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Abstract

A method to simulate the effects of atmospheric scattering in a real time
rendering system is proposed. The system is intended for use in pc based
combat flight simulators where the aim is to create a perceptually realistic
rendering of the sky and terrain.

Atmospheric scattering is responsible for the color of the sky and for the
gradual extinction and attenuation of distant objects. For flight simulators,
a realistic simulation of these effects play a central role both to the emersion
and to the tactical environment.

Realistic radiometric simulation of atmospheric scattering is computation-
ally expensive in such a way that it prohibits any chance of doing it in real
time. It is, however, possible to use the radiometric physics of the atmo-
sphere as the basis of a set of simplifications that allows real time visual
simulation of atmospheric scattering.

Existing methods for real time visual simulation of atmospheric scattering
assumes a constant density atmosphere. This assumption will not provide
realistic results in a flight simulator environment.

The proposed system expands an existing method developed by Hoffman
and Preetham [10] to consider the density change in the atmosphere. In
addition, parts of the model is modified to compensate for shortcomings in
previous methods.

The resulting system is capable of producing visually convincing scattering
effects for a range of observer altitudes and environments, and will add
minimal overhead to an existing rendering system.
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Chapter 1

Introduction

In the past, real time rendering of outdoor scenes in flight simulator appli-
cations has primarily dealt with the problem of increasing the geometric
detail of the part of the terrain visible to the user.

During the last five years of the 20’th century, advances in consumer graph-
ics hardware have enabled amazing improvements in the raster capabilities
of pc’s. With the change of the millennia, consumer graphics hardware
capable of transforming and lighting vertices began appearing. This has,
over a few years, lead to graphics processors GPU’s that are becoming in-
creasingly flexible and capable of performing small programs, both on the
pixel and vertex level.

The adversity and raw processing power of modern GPU’s are currently
shifting the focus of real time rendering towards some of the areas tradi-
tionally associated with (non real time) image synthesis. This has opened
the opportunity for rendering much more realistic images.

Realism can in this context be interpreted as either physical realism, mean-
ing that the rendering systems use models that closely resemble the physics
of lights interaction with the environment, or visual realism, meaning that
the generated images display a convincing similarity with the real world.
In the following, realism will, unless explicitly stated, refer to the latter
definition.
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1.1 Background

Flight simulators have always represented an area where the separation
between professional software and ”games” has been blurry. Producers of
PC flight simulators have competed to supply the most realistic simulation
of the flight dynamics and avionics of the aircraft. The focus on realism has
also meant that simulators are presented with a challenge when it comes
to rivaling this realism in the rendering of the environment.

The rendering of the environment in a flight simulator lacks many of the
shortcuts present in other games. A flight in a flight simulator spans a
potential long time period and a vast area. In addition, flight simulators
are often set in a known environment, requiring the landscape to be recog-
nizable. The time covered prohibits the use of static coloring of the sky and
landscape, the free nature of flight prohibits the use of a textured skydome
to display cloud effects, and the large area covered during flight requires
the processing of enormous amounts of data in order to render the terrain.

Although algorithms for rendering huge terrain datasets have been avail-
able for some time now [15, 11, 5], there are still plenty of areas that can
be improved tremendously. Recent works have begun investigating the
use of modern shader technology for simulating atmospheric scattering ef-
fects [10, 3], while others are investigating the use of similar technologies
to transfer techniques such as HDR (High Dynamic Range) imagery to
realtime applications [6, 7].

Even though the processing power has increased enormously since the first
flight simulators were designed, it is still unrealistic to imagine a physically
based rendering system, calculating the radiative transfer throughout the
scene. Consequently, the rendering system still needs to be designed to
imitate realism rather than to be realistic.

Two different approaches exist for rendering atmospheric scattering effects
in real time. Dobashi proposed a volumetric rendering method capable of
capturing things like shafts of light and shadows cast by mountains [3].
Hoffman and Preetham proposed a simpler approach where atmospheric
scattering is calculated at the individual objects based on distance from
the viewpoint and angle to the sun, the system was implemented using
vertex shaders. Both methods have advantages and disadvantages, and
none of them can directly fulfil the requirements for implementation in a
PC flight simulator.
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1.2 Problem

The purpose of this work is to develop a system of shades to simulate the
effects of atmospheric scattering in a flight simulator environment. The
problem is divided into two sub problems; rendering of the sky and render-
ing of the landscape.

For the sky, the system must be capable of capturing the change in color
when the sun travels over the skydome during the day. It must also be
capable of capturing the change in color that results when the observer
changes altitude. Both effects are important to the sensation of immersion.

For the terrain, the purpose is to create a system capable of simulating the
effects of areal perspective, the effect of observing a distant object through
the atmosphere, see section 2.5. The system must be able to simulate the
change in color of distant objects. It must also be capable of simulating
the change in visibility for different view angles compared to the direction
of the sun. Last, it must be capable of capturing the change in areal
perspective when changing observer altitude. Areal perspective is central
for the human ability to determine distance and, as a result, plays a central
role to the realism of a flight simulator rendering system.

Both areal perspective and sky color change with the altitude of the sun
above the horizon and with the amount of aerosols in the atmosphere. The
system has to be able to cope with these changes fluently.

Flight simulators are some of the most processor intensive real time ren-
dering systems and, consequently, the developed system must be able to
work at real time rates while leaving recourses for other tasks like flight
modelling, AI, avionics etc.

1.3 Limitations

The main focus of this work is on creating a system suitable for inclusion
in a flight simulator. The aim is to be able to convincingly recreate the
effects of atmospheric scattering on a subjective level.

The physics of atmospheric scattering are crucial to understanding the
problem but the physical accuracy of the system is irrelevant. It is not
intended to accurately simulate a given physical environment but to present
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the virtual pilot with some of the phenomenons he would expect to observe
in the real world.

To demonstrate the system, a small application capable of rendering a
height field and a skydome is developed. These are developed to demon-
strate the shaders and they will not be highly optimized.

The system is targeted at PC systems equipped with a recent graphics card.

1.4 Outline

In chapter two, the theory of atmospheric scattering is presented. It is
a rough overview of the system, intended to provide the reader with a
basic understanding of the theory required for understanding the proposed
simplifications.

Chapter three explains the basic problem of rendering scattering effects and
outlines the work of previous researchers in the area of rendering scattering
effects.

In chapter four, the technology behind modern rendering hardware and
APIs is described to provide the reader with a basic understanding of the
technology, required for the understanding of the proposed implementation.

In chapter five, the hypothesis is developed, based on the work of previous
researchers and the theory described in chapter two.

Chapter six describes the implementation of the rendering system proposed
in the hypothesis.

In chapter seven, the renderings produced by the implemented system are
shown.

Chapter eight discusses the results and provides ideas for improvements
and future development.

Chapter nine presents the conclusion and is followed by appendices.
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Chapter 2

Atmospheric Scattering

As sunlight penetrates the atmosphere it may be absorbed, scattered, re-
flected or refracted before reaching the surface. Humans perceive light with
the help of antenna-like nerve endings located in our eyes (rods and cones).
Our eyes detect different intensities (light and dark) and different colors
depending on the wavelengths of visible radiation.

White light is a combination of all wavelengths from 400−700 nm in nearly
equal intensities. The sun radiates almost half of its energy as visible light.
The peak intensity of the sun’s electromagnetic radiation corresponds to
the color yellow. Because all visible wavelengths from the sun reach the
cones in nearly equal intensities when the sun is close to zenith (with a
slight peak at yellow), the sun appears yellowish-white during the middle
of the day.

The attenuation of light in the atmosphere is caused by absorbtion and
scattering, and can be divided into effects that remove and add light to
a given viewing ray. Absorbtion of visible light is negligible except for
absorbtion in the ozone layer [8]. As a result, the atmosphere below the
ozone layer can be treated as a scattering media only. Scattering is a result
of the interaction between the electromagnetic field of the incoming light
with the electric field of the atmospheric molecules and aerosols [16]. This
interaction is synchronized and, as a result, the scattered light has the
same frequency and wavelength as the incoming light. Scattering differs
with particle size and varies with wavelength. For this reason, the spectral
composition of the scattered light differs from that of the incoming light.
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Earth

Pv: Observation Point

Pa
Ps

Sunlight

s: Viewing Pathθ: Scattering Angle

s´: Sunlight Path

P: Scattering Point

h: Observer Altitude

hs: Scattering altitude

Atmosphere

Multiple Scattering

Figure 2.1: The sizes and parameters involved in a single scattering event in
the atmosphere.

Figure 2.1 demonstrates a single scattering event. At a point P light from
the sun is scattered into the viewing path (single scattering). Light already
scattered one or more times also arrives and is scattered at P (multiple
scattering). The angle between the viewing path and the direction of the
sunlight θ is called the scattering angle. This angle is the independent vari-
able in the scattering phase function described later in the sections on Mie
and Rayleigh scattering. The total amount of light arriving at the view-
point Pv is the combined effect of scattering effects along the entire viewing
path s. The light incident on the viewdata from the single scattering event
at P is attenuated by scattering before reaching the viewpoint Pv.

Atmospheric scattering will both add and remove light from a viewing ray.
This is the effect that causes the brightening of distant dark object along
with a loss of contrast (see figure 2.2). This effect is very important to the
human ability to assess distances even at surprisingly short ranges [17].

Any type of electromagnetic wave propagating through the atmosphere is
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Figure 2.2: The extinction of the mountains far from the viewpoint caused by
atmospheric scattering.

affected by scattering. The amount of scattered energy depends strongly
on the ratio of particle size to the wavelength of the incident wave. When
scatterers are small relative to the wavelength of incident radiation (r <
λ/10), the scattered intensity on both forward and backward directions is
the same. This type of scattering is referred to as Rayleigh scattering. For
larger particles (r ≥ λ/10), the angular distribution of scattered intensity
becomes more complex with more energy scattered in the forward direction.
This type of scattering is described by Mie scattering theory.

When the scattering particles are considered to be isotropic, the shape of
the scattering phase function is uniform with respect to the direction of the
incoming beam. This is not always the case for atmospheric particles, but
any error introduced by making the assumption that they are, is evened out
by the large number of randomly oriented particles [16] and, consequently
for this thesis, particles are considered isotropic.

When the relative distance between the scattering particles is large com-
pared to the particle size, the scattering pattern of each function is unaf-
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fected by the presence of other particles. This is the case in the atmosphere
and, as a result, the scattering from a path in the the atmosphere can be ap-
proximated, using a single function for each of the two types of scattering;
scattering by particles and scattering by molecules [16].

A small fraction of the scattered light is scattered again one or more times
before leaving the scattering media. This is referred to as multiple scatter-
ing. In most situations, the effects of multiple scattering on the intensity of
the direct beam are barely noticeable. This is the case for scattering in the
atmosphere on a clear day [16, 17]. However, ignoring multiple scattering
when trying to describe the color of clouds will create noticeable artifacts
[9]. In general, multiple scattering influences are more significant in turbid
or polluted atmospheres.

2.1 Rayleigh Scattering

Rayleigh scattering refers to the model of atmospheric scattering caused
by molecules (clean air). In this context, only scattering of visible light
is relevant. The volume angular scattering coefficient, or phase function
βλ(θ), describes the amount of light at a given wavelength λ scattered in
a given direction θ. For Rayleigh scattering, this is given by [13].

β(θ) =
π2

[

n2 − 1
]2

2Nλ4

[

1 + cos2θ
]

(2.1)

where θ is the angle between the view angle and the sun direction, n is
the refractive index of air, N is the molecular density and λ the wave-
length of light. The important property of the Rayleigh scattering phase
function (2.1) is the 1

λ4 dependency of wave length. The net result of this
property is that shorter wavelengths are scattered much more than longer
wavelengths, approximately an order of magnitude for the visible spectrum
(400 − 700nm). This is the main reason why the sky is blue.

The total Rayleigh scattering coefficient βR can be derived from equation
(2.1) by integrating over the total solid angle 4π

βR =

∫ 4π

0

β(θ)dΩ =
8π3

[

n2 − 1
]2

3Nλ4
(2.2)

The total scattering coefficient describes the total amount of light removed
from a light beam by scattering.
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Figure 2.3: Rayleigh phase function, the intensity of light scattered into the
viewing path, as a function of the angle from the sun.

2.2 Mie Scattering

Mie scattering theory is a general theory applicable to scattering caused by
particles of any size. In this thesis, Mie scattering theory is used exclusively
for describing the scattering caused by atmospheric particles (aerosols) with
sizes equal to or larger than the wavelength of the scattered light.

