Topic distillation and Named page find-
ing. The number of relevant pages relevant to a query is the fundamental
difference between the two tasks. For topic distillation we expect to find a
large number of relevant pages on the topic of interest. On the other hand
only a few pages are likely to match a named page finding query. For topic
distillation the difficult task is to rank the relevant pages and return the
most relevant first.

Bibliometrics

The basic idea behind ranking relevant pages according to link structure is
that pages linked to by many other pages are more important and should
therefore be given a high rank. This idea was inspired by Bibliometrics - the
study of written documents and their citation structure [18]. We shall look
a bit into how the ranking of papers are done by the use of citations. The
simplest method of ranking is based on a pure counting of the number of
citations received by a paper. A very important extension is then based on
the observation that not all citations are equally important [18]. A paper is
more influential if it is cited by other influential papers. We introduce the
following:

wj ≡ Influence weight of a paper j.
A ≡ Citation structure matrix with entries Aij denoting the fraction of ci-

tations from paper i that go to paper j.



1.2 Applications of statistical text modelling 17

Now the influence, wj , of paper j can be calculated by not only summing
all the citations received by paper j but by weighting each citation with the
influence, wi, of the citing paper i. That is

wj =
∑

i

Aijwi, ∀i
∑

j

Aij = 1 (1.4)

If we define the vector of influence weights, w, this can be written in matrix
notation as

AT w = w (1.5)

where the rows of A sums to 1. This formulation implies that w is the
eigenvector of AT with eigenvalue 1.

PageRank

The popular search engine Google has basically implemented the idea from
Bibliometrics of influence of journal papers in the WWW domain [3]. The
rank of the relevant pages is determined by the influence of the page calcu-
lated by a calculation very similar to equation 1.4. Google has named their
algorithm PageRank. We redefine the entries of the citation matrix, A, so
that
A′ ≡ Link matrix where A′

ij is equal to 1 if there is a link from i to j and
0 otherwise.

In our notation, PageRank can be written as [23]

PageRank(j) =
(1 − β)

N
+ β

∑

i

A′

ij

|Fi|
PageRank(i), 0 ≤ β ≤ 1 (1.6)

where β is a small constant close to 0, N is the total number of documents
and Fi is the set of outlinks from page i. PageRank(j) is seen to be very
similar to the weight, wj , introduced in equation 1.4.

Hubs and Authorities

The ranking of web page results inspired by Bibliometrics and introduced
by Google has been very successful. But the difference between the cita-
tion structure of journal papers and the link structure of web pages has
motivated new suggestions for ways to rank relevant web pages. The con-
cepts of ”hubs” and ”authorities” introduced by Kleinberg [18] has been
very influential. The motivation is that in the domain of scientific papers
influential papers can easily cite each other, but in the WWW domain some
of the most influential or ”authoritative” pages often don’t want to cite each
other. E.g. two different search engine sites such as www.altavista.com
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and www.google.com, which would definitely be considered authoritative
pages, are not very likely to link to each other for commercial reasons.
Therefore Kleinberg introduces the concept of a ”hub”, which acts as an
intermediate stop. A prototype hub is a site that has collected a lot of good
links for a specific topic, but doesn’t provide any information on the topic
itself. Thus good hubs point to many good authorities. On the other hand
good authorities are pointed to by many good hubs. Thus we have a rein-
forcing relationship between hubs and authorities. With each page, p, we
associate an authority weight, x(p) and a hub weight, y(p). We introduce
the following:
x ≡ Vector of authority weights.
y ≡ Vector of hub weights.
The reinforcing relationship between hubs and authorities can be expressed
mathematically using our previously introduced notation as

x = A′T y

y = A′x
(1.7)

⇔

x = A′T A′x

y = A′A′T y
(1.8)

Thus x is the eigenvector to A′T A′ with eigenvalue 1, and likewise y is the
eigenvector to A′A′T with eigenvalue 1.

When returning web pages relevant to a query the authority weight,
y(p), denotes the rank of a page. A user study was performed evaluating
the quality of the authorities returned by a system based on the hub and
authority framework [18]. A number of searches were performed on topics
and the top five authorities and top five hubs returned were compared to
a manually generated compilation of pages within a topic from the WWW
search service on Yahoo! [30]. Users were asked to assess the quality of the
pages returned by each approach. The results were that the quality of pages
returned by the system based on hubs and authorities were comparable with
the manually generated compilation - even a little better [18].

Compared to the PageRank algorithm introduced by Google, the hub
and authority framework is a two-level model in which the hubs and au-
thorities reinforce one another. PageRank is a one-level model in which
authorities reinforce authorities. Of course the computational complexity
of the two-level approach is higher. Whereas it is feasible to carry out the
PageRank calculation on the entire set of web pages at crawl time, according
to Brin et al. [3] it can be done in a couple of hours, it is too demanding for
the two-level approach. Kleinberg argues that it is not necessary to carry
out the calculation on the entire set of crawled pages [18]. Instead it can be
done locally on the set returned by the search engine at query time. But
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this is also demanding for search engines that need to process millions of
queries per day and in [23] it is argued that this is not feasible.

The Intelligent Surfer - Query dependent PageRank

The link models considered so far have in common that they don’t take the
contents of documents into consideration when determining authoritative
pages within an interconnected set of documents - they only consider the
link structure. The Intelligent Surfer model [23] recognizes the idea that
pages with many inlinks should be considered authoritative and also the
PageRank idea that the inlinks should be weighted by the authoritative
weight of the linking page. But the Intelligent Surfer is motivated by the
observation that the PageRank score ”ignores whether or not the page is
relevant to the query at hand ... If one issues a query containing the word
”jaguar”, pages containing the word ”jaguar” that are also pointed to by
many other pages containing ”jaguar” are more likely to be good choices
than pages that contain ”jaguar” but have no inlinks from pages containing
it...” [23].

In order to take the relevance to the query at hand into consideration
the inlinks, A′

ij , to page j are not only weighted by the (modified) authority
weight, PageRankq(j), but also by a measure of relevance of page j to query
q. Mathematically the extension to equation 1.6 can be stated as [23]

PageRankq(j) = (1 − β)P ′

q(j) + β
∑

i

A′

ij PageRankq(i) Pq(i → j) (1.9)

where Pq(i → j) and P ′

q(j) denote a normalized relevance measure of docu-
ment j to the query q. If Rq(j) is the non-normalized relevance measure we
have that

Pq(i → j) =
Rq(j)∑

kεFi
Rq(k)

P ′

q(j) =
Rq(j)∑

kεW Rq(k)
(1.10)

where Fi is the set of outlinks from page i and W is the set of all pages.
One simple query dependent relevance score could be Rq(j) = 1 if the term
q appears on page j and 0 otherwise.

In a simple setup PageRankq scores can be precomputed at crawl time
for all terms and all documents and then combined at query time assuming
that the terms are independent. This makes it a feasible approach for a
search engine, it is argued in [23].

PLINK

Like the Intelligent Surfer model, the PLINK model introduced by Hof-
mann and Cohn [7] also recognizes the idea of combining link and document
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content, but the PLINK model takes a quite different approach than the
ones presented so far when determining authoritative pages within a topic.
PageRank, the Hubs and Authorities framework and the Intelligent Surfer
were basically inspired by the work in Bibliometrics. The calculation of page
authority was determined by eigenvector calculations. In Bibliometrics the
authority/importance of pages was computed as the primary eigenvector to
the citation structure matrix, A.

In PLINK the eigenvector calculation is replaced by a probabilistic model
based on the idea of a number of underlying topics. The underlying topics
generate the words and links according to estimated frequencies. Thus a
topic, z1 can be represented by its probabilities of generating each word,
p(w|z1), and its probabilities of generating each link or citation, p(c|z1).
Also, according to [7], the PLINK model gives the strengths of each docu-
ment within a topic, p(d|z1)

1. Finding authoritative pages within a topic,
z1, is accomplished by retrieving the documents with the highest values in
p(d|z1). We will get back to how all these values are calculated in section
2.1.6.

The PLINK model is capable of finding authoritative pages for relevant
web pages, but more importantly it does so by representing word and link
information in a solid statistical model. Therefore all sorts of inferences
are possible, such as predicting links of a document by knowing its word
content.

1.3 Problem description

We have now looked into applications of statistical text modelling, which is
the basic building block of many computer systems dealing with Information
Retrieval, Data mining and related areas. This has given us a feeling of
the current status on how successful these models are. In some areas the
performance of computer systems is comparable with humans. For instance
ranking the one relevant page to a query among 1.25 millions of pages as
number 1.39 on average seems like it couldn’t be done any better by humans.
On the other hand retrieving only 25 % relevant pages relevant to a query
in a web searching task seems like a human would be better at assessing the
relevance of the web pages if time was not a critical factor.

The survey of statistical text modelling applications has lead us to a
class of statistical models dealing with link structure between text docu-
ments. This is a very interesting class of statistical models, because the link
modelling problem and our initial matching problems are very much alike.
Whereas the link models are concerned with links between text documents,

1Actually the form of the PLINK model described in [7] does not give the possibility of
computing p(d|z1). A different version is necessary. See ”Implications of the chosen form
of PLINK” in section 3.4.5 for an explanation.
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the matching problem is concerned with matches between text documents
such as job applicants, dating profiles and peers in P2P networks. Pre-
dicting links by knowing the document content is therefore a very similar
application to predicting good matches.

Therefore in this report we shall focus on link models. We will try to
build a model that can predict links between documents and work under
the assumption that if this task can be solved reliably the same model can
also be used on the matching problem. The link problem has the advantage
that it is very easy to get data as opposed to getting data for the matching
problem. E.g. document collections interconnected by links can be retrieved
from the WWW. That makes the link prediction a feasible task for this work.

Building link models requires a good understanding of statistical models
for text documents. Therefore the first goal will be to get a good under-
standing of relevant statistical models for text documents. After that, link
models will be analyzed. The statistical models will be worked on both from
a theoretical point of view and from an experimental point of view. That
is, the theory and mathematics behind the models will be presented and
experiments with the models will be presented.

In particular the focus of this work will be on the PLINK model and
related models. The PLINK model has been chosen, because, as we have
seen, it provides a statistical model in which document contents and links can
be combined. Other related statistical models are presented for comparison
as well.
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Chapter 2

Theory

2.1 Statistical Models in Information Retrieval

In this section we shall explore some specific statistical models, which has
been applied to the area of information retrieval. The objective is to give
background information on the nature of such statistical models by looking
in detail at a number of models. Also it is the objective to find statisti-
cal models suitable for our task - that is models capable of representing
both word content and link structure, which will provide us with the tools
necessary to solve the problem of predicting links between documents.

2.1.1 Vector Space Model

Before any information can be retrieved from a document collection the
documents first have to be indexed according to some document represen-
tation. The first task of indexing is therefore to decide on a representation
of each document in the collection. The simplest choice is to save the entire
document content, but this is often too space consuming and, more impor-
tantly, does not facilitate efficient information retrieval. Rather a document
representation extracts a number of features from each document and a doc-
ument is then represented as a vector of those features. Next the indexing
task has to consider the importance of each feature in content identification
[27]. That is, some features might not be as important in distinguishing be-
tween documents as others and should therefore be assigned lower weights
of importance. The last task to consider is how to measure the similar-
ity between documents or between queries and documents when retrieving
information. The three indexing tasks of assigning features to documents,
assigning weights of importance to features and deciding on a similarity
measure compose what we will call a Vector Space Model for information
retrieval [14].

The most popular Vector Space Model is the one that uses as features
the terms appearing in each document. It is obvious that the terms of
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a document tells a lot about the content of this document and therefore
justifies this choice of features. On the other hand it is also obvious that
a lot of information is not contained in this representation. Specifically all
information related to the ordering of the words is not preserved. As a
weight of importance the terms are first weighted by their frequency in each
document. Now we can form the term-document matrix [27] to represent
the entire document collection given by

X
txd

=




f11 f12 ... f1d

f21 f22 ... f2d

...
...

...
ft1 ft2 ... ftd


 (2.1)

where fij denotes the term frequency of term i in document j.

If we assume that the lengths of the documents are not important in the
content representation then we want to normalize the document vectors,
that is the columns of the term-document matrix.

The weighting of the terms can be extended by other measures of im-
portance. In [27] a number of measures are examined. An important point
is that very common words are not very useful in distinguishing between
documents whereas terms occurring only in a few documents provides a
better way to distinguish those documents from the rest. A very common
term weighting to employ is the inverse document frequency, which captures
exactly this concept [17]. It is given by

idfi = log(
N

ni
) (2.2)

where N is the total number of documents and ni is the number of documents
in which term i occurs. This gives us a different weight for each row in the
term-document matrix which is multiplied by the term frequencies.

Other extensions to the vector space model presented in [17] include
the use of a stop list and stemming. The use of a stop list removes the
most common words (like ”and”, ”the” and ”for”) which are known not to
be important for the meaning of a document. Stemming also reduces the
dimensionality by mapping words to their root form. The result is that
words with different suffixes but with the same semantic like ”find” and
”finding” are mapped to the same feature in the document representation.

The similarity measure usually applied with the vector space model is
the dot product of document vectors. If the vectors are normalized this cor-
responds to the cosine to the angle between the document vectors. Another
possibility is the euclidian distance between pairs of document vectors.
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2.1.2 Latent Semantic Indexing (LSI)

The basic idea behind latent semantic indexing is that instead of representing
the documents in the high dimensional term space, the documents can be
represented in a low dimensional latent semantic space. This has a number
of advantages apart from the obvious one of saving space.

Dimensionality reduction

The dimensionality reduction is performed by a Singular Value Decomposi-
tion (SVD) of the term-document matrix [19] such that

X
txd

= U
txd

· S
dxd

· V T

dxd
≈ X̂

txd
= U

txk
· S

kxk
· V T

kxd
(2.3)

where k is the dimensionality of the new space. This value has to be cho-
sen. E.g. it can be chosen to be the number of topics that the document
collection contains. U and V are called the left and right singular vectors re-
spectively and S contains the singular values. U tells us how the k principal
components describing the low dimensional space are composed of the terms
of the original space. V tells us the representation of each document in the
new space. That is the indexing has changed from representing documents
by term frequencies to representing documents by their value for each of the
k principal components.