Rayleigh scattering is a subset of Mie scattering. Consequently, Mie scat-
tering theory will yield the same results as Rayleigh scattering when ap-
plied to small particles. If assuming a certain average size of the scattering
particles, the Mie scattering function can be written as [20].

β(θ) = 0.434c
4π2

λ2
0.5βM (θ) (2.3)

Where c is the concentration factor which varies with turbidity T and is
given by [20].

c = (0.6544T − 0.6510) · 10−16 (2.4)

and βM describes the angular dependency (phase function)[20]. βM varies
with the size of the scattering particles and gives the shape of the angular
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Figure 2.4: Mie angular scattering functions. The top left image is identical to
the Rayleigh phase function, demonstrating that Rayleigh scattering theory is a
subset of Mie scattering for small particles r < λ

10

Mie scattering function (figure 2.4). The total Mie scattering factor is
determined by.

βM = 0.434cπ
4π2

λ2
K (2.5)

Where K varies with λ and are ∼ 0.671.

2.2.1 Henyey-Greenstein Phase Function

Mie theory is in general far more complicated than Rayleigh theory. How-
ever, for the application to real time rendering, the angular scattering func-

1Both (2.3) and (2.5) are slightly incorrect 4π2

λ2 should be
(

2π
λ

)v−2
where v is Junge’s

exponent. However a value of 4 is used for the Mie scattering model in this thesis. This
is taken from [20, 10]
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Figure 2.5: The shape of the Henyey-Greenstein phase function with varying
g. The Henyey-Greenstein phase function is a simplification of the general Mie
scattering phase function as shown in figure 2.4.

tion can be approximated using the Henyey-Greenstein phase function [10].

ΦHG(Θ) =
1 − g2

4π (1 + g2 − 2cos(θ))
3
2

(2.6)

Where g is the directionality factor. Figure 2.5 shows how the shape of the
phase function varies with the value of g.

The Henyey-Greenstein (HG) phase function belongs to a class of functions
used primarily for their mathematical simplicity than for their theoretical
accuracy. The HG function is simply the equation of an ellipse in polar
coordinates centered at one focus. It can be used to simulate scattereing
with the primary scattering is in the backward direction (g > 0) or the
forward direction (g < 0) [2]

2.3 Optical Depth

A term widely used in atmospheric optics is optical depth, which is appli-
cable to any path characterized by an exponential law.
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Optical depth for a given path can be derived as the integral of the scat-
tering coefficient of all subelements ds of the given path.

T =

∫

S

β(s)ds (2.7)

Where β(s) is the scattering coefficient (combined Mie and Rayleigh total
scattering coefficients) that varies from day to day and with altitude.

Optical depth can be used directly to calculate the attenuation over a
path. Given an incident spectral distribution I0, the attenuated spectral
distribution I arriving at the observer after passing the atmosphere with
the optical depth T is given by.

I = I0 · e
−T (2.8)

Optical depth is a measure of the amount of atmosphere penetrated along
a given path. This means that optical depth is a result of the length of the
path and the average atmospheric density along the path.

Optical depth can be separated into the molecular (Rayleigh) and aerosol
(Mie) optical depths.

2.4 Sky Color

The color of the clear sky has always amazed people. The blue color of the
sky is a result of inscattering of light from the sun. The molecules of the
atmosphere scatter light according to the Rayleigh theory and, as a result,
show a strong tendency to scatter light in the purple and blue spectrum
and less in the yellow and red spectrum. The changed spectral distribution,
combined with the fact that our eyes are less sensitive to purple light [17],
results in the clear blue color of the sky. The color of the sky changes with
the amount of dust and water dissolved in the air. These aerosols scatter
light according to Mie scattering theory and affects the total scattering of
the sunlight to change the color of the sky.

2.4.1 Variations in Color over the Sky Dome

The change in intensity and color of the sky is complex. It is a result
of scattering as described by Rayleigh and Mie scattering theory, but is
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Viewing Path

φs: Sun Zenith Angle

φv: View Zenith Angleθ: Sun view angle

Figure 2.6: The angles on the skydome as they are used in this thesis. A vertical
angle refers to the angle from one point to another through the zenith point.

complicated by the fact that the atmosphere is lit, not only by the sun, but
also by self illumination (multiple scattering see figure 2.1).

The darkest part of the sky is always found at a point on the vertical circle
(through zenith figure 2.6) from the sun at an angle (θ figure 2.6) of 95◦

from the sun at sunrise and sunset and at 65◦ when the sun is high in the sky
[17]. The dark part divides the sky into the bright region surrounding the
sun and another bright region opposing it. This is a result of the Rayleigh
phase function (2.1)2. The intensity of the bright region surrounding the
sun are much brighter than the opposing region and can be dazzling. The
distribution and definition of these regions vary with the position of the
sun and with the amounts of Mie scatters in the atmosphere. It can be
described as an interchange of 3 effects.

1. The intensity of the sky increases rapidly towards the sun while, at
the same time, becoming whiter (figure 2.7(a)).

2This effect is only noticeable on very clear days, and even then, few people notice it
unless they know what to look for.
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(a) Bright regions surround-
ing the sun

(b) Darkest and ”bluest”
part of the sky

(c) Sky gets brighter and
less blue close to the
horizon

Figure 2.7: The color of the sky can bedescribed as an interchange of three major
effects.

2. At an angle 90◦ from the sun, the sky is usually darkest while the
blue color is richest (figure 2.7(b)).

3. The intensity of the skylight increases toward the horizon and the
deep blue color changes and becomes whiter (figure 2.7(c)).

All three effects combine to give the color of the sky. In addition, the
amount of aerosols in the atmosphere influences the result, making it im-
possible to find two days with identical color distribution of the sky.

The first effect is a result of scattering by aerosols. The strong directional
dependency of Mie scattering causes the intensity to increase rapidly to-
wards the sun while the relative weak dependency on wavelength causes
the whitening of the sky.

The low intensity of the sky color 90◦ from the sun is explained by the
shape of the phase function for Rayleigh scattering. At an angle of 90◦,
the scattering is about half the scattering in the forward and backward
direction. In addition, larger Mie scatterers hardly scatter any light at
such a large angle.

The whitening of the sky towards the horizon is explained by the thick-
ness of the atmosphere when the viewing direction approaches the horizon.
The atmosphere scatters blue and violet a lot more than red and yellow.
This could lead to the assumption that the blue and violet colors should
dominate the color of the sky even more when looking through a thicker
atmosphere.

This is clearly not the case, as anyone can see the sky color whitens when
approaching the atmosphere. This happens because the inscattered blue
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Figure 2.8: Even though the inscattering coefficient for blue light is approxi-
mately ten times that of red, the extinction is equally larger. Consequently the
total inscattering coefficient of all wavelength approaches one, or full inscatter
domination, as the optical depth approaches infinity. Because the optical depth
close to the horizon is big enough to resemble infinity, the color of the sky close
to the horizon is the same as the color of sunlight.

light has a much larger probability of being scattered out again (figure 2.8).
As a result, the sky color will converge towards the color of a white sheet
of paper (the color of sunlight) when the optical depth is large enough [17].
This explains why the horizon becomes yellow, or even orange, at sunset
and sunrise.

Figure 2.9 demonstrates how the blue, shorter wavelengths dominate the
inscattered spectrum at smaller values of optical depth, but that, as the
optical depth approaches infinity, the spectral distribution will approach
that of the sun. If the optical depth of a given path corresponds to the
distance from plane A to B, the strong scattering of blue light dominates,
but if the depth is increased to cover the distance from A to E, the scattering
of blue light from plane D and E never reaches the observation plane and
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AE D C B
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Blue Light
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Observation Plane

Blue Light
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Figure 2.9: Blue light dominates the individual scattering events, but red light
penetrates deeper. Consequently, for an observer at A, the strong blue light scat-
tered at A,B and C is seen, but because the red light penetrates deeper, contribu-
tions of red are received from the same points as the blue but also from D and
E.

make no contribution. This evens the amount of blue and red light reaching
the observer and, when expanded to cover the entire spectrum, the result
is that the spectral distribution will resemble that of the scattered light
(sunlight).

In addition to the scattering colors, the ozone layer is important in un-
derstanding the color of the sky. Ozone has a true blue color caused by
absorbtion, not scattering [17]. The faint blue color of the ozone layer is
especially important when explaining the color of the sky after sunset. If
only scattering was responsible for the color of the sky, the area around
zenith would become gray or even yellow at sunset. This blue contribution
of the ozone color is less important during daytime because the intensity
of the scattered light dominates [17].

The color of the sky changes from day to day and is a result of the change in
composition of the atmosphere. Aerosols make the sky whiter and increase
the intensity of the light scattered from the sky. This is a result of Mie
scattering, as indicated by the white as opposed to blue color. The blue
color of the sky is richest when seen between rain clouds. This is because the
rain cleans the atmosphere, thus minimizing Mie scattering. In addition,
the blue color is richest at sunrise and sunset when zenith is at a vertical
angle 90◦ from the sun.
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(a) Image of the environment on a hazy
day

(b) Image of the environment on a clear
day

Figure 2.10: The effect of the aerosole concentration on the inscattered color
and visibility

2.5 Areal Perspective

Areal perspective is the effect that blurs distant objects and makes them
blend in with the background. In addition to this extinction effect, the
color of objects far away is attenuated and becomes faintly blue. This is
the result of inscattered light, and the color varies the same way as the
color of the sky. On days with few aerosols the color is blue, and on hazy
days the color is more white or even yellowish (see figure 2.10).

The shift toward blue is most noticeable on dark or shadowed objects. This
is so, because the scattering effects both add and remove light, and because
these two effects in principle counter each other. This is the same effect
that causes the horizon to become white. So the white light leaving the
top of a snow covered mountain will have some of the blue light removed,
but the light added by inscattering will also be mostly blue. In contrast,
a dark surface such as the side of a cliff unlit by the sun emits very little
light, so what we primarily perceive is the contrast (the lack of light) plus
the inscattered light. This inscattered light will be mostly blue and the cliff
will seem blue when seen from a distance. In principle we are observing
the color of the atmosphere on a dark background, which is essentially the
same as the color of the sky seen against the black background of space.

The color of bright objects, like cumulus clouds and snowclad mountains, is
also attenuated by areal perspective. However, the effect is much more lim-
ited due to the reasons described above and because the change in bright-
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ness is much less noticeable. For bright objects, the shift is not towards
blue but towards yellow. This is because the outscattering or extinction
of the blue light is stronger than the inscattering of blue. The net result
is that the blue part of the white light is weakened and the color shifts
towards yellow. On hazy days, when the amount of aerosols in the air is
high, objects seam to lose color and take on a more grey tint.

Areal perspective is logically divided into an extinction part and an addition
part.

L(s, θ) = L0Fex(s) + Lin(s, θ) (2.9)

Equation (2.9) is a formal description of the principle areal perspective
where, L0 represents the light leaving an object, Fex the extinction factor,
Lin the inscattered light, θ the angle between the viewing ray and the sun
and s is the optical depth between the object and the eye point.

2.6 Visibility

The conditions of the atmosphere have a pronounced effect on our ability
to distinguish distant objects. Visibility varies daily with the amount of
dust and moisture in the air.

Moisture condensates on the dust particles and the resulting droplets scat-
ter light [17]. From this, it is clear that both the amount of dust and the
humidity are important to the visibility. Atmospheric dust comes from a
variety of sources; from volcanoes to polluting exhaust gasses, from indus-
try and transport. In maritime regions salt particles dispensed into the
atmosphere by the surf are often the primary contributor.

Variation in visibility is traditionally described using the parameter tur-
bidity. Turbidity is a measure of the clearness of the atmosphere and
describes the haziness of a given day. It relates the amount of scatter-
ing due to aerosols to the amount of scattering due to molecules, or, the
amount of Rayleigh scattering to the amount of Mie scattering. More for-
mally, turbidity is the ratio of the optical thickness of the atmosphere on a
given day (molecules and aerosols) to the optical depth of a theoretical un-
polluted atmosphere, consisting exclusively of molecules. This relationship
is expressed as.

T =
tm + ta

tm
(2.10)
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Where T is the turbidity and tm is the vertical optical thickness of a pure
molecular atmosphere and tm + ta is the vertical optical thickness of the
combined atmosphere of molecules and aerosols [20].

Since scattering varies with wavelength, it follows that turbidity varies
with wavelength as well. For optical applications turbidity is measured at
555 nm [20].

Turbidity can be estimated using meteorological range. Meteorological
range is the distance under daylight conditions at which a black object
is visible against the background. It is roughly the same as the distance
to the most distant visible geographic feature. Although meteorological
range is somewhat a simplification of turbidity, it is very useful because
it is easy to determine. With respect to graphics, it is even more useful
because it is inherently related to the visual impression of the atmosphere,
and because local data is available in airfield meteorological observations
METAR’s, which could be used to pull real time weather information for
the simulated environment.