The approximation is performed by choosing the k largest singular values
of the SVD and discarding the rest. By doing this it is obvious that some
information is lost. The question is whether it is desirable to loose this in-
formation. In [28] it is argued that performing the LSI, which corresponds
to dropping small eigenvalues, eliminates noise in data (statistically dubious
information) and in the case of representing queries in the latent space it
compensates for the lack of an exhaustive word count in the query (specifi-
cation error). Also LSI is believed to have some other desirable properties.
Because the components used to describe the documents are composed of
the old terms, it is possible that a query using the word ”buy” matches doc-
uments that doesn’t contain this term, but contains other related terms such
as ”purchase”. That is the new components represent an artificial ”topic”
described by values of the old terms, and it deals with synonymy of words,
which are believed to have high values in the same component. In this way
LSI captures the latent semantic of the query. Polysemy is only partially
solved by LSI . Since every term is represented by just one point in space
it is not possible to represent multiple meanings of a word. LSI provides a
kind of averaging over the different meanings of polysemous words [9].

As with the simple vector space model, the usual similarity measure is the
dot product - also called the cosine similarity. In LSI the dot product is just
computed between document vectors in the low dimensional latent semantic
space. Usually one is interested in comparing queries with documents. The
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query does not contribute to the SVD, but the query is represented in the
same space by projecting the query vector onto the k components, and then
the dot product is computed with this new query representation.

Applications

LSI is a popular model in information retrieval applications. The task of
retrieving a number of documents from a document collection most relevant
to a given query is a common task. The task includes matching the query
with the documents in the collection. In the LSI framework this is handled
by representing the query in the latent semantic space, applying the similar-
ity measure between the query and all the documents in the collection and
then returning the documents most similar to the query. The projection of
the query onto the LSI space is computed by rewriting the term-document
decomposition from equation 2.3 to obtain

V T

kxd
=

(
U
txk

· S
kxk

)T

· X̂
txd

(2.4)

If we have a query, q, and we want to find the representation, qk, in the

latent semantic space, we project it onto

(
U
txk

· S
kxk

)T

in the following way:

qT
k

kx1

=

(
U
txk

· S
kxk

)T

· q
tx1

(2.5)

The cosine similarity is now measured between qk and the columns in
V T corresponding to each document in the collection.

Clustering is another application of the LSI model. Later in the report
we shall look at different classification schemes e.g. based on clustering, but
a very simple way of clustering with the LSI model is to use a number of
clusters, k, equal to the number of principal components. Each document
is assigned to the cluster for which it has the largest principal component.

2.1.3 Independent Component Analysis (ICA)

Independent Component Analysis is another technique for decomposing the
term-document matrix into a latent semantic space. As such we could just
state the decomposition similar to equation 2.3, but in order to understand
the reasoning behind the ICA decomposition it is useful to have a look at
the main application of ICA, which is separating acoustic signals.

ICA is a technique which can be used to separate a number of source
signals which for some reason have been mixed together. Here we shall use
the example of recovering acoustic signals. A number of sources, k, are
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assumed to produce acoustic signals. They can be thought of as ”speakers”.
Correspondingly a number of ”microphones”, t, record the acoustic signals,
but the recorded signals, X, are a mix of the acoustic signals from all the
speakers and we cannot tell what the original source signals were. ICA is
a technique to recover the original source signals, S. That is, the recorded
signals, X, can be decomposed into the source signals, S, and a mixing
matrix, A, [19] according to

X
txd

= A
txk

· S
kxd

(2.6)

The acoustic signals are sampled d times, such that S gives us d values
for each of the k sources. A is called the mixing matrix because it denotes
how the source signals are mixed together at each of the ”microphones”,
t. Applications for acoustic signal recovering include hearing aids, which
corresponds to the ”microphones”. A hearing aids user is interested in re-
covering the original sources of acoustic signals, which could be humans or
noise. By recovering the source signals filtering out the noise is possible and
very helpful to the users.

In the text document domain the interpretation of sources and recorded
signals is different. In this domain the sources can be thought of as ”topics”,
which are sampled d times - where d denotes the number of documents.
What we observe is a mix of these ”topics” in the term-document matrix.
Each term is a mix of topics and the mixing matrix, A, tells us how the topics
are mixed for each term. The decomposition of the term-document matrix
in equation 2.6 can be used to recover how each document was produced as
a mix of topics.

Interpreting each document as generated by a mix of underlying topics
is exactly the same interpretation as in LSI. The big difference between LSI
and ICA is the assumptions on the underlying topics or components that
generate the documents. Since LSI is based on SVD the assumption is that
the components are orthogonal. As a consequence the topics found by LSI
have very little in common. ICA on the other hand restricts the components
to be statistically independent. We will not go further into the definition of
”statistically independent”, but emphasize that in ICA it is perfectly fine
that two topics are very much alike and have a lot in common.

Another way to look at the decomposition is to look at how it will be
used in information retrieval. The approach here is similar to the LSI de-
composition. We have a document collection, which is represented in the
high dimensional term space, but it is possible to represent the documents
in a lower dimensional ICA latent semantic space. The ICA decomposition
in equation 2.6 describes how the original term-document space can be de-
composed into the k-dimensional latent semantic space. The features of this
space are the k components, and each document is indexed by its value for
each of the components given by the source signal matrix, S.
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So far we haven’t discussed how the decomposition is computed. The
LSI decomposition was computed by the well-known SVD, but ICA decom-
position is more complicated and different techniques exist. As opposed to
SVD iterative updating rules for A and S have to be used for ICA. One
derivation of the updating rules are based on maximum likelihood, but we
will not go further into details with this subject here. For details see e.g.
[19].

It is possible to take advantage of the LSI decomposition before ICA
decomposition takes place as described in [19]. Instead of using the original
term-document matrix as input to the ICA decomposition the matrix prod-
uct S

kxk
· V

kxd

T from the LSI decomposition is used as input. The resulting

decomposition then looks like this:

X
txd

≈ X̂
txd

= U
txk

· S
kxk

· V T

kxd
= U

txk
· A

kxk
· S

kxd
(2.7)

2.1.4 Probalistic Latent Semantic Indexing (PLSI)

A lot of work has focused on explaining why LSI works (e.g. [28]). One
reason might be that LSI suffers from a lack of a solid statistical foundation.
With this in mind a similar model, PLSI , has been proposed by Hofmann
[14], which provides the desired solid statistical foundation. Like LSI, PLSI
also assumes that the documents described in the high dimensional term
space can be represented in a lower dimensional latent semantic space. But
unlike LSI the components of the new space is not found by SVD. Instead
PLSI presents a latent variable model, which associates with each obser-
vation an unobserved class variable, z. One observation, (w, d), is then a
specific occurrence of a term, w, in a document d.

The parameters of the model without latent variables are the p(w, d)’s,
which gives us T ·D parameters in total. But by introducing the conditional
independence assumption that conditioned on the latent variable, z, the
words are generated independently of the specific document, we end up
with only T ·Nz +D ·Nz +Nz parameters, where Nz is the number of latent
variables. That is

p(d, w) =
∑

z

p(z)p(d, w|z) =
∑

z

p(z)p(w|z)p(d|z) (2.8)

In LSI one document could be described by its values for each principal
component. But in PLSI documents are characterized by a mixture of factors
with weights p(z|d). The hidden factors can describe underlying topics in
the documents and one document is then characterized by a mixture of these
topics, such that it has high values for topics, which are dominant in the
document.
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While in LSI one component could be characterized by its weight for each
term, in PLSI one factor can be described by its probabilities of generating
each term, p(w|z).

The generative model

The focus so far has been on the latent semantic space of the PLSI model
as opposed to the LSI model. The document representations have been
compared as well as the components of the latent space. Another way to
look at models is as generative models. That is, what are the assumptions
about how data is generated introduced by the model? This is a useful way
of thinking about the model for several reasons. One reason is that we want
to use a model, which has reasonable assumptions about data generation.
The assumptions should be close to the way that we think data is generated
in the specific problem that we are looking at. Another reason why it is
useful to look at statistical models as generative models is that this gives us
a way to choose among different models or different sets of parameters. If we
have data for the specific problem we can choose the model in the following
way: Among the different possible models we want to choose the one, which
has the greatest probability of generating the data for the problem. This
probability is called the likelihood of data if the parameters or model is
what we are optimizing. We shall use this approach when estimating the
parameters for the PLSI model.

So how is data generated according to the assumptions of the PLSI
model? Actually there are several interpretations, but the general idea is
this: We obtain a number of observation pairs, (w, d), which denotes a spe-
cific word in a specific document. The PLSI model generates data according
to the probability, p(w, d), that it assigns to all possible observation pairs,
(w, d). One immediate interpretation is then given according to equation
2.8:

• Pick a latent variable, z, with probability p(z).
• Generate a document, d, and a word, w, according to the probabilities

p(d|z) and p(w|z) respectively.

A different interpretation of the generative model can be given by writing
p(w, d) in a different way:

p(w, d) = p(d)p(w|d) = p(d)
∑

z

p(w|z)p(z|d) (2.9)

Now data can be thought of as generated in the following way:

• Pick a document, d, with probability p(d).
• Pick a latent variable, z, with probability p(z|d).
• Generate a word, w, with probability p(w|z).

In both interpretations we obtain the observation pairs, (w, d).
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Estimation of model parameters

In order to estimate the model parameters, we want to maximize the likeli-
hood of the observed data. Since it is easier to maximize the log likelihood
of the data, we will do that. We can describe the data observations, (w, d),
by n(w, d), which denotes how many times a word occurred in a document.
The likelihood of the entire data set, X, becomes

p(X|model) = p(w1, d1)
n(w1,d1)p(w2, d1)

n(w2,d1) · · · p(wt, dd)
n(wt,dd)

=
∏

d

∏

w

p(w, d)n(w,d)

(2.10)

And the log likelihood of the data becomes

ln p(X|model) =
∑

d

∑

w

n(w, d) ln p(w, d)

=
∑

d

∑

w

n(w, d) ln
∑

z

p(z)p(w|z)p(d|z)
(2.11)

This function is difficult to optimize, because it contains the logarithm to a
sum. We will make use of Jensen’s inequality (see [1] p66), which says that

ln(
∑

j

λjxj) ≥
∑

j

λj ln(xj) (2.12)

where the λj ’s have to sum to one. We will introduce the posterior proba-
bilities of the latent variables, p(z|w, d), which will play the role of the λj ’s,
since they also have to sum to one.

ln p(X|model) =
∑

d

∑

w

n(w, d) ln
∑

z

p(z|w, d)
p(z)p(w|z)p(d|z)

p(z|w, d)

≥
∑

d

∑

w

n(w, d)
∑

z

p(z|w, d) ln
p(z)p(w|z)p(d|z)

p(z|w, d)

≡ F (Θ, p(z|w, d))

(2.13)

This new function, F , introduced presents a lower bound on the likelihood of
the data, because of the inequality. If we want to maximize the likelihood of
data then we also have to maximize L. The function depends partly on the
parameters of the model, Θ ≡ {p(z), p(w|z), p(d|z)}, and partly on the mix-
ing proportions, p(z|w, d). By optimizing F with respect to the parameters
and the mixing proportions respectively we will arrive at the two iterative
updating steps for the EM algorithm. The reason why it is necessary to
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iterate is that the parameters will depend on the mixing proportions and
the other way around.

When we optimize F we have to take constraints on the densities into
consideration, since they have to sum to one. Therefore we define a La-
grangian function, L(Λ, Θ, p(z|w, d)), where we have added to F , the con-
straints multiplied by Lagrange multipliers, Λ. Now the gradient, ∇L, has
to be zero in order to satisfy the constraints and in order to maximize F .

L(Λ, Θ, p(z|w, d)) =
∑

d

∑

w

n(w, d)
∑

z

p(z|w, d) ln
p(z)p(w|z)p(d|z)

p(z|w, d)

+
∑

z

λz(
∑

w

p(w|z) − 1) +
∑

z

µz(
∑

d

p(d|z) − 1)

+ γ(
∑

z

p(z) − 1) +
∑

w,d

ρw,d(
∑

z

p(z|w, d) − 1)

(2.14)

We first find the updating rules for the parameters by differentiating L with
respect to the parameters.

0 =
∂L

∂p(z)
=
∑

d,w

p(z|w, d)
p(z|w, d)

p(z)p(w|z)p(d|z)

p(w|z)p(d|z)

p(z|w, d)
+ γ

⇔ p(z) = − 1

γ

∑

d,w

n(w, d)p(z|w, d)

(2.15)

The constant, − 1
γ
, can be found by summing over z and utilizing the con-

straint that p(z) has to sum to one. That is

∑

z

p(z) = 1 = − 1

γ

∑

d,w

n(w, d)
∑

z

p(z|w, d)

⇔ −1

γ
=

1∑
d,w n(w, d)

(2.16)

And so we obtain the updating rule for p(z) to be

p(z) =

∑
d,w n(w, d)p(z|w, d)∑

d,w n(w, d)
(2.17)
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The derivation of the updating rules for the other parameters, p(w|z) and
p(d|z) are similar, and we end up with the following [14]:

p(w|z) =

∑
d n(w, d)p(z|w, d)∑

d,w n(w, d)p(z|w, d)
(2.18)

p(d|z) =

∑
w n(w, d)p(z|w, d)∑

d,w n(w, d)p(z|w, d)
(2.19)

Updating the parameters, p(z), p(w|z) and p(d|z) composes the M-step of
the EM algorithm, because the parameters are maximized given the current
value of the latent variable, z.

Now we want to find the updating rule for the mixing proportions,
p(z|w, d). The approach is similar.

0 =
∂L

∂p(z|w, d)
= n(w, d)(ln

p(z)p(w|z)p(d|z)

p(z|w, d)

+ p(z|w, d)
p(z|w, d)

p(z)p(w|z)p(d|z)
(−p(z)p(w|z)p(d|z)

p(z|w, d)2
)) + ρw,d

⇔ p(z|w, d) = e
−

ρw,d+1

n(w,d) p(z)p(w|z)p(d|z)

(2.20)

where the constant in front of the parameters can be found by summing
over z and utilizing the constraint on p(z|w, d), so that

∑

z

p(z|w, d) = 1 = e
−

ρw,d+1

n(w,d)

∑

z

p(z)p(w|z)p(d|z)

⇔ e
−

ρw,d+1

n(w,d) =
1∑

z p(z)p(w|z)p(d|z)

(2.21)

And the updating rule for p(z|w, d) becomes

p(z|w, d) =
p(z)p(w|z)p(d|z)∑
z p(z)p(w|z)p(d|z)

(2.22)

When estimating parameters with the EM algorithm, updating p(z|w, d)
composes the E-step, because we update the expected value of the hidden/la-
tent variable, z.

Folding-in new documents

For information retrieval purposes it is important, as we have discussed,
to be able to evaluate the similarity between documents or documents and
queries. In PLSI a document is represented by p(z|d). Now, when estimating
the model parameters these estimates can be computed for all the training
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documents by virtue of p(d|z) and Bayes’ rule, but for unseen documents we
have no document representation so far. The way to obtain the p(z|dnew)
is by folding-in the new documents with the EM algorithm [14] to obtain
p(dnew|z). This is necessary because p(dnew|z) depends on p(z|w, dnew) and
vice versa.

In practice the folding-in of new documents is done by keeping from the
trained model only the p(w|z) and p(z) parameters. That is, we fix these
parameters when estimating the p(z|dnew) parameters, which is done by
iterating between the EM steps 2.19 and 2.22. The old p(z|d) are discarded
during the folding-in of new documents.

This is a far more complicated and computationally heavier procedure
compared to e.g. the LSI model. Some short-cuts have been suggested,
though. In [11] and online version of EM is described for folding-in unseen
documents where only one iteration is necessary.

Also another approach is suggested here. Again we compare the PLSI
model to the LSI model. In LSI a representation of a new document would
be obtained by projecting the term frequencies of the new document onto
the left eigenvectors, U , as with the query, q, in equation 2.5. Similarly a
document representation in the PLSI model could be obtained by projecting
the term frequencies onto the p(w|z) vectors in the PLSI latent space, so
that

p(z|dnew) =
∑

w

p(w|z)n(w, d) (2.23)

Applications

The decomposition of the original high dimensional documents represented
by the word frequencies has some advantages similar to the ones described for
LSI. One advantage of the decomposition is that the sparse term-document
matrix is decomposed into the not sparse p(z|d) representations where less
data is needed to facilitate meaningful applications.

In information retrieval it is often the case that we want to retrieve doc-
uments from a collection similar to a given query. This task can be solved in
our PLSI framework, by training the PLSI model on the document collection
to obtain the document representations, p(z|d). The query representation is
then computed by folding-in the query to obtain p(z|q). Now the similarity
between the query and all the documents in the collection can be determined
for instance by computing the dot product (cosine similarity) between the
query representation and all the documents, and the documents with the
greatest similarities are retrieved.

Another application is clustering of the documents in a collection. We
want to cluster the documents that are similar into one cluster thus obtain-
ing a predetermined number of document clusters, k. This can be done in
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several ways, but again the starting point is the document representations,
p(z|d). One simple way is to assign each document to the cluster for which
it has the greatest value of p(z|d). This relates to more conventional clus-
tering methods like e.g. gaussian mixture models. In mixture models, k
distributions are fitted to the observed data, x, maximizing the posteriori
distribution, p(x|θ) where θ denotes the parameters of the k distributions.
Each data point or document, xn, is assigned to the most likely likely com-
ponent determined by comparing p(k|xn) for all components. Thus in PLSI
p(z|d) plays the same role as p(k|xn) in clustering with mixture models. For
a more detailed description on how to use Generalizable Gaussian Mixture
models for clustering see [13].

The factor decomposition of a document collection allows us to deter-
mine what topics are present in the collection. This is possible because the
factors, z, can be thought of as the topics present in the collection, and the
components, p(w|z), tell us what words describe that topic. The words with
the largest values for a given topic in p(w|z) provide a keyword description
for that topic. This application is also useful in combination with clustering.
If the documents have been clustered, then the p(w|z) can again provide a
description of each cluster.

If we have labeled documents and want to classify new documents, that
is, assign a label to each new document, the PLSI model is also useful.
There are many different ways to perform classification and we shall explore
some of them later in this report. One approach is to start by clustering the
documents and then assign labels to each cluster. New documents are then
given the label of the cluster into which they are put (see section 3.2.1). A
more advanced approach is to extend the PLSI model to perform supervised
learning. This approach is taken in section 3.3.
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2.1.5 Latent Dirichlet Allocation (LDA)

PLSI has been criticized by Blei, Ng and Jordan [2] for not being a fully
generative model. The reason is that the model learns the topic mixtures
p(z|d) only for those documents on which it is trained and therefore there is
no clean way to assign probabilities to previously unseen documents. The
folding-in of new documents is therefore a complicated process, because
p(z|dnew) has to be estimated with the EM algorithm as we have seen.

Furthermore there is another drawback of letting the training documents
take part in the model parameters explicitly. The number of parameters
grow linear in the number of training documents and this imposes the risk
of overfitting training data. Therefore in [2] the PLSI model is also criticized
for introducing the need for ”tempering” heuristic to smooth the parameters.
That is the Tempered EM algorithm used by [14],

LDA is introduced to overcome the shortcomings of PLSI. Like PLSI
LDA is also a generative model. But in LDA the training documents do
not take part in the model parameters explicitly. Instead of the p(z|d)
parameters, a random variable θ is introduced. θ has the same dimension
as z, that is θ is the mixture of topics in the documents. But instead of
estimating the mixture probabilities for each training document (p(z|d)), θ is
sampled from a Dirichlet distribution for each document. Data is generated
in the following way:

• Obtain a mixture of topics, θ = (θ1, ..., θNz), for the document, d, by
sampling θ from the Dirichlet distribution, D(θ, α).

• Pick a topic zk with probability p(zk|θ) = θk.
• Pick a word, w, with probability p(w|zk).

Compared to the generative model for the PLSI model the big differ-
ence is that in PLSI we pick a document, d, with probability p(d) to obtain
the mixture of topics, p(z|d) for that document. In LDA we sample θ to
obtain the mixture of topics θ = (θ1, ..., θNz). Now topics are picked either
according to p(z|d) or according to θ. Finally words are sampled according
to p(w|z) in either models, where p(w|z) are parameters of the models esti-
mated based on training data. They denote a multinomial distribution over
the words for each topic.

There is a lot fewer parameters in the LDA model compared to the PLSI
model. Whereas there is Nz ·D of p(z|d) parameters in the PLSI model there
is only Nz parameters in the Dirichlet distribution from which θ is sampled
for each document. These parameters are denoted α = (α1, .., αNz). The
number of parameters grow linear in the number of documents in the PLSI
model. In the LDA model on the other hand the α parameters have to cap-
ture a sort of averaging over the mixture of topics in all the documents, but
no extra parameters are added by introducing new documents and therefore
the risk of overfitting is minimized compared to the PLSI model.

The full LDA model introduced by [2] for the probability of a document
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looks like this:

p
(
d|α, p(w|z)

)
=

∫

θ

∏

w

{
∑

k

p(w|zk)p(zk|θ)}n(w,d)D(θ|α)dθ

=

∫

θ

p(d|θ)D(θ|α)dθ

(2.24)

where D(θ|α) denotes the Dirichlet density , n(w, d) is the number of times
w occurs in d and p(zk|θ) = θk. A document in LDA is just treated as the
vector of words that it contains. It is interesting to compare this with the
probability of a new document in the PLSI model. We have not stated it
yet, but it would look like this:

p
(
dnew|p(z), p(w|z), p(dtrain|z)

)
=
∑

dtrain

{
∏

w

{
∑

z

p(w|z)p(z|dtrain)}n(w,d)}p(dtrain)

=
∑

dtrain

p(dnew|dtrain)p(dtrain)

(2.25)

where p(dtrain) =
∑

z p(dtrain|z)p(z).
It is now interesting to see that whereas we integrate p(d|θ) over the

continuous Dirichlet distribution in LDA, in PLSI we sum p(dnew|dtrain)
over all training documents, which is a discrete sum. So actually there is a
way to assign probabilities to previously unseen documents but apparently
it is not clean according to [2], because the training documents are not really
treated as documents composed of words but more like a dummy variable.

In [12] the similarities between PLSI and LDA are examined. It is
claimed that PLSI is actually a special case of LDA when the Dirichlet
distribution is uniform. One way to look at estimation of the parameters in
LDA is that for each document we want to find the maximum a posteriori
value for θd that is the most likely mixing proportions of topics for that
document given the data. If we estimate θd for every document then the
parameters, α1..αNz, of the Dirichlet distribution and the p(w|θ) parameters
can be estimated by maximum likelihood estimation. In [12] it is said that
if we let all the α parameters equal 1 such that the Dirichlet distribution
is uniform, then the estimations of p(w|z) in LDA equals the estimations
of p(w|z) from PLSI. The folding-in of new documents in PLSI can also be
seen as estimation of the Dirichlet variable for the new document.
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2.1.6 PLINK - a probalistic model for links and terms

In this section a model, PLINK, is introduced, which is an extension to PLSI.
The extension is proposed by Hofmann and Cohn in [7]. Whereas PLSI only
considers the terms as features in the documents, PLINK assumes that there
exists links between the documents, which are also used as features. E.g. the
links can take the form of hyperlinks as is the case of HTML documents or
they can take the form of citations, which is the case of articles citing other
articles. The hypothesis is that the links contribute to the semantic context
of the documents and thereby enhance the chance of successful applications.
If two documents have a similar citation pattern it is also more likely that
they share the same context than documents with different citation patterns.

Joint probalistic model

The general idea is the same as in the PLSI model. With each observation,
an unobserved class variable, z, is associated. In this case observations
not only consist of word-document pairs (w, d), but also citation-document
pairs, (c, d). The assumption of the model is that words and citations are
created by the underlying factors represented by z. A straight forward way
to express this is:

p(w, d) =
∑

z

p(w|z)p(d|z)p(z), p(c, d) =
∑

z

p(c|z)p(d|z)p(z) (2.26)

Parameters of the model would then be p(w|z), p(c|z), p(d|z) and p(z).
Estimates of the model parameters would be derived by maximizing the
likelihood of the observations given by

P (X|model) =
∏

d

(∏

w

p(w, d)n(w,d)
∏

c

p(c, d)n(c,d)

)
(2.27)

But the approach taken in [7] is slightly different. In order to normalize
the lengths of the documents, such that documents of different lengths are
given the same importance, the word observations considered by the model
are n(w,d)∑

w n(w,d) and the citation observations are n(c,d)∑
c n(c,d) where n(w, d) and

n(c, d) denotes the number of words and citations in the document respec-
tively. The corresponding probabilities for given observations are p(w|d)
and p(c|d) respectively. Again the basic assumptions of the model is that
the words and citations are generated by underlying factors, z, which make
the words and the citations independent of the documents given the hidden
factors, z. This can be expressed as

p(w|d) =
∑

z

p(w|z)p(z|d), p(c|d) =
∑

z

p(c|z)p(z|d) (2.28)
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The parameters of the PLINK model are therefore p(w|z), p(c|z) and p(z|d).
The common parameter, p(z|d), for the conditional probabilities of words
and citations couples the content and link features together.

Estimating the model parameters

When estimating the parameters, we consider a data sample and want to fit
the data with the most likely parameters that generated the data. In [7] it
is suggested to introduce a weighting factor α of the words vs. the links in
the likelihood function, which facilitates deciding on the relative importance
of the two types of features a priori. This gives us the following likelihood
function, where X denotes the data sample

P (X|model) =
∏

d

(∏

w

p(w|d)
α

n(w,d)∑
w n(w,d)

∏

c

p(c|d)
(1−α)

n(c,d)∑
c n(c,d)

)
(2.29)

The log likelihood becomes

ln P (X|model) =
∑

d

(∑

w

α
n(w, d)∑
w n(w, d)

ln p(w|d)

+
∑

c

(1 − α)
n(c, d)∑
c n(c, d)

ln p(c|d)
)

=
∑

d

(∑

w

α
n(w, d)∑
w n(w, d)

ln
∑

z

p(w|z)p(z|d)

+
∑

c

(1 − α)
n(c, d)∑
c n(c, d)

ln
∑

z

p(c|z)p(z|d)
)

(2.30)

By following the EM approach as in section 2.1.4 it is possible to derive
the parameter updating rules for the parameters p(w|z), p(c|z) and p(z|d)
respectively and the mixing proportions p(z|w, d) and p(z|c, d). These are
given by Hofmann and Cohn in [7], but except for the mixing proportions
they are not entirely correct. Therefore the derivation is outlined here.

We introduce the fractions of a word and a link in a document respec-
tively as

Wd ≡ n(w, d)∑
w n(w, d)

, Cd ≡ n(c, d)∑
c n(c, d)

(2.31)

Now we move on with the log likelihood function by introducing the mixing
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proportions and taking advantage of Jensen’s inequality.

ln P (X|model) =
∑

d

(∑

w

αWd ln
∑

z

p(z|w, d)
p(w|z)p(z|d)

p(z|w, d)

+
∑

c

(1 − α)Cd ln
∑

z

p(z|c, d)
p(c|z)p(z|d)

p(z|c, d)

)

≥
∑

d

(∑

w

αWd

∑

z

p(z|w, d) ln
p(w|z)p(z|d)

p(z|w, d)

+
∑

c

(1 − α)Cd

∑

z

p(z|c, d) ln
p(c|z)p(z|d)

p(z|c, d)

)

= F (Λ, Θ, p(z|w, d), p(z|c, d))

(2.32)

When optimizing F the constraints on the parameters are taken into con-
sideration by introducing the lagrangian function, L as in section 2.1.4.