2.7 Summary

In the preceding, the theory of atmospheric scattering has been outlined
briefly and its influence on the color of the sky and areal perspective has
been described.

The most important of these are:

• The blue color of the sky is caused by the wavelength dependency of
Rayleigh scattering that favorites the shorter blue wavelength.

• When the optical depth approaches infinity, the inscattered color ap-
proaches the color of sunlight. This is why the horizon is white during
the day and red/orange during sunset and sunrise.

• Atmospheric scattering is divided into Mie and Rayleigh scattering,
governing the scattering of particles(aerosols) and molecules respec-
tively.

• Rayleigh scattering, with equal scattering in the forward and back-
ward directions, is a subset of the far more complicated Mie scatter-
ing.

• The Mie scattering phase function can be approximated, using the
Henyey-Greenstein phase function.
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• Areal perspective is the attenuation and extinction of distant objects
and is important for the human ability to asses distances.
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Chapter 3

Rendering Scattering

Effects

Atmospheric scattering effects result in spectacular visual phenomenons,
ranging from the deep blue color of the sky on clear days over the sometimes
amazing colors of the sunset to the coloring of distant objects.

These effects have long been the target of computer graphics researchers’
attention. Many people have formulated solutions to the problem of render-
ing these effects. All of these methods are based on solving the scattering
equation, and thereby determining the spectral irradiance at the observa-
tion point.

3.1 Basic Problem

Solving the scattering equation for a path in the atmosphere is a com-
plicated problem. The problem is divided into rendering of the sky color
(figure 3.1) and simulating areal perspective (figure 3.2).

In the following, the basic problem of visualizing the effects of atmospheric
scattering and its application to sky color and areal perspective is described.
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Figure 3.1: Single scattering of sunlight in the atmosphere

3.1.1 Sky Color

Determining the spectral distribution of light (the sky color) incident on
the eyepoint of an observer positioned at Pv (figure 3.1) requires integrating
along the viewing path Pv − Pa.

For each point P along the path the single scattering equation need to be
evaluated resulting in the following integral [18].

Iv(λ) =

∫ Pa

Pv

Isun(λ) · F (λ, s, θ) · e(−t(s,λ)−t(s′,λ))ds (3.1)

Where Isun(λ) is the incident intensity of sunlight at the given wavelength
on the atmosphere, and F (λ, s, θ) is given by.

F (λ, s, θ) = βR(λ) · ρR(s) · βR(θ) + βM (λ) · ρM (s) · βM (λ, θ) (3.2)

Where βR(λ) and βM (λ) are the Rayleigh and Mie total scattering coeffi-
cients (see sections 2.1 and 2.2), ρR and ρM are the density of Rayleigh and
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Figure 3.2: Attenuation of distant object by atmospheric scattering (Aral Per-
spective)

Mie scatterers. The value for the molecular density distribution can be ac-

curately approximated1 using an exponential function. ρR(h) = ρ0 · e
−

h
Hscale

with a scale height Hscale of roughly 8300 m. βR(θ) and βM (λ, θ) are the
scattering phase functions. The Mie phase function varies with the ratio of
particle size to wavelength. Consequently, for a a given particle size, the
shape of the phase function will vary for differen wavelengths.

The last part of (3.1), −t(s, λ) are the optical depth of the paths s and s′.
As described in section 2.6, it is found by integrating the total extinction
coefficient over the path. It can be written as.

t(s, λ) = βR(λ)

∫ s

0

ρR(l)dl + βM (λ)

∫ s

0

ρM (l)dl (3.3)

1The actual density vary slightly from the pure exponential due to temperature de-
pendency, see figure C.1 page 122
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When substituting equation (3.3) into (3.1), the result is a double nested
integral. This problem can not be solved analytically and a numerical
solution is needed.

Equation (3.1) is only valid when multiple scattering and scattering of
light reflected from the earth are ignored. Both second order scattering
and inscattering of light from the ground have measurable influences on
the final result and can not be completely ignored if the solution have
to be physically correct. Adding second order scattering requires solving
equation (3.1) integrated over the total solid angle at every point P along
the viewing path.

3.1.2 Areal Perspective

The problem of areal perspective is quite similar to the problem of sky
color. The difference is that the radiance at the initial point P0 (figure 3.2)
is different from zero.

This changes equation (3.1) to the following form.

Iv(λ) = I0(λ) ·

∫ P0

Pv

e−t(s,λ)ds +

∫ P0

Pv

Isun(λ) · F (λ, s, θ) · e(−t(s,λ)−t(s′,λ))ds

(3.4)

Where
∫ P0

Pv
e−t(s,λ)ds is the extinction coefficient along the path P0 − Pv

and the second integral is equivalent to equation (3.1).

I0(λ) is the spectral distribution of light leaving P0. I0 is a result of the
irradiance at P0 which is a combination of direct sunlight, skylight and
light reflected from the earth. The irradiance is multiplied by the BRDF2

of the material at P0 giving the radiance.

Establishing the spectral distribution of the incident light from the sky
color involves integrating equation (3.1) over the hemisphere, limited by
the object surface normal plane at P0. Contributions from earth reflection
could be included by using equation (3.4) in the cases where the path from
the integration intersects the earth.

2The term BRDF stands for Bidirectional Reflectance Distribution Function. It is a
function that describes how light is reflected of a surface. The result from a BRDF is a
unitless value that is the relative amount of energy reflected in the outgoing direction,
given the incoming direction [1]
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Range Based Fog

Traditionally, areal perspective has been simulated using a linear range
based interpolation between the object color and a predetermined fog color.

This approach is unable to realistically simulate areal perspective. Both
inscattering and outscattering are interpolated using the same factor. As
a result, the attenuation is independent of initial color and the initial shift
toward blue, and then white3, of Rayleigh inscattering is missed. Since the
method is based on the range between the viewpoint and the individual
vertices it is impossible to simulate the effects of observing terrain with
varying height. This is because the interpolation factor can not be adjusted
on a per vertex basis.

Last, the method is unable to capture the strong directional dependency
of Mie scattering, which is clearly observable when the sun is low in the
sky. It would be possible to adjust the interpolation factor on a per frame
basis, but to capture this effect, it is necessary to adjust the factor within
a single frame or scene.

3.1.3 RGB Color from Spectral Distribution

The eye works by having three different receptors in the eye. Each type
of receptor reacts to different wavelengths, sending its signal to the brain.
This means that the brain only receives three different signals for any color.
This is why three colors can be used to simulate any color the eye can see.

To determine the intensity of each of the three lights, some sort of matching
function is needed. The CIE XYZ functions (figure 3.3) are an example
of such functions.4 The XYZ functions have been constructed so that
any color can be matched by a linear combination of the three functions.
The graphs can be used to calculate the XYZ tristimulus values, based
on a spectral distribution C(λ). By multiplying the spectral distribution
with the color matching functions, and numerically integrating the result

3As optical depth approaches infinity, the inscattered color approaches the color of a
white piece of paper illuminated by sunlight [16].

4Color matching functions are designed by conducting experiments on a large number
of people, having them match a spectral distribution color by adjusting the intensity of
three monochromatic lights blended together [12].
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Figure 3.3: CIE XYZ Color matching functions

for the sampled wavelengths, a value for each of the three graphs can be
determined.

X =

∫ 780

380

C(λ)x(λ)dλ

Y =

∫ 780

380

C(λ)y(λ)dλ (3.5)

Z =

∫ 780

380

C(λ)z(λ)dλ

Where x(λ), y(λ) and z(λ) are the three functions X, Y and Z (figure 3.3).

In practice, both the color matching functions and the spectral distribution
of light are sampled at different wavelengths and stored in data tables. For
most applications, it is necessary to store the matching functions at 5 or
10 nm intervals.[12]

Using these tables the resulting XYZ values can be evaluated, using nu-
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merical integration over the finite 5 − 10nm intervals.

X =
∑

i

Cixi∆λ

Y =
∑

i

Ciyi∆λ (3.6)

Z =
∑

i

Cizi∆λ

Where i depends on the number of intervals, but should cover the visible
spectrum from 380nm to 780nm.

The XYZ and RGB color systems are simply related by a linear transfor-
mation which can be written in matrix form as





X
Y
Z



 =





Xr Xg Xb

Yr Yg Yb

Zr Zg Zb









R
G
B



 (3.7)

Where the values with the r, g and b subscripts are based on the tristimulus
values of the red, green and blue phosphorous respectively. This equation
assumes a linear response of the monitor phosphors to input voltage. This
is in general not true, but is corrected by gamma correction.

There is a physical relationship between the input voltage and the resulting
brightness I of a pixel on a CRT (cathode ray tube) monitor. This is
expressed as [1].

I = a(V + ε)γ (3.8)

Where V is the input voltage, a and γ are constants that depend on the
monitor. ε is the black level setting for the monitor. A gamma correction
value γ of 2.5 is usually considered adequate, but individual monitors will
produce different results when using the same gamma value.

In computer graphics, lighting equations compute intensity values that have
a linear relationship to each other. This means that a value of 0.5 should
be perceived as half as bright as a value of 1.0. Achieving this requires
gamma correction. If gamma correction is not applied, a value of 0.5 will
be perceived as considerably less than half the intensity of 1.0.
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Figure 3.4: Klassen’s model of the atmosphere. He divides the atmosphere into
two constant density layers; one consisting only of molecules and a second with
molecules and aerosols. All scattering events are assumed to happen in the com-
posite layer.

3.2 Previous Work

Klassen [14] was one of the first to propose a solution to the basic problem of
solving the scattering equations. In his solution, the atmosphere is modelled
as two layers (figure 3.4). The top layer is treated as a pure molecular layer
and the bottom layer is composed of molecules and aerosols.

Klassen assumes that single scattering events are unlikely to occur before
entering the Haze filled part of the atmosphere. Using this assumption, he
divides the problem by considering the intensity distributions (I0 − I4) at
the transitions.

I0 is the intensity vector of sunlight when it hits the atmosphere. This light
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is attenuated by pure rayleigh scattering over the distance s1, resulting in
the intensity vector I1 when entering the haze filled atmosphere. I1 is then
attenuated by Rayleigh and Mie scattering over the distance s2 resulting in
the intensity I2 before it is scattered at P . After scattering the distribution
is I3, which is again attenuated by Mie and Rayleigh scattering before
reaching the eye with the intensity I4.

Along each of the paths si, Klassen assumes a constant density, arguing
that since the density is multiplied, a correct result can be approximated
by reducing the radius of the atmospheric layers and adjusting the density
accordingly. This simplifies the problem by allowing the direct calcula-
tion of atmospheric thickness −t(s, λ). To determine the correct depth of
each part of the ray, he uses geometric computations that account for the
curvature of the atmosphere. Using these approximations, the scattering
problem is reduced to integrating an analytical equation along the path D.

Klassen proposes modelling a fog layer as a vertical thin layer over a flat
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(a) Nishitas method (b) Preethams method

Figure 3.6: Examples of renderings produced using the methods of Nishita (a)
and Preetham (b).

earth. The problem is then again divided into a number of phases.

First, he calculates the spectral distribution of the light leaving an object.
This is done essentially using the same method as for calculating the light
leaving a single scattering event in his model for sky color, except that the
angular scattering coefficient is replaced by an angular reflectivity coeffi-
cient, with the addition of a ambient contribution to account for indirect
illumination by scattered light.

When calculating the thickness of light along the viewing ray, the fog layer
is assumed to be sufficiently thin to alow multiple scattering to be neglected
and to be sufficiently thick compared to the height h of the observer, in or-
der to alow the distance light travels through the fog layer to be considered
constant along the viewing ray.

For sun angles less than 15 degrees above the horizon, the thin fog layer
idea is no longer valid. Instead it is assumed that the direct sunlight can
be neglected and that all light has been scattered at least once. This leads
to a uniform light source simulated by an ambient value.

Nishita [18] proposes a method based on exponential distributions of molecules
and aerosols in the atmosphere.

The proposed system does a full simulation of the physics of light in the
atmosphere, including second order scattering. The cost of such a simula-
tion is huge, and to speed up the rendering, Nishita first precalculate the
intensity distribution at a large number of voxels and store these in a data
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Figure 3.7: Nishita’s coordinate system. The atmospheric depth is axis sym-
metric. This means that in the shown reference system, the scattering at points
P1 and P2 is identical.

table. This is done by storing the irradiance for a number of directions
(buckets). These intensities are then used when gathering the second order
reflected light for a single scattering event.

To speed up the calculations of the irradiance stored in the buckets and of
the optical depth along a ray from the sun to some point in the atmosphere s
(figure 3.1), Nishita uses a cylindrical coordinate system (figure 3.7), where
the axis is the axis from the center of the earth towards the sun.

In this system, points with the same α and distance s have equal atmo-
spheric depth from the sun, and the results of equation (3.3) for this path
is the same. Nishita uses this relation to precalculate the factors in what he
refers to as a summed shadow table. This is later used to perform lookup,
using bilinear interpolation. This, and the use of adaptive sampling for the
integration along the viewing ray, results in a more effective method than
those previously used.
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Irwin [13] uses an exponential model for molecular density similar to that
of Nishita [18]. His model only simulates Rayleigh scattering and primarily
focuses on the conversion from spectral distribution to RGB colors. To get
good results, he samples the spectrum at 14 different wavelengths and uses
the sampled values to reconstruct the spectrum before discretizing it again
at 5 nm intervals, which is suitable for conversion into the XYZ tristimulus
values.

Preetham, Shirley and Smits [20] use Nishita’s method to calculate skylight,
ignoring ground reflection and third and higher order scattering. This
was done for a variety of different sky conditions, sun positions and for
343 directions in a skydome. The data obtained from the simulation is
subsequently fitted, using an analytical function originally constructed to fit
the sky luminance. To account for spectral variations, a set of chromaticity
variables are fitted as well.

Once the analytical functions are established, they can be used to determine
the color of the sky in a given direction, but also to determine the irradiance
of skylight when calculating the reflected color of an objet in the scene.

Compared to Nishita, Preetham uses a more realistic model for the density
distribution in the atmosphere. A comparison of images generated by using
the two systems can be seen in figure 3.6.

For their areal perspective model, they both use a more simple exponential
density distribution, and they assume that the earth is flat. Using these
assumptions, the integrals are simplified. Further simplification is made
possible by splitting the solution into two; one for viewing rays that are
almost parallel to the earth and another for viewing rays with larger al-
titude difference. In the first part, the atmospheric depth can be solved
analytically and for the latter the solution of the ray optical depth is fitted,
using a hermite cubic polynomial.

3.2.1 Real Time Approaches

Hoffman and Preetham’s method [10] for simulating areal perspective is ca-
pable of compensating for many of the shortcomings exposed by traditional
range based fog.

The method is based on a simplification of atmospheric scattering theory,
but is limited to a constant density atmosphere. Their method is capable
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Figure 3.8: 180 degree view of the skydome using a direct mapping of Rayleigh
angular intensity to RGB. The dark band is too dark, showing that a naive direct
mapping from intensity values to RGB colors results in artifacts.

of capturing the directional dependency on the angle between the sun di-
rection and the viewing ray. It is also capable of capturing the wavelength
dependency of atmospheric scattering and will consequently capture the
attenuation of Rayleigh scattering correctly.

The proposed simplification developed by Hoffman and Preetham results
in the following equation which is evaluated for all vertices in the scene.

L(s, θ) = L0Fex(s) + Lin(s, θ) (3.9)

Where L0 is the initial color of the viewing path, which is black for the
atmosphere. Fex(s) is the extinction coefficient for the path and Lin(s, θ)
is the inscattering, these two terms are given by.

Fex(s) = e−(βR+βM )s (3.10)

Lin(s, θ) =
βR(θ) + βM (θ)

βR + βM
Esun(1 − e−(βR+βM )s) (3.11)
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Where Esun is the RGB color of sunlight and βR and βM are the Rayleigh
and Mie total scattering constants respectively. βR(θ) and βM (θ) are given
by.

βR(θ) =
3

16π
βR(1 + cos2 θ) (3.12)

βM (θ) =
1

4π
βM

1 − g2

(1 + g2 − 2g cos θ)3/2
(3.13)

Their method is capable of capturing both the directional effects and the
wavelength dependency, but their direct use of simplified theoretical mod-
els for the mapping of intensities to RGB colors causes some problems.
The factor two reduction in Rayleigh scattering perpendicular to the sun
direction causes a dark band in the atmosphere (figure 3.8). This does
not resemble the real world, where the difference in intensity would usu-
ally be minimized by multiple scattering and the logarithmic mapping of
intensities to display values done by the human vision system.

In addition, their method assumes an observer positioned at the ground. It
does not simulate the change in sky color and intensity that appears when
climbing up through the atmosphere. This allows them to use the distance
between points s directly as optical depth. This would not be possible in
a flight simulator system, where optical depth depends on both the length
of the viewing path and the average density of the penetrated atmosphere.

The method exposes the same fundamental problem of dealing with terrain
that contains significant differences in height where the average density of
the viewing path cannot be considered constant, and is not directly capable
of handling changes in observer altitude5.

The main advantage of the method proposed by Preetham and Hoffman
is speed. Because the scattering effects are applied using relatively simple
vertex shaders, the performance penalty imposed by the system is very
small and in some circumstance, for instance if the system is fill limited,
no performance penalty will be present.

Dobashi, Yamamoto and Nishita [3] render atmospheric scattering effects
by drawing a set of sampling planes in front of the screen. Each plane is
divided into a mesh and on each vertex of the mesh the scattering contri-
bution is found by using lookup tables sampled as textures.

5A rough solution to the problem of changing observer altitude could be contained by
changing the scattering factors globally when the observer changes altitude. This would
still not handle the problem of changes in terrain altitude.
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Figure 3.9: Dobashi, Yamamoto and Nishita have developed a method for ren-
dering atmospheric scattering effect using volumetric methods. The method is
capable of capturing effects like shafts of light.

Because the scattering equation depends on a lot of parameters, the tex-
tures need to be high 4-5 dimensional textures, which requires large amount
of memory.

The earth’s atmosphere is assumed to be a spherical shell, where the den-
sity of atmospheric particles and molecules decreases exponentially with
altitude. To simulate multiple scattering, Dobashi, Yamamoto and Nishita
include an ambient contribution.

To obtain the precise sampling of object shadows and the intensity dis-
tribution of the light source, they introduce a set of sub planes. The sub
planes are needed because the final color is calculated by adding the con-
tributions of the individual sampling planes and are, as such, subject to
quantization errors. This is avoided by sub sampling only those parts of
the calculation that require this, specifically the shadow boundaries and
intensity distribution.
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Figure 3.10: Sky color and Areal perspective in Falcon 4.0

The work by Dobashi, Yamamoto and Nishita is able to realistically capture
volumetric effect in the atmosphere, and produces some very nice images
(figure 3.9), but the method is only just able to obtain interactive framer-
ates of around 6 fps. on modern hardware for flight simulator environments
(Athlon 1.7 GHz and a Nvidia GeForce3 [3]. This is for a sample appli-
cation where the system can devote all resources to the rendering of the
scattering effect.

3.2.2 Classical Real Time Methods

Flight simulators previously used scripted sky color that would change at
certain time intervals. E.g. in Falcon 4.0 the changes are quite noticeable,
and the color of the sky is not dependent on the direction of the sun.(figure
3.10)

The traditional method of simulation areal perspective can also be seen in
that (figure 3.10) the terrain in the distance slowly fades into the sky color,
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using range based fog. Range based fog is based on interpolating between
the background color and some preset fog color, based on the distance to
the object. This interpolation can be linear or a power function.

The problem is that all three color components are attenuated an equal
amount at the same distance. This is clearly wrong, compared to the
atmospheric scattering functions, which clearly shows that both extinction
and inscattering are wavelength dependant.
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Chapter 4

Graphics Hardware and

API

In this chapter, the various parts of a real time rendering system is de-
scribed, specifically the advances in graphics hardware and the API’s that
accompany these.

I have chosen to use the DirectX 9.0 API, which was released in December
2002. DirectX is limited to the Windows platform, but has great support
in the hardware community. In addition, version 9.0 of the API comes
with a shader programming language named HLSL (High Level Shading
Language)that eases shader development and shader debugging.

4.1 3D Graphics API

A 3D graphics API is a programming interface that acts as an interface
between 3D applications and hardware drivers. An API provides a unified
interface to the underlying rendering hardware and makes it easy to develop
applications capable of running on hardware from different vendors.

Modern graphics API’s like OpenGL and DirectX follow a vertex stream
pipeline model. The application passes geometry to the API in the form
of streams of vertices, containing various attributes such as position, color,
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normal and texture coordinates. The API is then responsible for trans-
forming, clipping, texturing and presenting the final image of the geometry
on the screen. This process is preferred to as the pipeline. To allow the
application to control the stages of the pipeline, the API presents a set of
render states that the application can change. Traditionally, these stages
included changing the way the vertex positions are transformed, the way
lighting is calculated and how textures were applied to the transformed
vertices. Lately, the use of render states has been combined with the use
of small configuration scripts (shaders) that allows the user to control in
more detail the transformation and rastering of primitives.

Since the API is basically a frontend for the hardware, it is important to
understand that if the hardware does not support a specific feature of the
API, it can mean that a program trying to use those features will have a
significantly reduced performance or may not run at all on that specific
hardware.

4.1.1 DirectX and Direct3D

DirectX is actually not a 3D graphics API. It is more a game programming-
or multimedia API, which is composed of a series of independent API’s for
audio, input, networking and 3D Rendering. The 3D Rendering API in
DirectX is called Direct3D.

Direct3D offers objects for manipulating rendering devices, surfaces, tex-
tures, vertex and index buffers that store information about geometry data,
and various helper objects in the accompanying utility library, called D3DX.

Direct3D8 was the first graphics API to introduce a programmable pipeline
and an assembly-like shading language for writing vertex and pixel shaders.
In Direct3D9 these programable capabilities have been expanded, providing
more registers and the possibility for longer programs.

4.2 Programmable Rendering Pipeline

Two stages of the pipeline can be configured using shaders; the vertex
transform stage and the pixel stage. These two parts are configured using
small programs known as vertex shaders and pixel shaders.
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Figure 4.1: Schematics of the programmable graphics pipeline

4.2.1 Vertex Shaders

Programmable vertex shaders replace the fixed-function transformation
and lighting module in the Direct3D rendering pipeline. Vertex process-
ing performed by vertex shaders encompasses only operations applied to a
single vertex at a time.

The output of the vertex processing step is defined as individual, ready-to-
rasterize vertices, each of which consists of a clip-space position (x, y, z, and
w) plus color, texture coordinate, fog intensity, and point-size information.
A subsequent processing stage projects and maps these positions to the
viewport, assembles multiple vertices into primitives, and clips primitives.
The vertex shader does not control those operations.

Direct3D includes the notion of a stream to bind data to input registers
for use by shaders. A stream is a uniform array of component data, where
each component consists of one or more elements that represent a single
entity, such as position, normal, color etc. Streams enable graphics chips
to perform a DMA (Direct Memory Access) from multiple vertex buffers in
parallel and also provide a more natural mapping from application data.
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The interpretation of the input vertex elements is programmed using the
shader instructions. The Vertex shader function is defined by an array of
instructions to apply to each vertex. The vertex outputs for vertex shaders
are explicitly written by instructions in the shader. The shader functions
are defined in a typeless vector language. This language is designed for 3D
graphics and contains common operations such as dot product, as well as
the ability to arbitrarily swizzle components i.e. reordering xyz into zyx.

Since shader functions are small programs, it is important to understand
the execution environment. Shaders use input registers to access vertex
data; constant registers for stored constants such as lights and matrices,
temp registers to save intermediate calculations, output registers, and the
array of instructions.

For the first generation of vertex shaders there were no branching oper-
ations in the vertex shader instruction set. In second generation vertex
shaders, simple branching has been added and the trend of expanding pro-
grammability is likely to move ahead. Third generation vertex shaders are
already defined and will bring access to more instructions as well as texture
lookup in the vertex shader. Currently, no hardware exists that support
third generation vertex shaders.

4.2.2 Pixel Shaders

Pixel Shaders perform color blending operations, including sampling of
textures, blending of colors and textures and possibly per pixel lighting
effects like normal map lighting and bump mapping.

Pixel shaders control the color and alpha-blending operations and the tex-
ture addressing operations. The result emitted by the pixel shader is the
contents of the output pixel color. Whatever it contains when the shader
completes processing is sent to the fog stage and render target blender for
further processing.

Pixel shaders contain two types of instructions: color/alpha blending and
texture addressing instructions. Pixel color and alpha blending operations
modify color data, while texture addressing operations affect and process
texture coordinate data.

Like Vertex Shaders, first generation Pixel Shaders contained no branching
operations. And like vertex shaders the programmability of pixel shaders
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increase with each new generation. First generation pixel shaders had no
division operator. This was added to second generation etc.