L(Λ, Θ, p(z|w, d)) = F (Λ, Θ, p(z|w, d), p(z|c, d))

+
∑

z

λz(
∑

w

p(w|z) − 1) +
∑

z

µz(
∑

c

p(c|z) − 1)

+
∑

d

γd(
∑

z

p(z|d) − 1) +
∑

w,d

ρw,d(
∑

z

p(z|w, d) − 1)

(2.33)

Here we will focus on the derivation of one of the parameters, p(w|z). When
taken the derivative of L we get

0 =
∂L

∂p(w|z)
=
∑

d

αWd
p(z|w, d)

p(w|z)
+ λz

⇔ p(w|z) =
α

λz

∑

d

Wd p(z|w, d)
(2.34)

The constant − α
λz

can be found by using the constraint that p(z|w) has to
sum to one. So

∑

w

p(w|z) = 1 =
α

λz

∑

d

Wd p(z|w, d)

⇔ − α

λz
=

1∑
w

∑
d Wd p(z|w, d)

(2.35)

Finally the updating rule for p(w|z) is obtained

p(w|z) =

∑
d Wd p(z|w, d)∑

w

∑
d Wd p(z|w, d)

(2.36)
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Compared to the updating rules given by Hofmann and Cohn this is the
same except that they don’t have the normalizing term in the denominator.
However, According to [15] Hofmann and Cohn actually used normalizing
constants in their experiments. By deriving the other updating rules one
notices that the same is true for the other parameters, that is, normalizing
constants are missing. Here they are given in a normalized version according
to the EM algorithm.

p(c|z) =

∑
d Cd p(z|c, d)∑

c

∑
d Cd p(z|c, d)

p(z|d) =
α
∑

w Wd p(z|w, d) + (1 − α)
∑

c Cd p(z|c, d)∑
z (α

∑
w Wd p(z|w, d) + (1 − α)

∑
c Cd p(z|c, d))

(2.37)

The formulae in equation 2.36 and 2.37 compose the M-step of the EM
algorithm. Updating the mixing proportions compose the E-step and the
updating rules are given like in [7] as

p(z|w, d) =
p(w|z)p(z|d)∑
z p(w|z)p(z|d)

p(z|c, d) =
p(c|z)p(z|d)∑
z p(c|z)p(z|d)

(2.38)

In [7] it is shown that incorporating links in the model increases the
classification accuracy in comparison with PLSI. Also other applications are
suggested such as determining the most likely citation pattern based on the
words in a new document. Similarly the most likely words can be determined
based on the citations. An intelligent web crawler is suggested based on a
principle of following links in those documents that are most likely to have
links leading to the topic at interest. The topic is represented by a query
in the latent semantic factor space. The intelligent web crawler is based on
the concept of Reference flow, which will be introduced in section 3.4.5.
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2.2 Choosing between learning algorithms

When performing experiments with statistical models often the goal is to
choose the best one among two or more statistical models. In that case one
needs some measure of performance to decide which algorithm achieves the
best results. In this section we will look into comparing classifiers which
is probably the most widely used application for statistical learners. When
comparing classifiers one is interested in the performance on unseen data.
Therefore the measure of performance is usually the error rate on a test
set, that is the number of misclassifications performed by the classifier over
the number of test examples. The reason why it is not a straight forward
task to compare the error rates of two classifiers is that the results obtained
from different runs are not equal. Therefore even if we train and test the
classifiers several times and get that one classifier is better than the other, we
still cannot be sure whether the opposite happens in the next case. That is
why we need statistics to quantify how certain we are about our conclusions
regarding the superiority of a specific classifier.

To conclude that one classifier is superior we can perform a statistical
test. The goal is to quantify the conclusion with some level of confidence.
But many different tests have been suggested in the literature. E.g. in
[10] a number of tests are examined. The reason why there is no consensus
about which test is the best one is that it is difficult to construct a test in
which the assumptions of the test are fully fulfilled. The limited amount
of available data is usually the troublemaker. For instance let’s look at one
of the simplest tests for deciding whether two classifiers perform equally
well. One common assumption is that if we have enough test examples then
the error rates of the classifiers, pA and pB, are approximately normally
distributed. Furthermore pA - pB can be viewed as normally distributed, if
we assume that pA and pB are independent [10]. The only problem is that
usually they are not independent. When data is limited usually the classifiers
are trained or tested on the same data. If training data by accident is a very
bad representation of the entire population then both classifiers will perform
worse than otherwise and in that case their error rates are highly correlated.
This is just one example of violated assumptions. In general we should look
for a test for which the assumptions are best fulfilled.

When constructing a test the thing we have to pay attention to is the
sources of variation. If there was no variation then we didn’t have to perform
any test statistics, because we could be certain about the results from a single
run. According to [10] four sources of variation have to be considered. These
are

• Variation caused by variation in test data
• Variation in training data
• Internal randomness in the learning algorithm
• Noise in the labels of data
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Because we only train and test on a fraction of the entire population we
cannot expect to find the true error rate. If we have some randomness in
the training procedure then the classifier will perform differently in different
runs even on the same training and test data. Finally if the labels given
to us are noisy then no learner can expect to perform better than the noise
level in the labels [10].

In this report we shall consider classifiers which posses inherent random-
ness in the learning algorithm. Also data will be limited, so the variation
caused by variation in training and test data is relevant. We will assume no
noise in the labels. The internal randomness is caused by random initializa-
tion of the model parameters. To take this variation into account we need
to train the model a number of times, because this will give us variation in
the error rate and this variation can be taken into account in the statistical
test. When comparing two classifiers we are interested in estimating the
difference in error rates, pA − pB. If we can construct a 95% confidence
interval for this quantity, and if 0 is not included in this interval then we
can conclude that with 95% certainty one classifier is better than the other.

The basic assumption is that pX is binomially distributed due to the
sampling from the entire population, that is, the variation in training and
test data. But for a large number of test examples this can be approximated
by a normal distribution. We will also assume that the variation caused by
the random initialization of the model parameters are normally distributed,
that is, if there was no variation in training and test data then pX would be
normally distributed due to the internal randomness of the learning algo-
rithm. In total pX is assumed to be normally distributed due to the internal
randomness and the variation in training and test data. Thereby p = pA−pB

is also assumed to be normally distributed. A number of measurements on
p can be performed, and if these are independent a 95% confidence interval
for the mean of this quantity can be found as ([5])

p = p ± s√
n

t(n − 1)0.975 (2.39)

where n is the number of measurements of p, p is the mean of the measure-
ments and s is the standard deviation of p given by

p =
1

n − 1

∑

i

(pi − p)2 (2.40)

In practice a k-fold cross validation is performed in order to estimate p.
This is done by dividing the data into k sets of equal size. Each of the k
iterations are done by training the model on k−1 sets and measuring p on the
set left out. The strength of this approach is that each test example is only
used once in the estimation of p, which works in favor of the independence
assumptions of the measurements of p. Since the training sets overlap the
measurements are not fully independent though.
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Chapter 3

Experiments

3.1 Data sets

This section introduces the data sets that will be used in the report. The
two data sets are real world data. Later in the report also synthetic data
sets will be constructed. Synthetic data is useful because it is easier to
construct a data set such that you know exactly what results to expect from
the statistical models.

3.1.1 MED data set

The MED data set is a collection of medical abstracts, which has been
studied before, e.g. in [9]. Originally it consists of 1033 abstracts partially
labeled with 30 different labels. As was done by Kolenda et al. in [19] in this
report we shall use a subset consisting of only the first five classes containing
124 abstracts. Here’s a brief outline of the five classes copied from [19]:

• The crystalline lens in vertebrates, including humans.
• The relationship of blood and cerebrospinal fluid oxygen concentra-

tions.
• Electron microscopy of lung or bronchi.
• Tissue culture of lung or bronchial neoplasms.
• The crossing of fatty acids through the placental barrier. Normal fatty

acid levels in placenta and fetus.

There’s a couple of comments to make on the MED data set. First of
all it is chosen because it has been worked on before and has been shown
to be an easy data set to classify. In [19] a classification error rate of 8 %
is obtained by using independent components to do classification 1. Also it

1In a cross validation experiment a test set of 20 documents are classified in each
resample. The best result is obtained with four independent components obtaining an
average of 1.55 errors out of 20. This gives an error rate of 1.55

20
= 8%
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is reported that 3 classes are very easy to distinguish, but the last 2 classes
tend to lump together.

In [9] the degree to which the MED data set appears like a real data
set is in question. According to [9] a particular label is assigned to all
the documents returned by a specific keyword search. Thus 30 different
keyword searches have been performed resulting in 30 different labels, some
of the classes with overlapping documents. This way of data set construction
probably makes the data set particularly easy for classification. But the
results on the MED data set are still important, since it doesn’t really matter
how the documents are labeled, as long as we don’t use this information in
our classifier.

3.1.2 WebKB data set

The WebKB data set contains 8,282 web pages collected from computer
science departments from 4 universities in 1997 by the World Wide Web
Knowledge Base project [8]. The web pages have been manually classified
into 7 classes:

• student (1641)
• faculty (1124)
• staff (137)
• department (182)
• course (930)
• project (504)
• other (3764)

In this report we shall use a subset of the original WebKB data set. As
in [13] only the 4 largest classes will be used and these are: student, faculty,
course and project. other will not be used, since it is very noisy.

A desirable feature of the WebKB data set is that apart from containing
word content it also contains links between the documents. Since this work
focuses on relations between word contents and links data set this is a nice
feature.

The WebKB data set is a lot more difficult data set than the MED
data set. Hofmann and Cohn [7] obtains a classification error rate of 64 %
using both word and link features 2. In [13] good classification results are
reported on the four-classes subset, though. Here error rates down to 20 %
are obtained for the subset that we shall also consider in this report.

2A classification accuracy of 0.36 is obtained giving an error rate of 1 − 0.36 = 64%
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3.2 PLSI

The objective of this section is to examine whether the PLSI model is useful
in text processing tasks. This is done by implementing the PLSI model
presented in section 2.1.4. First the model is trained on a synthetic data
and then the trained model is analyzed in order to see if we get what we
expect. After that we want to expose the model to a real data set. The MED
data set (see section 3.1.1) is known from previous works and therefore it
is used to compare PLSI to other models. In particular we compare PLSI
with LSI (see section 2.1.2 for the theoretical background of LSI) and ICA
(see section 2.1.3). Having analyzed the models, we want to let PLSI solve
a classification task. That is, we compare the classification performed by
PLSI with results from classification with LSI and ICA on the MED data
set. The objective is not to obtain better classification performance than
seen before as is often seen in the literature, but simply to show that the
PLSI model works.

3.2.1 Model implementation

The PLSI model developed in 2.1.4 has been implemented in Java [16]. The
input to the model is a term-document matrix, which is extracted from a
data set of documents beforehand. This task is achieved using the Mole
Library [20]. The training task is performed by implementation of the EM
updating rules, and the output of the training phase is parameter estimates
for p(z), p(w|z) and p(d|z). The parameters are initialized randomly.

For information retrieval and classification purposes the PLSI implemen-
tation provides means to compute the document representations, p(z|d), for
each document. Also the folding-in of unseen documents have been im-
plemented according to section 2.1.4. The output is the new parameters,
p(dnew|z).

Classification schemes

A few simple classification schemes have been implemented. We will call
them Nearest Neighbor, Majority label and Mixed label classification. They
are all what one can call unsupervised-then-supervised classification schemes.
Unsupervised learning is used to train the model, that is, we don’t use the
labels of the training documents. But then to decide what labels the test
documents should be assigned, we use the labels from the training documents
in a supervised fashion. Nearest neighbor classification simply assigns the
label of the nearest neighbor in in the latent space determined by the co-
sine similarity measure 3 between the p(z|d)’s. Majority label classification

3The cosine similarity corresponds to the dot product between vectors such as the
p(z|d).
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clusters all documents according to their largest value of p(z|d), gives each
cluster the label, which is shared by the majority of the documents in that
cluster, and then assigns the new document to a cluster and assigns the ma-
jority label of that cluster to the new document. Mixed label classification
is suggested here as an extension to majority label classification. Instead
of letting each cluster represent one label, each cluster represents a mix of
labels, p(l|z), according to the documents in that cluster. That is

p(l|z) =
∑

dtrain

p(l|d)p(d|z) (3.1)

where p(l|d) is either 1 or 0 according to the true label of the document.

Now the label of a test document can be determined according to

argmax
l

(
p (l|dtest)

)
= argmax

l

∑

z

p(l|z)p(z|dtest) (3.2)

As opposed to Majority label classification the Mixed label classification
scheme takes advantage of the presence of multiple topics within one docu-
ment and therefore it is claimed to be a more suitable classification scheme
than Majority label classification.

After classification it is possible to view the results by obtaining a list of
the documents assigned to each class. Also it is possible to compute some
statistics on the classification performance - that is a confusion matrix can
be obtained and the number of correctly and incorrectly classified documents
can be obtained respectively.

3.2.2 Initial analysis on a synthetic data set

Constructing the synthetic data set

A data set has been created in order to analyze the model, which is the
outcome of the PLSI training procedure. In figure 3.1 the contents of the 9
documents in the data set has been visualized.

The data set has 15 different words and 9 documents. The documents are
composed such that the same 5 words always co-occur. The first document
only has the first 5 words, the second document only has the middle 5 words
and the third document only has the last 5 words. The remaining documents
have combinations of the first 3 documents.

Analyzing factor and document representations

In figure 3.2 the document representations of all the training documents can
be seen. E.g. the first document has the values p(z1|d1) = 1.0, p(z2|d1) = 0
and p(z3|d1) = 0. We notice that the first 3 documents only contain one
factor each, whereas the remaining documents contain different fractions of
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Figure 3.1: The contents of a simple synthetic data set. The data set contains
9 documents and 15 words. The 15 words are divided into 3 classes, such
that the same 5 words always co-occur. The 9 documents then have different
combinations of the 3 classes of words.

the three factors. This is exactly what we would expect, because that is how
the data set was constructed. We notice the strength of the PLSI model here
that it is capable of representing documents with a mixture of topics. The
values of p(z|d) are not just probabilities of belonging to clusters, rather it
is perfectly fine that a document has content generated by different topics.

In figure 3.3 the representation of the 3 factors can be seen. It is seen that
each factor is composed of five words and nothing else. That is also exactly
what we would expect considering the way the documents were constructed.

One thing we should be aware of is that the parameters are initialized
randomly and therefore it is not necessarily the case that we end up with
the same parameters on every run. We therefore examine the parameter
outputs of 100 runs of the training procedure. In figure 3.4 a histogram
of the sum of squared distances between the found p(z|d) parameters and
the expected ones is shown. It can be seen that in most cases the found
parameters are very close to the expected ones. Only in a few percent of
the cases the p(z|d) parameters are very different. In these cases the trained
model has completely different factors than the ones expected. One case
is the document and factor representations seen in figure 3.5. We should
keep the initialization sensitivity of the model in mind when using it e.g. for
classification purposes. We should also notice that this training set is very
simple and therefore in a real data set we might see more different results in
every run. To the left in figure 3.4 the deviation has been plotted vs. the log
likelihood (LL) of the model trained on the training data. It is obvious that
there is a relationship between the LL on the data and the factors estimated.
In this experiment we could therefore use the LL as an indication of whether
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Figure 3.2: The PLSI model has been trained on a synthetic data set. The
values of p(z|d) for the 3 factors for the 9 documents are shown. To each
document along the x-axis belongs 3 bars, and each bar represents the value
of p(z|d) for one of the 3 factors. The mixture of factors for each document is
as expected according to the mixture of topics in the constructed documents.

we have found the ”true” factors.

Analyzing the folding-in of new documents procedure

During the training phase the PLSI model estimates the document represen-
tations for the training documents, p(z|dtrain). But when new documents
are to be analyzed they have to be folded-in in order to obtain the doc-
ument representations for the test documents, p(z|dtest), as described in
section 2.1.4.