4.2.3 HLSL High Level Shading Language

With the increased programmability of vertex and pixel shaders, and the
accompanying increase in the complexity of the shader programs written
to control them, it would soon become cumbersome to maintain and reuse
shaders. This is why Microsoft and several others1 decided to develop a
high level programming languages for shader programming. This resulted
in HLSL.

The syntax of HLSL is loosely based on the C programming language with
various changes or enhancements necessary due to the fundamental dif-
ference of CPU and GPU programming. The statements and operators
supported in HLSL are largely the same as in C, except that most of the
operators are capable of operation on vector and matrix data types in ad-
dition to the normal scalar types.

The main feature of HLSL is the improved readability of the shader pro-
grams. A detailed description of the functions and syntax of HLSL can be
found in [21].

4.2.4 DirectX Effect Framework

With the release of DirectX 8.0, Microsoft introduced the effect framework.
The effect framework is centered around the idea that a graphics system is
composed of two different parts; programming and artwork. Because of the
constraints of compilers and API, part of what should be done by artists
was often done by programmers, simply because artistic parameters had to
be hard coded.

With effect files, developers are given an option to allow artist to mod-
ify render states and shader code in effect scripts. These scripts are then
compiled at runtime, implementing any changes. This runtime compila-
tion allows the artist to modify artistic parameters without knowledge of
programming or compilers.

1HLSL are developed in co-oporation with Nvidia. Both companies released separate
languages Microsoft’s HLSL and Nvidia’s CG (C for Graphics)
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A typical effect is composed of a set of global variables, some sampler
structures, a set of vertex and pixel shaders and some techniques containing
passes.

The global variables can be assigned by the effect as constants or they
can be assigned by the application. For the application to assign global
variables, it needs a handle to the parameter. Such handles are acquired
by assigning a semantic name to the variable, which the application can
inquire. Global variables could be elements like transformation matrices
and light vectors.

A technique describes a single rendering of an object. A technique can
be composed of one or more passes if multi pass rendering is needed. An
effect file can contain multiple techniques to accommodate different levels
of detail or to match the capabilities of different hardware.

The DirectX API contains function for interfacing and compiling the effect
files, and correct use of these options makes it possible to simplify the
structure of the underlying render engine of the rendering system, while,
at the same time, increasing the freedom of the content artists.
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Chapter 5

Hypothesis

The hypothesis is meant to outline the ideas for solving the problem de-
scribed in chapter one. The proposed ideas must fulfill the requirements
described there, regarding both rendering quality and speed.

The problems of simulating sky color and areal perspective in a real time
flight simulator environment are tightly connected. This connection be-
comes even more clear when the models used are based on the theory of
atmospheric scattering, which is the cause of both phenomenon.

The proposed method can be logically divided into rendering of the sky-
dome and rendering of the terrain. The method has to be appropriate for
real time application, where GPU recourses have to be available for ren-
dering the rest of a complex environment, as well as for the rendering of
the terrain and sky.

5.1 Summary of Previous Methods

Three basic approaches exist when developing a real time rendering system
to simulate the effects of atmospheric scattering. They are described in the
sections 3.2.1 and 3.2.2.

It was determined in the problem description that the classical methods are
insufficient and lack the possibility to simulate important effects, like the
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wavelength dependency of atmospheric scattering and the directionality
of Mie scattering. Consequently, two realtime methods exist, which are
candidates for the use in a flight simulator rendering system.

The method developed by Dobashi, Yamamoto and Nishita is capable of
rendering volumetric effects, like shafts of light and cast shadows. Their
Method is superior to the method proposed by Preetham and Hoffman in
terms of rendering quality, because it essentially uses a simplified numerical
integration technique. However, the method is very demanding in terms
of rendering recourses, and it is not really capable of achieving real time
rendering speeds on modern hardware.

Given the rendering quality of Dobashis method and the fact that it is
almost capable of real time frame rates in stand alone systems, it could
be a candidate for an extremely realistic rendering systems in a few years,
when rendering hardware has evolved over a generation or two, but for the
problem described in section 1.2 it is still too slow.

This leaves the method proposed by Hoffman and Preetham [10]. Their
use of a simple analytical model is capable of capturing both the direc-
tional effects and the wavelength dependency of atmospheric scattering,
without compromising rendering speeds. The method is, however, not di-
rectly portable to a flight simulator environment, as it does not take the
decrease in atmospheric density with altitude into account, and contains
some problems because of direct mapping from radiometric quantities to
RGB colors.

While the method of Hoffman and Preetham is not directly usable in a
flight simulator environment, it still presents the best compromise between
rendering quality and speed. In the following, improvements to their system
is proposed, which will compensate for the shortcomings and make the
system usable in a flight simulator environment.

5.2 Scattering Models

All the atmospheric effects included in the system originates from atmo-
spheric scattering. Atmospheric scattering deals with radiometric inten-
sities and can not be directly mapped to RGB colors (see section 3.1.3).
This is well suited for non real time rendering systems like photon mapping
and radiosity. In order to convert the calculated radiometric distribution



5.2 Scattering Models 63

into display colors, a tone mapping operator is applied. Tone mapping op-
erators are often non linear, especially for the high dynamic range (HDR)
scenes of an outdoor environment.

Such an approach introduces a significant overhead, and are not well suited
for a real time environment. Some researchers [7] have developed interactive
rendering systems, using (HDR) tone mapping, but they are only slowly
approaching real time performance and would not leave resources for the
rest of the simulation in a flight simulator environment.

In this work, the focus has been on capturing the perceived effects of at-
mospheric scattering rather than on simulating the physics. Therefore the
atmospheric scattering equations are used as the basis of a system that is
modified to produce the desired effect.

The proposed system will be based on the tree RGB colors and all calcula-
tions will be done using RGB vectors. This means that the system is not
based on a full spectrum and that some adjustments might be needed to
account for the missing information.

In order to use the method proposed by Hoffman and Preetham [10], the
equations (3.11) have to be modified to compensate for the variation in
atmospheric density with altitude. To do this, the distance parameter s in
the extinction terms is replaced by a optical depth parameter, which varies
with distance, average density and Mie scattering concentration. This op-
tical depth is calculated using the assumption that the optical depth of a
given path can be estimated as the length of the path multiplied by the
average atmospheric density along the path.

Assuming different variations in the density of molecules and particles, the
modification results in the following equation.

L(s, θ) = L0 ·e
−(βRSR+βM SM ) +

βr(θ) + βM (θ)

βR + βM

Esun(1−e
−(βRSR+βM SM )) (5.1)

Where SR and SM indicates the optical depth of the viewing ray resulting
from Rayleigh scattering and Mie scattering respectively. These factors are
calculated on a per vertex basis, using simplified models for atmospheric
density, which will be described in detail in the chapters on sky color and
areal perspective.
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5.2.1 Rayleigh Scattering

If the intensity distribution of the Rayleigh angular scattering equation is
used directly, the resulting hue of the sky is greatly exaggerated (figure 3.8)
resulting in a dark band perpendicular to the sun.

To compensate for this effect, the Rayleigh scattering equation (2.1) is al-
tered slightly, reducing the directional dependency of the rayleigh scattering
equation. This is needed to compensate for the lack of tone mapping.

Tone mapping operators for HDR imagery are logarithmic [6, 7]. This
corresponds to the logarithmic mapping of intensities happening in the
human vision system. It reduces the contrast between bright and dark
areas to values displayable on a computer screen. The idea is now that to
avoid artifacts as those displayed in figure 3.8, the contrast of the Rayleigh
phase function should be reduced.

The new relationship used is determined by carefully considering the di-
rectional part of the rayleigh scattering phase function. To reduce the
directionality of this function, it is necessary to reduce the effect of the
cos2(theta) part. This is done by multiplying a reducing factor 1

2 to the
cos2(theta) part. The size of this reductional part is estimated and then
adjusted when the effect of the estimate is seen in the final result. This is
in no way physically correct, but allows for an improved visual realism.

The adjustment is simple and results in the following expression for the
rayleigh scattering phase function.

βR(θ) =
3

16π
βR

[

2 +
1

2
· cos2 θ

]

(5.2)

This reduces the two to one relationship between parallel and perpendicular
scattering (figure 2.3), to a 1.25 to one relationship (figure 5.1). This is
much more in line with the perceivable difference between the intensity of
the sky looking away from the sun, opposed to perpendicular on the sun
direction.

βR is a vector containing the total scattering factors of the 3 RGB colors. It
is sampled at 650 nm(R), 610 nm(G) and 475 nm(B)1 and calculated using
(2.2), the 1

λ4 dependency on wavelength results in the factor of the blue
component being approximately ten times greater than the red component.

1These values are from [10]. however the value of the green component has been
adjusted, based on empirical observations.
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Figure 5.1: Modified Rayleigh phase function. The directional dependency is
greatly reduced compared to the real rayleigh phase function.

5.2.2 Mie scattering

Mie scattering, like Rayleigh scattering, is calculated for each of the three
RGB colors. The Henyey-Greenstein phase function (2.6) is used to ap-
proximate the phase function of Mie scattering, resulting in the following
Mie angular scattering equation.

βM (θ) =
1

4π
βM

1 − g2

(1 + g2 − 2g cos(θ))
3
2

(5.3)

Where βM is given by (2.5)

Mie scattering2 is used to model haze, this means that the optical depth of
a given path changes with the change in the amount of particles suspended
in the atmosphere. When the amount of particles changes, it results in a
change in visibility and the color of the sky. The color and intensity of

2Mie scattering covers scattering of light by both particles and molecules, but are in
the proposed system used exclusively to describe scattering by haze particles.
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incident sunlight are altered as well. A model is developed that adjusts
these values based on turbidity3, observer altitude and sun altitude.

To keep the model usable in a real time environment, Multiple scattering
is not included in the calculation. This is no problem in clear conditions,
but might cause problems in hazy conditions, where multiple scattering be-
comes more significant. To compensate for this, the shape of the Mie scat-
tering phase function (2.6) is adjusted when the amount of Mie scattering
is increased. At the same time, the intensity of the sunlight is adjusted to
compensate for the increased extinction of the sunlight that results from
increased haziness. These two adjustments combine to give a rough simu-
lation of the effects of multiple scattering.

Automatic Adjustment of Scattering Parameters

In the previous method by Preetham and Hoffman, the scattering param-
eters4 had to be adjusted by the user for individual scenes and individual
viewpoints. This conflicts with the idea of interactivity. The problem is
that the parameters has to be adjusted for varying observer positions and
sun positions. The proposed solution is to make this adjustments auto-
matically, using a linear fit to interpolate between a set of predetermined
values.

Because the directional parameter g has to be adjusted based on both
observer altitude h and sun position θ, the linear equation is given by.

g = a + bh + cθ + dhθ (5.4)

where a, b, c and d are determined experimentally.

This takes care of the dependency on observer altitude and sun position.
However, the amount of Mie scattering also plays an important role for
the required value of g. This dependency is covered by calculating g using
equation (5.4) for the maximum and minimum Mie scatter factors used.
Subsequently, the current value is determined from a linear interpolation
between the two extremes, based on the current Mie scatter factors.

3In this model, Turbidity is not used directly. Instead, a Mie scattering factor is used.
This would be proportional to the turbidity (2.4).

4The directional factor in the HG function and the intensity of sunlight.
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The intensity of sunlight is adjusted based on the Mie scatter factor, using
a simple linear equation, which, like the directional factor, is determined
experimentally.

It is important to emphasize that the parameters used are determined by
subjectively choosing the best parameters based on the visual appearance
of the test scenes.

The process is described in the following enumeration.

1. Calculate the g parameter for max and min Mie scatter factor.
2. Calculate the final Mie scatter directional parameter g by interpolat-

ing the parameters calculated in 1. based on the current Mie scatter
factor (haze factor).

3. Adjust the intensity of the incident sunlight based on the Mie scatter
factor. (More haze means less sunlight gets through).

5.3 Areal Perspective

5.3.1 Proposed Method for Calculating Areal Perspec-

tive

The proposed method builds on the work of Preetham and Hoffman. To
expand the method to non constant density atmospheres, the depth pa-
rameter is modified depending on observer altitude and the altitude of the
individual vertices.

The scattering function is used to replace the traditional hardware fog.
The attenuation of a vertex is calculated, using (5.1), where L0 is the
reflected RGB color of the vertex. To be physically correct, the optical
depth should be integrated along the viewing ray for both Rayleigh and
Mie scattering, but this is too complicated to allow real time performance
and would additionally require tone mapping of the results.

To calculate the optical depth between a point in the terrain and the view-
point accurately, it is necessary to solve the integral from equation (3.3).
This is not feasible for a real time approach.

The two simplest ways of estimating the average density are to either cal-
culate the average altitude of the viewing path and then use the density at
the average altitude, or to calculate the density at both ends of the viewing
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Figure 5.2: Comparing the average density of a viewing path, calculated as the
density at average altitude, to the average density of the start and endpoint. The
solid path is the correct average calculated by integration.

path and use the average of these two values. Figure 5.2 shows a compari-
son of the two methods for a terrain point at 1500 meters and an observer
altitude between 1000 and 30000 meters with a vertical viewing path.

As can be seen from figure 5.2, using the average altitude provides the
most precise results. However, both methods have been implemented to
determine which method results in the visually most convincing results.

Regardless of which method is chosen, it is mathematically far from correct,
but it does retain the basic intuitive quality that the air is clearer(thinner)
at high altitude and that a mountain peak will seam clearer than the base.

To hide the fact that our world ends rather abruptly at the far plane of the
view frustum, it is assured that the horizon color blends with the sky color
at the horizon. This results in a blurry horizon which will always be the
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case when the horizon is far away5.

The color of the horizon is a result of complete domination by inscattering.
As a result, the color of vertices at the far end of our viewing frustum
should be the same as the horizon color of the skydome. The factors used
when calculating the inscattered colors of the skydome and the terrain
are identical. As a result, assuming that the initial color is completely
extinct, variations in two vertices at the same screen position are a result
of difference in atmospheric depth s. To ensure that the colors of the
terrain at the visibility limit and the color of the skydome at the horizon
are identical, it is necessary to ensure that they have the same optical
depth.

This is easily done for a fixed density atmosphere, but in this case the
problem becomes more complicated. The system is designed around a
maximum visibility of 200 kilometers, and to assure that the depth is big
enough to blend with the sky color, the visibility is restricted for ground
level observers.

5.4 Sky Color

5.4.1 Proposed Method for Calculating Sky Color

The color of the sky is calculated as vertex colors on a skydome, using
equation (5.2), combined with the expression for the Mie scattering term.

The color is calculated as a result of inscattering. Since the background/ini-
tial color is the black color of space (figure 3.1) the extinction term can be
ignored.

L(s, θ) = Lin(s, θ) (5.5)

Where Lin is given by.

Lin =
βr(θ) + βM (θ)

βR + βM
Esun(1 − e−(βR·sR+βM ·sM )) (5.6)

βR is given by (2.2) and βM is given by (2.5). sR and sM is the molecule and
particle optical depth of the viewing ray. The optical depth of a viewing

5The sharp horizon seen eg. at the beach looking over the ocean exist because the
horizon line are only two kilometers away when seen from the height of a standing
human.
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Figure 5.3: Parameter used to interpolate between variable and static sky func-
tion. x-axis values are the length of the y component of the vertex normal, which
is 1 at zenith and 0 at the horizon.

ray varies with the altitude of the observer and with the zenith angle α of
the viewing ray.

The optical depth increases fast over the last few angles towards the hori-
zon. This is why the sky turns white close to the horizon. To simulate
this, a function with similar characteristics is developed. This value is not
based on physical calculations, but is determined on the basis that we need
a function with a shape that expresses the same characteristics as the color
of the sky.

To get a function with these characteristics, it is proposed to use a root
function, based on the vertical y component of the normals of the sky dome.
The function used is given by.

f = 5
√

vertexnormal.y (5.7)

Choosing a higher root value will cause the falloff to start slower and then
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fall steeper at the end. The shape of this function for a root value of 5 is
shown in figure 5.3.

Given a function with the right characteristics, a static value for the optical
depth of the skydome can be calculated, which will result in a gradual
transition from the deep blue zenith color to a bright white horizon color.
The most important constrain on this constant value is that the resulting
color at the horizon has to be completely dominated by inscattering to get
a smooth blend with the color of the terrain at the horizon.

This value is chosen to be around 200 km to match the visibility set for
the viewing frustum. The equation used is given by.

Tskydome = (1.05 − f) ∗ 190000 (5.8)

Where f is given by equation (5.7), the resulting optical depth is shown as
the dark blue function shown in figure 5.4

This static value can only be used for a ground based observer and in order
to expand its use to observers with variable altitude it is assumed that the
optical depth at the horizon is constant (infinite), following the description
presented in section 2.4.1. Using this assumption, the optical depth of a
viewing ray over the skydome is calculated as an interpolation between a
dynamically calculated zenith value and the static value given by (5.8).

The vertical (zenith) optical depth can be calculated analytically. The
(optical) density of molecules and aerosols has to be determined individu-
ally, but if exponential falloffs are used for both, the process is identical,
assuming that the density of the atmosphere is given by.

ρmolecules = 1.2 · e
−h
8400 (5.9)

Where 8400 is the scale value.

The integrated density (optical depth)6 along a vertical path from an alti-
tude h to hinfinity is given by.

Tzenith = c · 10000 · e
−h

10000 (5.10)

6integrated density and optical depth are proportional. Consequently, they can be
used interchangeably. In this thesis, most values are given as nondimensional values
because the significance is on the characteristics of the functions, not the exact values.
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Figure 5.4: Profiles of optical depth of the skydome for different observer al-
titudes. On the baseline, a value of 1 corresponds to zenith and a value of 0
corresponds to the horizon.

Where c is a constant used to adjust the function to give the desired visual
results. The scale value is changed to 10000 in order to provide a more
visually convincing result.

Using equation (5.10), it is possible to adjust the vertical optical depth each
frame based on observer altitude. To expand this to the rest of the skydome,
it is proposed to simulate the optical depth of the skydome by interpolating
between the dynamic zenith optical depth and the static optical depth
Tskydome. The interpolation is done using the parameter f given by (5.7),
in such a way that the dynamic value completely dominates the final value
at zenith and the static value completely dominates at the horizon. The
resulting functions for optical depth for a few different observer altitudes
can be seen in figure 5.4.

The most important result of this function is that it is possible to capture
the darkening of the sky that results when the observer is high in the
atmosphere.
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Chapter 6

Implementation

In the following the details of the implementation are described. The im-
plementation is based on the DirectX sample framework. This means that
most of the basic structures of the program are based on classes provided
in the DirectX SDK. This includes things like initialization of devices and
windows and the basic application structure.

On top of this basic application structure a system is implemented for
rendering a world consisting of a sky and terrain. This system is used to
demonstrate the workings of the scattering shaders.

The basic structure of the application is shown in (figure 6.1). The CApp-
Form class is derived from the basic DirectX application class provided by
the SDK.

The most important components of the application are the Terrain ren-
derer, the CROAM class and the CSky class, which are responsible for
rendering the skydome. The CROAM class handles simplification and ren-
dering of the height map while CSky gives access to various atmospheric
and sun data and renders the skydome.

6.1 Code Structure

The structural layout of the implementation is shown in figure 6.1. The
CAppForm class is the base class provided by the DirectX sample frame-
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Figure 6.1: Class structure diagram for the Outdoor Rendering application.

work. It provides the basis of the implementation and includes the main
starting point.

The two classes responsible for rendering of the sky dome and the terrain
are the CSky and the CROAM classes. Several related parameters needed
when rendering both the sky dome and the terrain are shared between the
CSky and the CROAM classes. These include the atmospheric conditions
stored in the CAtmosphere class, the sun intensity and direction stored in
the CSun class and the position of the observer and view parameters stored
in the CCamera class.

In addition to being the main access class for atmospheric information, the
CSky class is responsible for rendering the sky dome geometry stored in
the CSkydome class.

The CBase class contains various debugging functions, and the CTerrain
class provides basic functions like the loading of height fields to the CROAM
class.

The system was designed to be easily transferable to other systems. Only
four classes need to be touched by the application; the CSun, CSky, CCam-
era and the CROAM classes.
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6.2 Optical Depth Estimations

As described in section 5.2, the scattering is calculated on basis of an esti-
mated optical depth. This corresponds to estimating the integral equation
(3.3).

The integral can be interpreted as the average optical density of the path
timed the distance. t = βλ(ρavg · s) where β varies with wavelength and
separate values of ρ have to be used for particles and aerosols.

6.2.1 Areal Perspective

To determine the average optical depth of a path between the observer
and an object in the terrain, two different methods are implemented as
described in section 5.3.1. Both methods can be calculated using roughly
the same amount of operations in the vertex shader. The following is a
short explanation on the implementation of the two methods.

In the average altitude method, the average altitude of the observer and
the vertex is calculated. havg = V ertex.y+Eye.y

2 . This is then used to
calculate the density at the average altitude, using an exponential equation

as described in section 5.4.1 ρavg = Tavg = e
−havg
scale where scale varies for

aerosols and molecules.

In the average density method, the density at the eye point is calculated
before rendering and stored in a constant register. This is done for both
molecules and aerosols. In the shader, the density at the vertex is calcu-
lated. Both densities are calculated using the same exponential equations
used to determine the density at the average altitude in the previous para-
graph. When the two densities are determined, the average density is
calculated as ρavg = Tavg =

ρvertex+ρeye

2

From the average optical thickness, calculated using one of the described
methods, the optical depth is obtained by multiplying with the distance
from the viewpoint to the vertex.

6.2.2 Sky Color

The optical depth of a view path through the atmosphere is determined by
the zenith angle of the viewing ray and the altitude of the observer.



76 Chapter 6. Implementation

As described in section 5.4.1, a static optical depth is calculated. To speed
up the rendering, this is encoded into the second texture coordinate of the
skydome. The parameter calculated by equation (5.7) is stored in the first
texture coordinate.

The vertical or zenith optical depth Tz is precalculated each frame and
stored in a constant register, where it is used to determine the final optical
depth to a given vertex by interpolation, as described in section 5.4.1.

To determine the optical depth of a given vertex in the skydome the fol-
lowing equation is used.

Tvertex = Texv + Texu(Tz − Texv) (6.1)

Where Texv is the static optical depth calculated using equation (5.8) Texv

is the parameter value and Tz is the zenith optical depth given by (5.10).
All of these parameters are precalculated and the final depth computation
(equation 6.1) is done in a single instruction for each vertex.

6.3 Terrain Rendering

In flight simulators, the terrain rendering algorithm needs to be able to
handle large datasets at a vide range of viewing distances and angles. This
requires the terrain rendering algorithm to be able to fluently adapt the
level of detail for the visible part of the terrain.

Several algorithms capable of this have been developed. They all have
different pros and cons and a thorough discussion of them is beyond the
scope of this thesis. I have chosen to use an algorithm called ROAM (Real-
time Optimally Adaptive Meshes).

I have chosen to use version 2 of the algorithm [4]. The main difference
between the two versions is a change of the underlying data structure from
triangles to diamonds, where each diamond is characterized by a single
vertex in its center. The actual triangles of the diamond is composed of the
center vertices of its parents and ancestors in the diamond tree structure.
This leads to a faster and more memory conserving implementation [19].

When a optimal set of terrain triangles has been generated, the change
from one frame to the next is usually relatively small. This can be used to
optimize the algorithm by modifying the (almost optimal) triangle set from
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Figure 6.2: Adaptive tessellation of terrain data using ROAM.

the previous frame, instead of rebuilding the triangle tree from scratch for
each frame. ROAM does this by adding the diamonds associated with newly
created diamonds to a priority queue, and then, for each frame, subdividing
or merging these triangles based on their priority. This priority is based on
the distance from the camera and how rough the terrain is. If the terrain
areas are rough, diamonds need to be split earlier than they do in flat
terrains areas.

Because the proposed scattering algorithm is based on a per vertex calcu-
lation, it can produce artifacts if the tessellation of the terrain is unevenly
distributed. The tessellation produced by the ROAM algorithm is con-
trolled by an error metric, which calculates the priority of a given diamond,
based on the distance from the viewpoint and the change in contour that
a split of the diamond would create.

This allows the error metric to be tuned, so that the terrain is tesselated
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Figure 6.3: The viewing path crosses the skydome at different angles for different
observer altitudes, if the dome is positioned static with respect to the observer.

primarily based on the distance from the camera, removing any large screen
space triangles (figure 6.2).

6.4 Sky Rendering

The sky is modelled as a spherical dome with the optical depth and a
interpolation parameter encoded in the texture coordinates, as described
in section 6.2.2.

Since the skydome constitutes the background of the image, it can be ren-
dered first without writing to the z-buffer. This assures that anything
rendered after the skydome is rendered in front of it. The advantage is
that this allows us to render the skydome as a small dome. In this case it
is rendered as a hemisphere with a one kilometer radius. If the skydome
has been rendered at the edge of the viewing range, effects resulting from
z-buffer fighting and numerical inaccuracies might occur.