To test the implementation of the folding-in of documents procedure
we first try to fold-in the training documents themselves, because we know
that they should get the same representation as in the trained model, that
is p(z|dtest) = p(z|dtrain). To the left in figure 3.6 one case of the folded-in
training documents can be seen. Comparing with figure 3.2 we conclude
that they are almost identical. To the right in figure 3.6 statistics on the
deviation from the model representation has been visualized. It is noted that
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Figure 3.3: The PLSI model has been trained on a synthetic data set. The
values of p(w|z) for the 3 factors for all words are shown. To each factor
belongs 15 bars, each representing the value of p(w|z) for each of the 15 words.
Most of the values are 0, though, such that each factor only has 5 bars. That
is because each factor is specialized to only representing 5 words each as we
would expect.

only in very few percent of the cases we fail to find the same representations.

In order to test the fold-in procedure further we fold-in a new unseen
document. This test document is composed of the first five words and the
last five words repeated once such that it contains 15 words in total. In
figure 3.7 the result of the fold-in can be seen. As we would expect the
document is represented by approximately 1

3 of the first factor and 2
3 of the

third factor.

In conclusion the fold-in of test documents seem to work on this simple
test set with no noise, though we also notice that the folding-in procedure
is sensitive to the random initialization of the parameters and therefore
occasionally end up with wrong estimates for the new documents.

3.2.3 Results on the MED data set

In order to test the PLSI model on real data, in this section we shall apply it
on the MED data set. The MED data set consists of 124 documents, which
has been labeled manually with five different class labels (see section 3.1.1).
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Figure 3.4: To the left a histogram of the deviation from the ”true” p(z|d).
The histogram shows that we don’t always get the document representations,
p(z|d), for the synthetic data set which we would expect and which are shown
in figure 3.2. To the right the deviation from the expected document repre-
sentations vs. the LL of the model document representations is shown. The
relationship between the LL of the model and the correctness of the document
representations is obvious.
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Figure 3.5: Factor representations, p(w|z), (left) and Document represen-
tations, p(z|d), (right) different from the ones expected for the PLSI model
trained on a synthetic data set. In this case the factors are not specialized.
Factor 1 and factor 2 have significant values, p(w|z), for 10 different words and
therefore the factors overlap. As a consequence the document representations,
p(z|d), become completely different than the ones shown in figure 3.2.

First we will analyze the training procedure for PLSI on this more compli-
cated data set compared to the synthetic one used in the last section. Then
the document representations will be compared to LSI and ICA. Second the
data set will be classified with the three models and the results compared.
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Figure 3.6: Results of folding-in training documents on a synthetic data set.
To the left the new p(z|dtest) and to the right the histogram of the deviation
from the original p(z|dtrain)’s. It is shown that folding-in the training docu-
ments gives almost identical document representations as the ones estimated
by the model in the first case.
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Figure 3.7: The PLSI model has been trained on a synthetic data set and
a test document has been folded-in. The document representation, p(z|dtest)
of the test document is shown. Because the document contains 1 x the first 5
words and 2 x the last five words, the document representation is approximately
1

3
of the first factor and 2

3
of the last factor as we would expect.

Training the model

First the data set has been divided randomly into a test and a training
set - each set with 62 documents. The PLSI model has been trained on
the training documents and the test documents are folded-in according to
the procedure described previously. Figure 3.8 shows that the EM training
procedure converges both on the training and on the test set. In order to
compute log likelihood (LL) on the test set we had to compute the p(w, dtest)
parameters according to equation 2.11, which is not straight forward, be-
cause the model doesn’t know the p(dtest|z) parameters. Therefore the test
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documents had to be folded-in on every EM iteration in order to compute
LL on the test set.

Looking at figure 3.8 we notice that the LL is larger on the test set than
on the training set. The reason is that the new words in the test documents
are not folded-in and therefore there are fewer p(w, d) parameters to use for
LL calculation on the test set. This gives a larger LL, since each observation
contributes negatively to the LL. It is interesting to notice that no overfitting
takes place, since the LL on the test set does not deteriorate. This is in
contrast with [14], who introduces a tempered EM training procedure to
avoid overfitting. And also [2] criticizes PLSI for the risk of overfitting.
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Figure 3.8: Convergence of the PLSI EM training algorithm on the MED
data set. The figure shows that the training procedure converges both on the
training set and on the test set. Also no overfitting takes place, since the LL
on the test set keeps on increasing.

In figure 3.9 the training document representations for the PLSI model
trained on the MED data has been visualized by plotting p(z1|d) against
p(z2|d) and so forth. One dot represents one document in factor space
and each document has been colored according to its true class. The plots
indicate that documents assigned to the same class tend to have high values
for the same factor, which is also what we would hope for. In figure 3.10
the similar plot is seen for the folded-in test documents. Here too, the
plot indicates that documents from the same class have similar document
representations in the latent PLSI space, even though the documents tend
to have a greater mix of topics than with the training documents.

LSI and ICA models have been trained on the same data set and in
figure 3.11 and 3.12 the document representations for these models have
been visualized. It is clear that the two models provide some means to
discriminating among the true classes. Also it seems easier to discriminate
than with the PLSI model.

Summing up on the trained PLSI model, the EM training converges both
on training and test data, and it is clear that it does find some underlying
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Figure 3.9: PLSI document representations p(z|dtrain) for training docu-
ments. The PLSI model has been trained on the MED data set. One dot
represents one document and the documents have been colored according to
their true class. The figure shows that documents from the same class tend
to have high values for the same factors. E.g. the documents from the red
colored class tend to have high values for factor 4 and 5.

meaning in the MED data set, since the document representations of similar
documents according to the true label are also similar.

Classification

In this section we shall apply the PLSI model as a classifier on the MED
data set. It is compared to LSI and ICA as classifiers. A subgoal is to
evaluate and compare the three classification schemes introduced in section
3.2.1.

The results of classifying the MED data set in a particular run with PLSI,
LSI and ICA can be seen in figure 3.13. The Majority label classification
scheme has been used for all models. LSI and ICA have only been used to
classify the training data. For PLSI the model parameters, p(z|d), have been
used for classification. It is seen that the error rate of PLSI is 39% which is
in between LSI and ICA with error rates of 58% and 18% respectively. We
therefore conclude that PLSI is comparable to other classification models
even though it is desirable with statistics from more runs.
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Figure 3.10: PLSI document representations p(z|dtest) for test documents.
The PLSI model has been trained on the MED data set. One dot represents
one document and the documents have been colored according to their true
class. The figure shows that the test documents have a larger mix of factors
than the training documents, but the documents from the same class still tend
to have high values for the same factors. E.g. the cyan colored class tend to
have high values for factor 2.

Classification scheme Train error Test error

Nearest Neighbor 4.0% 51%
Majority Label 40% 48%
Mixed Label 36% 37%

Table 3.1: Error rate average from 10 runs of classification on the MED data
set for 3 different classification schemes. The Mixed Label classification scheme
is shown to perform better than the others on the test data and is therefore
our preferable classification scheme.

In order to get more statistics on classifying with the PLSI model and
evaluating the Mixed label classification scheme the average error rates of
classifying with the three classification schemes have been collected in table
3.1. Nearest neighbor classification is by far the best one on training data,
but this is quite obvious, because each training document is given the label
of the nearest neighbor in the latent semantic space, which is obviously
itself, and therefore it gets its own true label. On test data the Mixed
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Figure 3.11: LSI document representations for the LSI model trained on the
MED data set. The values plotted are the rows of the matrix product S · V T

according to equation 2.3. The figure shows that the documents from the
same class tend to group together making it possible to discriminate among
documents from different classes.

label classification scheme outperforms the others, and therefore confirms
the assumption that this is a more suitable classification method for the
PLSI classifier.

In conclusion the PLSI model is capable of classifying on a real data set.
The best error rate, which we obtain here, is 36 %. Compared to the error
rate of 8 % reported in section 3.1.1 obtained using ICA on the same data
set this is not too impressive. Even though the error rate is not impressive,
it is still far better than average, which would be 80% for the five classes in
the MED data set

Initialization sensitivity We have seen that the PLSI model does cap-
ture some meaning in the data, but we have also seen that it is sensitive to
the random initialization of the parameters. The resulting model parame-
ters are not the same on every run, and they also perform differently in the
classification task. In order to get more consistent results we could train
the model a number of times and then pick the best one. What we need
is a measure of performance of the model so that we know which model to
choose. One could suggest that the model that does the best classification
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Figure 3.12: ICA document representations for the MED data set. The
plotted vales are the rows of the matrix S according to equation 2.6. The figure
shows that ICA clearly separates the documents according to their classes
such that documents from the same class are aligned along one particular
component.

on data should be chosen, but since that also depends on the classification
scheme this is not a preferable solution. Instead we can use the LL of data
as a measure of performance and then choose the best model as the one with
the largest LL. To justify the feeling that this is a good choice, in figure 3.14
the LL has been plotted vs. the classification error rate on the test set for
50 different trained models. It can be seen that it is not always the case
that a model with greater LL is also a better classifier, but there seems to
be a tendency.

To be sure about the relationship between LL and classification error rate
a statistical test can be performed. A regression model can be estimated
such that

Ei = α + β
(
LLi − LL

)
(3.3)

where Ei and LLi is the error rate and LL of the i’th experiment respectively.

The hypothesis that there is no relation between error rate and LL cor-
responds to testing whether β = 0. Under the assumption that β = 0 a
test quantity, t, can be computed, which is distributed according to an F



3.2 PLSI 57

∗∗∗∗Training documents c l a s s i f i c a t i o n ∗∗∗∗

PLSI
c l a s s 1 c l a s s 2 c l a s s 3 c l a s s 4 c l a s s 5 Total

c l a s s 1 12 0 0 0 1 13
c l a s s 2 4 8 0 0 0 12
c l a s s 3 2 0 6 0 1 9
c l a s s 4 1 6 4 0 4 15
c l a s s 5 1 0 0 0 12 13

Summary :
Number o f c o r r e c t l y c l a s s i f i e d documents : 3 8
Errors : 2 4
Error ra t e : 0 . 3 9

LSI
c l a s s 1 Class2 Class3 c l a s s 4 c l a s s 5 Total

c l a s s 1 0 0 0 13 0 13
c l a s s 2 0 0 0 12 0 12
c l a s s 3 0 4 5 0 9
c l a s s 4 0 0 1 14 0 15
c l a s s 5 0 0 0 5 8 13

Summary :
Number o f c o r r e c t l y c l a s s i f i e d documents : 2 6
Errors : 3 6
Error ra t e : 0 . 5 8

ICA
c l a s s 1 c l a s s 2 c l a s s 3 c l a s s 4 c l a s s 5 Total

c l a s s 1 12 0 0 0 1 13
c l a s s 2 0 12 0 0 0 12
c l a s s 3 0 0 0 9 0 9
c l a s s 4 0 0 0 15 0 15
c l a s s 5 0 0 0 1 12 13

Summary :
Number o f c o r r e c t l y c l a s s i f i e d documents : 5 1
Errors : 1 1
Error ra t e : 0 . 1 8

∗∗∗∗Test documents c l a s s i f i c a t i o n ∗∗∗∗

PLSI
c l a s s 1 c l a s s 2 c l a s s 3 c l a s s 4 c l a s s 5 Total

c l a s s 1 16 7 0 0 1 24
c l a s s 2 0 1 3 0 0 4
c l a s s 3 2 3 6 0 2 13
c l a s s 4 1 3 1 0 3 8
c l a s s 5 1 0 0 0 12 13

Summary :
Number o f c o r r e c t l y c l a s s i f i e d documents : 3 5
Errors : 2 7
Error ra t e : 0 . 4 4

Figure 3.13: Confusion matrix results on the MED data from one run of clas-
sification. The confusion matrices for the training data is shown for PLSI, LSI
and ICA. The confusion matrix for the test data is shown for PLSI only. The
rows in the matrices indicate the true class of the documents and the columns
indicate the class predicted by the models. Majority label classification has
been used for all models.

distribution (see [5]):

β̂ =
SOPE,LL

SSLL
=

∑
i(Ei − E)(LLi − LL)∑

i(LLi − LL)2
= −2.99 · 10−4

(3.4)
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Figure 3.14: The test classification error rate on the MED data set using
the Mixed Label classification scheme vs. the LL of the test data. The figure
indicates a correlation between the LL on training data and the classification
error rate on a test set. This means that LL can be used as a way to choose
between a number of trained models and thus increasing performance and
reducing initialization sensitivity.

where SOP ≡ Sum Of Products and SS ≡ Sum of Squares

t =
β̂2
∑

i(LLi − LL)2(∑
i

(
Ei − E − β̂

(
LLi − LL

))2
)

/(N − 2)

= 14.13

(3.5)

If we want to test on a 5% significance level, we should compare the test
quantity, t, with a value in the F distribution equal to

F (1, N − 2)0.95 = F (1, 48)0.95 = 4.03 (3.6)

Because t > F (1, N − 2)0.95 we have to reject the hypothesis that β = 0 and
therefore the relation between LL and classification error rate is statistically
significant.

In conclusion it is possible to use LL on training data as a measure of how
good the model is that we have just trained. Thus if we want to reduce the
initialization sensitivity we can train a number of models and then choose
the one with the largest LL.
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3.3 Supervised PLSI

In this section the PLSI model is extended to take advantage of labeled
documents in a classification task. The assumptions of the model is that an
underlying factor is responsible of generating words, documents and labels.
The classification approach used in section 3.2 was a so called unsupervised-
then-supervised approach, because the labels were not considered when
training the model, but first considered when assigning labels to new docu-
ments. This is what we want to change in this section. The extension can
also be seen as an extension to the Mixed Label Classification scheme intro-
duced in section 3.2.1, which was one of the unsupervised-then-supervised
classification schemes. As with Mixed Label Classification, documents will
be classified according to

argmax
l

(
p (l|d)

)
= argmax

l

∑

z

p(l|z)p(z|d) (3.7)

but now the parameters p(l|z) will not be estimated by the labels of the
training documents according to equation 3.1. Instead p(l|z) will explicitly
take part in the model parameters.

3.3.1 A joint probalistic model

As opposed to the approach taken by PLINK described in section 2.1.6, no
weighting between the words and labels is introduced. The observations are
composed of word-label-document triples, (w, l, d). By virtue of the con-
ditional independence of the words, labels and documents given the latent
variable, z, the probability of one observation is given by

p(w, l, d) =
∑

z

p(w|z)p(l|z)p(d|z)p(z) (3.8)

where p(w|z), p(l|z), p(d|z) and p(z) are the parameters of our extended
model. It is noticed that there is one extra set of parameters compared
to the basic PLSI model, that is, the p(l|z) parameters.