The small dome does, however, present a problem if the observer is po-
sitioned statically with respect to the dome. When the observer changes
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Figure 6.4: When a skydome is tessellated using a latitude longitude approach
the tessellation is considerably denser at zenith compared to the equator.

altitude, the angle of the viewing path towards the horizon is changed (fig-
ure 6.3). This will make the gradual change in sky color close to the horizon
climb and descend with the observer. To compensate for this effect, the
position of the observer along the zenith axis of the sky dome is altered
slightly when the observer changes altitude, assuring that the horizon is
kept roughly at a constant angle α.

Because the scattering calculations are performed on the vertex level, the
method is somewhat dependent on tessellation. This means that it requires
a lot of triangles to render the skydome.

6.4.1 Sky Dome Tessellation

A skydome is usually created similar to the earths geographic system, using
a set of latitude and longitude lines. This results in a situation, where
the skydome is finely tesselated at the zenith, while triangles close to the
horizon are large (figure 6.4). To get a good tessellation at the horizon
using a system like this, there will be a considerable waists of triangles
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close to zenith.

Figure 6.5: Screen shot of dome evenly tessellated to minimize the amount of
vertices needed.

To improve this, an algorithm to calculate a uniformly tesselated dome has
been constructed. The basic idea is to keep the distance between longitude
bands constant, and then tessellate each band using roughly equal size
triangles. The result is demonstrated in figure 6.5.

The basis of the algorithm is to divide the latitude bands into equal pieces
and then create the triangles at these points. From time to time this will
result in an extra triangle being added or removed depending on weather
the band is expanding or contracting compared to the previous band. The
areas where this happens can be seen as bands radiating out from the center
in figure 6.5.

The algorithm uses a series of conditional expressions to determine when
to insert an extra triangle. A listing of the section of code responsible for
generating the triangles can be seen in section E.3.
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6.5 Vertex and Pixel Shader Implementation

The main part of the scattering simulation is done using vertex shaders.
Part of the scattering implementation could have been implemented using
pixel shaders.

The extinction factor could have been found using a texture lookup, where
the texture coordinate is a function of the optical depth and would have
to be calculated for Mie and Rayleigh scattering separately. The inscatter
factor could be found in similar ways, using a 2d texture, where one texture
coordinate is a function of of the optical depth and the other a function
of the angle from the sun θ. Because both parts would require separate
texture lookups for Mie and Rayleigh scattering factors, the pixel shader
implementation requires 4 textures; two for extinction and two for inscat-
tering. In addition, most of the calculations would still need to be done
in the vertex shader to get the correct optical depths and to adjust the g
parameter in the Henyey-Greenstein phase function.

Because of these difficulties, it was chosen to do all scattering calculations
using vertex shaders and apply the inscatter and extinction factors as vertex
colors. This leaves the pixel shader to apply the extinction factor and add
the inscattering.

As described in section 4.2.1, vertex shaders operate on individual vertices
received from a vertex buffer, using a combination of constant registers and
mathematical instructions.

Solving the scattering problem involves solving equation (5.1). Doing this
per vertex involves precalculating some values and storing those in constant
registers, combined with a calculation using the available instructions. The
code responsible for setting the constant registers can be seen in appendix
E.1 and E.2.

The result of the vertex shader operations is passed to the pixel shader,
where final color computation is conducted.

The pixel shaders for rendering the skydome and terrain are rather differ-
ent. The pixels shader of the skydome is simply an interpolation of the
inscattering calculated at the vertices. The coloring of the terrain involves
lighting calculation and texturing, as well as the extinction and inscattering
contributions.
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Constant Description

WorldViewProj Combined World View And Projection matrix
for positioning and projecting the vertices into
screen space.

LightDir Direction of the sunlight in world space.
vSunColorIntensity The RGB color of sunlight and the intensity of

the sun. Esun

vBetaRayleigh The total Rayleigh scattering term. βR

vBetaDashRayleigh The total Rayleigh scattering term multiplied by
the term used in the Rayleigh scattering phase
function. 3

16π βR

vBetaMie The total Mie scattering term. βM

vBetaDashMie The total Mie scattering term multiplied by the
term used in the Mie scattering phase function.
1
4π βM

vOneOverBetaRM Combined Mie and Rayleigh total scattering con-
stant, optimization to avoid having to do the ad-
dition in the vertex shader.

vHG Vector containing recalculated elements of
the Henyey-Greenstein phase function equation
(5.3). [ 1 − g2 1 + g2 2g · ]

vEyePos The position of the observer in world space.

Table 6.1: Constants used in the terrain and sky shaders.

Because all shader programs are written using HLSL, the compiler controls
which constants to occupy which registers, and any direct reference to
register numbers in the following is purely for illustrative purposes.

6.5.1 Constant Registers

The precalculated values are stored in constant variables, of which many
are common between the sky shader and the terrain shader. The common
values are given in table 6.1

In addition to the common constant registers, the sky shader and the terrain
shader each has a few individual constants. These are mainly caused by the
different ways of estimating the average optical depth for areal perspective
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Constant Description

vDensityAlt The density of the atmosphere at the observer
altitude, used to calculate average density.

texDetailFactor Constant variable used to calculate the texture
coordinate for the detail texture. Controls the
number of times the detail texture is repeated
across the terrain data set.

LightDirDot Light direction modified to be used in normal
map lighting. The normal map considers z to be
up not y.

Table 6.2: Constants used only in the terrain shader.

and sky color. Individual shader constants for the terrain and sky shaders
are given in tables 6.2 and 6.3 respectively.

Constant Description

vDensityAlt The integrated vertical density from the obser-
vation point to the edge of the atmosphere.

Table 6.3: Constants used only in the sky shader.

When using the effect file framework (section 4.2.4), it is possible to define
the constants directly in the effect file. In the current implementation, most
parameters are set for each frame by the application. This makes it possible
to couple the parameters to user input and change them at runtime, which
is a great help during development.

6.5.2 Vertex Shader

The vertex shaders for the skydome and the terrain are almost identical.
This is especially true for the part that relates to the calculation of atmo-
spheric scattering.

Both shaders are implemented using HLSL programs in the effect frame-
work. The full effect files can be seen in appendix D on page 123.

In table 6.4, a description of the processing of vertices in the terrain vertex
shader is outlined. The only difference between this and the sky vertex
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shader is that the optical depth is estimated differently, see section 6.2.2,
and that the extinction term is not transferred to the sky pixel shader.

6.5.3 Pixel Shader

The pixels shader for the skydome simply interpolates the vertex colors.
The pixel shader for the terrain is a little more interesting.

For the terrain pixel shader, the extinction and inscattering terms are used
to perform an interpolation between the texture color of the terrain and an
inscattered color of the atmosphere. The color of the terrain is calculated
by multiplying the basic texture with a normal map lighting calculation.
This result is multiplied by the extinction term and the inscattered color
is added.
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Description Function

Calculate molecular and aerosol den-
sity at the vertex position.

ρm = e−vert.y/15000

ρa = e−vert.y/5000

Calculate average molecular and
aerosol density. ρm,a =

ρm,a+ρeye
m,a

2

Calculate vector from eye point to
vertex.

~v = vert.xyz − eye.xyz

Calculate length of ~v l = ‖~v‖

Normalize ~v ~v = ~v
l

Multiply ρm,a by l to get optical
depths.

tm,a = ρm,a · l

Calculate extinction term. x = eβM ta+βRtm

Calculate the cosine of the angle be-
tween the sunlight and the view vec-
tor ~v

cos(θ) = ~v · ~sun

Calculate the modified rayleigh
phase function term.

βR(θ) = 2 + 1
2 cos θ

Calculate the Henyey-Greenstein
phase function term. (vHG is the
constant described in table 6.1)

hg = vHG.x
(vHG.y−vHG.z·cos(θ))3/2

Calculate inscatter terms. c1 and
c2 are the constants vBetaDash −
Rayleigh and −Mie (table 6.1)

Iray = c1 · βR(θ)
Imie = c2 · hg

Calculate inscattering. csun is the
constant vSunColorIntensity

temp =
Iray+Imie

vOneOverBetaRM
temp = temp · (1 − x)
Itot = temp · csun

Extinction x and inscatter Itot is out-
put to the pixel shader.

Table 6.4: Description of the work done in the terrain vertex shader.
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Chapter 7

Results

To compare the proposed method to previous methods, and to evaluate the
solution of the described problem, a series of test scenes are shown. Each
scene demonstrates a specific property of the system, and where possible
scenes are presented alongside reference images from real life.

Figure 7.1: View of the sky 90 degree angle to the sun at sunset. The directional
effect of the Rayleigh scattering phase function is only just visible.

Depending on the described problem, a mixture of images from previous
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solutions and real life has been used as references.

7.1 Sky Color

To present the capability of the method to capture the color of the sky at
different atmospheric conditions and for various positions of the sun and
observer, a series of specific requirements and the accompanying results of
the developed system is presented.

7.1.1 Rayleigh Scattering Intensity

The relative strong directional dependency of rayleigh scattering caused
visible artifacts for the method proposed by Hoffman and Preetham [10].
This is clearly visible in the image shown in figure 3.8 page 49.

Figure 7.2: Image of the sky at a clear day with the sun approximately 10
degree above the horizon. The directional dependency of Rayleigh scattering is
hardly visible.

Using the modified Rayleigh scattering phase function, a result similar to
the one seen in figure 7.1 is obtained. This is much more in line with the
results observed in nature.

7.1.2 Effect of Observer Altitude on Sky Color

The reduction in the optical depth above the observer results in a darkening
of the sky above when flying at high altitude. Figure 7.3(a) - 7.3(c) shows
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(a) Rendering at ground
level

(b) Rendering at altitude 16
km

(c) Rendering at altitude 30
km

(d) Picture at altitude 500
feet

(e) Picture at altitude
50000 feet

(f) Picture at altitude
100000 feet

Figure 7.3: The change in sky color that happens when the observer climbs up
through the atmosphere. Shots taken at ground level, 16 km and 30 km

the result obtained using the proposed system.

For comparison, a series of pictures taken from the cockpit of a Danish
F-16 fighter aircraft and a picture taken from a research balloon are shown
in figure 7.3(d) - 7.3(f)

In both the images rendered by the proposed system and the images taken
of the real atmosphere at different altitudes, it can be seen that the color
of the horizon stays white and bright regardless of the observer altitude.
It can also be seen that the sky closer to zenith gets darker with increased
observer altitude.

This ability to capture the effect of change in atmospheric depth was one
of the important improvements that was presented as requirements in the
problem description.
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(a) Sun direction rendering (b) Sun direction picture

Figure 7.4: The color of the sky brightens and intensifies fast as the view direc-
tion approaches the sun.

7.1.3 Change in Sky Color Close to the Sun

The color of the sky changes fast when the view approaches the sun. This
is the result of the Mie scattering phase function. This effect can be seen
in figure 7.4.
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7.1.4 Sky Color with Changing Sun Position

The color and intensity of the sky change during the day. This effect is
most noticeable at sunrise and sunset. Figure 7.5 shows the result of a
rendering of the sky color during sunset.

(a) Zenith angle 25◦ (b) Zenith angle 50◦

(c) Zenith angle 85◦ (d) Zenith angle 93◦

Figure 7.5: The color of the sky during sunset and sunrise, demonstrating the
increased intensity close to the sun and the reddening of the sky close to the
horizon.

7.2 Areal Perspective

The capability of the method to capture the effects of areal perspective is
presented, using a series of examples.
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7.2.1 Blue Color of Distant Mountains

The color of distant objects is attenuated by extinction and inscattering.
Because the wavelength dependency of areal perspective is not captured
correctly by traditional hardware fog, it will, in some situations, especially
on clear days, make the environment look a bit boring.

Figure 7.6: The color of distant objects is attenuated.

Figure 7.6 demonstrates this effect. Notice that the mountains in the fore-
ground are colored blue by the inscattered light, while the color of the more
distant peaks and especially the valleys is more yellow or white.

7.2.2 Variation in Visibility with Terrain Altitude

When looking at distant terrain features, the peak of mountains will often
be less attenuated than the objects at a lower sea level altitude. This is
caused by the thinning of the atmosphere with altitude, which results in a
relatively shorter optical depth to the mountain peak.

The ability to capture these effects is one of the main problems to be solved
by the proposed system.
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(a) Average density (b) Average altitude

(c) Real world

Figure 7.7: The optical depth varies with the altitude of the observed terrain.
The mountains are seen emerging from the denser lower atmosphere. Image (a)
shows the effect of using the average density, image (b) shows the effect of using
density at average altitude, image (c) shows the effect in real. Notice that the
mountain range in the background seams to emerge from the atmosphere much
clearer than the valley in front of it.