Estimation of model parameters

In this section we shall derive the parameter updating rules by using the
EM algorithm. The likelihood of the entire data set, X, becomes

p(X|model) =
∏

d

∏

l

∏

w

p(w, l, d)n(w,l,d)
(3.9)
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And the log likelihood of the data set is then

ln p(X|model) =
∑

d

∑

l

∑

w

n(w, l, d) ln p(w, l, d)

=
∑

d

∑

l

∑

w

n(w, l, d) ln
∑

z

p(w|z)p(l|z)p(d|z)p(z)
p(z|w, l, d)

p(z|w, l, d)

≥
∑

d

∑

l

∑

w

n(w, l, d)
∑

z

p(z|w, l, d) ln
p(w|z)p(l|z)p(d|z)p(z)

p(z|w, l, d)

= F (θ, p(z|w, l, d))

(3.10)

where the mixing proportions, p(z|w, l, d) have been introduced in order to
take advantage of Jensen’s inequality. Now Lagrange multipliers, Λ, are
introduced in order to satisfy the constraints that all the probabilities have
to sum to one.

L(Λ, θ, p(z|w, l, d)) = F (θ, p(z|w, l, d)) +
∑

z

λz(
∑

w

p(w|z) − 1)

+
∑

z

µz(
∑

d

p(d|z) − 1) + γ(
∑

z

p(z) − 1)

+
∑

w,l,d

ρw,l,d(
∑

z

p(z|w, l, d) − 1) +
∑

z

τz(
∑

l

p(l|z) − 1)

(3.11)

In order to find the updating rules for the parameters, L is differentiated
with respect to the mixing proportions, p(z|w, l, d), and with respect to the
parameters, θ, respectively. The derivation is analog to the derivation of
the updating rules for PLSI in section 2.1.4, so we will not go into any
more details here, but instead just state the updating rules. The mixing
proportions are computed in the E-step according to

p(z|w, l, d) =
p(w|z)p(l|z)p(d|z)p(z)∑
z p(w|z)p(l|z)p(d|z)p(z)

(3.12)
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And the updating rules for the parameters are computed in the M-step
according to

p(w|z) =

∑
d

∑
l n(w, l, d)p(z|w, l, d)∑

d

∑
l

∑
w n(w, l, d)p(z|w, l, d)

p(l|z) =

∑
d

∑
w n(w, l, d)p(z|w, l, d)∑

d

∑
l

∑
w n(w, l, d)p(z|w, l, d)

p(d|z) =

∑
l

∑
w n(w, l, d)p(z|w, l, d)∑

d

∑
l

∑
w n(w, l, d)p(z|w, l, d)

p(z) =

∑
d

∑
l

∑
w n(w, l, d)p(z|w, l, d)∑

d

∑
l

∑
w n(w, l, d)

(3.13)

Notice that introducing labels into the model is actually just like intro-
ducing another feature of the documents. The labels don’t play any special
role compared to the words of the documents. Therefore the derivation of
the EM updating rules for supervised PLSI would work for any new feature
of the documents introduced.

3.3.2 Implementing Supervised PLSI

The supervised PLSI model developed here has been implemented in Java
[16]. When training the model the input is the term-document matrix and
a label-document vector, and the output of the training phase is parameter
estimates for p(w|z), p(l|z), p(d|z) and p(z). For classification purposes, ac-
cording to equation 3.7, we need the p(l|z) parameters and the document
representations, p(z|d). In order to compute the document representations
we cannot fold-in new documents with the EM updating rules derived in
section 3.3.1, because the new documents don’t have labels. Therefore new
documents are folded-in according to the updating rules for the basic PLSI
model as described in section 2.1.4 where only iteration between updating
p(z|w, d) and p(d|z) is performed.

3.3.3 Results

First, it is investigated whether the training procedure presented here con-
verges. In figure 3.15 it is shown that this is the case. In particular the train-
ing procedure converges on the test set, even though no tempered training
procedure has been used as is done by Hofmann in [14] to avoid overfitting.

Next thing to investigate is the parameter estimates of the trained model.
The model has been trained on the MED data set, and now we want to see if
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Figure 3.15: Convergence of the supervised PLSI model on training and test
set. The model has been trained on the MED data set (see section 3.1.1).
The figure shows that the supervised training procedure converges both on the
training set and the test set. Furthermore no overfitting takes place.

the parameters of the model seem reasonable. The number of factors chosen
is eight, and the number of classes is five.
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Figure 3.16: The relation between factors and classes for the supervised PLSI
model using 8 factors. The left graph shows that each factor belongs to exactly
one class. The right graph shows that some classes contain a mix of two factors
whereas others only contain one factor. E.g. class 3 contains a mix of factor 1
and factor 8.

First we investigate the relation between factors and classes. To the left
in figure 3.16 we can see that each factor belongs to exactly one class. And to
the right in figure 3.16 we can see that some classes contain exactly one factor
and some classes contain a mix of two factors. If we interpret the factors as
topics present in the documents it seems reasonable that the documents in
one class can deal with different subtopics. This could indicate that some
of the classes could be further divided into subclasses, but by analyzing the
document representations, p(z|d), which we shall do shortly, it is possible to
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see that this is not the case. On the other hand we can say already that the
same topic is not present in documents belonging to different classes. E.g.
one could imagine that class 1 dealt with documents discussing topic 1 and
2, and class 2 dealt with documents discussing topic 2 and 3, but that is not
the case, because no topic has more than one class.
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Figure 3.17: The training document representations, p(z|dtrain), for the su-
pervised PLSI model trained on the MED data set. Each color corresponds
to one class. The figure shows that there is a very strong separation of the
classes. Also it shows that some documents are a mix of two factors. E.g. the
documents in class 3 is a mix of factor 1 and factor 8.

In figure 3.17 some of the p(z|d) parameters for the training documents
have been visualized. First we notice that there is a very strong separation
of the classes and that most training documents strictly belong to one factor.
Second we notice by looking at factor 1 vs. factor 8 that the class with blue
dots tend to be a mix of factor 1 and factor 8. By comparing with the plot
of p(z|l3) in figure 3.16, which shows that class 3 contains a mix of factor
1 and factor 8, we conclude that class 3 contains documents that have a
mix of subtopics within the same document. That is the reason why the
classes cannot be further divided into subclasses, because each document
cannot belong to more than one class. This also shows a strength of the
PLSI model, which is that documents can belong to a mix of factors and
not only to one cluster.

In figure 3.18 some of the p(z|dtest) parameters for the test documents
have been plotted. Again there is a good separation of the classes even
though the test documents tend to have a larger mix of factors than the
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Figure 3.18: The test document representations, p(z|dtest), for the supervised
PLSI model trained on the MED data set. The figure shows that the test
documents are not as easy to separate as the training documents, but that
there is still good separation.

training documents.

Classification and comparison with PLSI

In this section we shall explore the performance of the supervised PLSI
classifier. Classification results on the MED data set as well as the WebKB
data set will be presented. Finally we will try to answer the question whether
the supervised version of PLSI is a better classifier than the basic PLSI
model, because that was our motivation for extending PLSI to performing
supervised learning.

In section 2.2 we examined how to compare two classifiers in order to
test whether one is better than the other. The major problem with the
statistical tests for such comparisons is that the assumptions of the tests
are not fully fulfilled. In the k-fold cross-validation technique we measure
the difference in classification error rates for the two classifiers in each run.
The assumption is that this difference is normally distributed. Before doing
the actual comparison between supervised and non-supervised PLSI we shall
first examine to what extent this quantity is normally distributed.

Figure 3.19 shows a histogram of the error rates. This figure could
indicate that the error rate is normally distributed. Figure 3.20 then shows
that this is actually not the case, because the data points don’t follow the
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Figure 3.19: The histogram of the differences between PLSI supervised and
non-supervised classification error rates on the MED data set. The figure shows
that the error rates could be normally distributed.

straight line. In particular there are too few low error rates.

It is also possible to perform a statistical test of whether the error rate
is normally distributed. One such test is Lilliefors test for goodness of fit to
a normal distribution [21]. Such a test can be performed by Matlab. The
hypothesis is that the data points are normally distributed. Matlab gives
the following results when tested at a 5 % level of significance:

Test value = 0.0693 Cutoff value = 0.0441 (3.14)

Since the test value is larger than the cutoff value we have to reject
the hypothesis that the error rate is normally distributed. This is not too
surprising, since we knew from the discussion in section 2.2 that this was
a problem with the test quantity, since the error rates in each run are not
really independent. On the other hand figure 3.20 shows that the error rate
is not very far from being normally distributed, so we can just hope that the
normal distribution assumption of the test quantity is not too strict. That
is, that it is not too important whether the error rate is entirely normally
distributed.

A 4-fold cross-validation experiment has been performed on the MED
data set. Altogether there are 124 documents, so in each trial the model
is trained on 93 documents and the error rate is measured on 31 test doc-
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Figure 3.20: A graphical test of whether the difference between PLSI su-
pervised and non-supervised error rates on the MED data set are normally
distributed. The graph plots the experimental distribution vs. the normal
distribution. In the case where the experimental distribution is actually a nor-
mal distribution this results in the same x and y values for every data point.
Therefore the data points should be close to the straight line. The figure shows
that the error rates are not quite normally distributed. In particular there are
too few low error rates according to the normal distribution.

uments. In this experiment 8 factors have been used. The Mixed Label
Classification scheme has been used for the basic PLSI model. In table 3.2
the results can be seen. The confidence intervals are computed according to
equation 2.39, and they are

pplsi = 0.40 ± 0.28 (3.15)

psupervised = 0.20 ± 0.14 (3.16)

pplsi − psupervised = 0.19 ± 0.17 (3.17)

The variance of the error rates are rather large, which shows up in large
confidence intervals. The reason for this is that the variance is caused by
the internal randomness in the learning algorithm and the variance in the
training and test data. Even though the variance is large we can still con-
clude that the superiority of the supervised PLSI classifier compared to the
basic PLSI model is statistically significant, because 0 is not included in the
95% confidence interval for pplsi − psupervised.



3.3 Supervised PLSI 67

Model/Trial 1 2 3 4

pplsi 0,45 0,16 0,58 0,39

psupervised 0,29 0,097 0,26 0,16

pplsi − psupervised 0,16 0,065 0,32 0,22

Table 3.2: Classification error results on the MED data set for the basic PLSI
model and the supervised PLSI model based on a 4-fold cross-validation setup.
Each value denotes the error rate for one trial.

Model/Trial 1 2 3 4 5 6 7 8

pplsi 0.7 0.53 0.47 0.47 0.33 0.47 0.53 0.6

psupervised 0.63 0.43 0.3 0.27 0.37 0.47 0.23 0.37

pplsi − psupervised 0.07 0.01 0.17 0.2 -0.03 0.0 0.3 0.23

Table 3.3: Classification results on the WebKB data set for the basic PLSI
model and the supervised PLSI model based on an 8-fold cross-validation setup
in which 240 documents are classified.

The WebKB data set has been classified with cross validation in the same
manner as with the MED data set. With the WebKB data set we have
to choose a subset of the entire data set, because the available computer
resources cannot handle the entire data set. 240 documents are chosen ran-
domly and a 8-fold cross validation is performed. So in each trial the models
are trained on 210 documents and tested on the remaining 30 documents.
In this experiment 8 factors have been used and no parsing of the HTML
text has taken place. That is, the HTML tags are kept in the documents.
This approach tends to achieve the best results. In table 3.3 the results can
be seen. And the 95% confidence intervals of the error rates are

pplsi = 0.51 ± 0.091 (3.18)

psupervised = 0.38 ± 0.11 (3.19)

pplsi − psupervised = 0.13 ± 0.097 (3.20)

The error rates are larger than on the MED data set, but again we can
conclude that the performance of the supervised PLSI model is better tested
on a 5% level of significance, because 0 is not included in the 95% confidence
interval for pplsi − psupervised.

In this section we obtained an error rate of 20 % on the MED data set
using the supervised PLSI. This is not very impressive compared to the 8 %
reported in section 3.1.1 using ICA on the same data set. On the WebKB
data set we obtained an error rate of 38 % using supervised PLSI. Compared
to the error rate of 20 % reported in section 3.1.2 obtained on the same data
set this is not very impressive either. But compared to Hofmann and Cohn
[7] who obtained an error rate of 64 % as described in section 3.1.2 using
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PLSI our results seem good. Hofmann and Cohn used a larger fraction of
the WebKB data set, though.
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3.4 PLINK

In this section the basic PLSI model is extended to consider not only the
words of a document but also links to other documents. This assumes that
we are working with a data set where documents have some kind of con-
nections. Two examples of such data sets are HTML documents, which are
interconnected through hyperlinks, and scientific articles, which are inter-
connected through citations. The PLINK model was introduced by Hofmann
and Cohn [7] as described in section 2.1.6.

3.4.1 Choosing the form of the PLINK model

There is more than one way to incorporate links into a statistical model.
Here we are restricted to use the PLSI framework and extend it with link
features, but other statistical models are certainly possible. E.g. the Latent
Dirichlet Allocation model described in section 2.1.5.

But there is also more than one way to extend the PLSI model to incor-
porate link features. One way is the one suggested by Hofmann and Cohn
[7], in which the observations are normalized word-document pairs (w, d)
and citation-document pairs (c, d) 4. The corresponding probabilities for
the observations are p(w|d) and p(c|d). This model was described in sec-
tion 2.1.6. Another way to extend the PLSI model is to use the approach
that was used when extending PLSI to do supervised learning in section 3.3.
In this approach the observations are word-label-document triples, and the
corresponding probabilities for the observations are p(w, l, d). As noted in
this section no special characteristics of the label features have been used
when deriving the EM algorithm for the supervised extension. Therefore
exactly the same formulae can be used when using link features instead of
label features. The two approaches have pros and cons.

Keeping the observations separately in word and link observations pro-
vides a way to assign the relative importance of the two types of features
through the α parameter as described in section 2.1.6. This gives the model
more freedom and perhaps enhances the chance of successful performance
in different domains or experiments where the relative importance of words
and links differs. On the other hand the triple observations approach is a
more clean approach, because mathematically there is no reason why the
observations should be treated differently.

The two approaches differs in another very important way. The com-
putational complexity and the memory consumption of the pair observa-
tions approach is a lot more attractive. During the EM training procedure
there are some quite big matrices that has to be updated in each itera-
tion. The biggest ones are the mixing proportions, that is the p(z|w, d)
and the p(z|c, d) parameters for the pair observation approach and the

4I.e. the observations are n(w,d)∑
w

n(w,d)
and n(c,d)∑

c
n(c,d)
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p(z|w, c, d) for the triple observations approach respectively. Let’s look
at the sizes of these matrices. The separate observations approach uses
NzNwNd + NzNcNd = (Nw + Nc)(NzNd) entries for the mixing propor-
tions matrices, where Nx denotes the number of words, citations, factors
or documents. The triple observations approach uses NwNcNzNd entries.
Whereas the two types of features, words and links, contribute additively in
the pair observations approach they contribute multiplicatively in the triple
observations approach. This makes a huge difference in the computational
requirements and in the space consumptions of the two approaches. Let’s
look at a small sized data set of 100 documents, 1000 words, 500 links and
5 factors and compute the space consumption of the two approaches.

Spacepair-observations = (Nw + Nc)(NzNd) entries
8B

entry

= (1000 + 500)(5 · 100) entries
8B

entry

= 750.000 entries
8B

entry
= 6MB

(3.21)

Spacetriple-observations = (NwNcNzNd) entries
8B

entry

= (1000 · 500 · 5 · 100) entries
8B

entry

= 250 106 entries
8B

entry
= 2GB

(3.22)

On top of that the smaller matrices have to be added. Even with mod-
erate sized data sets it very soon gets too demanding for normal PC’s too
handle the triple-observations approach.

The separate observations approach is chosen for implementation in this
work, mainly because of the computational advantages, but also because it
gives the possibility of experimenting with weighting of importance. The
joint probabilistic model presented in section 2.1.6 is repeated here for con-
venience:

p(w|d) =
∑

z

p(w|z)p(z|d), p(c|d) =
∑

z

p(c|z)p(z|d) (3.23)

The updating rules for the parameters are given by formulae 2.36, 2.37
and 2.38.
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3.4.2 Model implementation

The implementation of PLINK facilitates training the model, folding-in un-
seen documents and computing log likelihood of data. The training proce-
dure takes as input a term-document matrix and a link-document matrix.
The model parameters are computed by implementing the EM updating
rules given by the formulae 2.36, 2.37 and 2.38.

Unseen documents are folded-in using an approach very similar to the one
used for the PLSI model described in section 2.1.4. Now iteration between
updating p(z|d) and p(z|w, d), p(z|c, d) is performed. It is actually possible
to fold-in new documents in different ways according to what features are
present for the new documents. Both words and links or just one of them
can be used. If we want to predict the links for new documents for which we
only have the word features then they are folded-in using the term-document
matrix and it is then possible to predict the links through the hidden factors,
z. More on link prediction in section 3.4.5

The log likelihood computation takes as input a test term-document
matrix, a test link-document matrix and p(z|dtest) parameters for the test
documents. The latter can be computed by folding-in the test documents
as described above. The term-document observations vs. the link-document
observations are weighted in the log likelihood computation with the α pa-
rameter according to equation 2.30.

3.4.3 Synthetic data set

A synthetic data set has been constructed in order to evaluate the PLINK
model. The data set is actually the MED data used earlier with a number of
links added. The way the links are added adheres to the assumption of the
PLINK model, that there is a connection between contents and links. The
MED data set consists of a number of classes, which means that documents
in the same class have similar contents. The links are added in a way so that
all documents in the same class also share exactly the same link pattern.
The challenge for the PLINK model is to capture this connection.

In figure 3.21 it is shown how the link patterns are added on top of the
MED data set. The links are added so that all the documents in the same
class contain links to the same documents. E.g. the documents in class 1
all contains links to the documents in class 2. If all the documents in class
1 contain links to all the documents in class 2 and if the same is the case
for the other classes then we have a fully connected data set.

When using a model on a fully connected data set we would expect the
model to perform well, because it is easy to see the link structure. E.g.
classification should be easy, because all the documents in the same class
share exactly the same links. One way to complicate the task of finding
patterns in the data set is by making it more sparse. That is, we still make
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Figure 3.21: A synthetic data set constructed by adding links on top of the
five classes in the MED data set. The figure shows how the links are added
such that all the documents in the same class have links to the same class. E.g.
all the documents in class 1 have links to documents in class 2. Furthermore
all the links are added with a certain probability, p, called the sparsity factor.

sure that e.g. documents in class 1 only have links to class 2, but now each
document in class 1 only has links to some of the documents in class 2. It
is now a more complicated task to find the link structure, but also a more
realistic one, since real-world data is not going to have a fully connected link
structure.

The construction of the sparse link structure has been implemented by
introducing a sparsity factor, p, which denotes the probability that each link
of the fully connected data set is actually added to a specific document. E.g.
if the sparsity factor p = 0.5 then for each document in class 1 we add a link
to each document in class 2 with a probability of 50 %. The documents in
class 1 will all have different links, but on average each one will link to half
of the documents in class 2.

3.4.4 Normalizing the updating rules

The EM algorithm for PLINK developed in section 2.1.6 was shown to be
different from the one given by Hofmann and Cohn [7]. The difference is
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Figure 3.22: The link patterns for the 5 factors of the PLINK model trained
with normalizing constants. The model has been trained on the fully connected
MED data set described in section 3.4.3. The values of p(c|z) has been sorted
according to the class to which it links. Thus the figure shows that each factor
only has links to one class. This shows that when the model is trained with
normalizing constants then each factor captures the link pattern corresponding
to exactly one class in the MED data set as we would expect.

the normalizing constants appearing in the updating rules for the parame-
ters. Here some experiments will show that the normalizing constants are
necessary to obtain good results.

The PLINK model has been trained both with and without the normal-
izing constants. The data set used is the fully connected MED data set
(see section 3.4.3), for which it is obvious what link structure to expect the
factors to capture. There are five different link patterns, one for each class,
and we expect each factor to capture exactly one pattern corresponding to
the class that it represents.

In figure 3.23 it is shown that the PLINK model without normalizing
constants lets some factors represent multiple link patterns whereas others
don’t represent any link patterns. The PLINK model trained with normal-
izing constants captures the five link patterns that we would expect it to
do as seen in figure 3.22. An intuitive explanation why the normalization is
necessary is that if e.g. the p(c|z) parameters are not normalized then they
can have arbitrary high values for all links and as a consequence they end
up representing more than one class of links. On the other hand if they are
normalized then they are sort of ”punished” for having high values for other
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Figure 3.23: The link patterns for the 5 factors of the PLINK model trained
without normalizing constants. The model has been trained on the fully con-
nected MED data set described in section 3.4.3. The values of p(c|z) has been
sorted according to the class to which it links. The figure shows that factor 2
only has links to one class whereas factor 3 has links to the remaining 4 classes.
The other factors don’t have links to any classes. This shows that when the
PLINK model is trained without normalizing constants then some factors end
up representing multiple link patterns and some factors don’t represent any
link patterns.
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classes than the most likely ones. In this case the likelihood becomes largest
if all factors each have high values for one particular class.

3.4.5 Predicting links

Given a trained PLINK model and a new unseen document is it possible
to predict the links that the document will have based on the content of
the document? This is the task, which we will try to solve in this section.
The reason why we are interested in this question in particular is that the
hypothesis of this report is that the task of predicting links from content is a
task very similar to the matching problem. E.g. in the job matching problem
we want to find matches between jobs and applicants based on the contents
of the job offer and the application. That is, if we apply the PLINK model
to a job matching task, we assume that we can represent matches between
jobs and applicants as links.

Methods of evaluation

Previously the performance of the models used in this report has been eval-
uated by using them as a classifier. That was the case with both the basic
PLSI model and with the supervised PLSI model. Classification is possible
with the PLINK model as well and we shall use classification results as a
way of evaluating the model, but apart from that we need a way to evaluate
the capability of the model to predict links for a document based on the
content.

The link structure for new documents predicted by the model is given
by

p(c|dtest) =
∑

z

p(c|z)p(z|dtest) (3.24)

where p(z|dtest) is computed by folding-in the new documents based on
their contents, that is the term-document observations, and p(c|z) are model
parameters computed when training the model. The model trained on the
synthetic data set visualized in figure 3.21 gives good predictions if e.g. a
test document belonging to class 1 have high values for links in p(c|dtest)
pointing to documents in class 2.

Inspired by the well-known precision and recall scores a new score value,
which we will call the link score, will be introduced to measure how well
the model predicts the links of new documents based on the content. The
precision and recall scores are used in information retrieval tasks to measure
the results of a number of documents retrieved from a document collection.
In our case we are dealing with link retrieval from a link collection, so the
precision and recall scores look like this:

precision =
Ncorrect links retrieved

Nlinks retrieved
, recall =

Ncorrect links retrieved

Ncorrect links
(3.25)
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In our case, p(c|dtest) can be thought of as retrieving links with a certain
probability. Thus the number of correct links retrieved for one document
corresponds to summing the values of p(c|dtest) over the correct links. The
total number of links retrieved for one document, that is the denominator
in the precision score, corresponds to summing over all links in p(c|dtest) for
that document, which always sums to one. Also the total number of correct
links, that is the denominator in the recall score, corresponds to a value of
one, because if p(c|dtest) gave perfect predictions it would only have values
different from 0 for correct links, and these would then sum to one. These
observations make the precision and recall scores equal in our case. Now the
link score is introduced as the mean precision/recall score taken over all the
test documents. That is,

link score =
1

Ndtest

∑

dtest

∑

correct links

p(c|dtest) (3.26)

The link score is actually very similar to the log likelihood of the link-
document observations given by

LL link-document =
∑

dtest

∑

c

n(c, dtest)∑
c n(c, dtest)

ln p(c|dtest) (3.27)

However, by not using the logarithm the link score becomes a number, which
is easier to interpret, because we can think of the link score as the percentage
of the correct links predicted.

Experiments

In this section experimental results of the PLINK model will be presented.
The synthetic data set described in section 3.4.3 will be used. The link
part of the data contains no noise, because documents from different classes
don’t share any links. The link pattern can be made more or less sparse
by varying the sparsity factor, p, which will make it more or less difficult
to predict the links. Another source of variation is the model parameter
α, which determines how content and link information should be weighted
relatively. With α = 1 only content is prioritized and with α = 0 only
links are prioritized. Any value in between prioritizes both content and
links. The methods of evaluation are classification error rate, link score for
the link predictions of test documents and log likelihood on link-document
observations for test documents.

In figure 3.24 the error rates vs. α for data sets with different sparsities
can be seen. There is a large variation in data, and if we were to make
statistically valid conclusions it would be difficult to say anything. However,
there certainly seems to be some trends. The following observations should
be seen in the light of that. For the fully connected data set with the
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Figure 3.24: Classification error rate vs. α for different link sparsities. The
PLINK model is trained and tested on the MED data set extended with syn-
thetic links as described in section 3.4.3. The figure shows that for a sparse
link structure (p = 0.1) the error rate gets lower the more we weight word
information in the model. For a dense link structure (p = 1.0) the error rate
gets higher the more we weight word information. And for a sparsity factor of
p = 0.2 and p = 0.5 the lowest error rate is obtained by combining link and
word information.

sparsity factor p = 1, the error rate varies between 0.1 and 0.35. When α
is increased the link information is weighted less and in general then the
error rate also increases. The reason is that in the fully connected model it
is much easier to distinguish between the different classes by looking at the
link information than by looking at word information. The opposite is the
case for the sparse link structure with a sparsity factor of 0.1. Here the error
rate decreases from 0.5 at α = 0 to 0.35 at α = 1. The reason is that the
link information is so sparse that it is easier to distinguish the classes based
on the content information. That is even though the content information
is noisy, because the same words are shared among different classes. For a
sparsity factor value of 0.2 the lowest error rate is found at an α value of 0.3,
which indicates that in this case better results are obtained by using both
content and link information than by using just one type of information.
The result that using both content and link information gives a lower error
rate is also the conclusion that Cohn and Hofmann draw in [7].

Looking at figure 3.26 showing the link score vs. α the same observa-
tions as with the error rate can be made. For the fully connected data set,
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Figure 3.25: Test log likelihood vs. α for different link sparsities. The PLINK
model is trained and tested on the MED data set extended with synthetic links
as described in section 3.4.3. The LL varies more than the error rate which is
showed in figure 3.24, but the general trends are the same.

increasing α gives poorer results, that is a lower link score. For the sparse
set with a sparsity factor of 0.1 increasing α gives better results, that is a
higher link score. And for the data set with a sparsity factor of 0.2 we get
the highest link score of 0.4 at α = 0.3. The same conclusions can be drawn
from looking at the log likelihood on the test data vs. the α value in figure
3.25.

Another point to make is that the more links, that is the more dense the
link structure is, the better results we obtain in general. This is the case for
all the three measures of performance. In practice this is not a very useful
result, since the sparsity of the links in documents is not a factor that we
can control. But it confirms our expectations to the behavior of the model.

Yet another observation confirming our expectations is the following.
When α = 1 the link information is not used and the model is reduced
to the PLSI model. We notice that the sparsity of the link data doesn’t
matter, because we get similar results for all values of the sparsity factor, p.
The error rates are approximately 0.35, which is similar to the classification
results obtained with the basic PLSI model presented in section 3.2.3.

Finally we want to answer the question: Is the model useful in predicting
links based on the contents of unseen documents? For the fully connected
data set we obtain a link score of 0.6. This means that 60 % of the correct
links are retrieved, which seems like a good result. We cannot expect real
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Figure 3.26: Link score vs. α for different link sparsities. The PLINK model
is trained on the MED data set with synthetic links added as described in
section 3.4.3. Link score is a measure of the capabilities to predict links and it
is computed based on p(c|dtest) according to equation 3.26. The figure shows
that for a sparse link structure (p = 0.1) the link score gets higher the more
words are weighted in the model. For a dense link structure (p = 1.0) the
link score gets higher the more we weight links in the model. And for sparsity
factor of p = 0.2 and p = 0.5 the link score is the highest if both link and word
information are weighted in the model.

data to be so well behaved, so we also have to consider more sparse link
data. In the case of a sparsity factor of 0.2 we can still obtain a link score
of 0.4, which means that 40 % of the correct links were retrieved, which still
appears useful.

Reference Flow

In the previous section we have experienced that the link information is
useful if it is not too sparse. In a lot of domains, though, the link data is
rather sparse. E.g. that is the case in the WWW domain. It is the hope that
the concept of ”reference flow” will be useful for predicting links in domains
where links are sparse. The concept of reference flow will be introduced and
experiments will be presented and compared with the previous experiments
on link prediction.

Reference flow is introduced by Hofmann and Cohn in [7]. The idea
is that points in factor space, −→z = {p(z1|d), p(z2d), ..., p(zk|d)}, represent
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topics and the links between those points comprise a reference flow indicating
the strengths of the connection between topics. In figure 3.27 the reference
flow is shown for the WebKB data set (see section 3.1.2). All links in the
data set contribute to the reference flow between any two points in factor
space. This is the motivation for using reference flow to predict links based
on sparse link data. If we have very few links then it seems desirable that all
links in the data set contribute to the prediction of links for a new document.

Figure 3.27: The reference flow is shown between topics in the WebKB data
set 3.1.2. The figure is copied from [7]

Let’s look at how to compute the reference flow from a source point in
factor space, −→zs , to a target point, −→zt . Each link in the training set con-
tributes to this reference flow. Let’s consider a link, ck from a document di

to a document dj . If we introduce the probability that the source point, −→zs ,
is responsible for that link, p(ck|−→zs) and the probability that the target point
is responsible for the target document, p(dj |−→zt ) then the contribution of the
link to the reference flow is their product p(ck|−→zs)p(dj |−→zt ). The concept is
illustrated in figure 3.28.

Summing over all links in the training set gives us the total reference
flow from a source topic, −→zs , to a target topic, −→zt :

ReferenceFlowts =
∑

links, ck

p(ck|−→zs)p(dj |−→zt ) (3.28)

We still need to specify how to compute p(ck|−→zs) and p(dk|−→zt ), however.
These quantities denote the probability that the link was generated by the
source topic and that the target document was generated by the target topic
respectively. How to compute this is not specified by Hofmann and Cohn
[7]. Here we choose to compute it in the following way:
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Figure 3.28: The contribution of a link ck to the reference flow from topic zs

to topic zt. The figure illustrates that the contribution of the link ck depends
on how likely the topic zs is to generate ck and how likely the topic zt is to
generate dj .

−→zs = {p(z1|ds), p(z2|ds), ..., p(zk|ds)} (3.29)

p(ck|−→zs) =
∑

z

p(ck|z)p(z|ds), p(dj |−→zt ) =
∑

z

p(z|dj)p(z|dt)
5 (3.30)

With the computation in place we turn to the application of reference
flow again. Hofmann and Cohn suggest an interesting application of refer-
ence flow - an intelligent web crawler [7]. When crawling web pages, e.g.
for indexing by a search engine, one approach is to randomly follow links in
the documents that the crawler visits on its way. But the intelligent web
crawler can be used to pick the links in those documents which are most
likely to be connected to new pages on a certain topic of interest. If we con-
sider a certain point in time, where the crawler can choose between following
links in a number of documents then the intelligent crawler should choose
to follow links from the document that has the highest reference flow to the
topic at interest. The candidate pages can be represented in factor space
corresponding to the source point, −→zs and the topic of interest corresponds
to the target point in factor space, −→zt . We then choose to follow links from
the document that has the highest reference flow from −→zs to −→zt

The motivation for introducing reference flow was to be able to predict
links in a sparse link domain. The way to use reference flow for this task
is to compute the reference flow from all test documents to all training
documents. A certain test document has the highest probability of linking
to those training documents to which it has the highest reference flows.

We can use the link score introduced in section 3.4.5 to evaluate reference
flow. Now, however, the link score is only evaluated over links to training

5This is not a ”clean” way to compute p(dj |
−→zt ). See the subsection ”Implicatins of the

chosen for of PLINK” later in this section for an explanation.
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documents, since we are not able to obtain −→zt for documents linked to out
of the training set. Thus the link score for reference flow is:

link score =
1

Ndtest

∑

dtest, s

∑

dtrain, t

ReferenceFlowts (3.31)

Experiments have been performed on the MED data set with synthetic
links added as described in section 3.4.3. We are interested in comparing the
performance of reference flow with the performance of the link prediction
technique used in section 3.4.5 based on p(c|dtest).
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Figure 3.29: The link score based on reference flow vs. α computed for
different link sparsities. The PLINK model has been trained on the MED data
set with synthetic links added as described in section 3.4.3. The link score
is computed according to equation 3.31. The figure shows that the reference
flow obtains a smaller link score than the link score based on p(c|dtest) when
compared to figure 3.26. This implies that it is not desirable to use reference
flow instead of p(c|dtest).

The measure of performance is link score. In figure 3.29 the link score for
reference flow (Reference flow score) is plotted vs. the α parameter weighting
word and link information for different link sparsities. This figure should be
compared to figure 3.26 showing the link score for the first approach. When
comparing the scores it is noted that the reference flow doesn’t perform any
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better. Not even for sparse link information do we gain anything by using
reference flow to predict links.

The reason why reference flow is not better than the first approach based
on computing p(c|dtest) might be that we thought that we gained something
by letting our prediction of links be based on all links in the training set.
But actually p(c|dtest) is implicitly based on all links too. All the links in
the training set are used when estimating the model parameters, p(c|z) and
p(d|z), on which p(c|dtest) is based (see equation 3.24).

Implications of the chosen form of PLINK

Another reason why reference flow is not very successful might be that the
way we compute the reference flow is not a ”clean” way. In equation 3.30
p(dj |−→zt ) is computed based on p(z|dt), which should actually have been
p(dt|z), but with the chosen form of the PLINK model it is not possible to
compute p(dt|z).

In [7] Hofmann and Cohn chooses to model the normalized observa-

tions n(w,d)∑
w n(w,d) for words and n(c,d)∑

c n(c,d) for links instead of modelling the

un-normalized observations n(w, d) and n(c, d) according to equation 2.26
and 2.27. This choice has some implications, which are both good and bad.
First it has the desired implication that all the documents are given the
same importance, because the word and link observations are normalized
by the total number of words and links in the particular document. But
another implication is the following: Now we are not estimating the joint
probabilities p(w, d) and p(c, d) anymore. Instead we are estimating the
conditional probabilities p(w|d) and p(c|d) according to equation 2.28. This
gives us a different set of parameters, which means that we cannot compute
all the probabilities, which is possible in the first approach. In particular it
is not possible to compute p(d|z) in the approach taken by Hofmann and
Cohn in [7]. It should be computed like this:

p(d|z) =
p(z|d)p(d)

p(z)
=

p(z|d)p(d)∑
d p(z|d)p(d)

(3.32)

but since we do not have the p(d) parameters it is not possible to do this.
p(d|z) is the authority of the document d within the topic z. So even though
it is claimed in [7] that it is possible to compute the authority based on the
PLINK model, this is actually not the case with the PLINK model in the
given form.

If we had taken the other approach based on equation 2.26 and 2.27 we
already had the quantity p(d|z) and it would be possible to compute p(z|d)
according to

p(z|d) =
p(d|z)p(z)

p(d)
=

p(d|z)p(z)∑
z p(d|z)p(z)

(3.33)
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Thus with this approach both the authority of a document within a
topic, p(d|z), and the document representation, p(z|d), could be computed.

3.4.6 Discussion on the PLINK model

In this section we have presented experiments with the PLINK model. The
experiments have been performed on a synthetic data set constructed by
adding synthetic links on top of the MED data set.

Two different approaches to building the PLINK model were described.
The first one was based on separate observations of word-document and link-
document pairs. The second one was based on word-link-document triples.
The first one was chosen mainly because of smaller space consumption, which
made it feasible to implement on a normal PC.

It was shown that normalizing the EM updating rules was necessary in
order to get good experimental results. If no normalizing was implemented
then the factors did not capture the link patterns that we expected. In
particular some factors represented multiple link patterns and others rep-
resented no link patterns. After performing these experiments I have had
email contact with Thomas Hofmann and David Cohn [15] in order to clarify
their opinions on the results. They recognized that normalizing is necessary
and that the normalizing constants should take part in the EM updating
rules as we discovered in section 2.1.6.

The experiments have focused on the capabilities of the PLINK model
to predict links based on the contents of the documents. The experiments
have shown that the PLINK model is capable of predicting links to some
degree. Based on the link score introduced in this section the PLINK model
was able to retrieve 60% of the links for a dense link data set and 40%
for a more sparse link data set. The results for an even sparser link data
set were not too encouraging, because link information didn’t contribute in
any positive way to the link prediction capabilities. The concept of reference
flow was introduced as an alternative approach to predicting links in a sparse
linked data set. But it was shown that reference flow didn’t perform any
better than what we had already seen. Also when computing the reference
flow we discovered a weakness of the chosen form of the PLINK model using
normalized word and link observations. We noticed that we cannot compute
the quantity p(d|z). This quantity is also necessary for the application of
PLINK to ranking relevant pages retrieved from a document collection as
described in section 1.2.2.
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Conclusion

This work has focused on statistical text modelling and in particular on
suitable models for the matching problems presented in the introductory
chapter. In this final chapter we shall sum up the main results of this
work and conclude on how suitable the models found are for the matching
problems which motivated this work.

4.1 Main results

Tasks and models

A survey of tasks and models in the Information Retrieval domain has been
conducted. Concerning the models used in information retrieval they are
manifold, but there are two main approaches to building such models. The
knowledge based approach uses mathematical logic for representation and
inference. The data-driven one is based on statistical data collected from
documents. A subtle understanding of semantics in language, which e.g. is
required by a question answering system, appeals more to a logic represen-
tation system. A statistical model on the other hand is more useful when
the required semantic understanding is a more topic oriented one.

This work has been concerned with the statistical approach. Even though
the logic representation approach has had more success in some areas it is
still desirable to have statistical models performing the tasks, since they
require less human work. Statistical models can be trained to perform the
tasks using data collected from the domain. In knowledge based systems
experts have to code their knowledge into the system explicitly. This is time
consuming but also sometimes hard to compete with for statistical models.

Concerning the results in the information retrieval domain some tasks
are solved very reliably and efficiently by automatic systems such as finding
a specific web page among millions of other web pages. On the other hand
other tasks definitely require more work on statistical models. This work
should be seen in this perspective.
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State-of-the-art statistical text models

Through a detailed look into the mathematics of state-of-the-art text models
such as Latent Semantic Indexing (LSI), Independent Component Analysis
(ICA) and Probalistic Latent Semantic Indexing (PLSI) common trends can
be observed. One observation to make is that they all consider a decompo-
sition of the high-dimensional space in which documents are represented by
term-vectors into a lower dimensional topic space.

PLSI is such a model, which has some desirable features. It was intro-
duced to overcome the shortcomings of the lack of a solid statistical foun-
dation of LSI. What we have found in this work is that the solid foundation
made it very easy to extend PLSI to incorporate different kinds of informa-
tion besides terms such as labels and links. Experimental results with the
PLSI model show that it is capable of capturing semantics of text documents.
In particular this is shown by using PLSI as a classifier. The classification
results were not too impressive, but still far better than average.

Problems do exist with the PLSI model, though. One problem is scalabil-
ity. Because document indices take part in the model explicitly the number
of model parameters grow linear in the number of training documents. This
problem is suggested solved by drawing topic mixtures for each document
from a distribution instead of representing each document topic mixture as
a parameter. The model suggested is called Latent Dirichlet Allocation.

The extension of PLSI to incorporating labels form the supervised PLSI
model. The extension is straight forward and still it is one of the main
achievements of this work. Experimentally it is shown that the supervised
PLSI model is a better classifier that the basic PLSI model as we would
expect.

If we were to use PLSI for a task, which required a more subtle semantic
understanding we wouldn’t expect the basic topic oriented PLSI model to
perform very well. But one approach would be to extend the model with
more fine-grained Natural Language features like we have extended it with
labels and links. Such features could be word classes, word ordering and
sentence length.

4.2 PLINK as a matching model

The motivation for looking at link models was the idea that predicting links
was a task very similar to predicting matches. The PLINK model is formed
by extending the basic PLSI model with link information. Here we shall
answer the question: How useful is PLINK as a matching model?

We have shown that the solid statistical PLINK model is theoretically
capable of predicting links. Therefore under the assumption that the match-
ing problem is just like the link prediction problem, the PLINK model is a
suitable model.
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Since we haven’t been able to gather any data for a real matching prob-
lem then the assumption of task similarity between matching and link pre-
diction has not been investigated. This of course has to be done if PLINK
is to be used for matching applications.

The shortcomings of PLSI applies to PLINK as well. That is, the scal-
ability is still a problem theoretically even though it didn’t play any role in
the experiments of this work. Also, PLINK is a topic oriented model and
as such it doesn’t capture the subtle semantics of documents. But seen in
the perspective of matching applications the model appears suitable, since
matching some kind of profiles e.g. is about matching the overall type of
persons. It is not about the small ambiguities in text understanding.

Another drawback of the PLINK model is concerned with the way that
links are represented in the model. Just like the documents are treated as
indices in the model parameters, so are the links. This means that a link
is treated just like a word appearing in the document - it is just another
type of document content. But the nature of links is different from the
nature of words, since links connect to other documents. The point is that
the contents of the documents linked to doesn’t matter - even though one
would think that the contents of documents linked to does make a difference
for how to interpret a document. The links influence the estimation of the
underlying topics and as such what words the topics should contain, but still,
the contents of the documents linked to does not influence the estimation of
the topics.

Experiments on link prediction with the PLINK model has shown that
it is capable of predicting links to some degree - at least if the link structure
is not too sparse. In a more sparse environment the PLINK model was not
shown to be very successful. In terms of matching problems this doesn’t
seem to be a big problem, however. E.g. in the job matching problem
one applicant often matches many jobs and one job often matches many
applicants. At least if we consider a first round matching and not the task
of choosing the final employee. In future work PLINK should be tested on
real job matching data and also the results should be compared to other
models capable of predicting links.

Compared to other possible ways to do matching the PLINK model has
some advantages. Another possible way to do matching would be to use
clustering. That is, a clustering algorithm would run e.g. on all applicants
and job offers and if an applicant and a job offer end up in the same cluster
we would consider them a match. A drawback with a clustering approach is
that it matches the applicants and jobs without considering the difference
inherent in applications vs. job offers. Even though they might describe
the same person they would do it in a totally different way with the risk
that they are not considered very similar by the clustering algorithm. On
the other hand the PLINK model is capable of representing the asymmetry
inherent in the job matching problem, because there is no restrictions on
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what the links can point at. Therefore it is perfectly fine that we predict a
match between not very similar profiles.

In conclusion this work has successfully investigated statistical models
capable of modelling text. Motivated by the matching problems we have
found that using models such as the PLINK model, which are capable of
predicting links, is a feasible way to approach the task of predicting matches.
Statistical text modelling requires a thorough understanding of the models.
Strengths and weaknesses of the models have to be evaluated in relation to
the task at hand, and that is in particular what this work has done.
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