Figure 7.7 demonstrates the effect of terrain altitude on the the optical
depth of the viewing ray. The mountains are shown emerging from the
denser atmosphere at the valleys. The vertical scale of the terrain has been
increased to make the effect more visible. Consequently, the mountain in
the foreground is approximately 13 km high.
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(a) Observer altitude 2 km (b) Observer altitude 8 km

(c) Observer altitude 12 km (d) Observer altitude 16 km

Figure 7.8: The visibility increases when the observer altitude is increased. This
is a result of the lower average density of the atmosphere penetrated by the view
path. The images are generated at the same horizontal position, and it is clear
that distant mountains emerge as the viewpoint is raised.

7.2.3 Variation in Visibility With Observer Altitude

Objects which might appear extinct and barely visible at ground level
will often become clear and display improved contrast when climbing up
through the atmosphere. This happens because the average density of the
atmosphere through which the observer sees falls when the observer alti-
tude is increased.1 This is basically the same effect described in section

1The curvature of the earth creates a natural limitation on the visibility at low al-
titudes, but this is only a factor when considering relatively low objects in really flat
terrain.
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7.2.2 and they are both simulated in the same way.

Figure 7.8 demonstrates this. In image 7.8(a) at 2 km. the distant hills are
barely visible. On subsequent images (7.8(b), 7.8(c), 7.8(d)) at 8, 12 and
16 km. the hills in the background become more and more visible.

(a) Clear day (b) Light haze

(c) Medium haze (d) Strong haze

Figure 7.9: Variations in areal perspective as a result of variations in the amount
of aerosols in the atmosphere.

7.2.4 Visibility as a Result of Aerosol Concentration

When the amount of aerosols in the atmosphere changes, the color and
intensity of scattered light change as well. This is known as haze.

Figure 7.9 shows the effect of change in the amount of aerosols in the
atmosphere. In the first picture, the mountain range at the end of the valley
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is clearly visible and only a slight inscattering of blue light is visible. In the
last picture, the mountain range is completely extinct and the inscattered
light is white or yellowish.

(a) Looking in the direction of the sun (b) Looking away from the sun

Figure 7.10: Variation in visibility when looking in the direction of the sun and
away from the sun at sunset and sunrise. Image (a) shows the reduced visibility
when looking in the direction of the sun, compared to the visibility when looking
away from the sun image (b).

7.2.5 Variations in Areal Perspective with Sun Direc-

tion

When the sun is close to the horizon, visibility varies with the view direc-
tion. Looking close to the sun, the inscattering is higher than when looking
away from the sun, and, as a result, the visibility is greater.

Figure 7.10 demonstrates the effect of the directional dependency of at-
mospheric scattering on areal perspective and visibility. The first image
7.10(a) shows the strong inscattering when looking close to the sun. The
color of the inscattered light is the bright yellowish color of the sunlight,
indicating that the Mie scattering dominates. This is in contrast to the
second image 7.10(b) from the same location and sun altitude, but now
looking in the opposite direction. The visibility is much improved and
the inscattered light turns the mountains blue, indicating that Rayleigh
scattering dominates.
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(a) Old system ”constant
density” 2000 m

(b) Old system ”constant
density” 10000 m

(c) Old system ”constant
density” 30000 m

(d) New method ”variable
density” 2000 m

(e) New method ”variable
density” 10000 m

(f) New method ”variable
density” 30000 m

Figure 7.11: Demonstration of the differences of a system that includes density
change to one that don’t.

7.3 Comparison with Previous Methods

In this section, the implemented system is compared to the system devel-
oped by Hoffman and Preetham. Some of the images are created using
the original demo application developed for Siggraph 2002, while others
are created by implementing their methods in the application developed to
demonstrate the expansions proposed in this thesis.

7.3.1 Density Effect on Sky Color

It was established in section 1.2 that the change in sky color with altitude
is important for flight simulator environments. The system proposed by
Hoffman and Preetham is not developed to cover these effects. This is the
main issue requiring the system to be expanded. Figure 7.11 demonstrates
the difference between a static sky color and a sky color that changes with
altitude.
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7.3.2 Density Effect on Terrain Visibility

When the density falloff in the atmosphere is modelled, a higher altitude
will make it possible to see farther. This capability will be missing in a
constant density system. Figure 7.11 demonstrates this. It can be seen that
visibility is slightly better at the constant density model when at 2000 m
(7.11(a), 7.11(d)), while at an altitude of 10000 m (7.11(b), 7.11(e)) this
has changed, making visibility slightly better for the proposed (variable)
density system.

Figure 7.12: Rendering of the skydome using the demo application supplied by
Hoffman and Preetham. Notice the darkening of the sky in the center.

7.3.3 The Modified Rayleigh Phase Function

As described in section 3.2.1, the direct mapping of intensities to RGB
colors cause artifacts. This is also present in the application by Preetham
and Hoffman, as can be seen in figure 7.3.2. Another thing left out in their
application is the change in optical depth from zenith towards the horizon.
However, this must be considered an implementation issue.

7.4 Artifacts and Limitations

In this section, problems with the current method are described. Some
of the issues are issues that can possibly be avoided but present certain
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(a) Artifacts as a result of poor tessellation
on sky dome

(b) Wire frame demonstrating the tessella-
tion

(c) Artifacts as a result of poor tessellation
on terrain

(d) Wire frame demonstrating the tessella-
tion

Figure 7.13: If the tessellation is insufficient artifacts will occur as a result of
the interpolation of the vertex calculated scattering parameters.

requirements to the implementation.

7.4.1 Tessellation Artifacts

Because the scattering effects are calculated on the vertex level, the method
is somewhat dependent on tessellation. Figure 7.13 demonstrates the result
of insufficient tessellation of the skydome and terrain.
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Figure 7.14: Artifact in the areal perspective rendering prevents the color of
the terrain and skydome to blend smoothly, revealing the end of the visible world.
This only happens at high altitude when aerosol concentration is high.

7.4.2 Mie factor artifact

At some points the horizon becomes visible as the perfect blend with the
sky color is lost, this happens when the optical depth calculated for the
terrain at the horizon is too small resulting in a contribution from the
original terrain color.

7.4.3 Clamping Artifact

At some points the inscattering contribution exceeds the maximum value
displayable on a computer screen. This leads to clamping artifacts as can
be seen in figure 7.15
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(a) Within the displayable range (b) Values out of displayable range

Figure 7.15: When the calculated color values exceed the values displayable on
the monitor clamping occurs. Notice the sudden change from blue to white in (b).
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Chapter 8

Discussion

In this section, the pros and cons of the implemented solution are evalu-
ated. First, the different parts of the solution will be analyzed separately,
followed by a general analysis of the ability of the whole system to fulfill
the requirements, as described in section 1.2. Finally, any possible future
improvements to the method are discussed.

8.1 Scattering Models

In section 5.2 it was decided to ignore the full spectral radiometric equation.
Instead it was proposed that the effects of atmospheric scattering could be
simulated using simplified RGB vector calculations.

Using RGB vectors has shown to be a good compromise between speed and
accuracy. Using simple equations based on RGB vectors makes it possible
to implement the scattering calculations in vertex shaders.

Because the method only samples the three RGB colors and not the full
spectrum, the chosen wavelengths of the red, green and blue components
can be seen as a weight given to that specific color. This happens because of
the wavelength dependency of both Mie and especially Rayleigh scattering.

This weight can be used to modify the amount of red, green and blue pro-
duced by the system and, as such, tune the system to produce as visually



104 Chapter 8. Discussion

pleasing results as possible. However, this possibility will not guarantee
correct results in all circumstances, only a full spectrum calculation can do
that, but, in practise, the proposed method has proven to produce convinc-
ing results with few artifacts and must be considered a clear improvement
compared to previous methods.

8.1.1 Rayleigh Scattering

The modified Rayleigh scattering phase function equation (5.2) has proven
to provide a good compromise. Because of the relative week angular de-
pendency, it can be argued that it could be abandoned all together and
that Rayleigh scattering should be modelled as having no directional de-
pendency.

While most users would probably never notice the missing directional com-
ponent in the Rayleigh scattering calculations, it has been included for
accuracy and because the computational requirements are small.

The primary results of Rayleigh scattering, the blue color of the sky and
the blue attenuation of distant objects, are captured well by the system.
The white or yellow color of the inscattered light as the optical depth of
the viewing path approaches infinity (see section 2.4.1) is also handled by
the system.

The scattering equation (5.1) is derived from the work done by Hoffman and
Preetham [10] and their system was able to capture the effects of Rayleigh
scattering as well. However, their method does produce some artifacts not
present in the proposed system. Because they use the Rayleigh scatter-
ing phase function directly (equation 2.1), while at the same time treating
the RGB calculation as true radiometric calculations, the directional de-
pendency of Rayleigh scattering is exaggerated, as can be seen from figure
3.8.

8.1.2 Mie Scattering

The use of the Henyey-Greenstein phase function makes it possible to cap-
ture the strong directional dependencies of Mie scattering. This increases
the perceived realism of the sky color, especially close to the sun.
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The proposed system is capable of rendering the bright region surrounding
the sun when the sun is high in the sky, as well as the impressive coloring
of the sky during sunset and sunrise (figure 7.5).

When the concentration of atmospheric aerosols is changed and the amount
of Mie scattering is increased, it creates problems because of the limited
dynamic range of the display system. One consequence is that the bright
white area surrounding the sun grows and the clamping of the color values
becomes visible.

Because second and higher order scattering is ignored, the inscattered light
from directions far from the sun hardly increases when the Mie scattering
factor is increased. Because the increased extinction is not balanced by an
increased inscattering, the environment ends up looking dull and washed
out.

Both of these problems are greatly reduced by altering the shape of the
Henyey-Greenstein phase function by altering the g parameter, see equation
(2.6).

To simplify the problem of adjusting the g parameter, a simple linear equa-
tion calculating the g parameter as a function of sun zenith angle, observer
altitude and Mie scattering concentration was proposed (equation 5.4).

This equation is a clear improvement compared to the method developed
by Hoffman and Preetham, where 3-5 parameters had to be adjusted for
each scene to look convincing. However, although a clear improvement, the
proposed linear fit still contains some artifacts and could be improved.

In the current implementation, similar parameters are used to calculate
the g parameter for the terrain and the skydome. Some improvements
might be possible by optimizing the linear equations for the ground and
sky separately. It may also be possible to use higher order functions to
calculate the g parameter and, in that way, get a better result.

8.2 Sky Color

Using the scattering equations to color the sky has proven to be a useful
option. Compared to the method of Hoffman and Preetham, the proposed
method is, while based on the same basic principle, able to produce much
more convincing color, requiring a lot less user interaction.
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The modification of the Rayleigh scattering phase function, combined with
a linear equation to adjust the Henyey-Greenstein phase function, results
in visually convincing images that allow the user to move around in the
environment without needing to modify the parameters of the system.

The use of both a constant depth at the horizon and a variable depth
towards zenith makes it possible to simulate the effects of the reduced
inscattering and consequently much darker sky above the observer at high
altitudes, producing results very similar to those seen in the real world (see
figure 7.3).

8.3 Areal Perspective

Compared to traditional hardware range based fog, the proposed system
creates a much more convincing simulation of the effects of areal perspec-
tive. This clearly demonstrates the advantages of the method developed
by Hoffman and Preetham.

The method proposed by Hoffman and Preetham was, however, unable to
cope with the effects of change in atmospheric density with altitude. For a
flight simulator this is clearly necessary and their method is insufficient in
that respect.

The proposed expansion of the method, where atmospheric density is taken
into account, functions well, especially in a flight simulator environment.
It makes it capable of displaying effects that depend on the altitude of the
terrain and observer, like the ones described in sections 7.2.2 and 7.2.3.

The simulation of areal perspective is important for the sense of distance
in the scene. At the same time, it is used to hide the fact that the visible
world ends abruptly at the far clipping plane.

Because the method accounts for varying atmospheric density the average
atmospheric density from the observation point to the horizon changes as
well. This leads to a visual artifact in some areas, where the horizon of the
terrain becomes visible against the color of the skydome, see figure 7.14.
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8.4 Optical Depth Estimates

The idea of using an estimated average optical depth in the calculation of
atmospheric scattering has proven capable of producing visually convincing
results.

The basic idea is somewhat similar to the idea proposed by Klassen in [14].
He proposed using two layers of constant density atmosphere, and then
adjust the thickness of the layers to account for varying optical density
along the path. In the proposed method, the average atmospheric density is
estimated, each frame using a set of simple equations that can be evaluated
in real time.

The proposed method demonstrates that it is possible to achieve good
results using simple models for the determination of the average optical
depth. This follows a general observation that the human vision system
has a much higher tolerance for small errors associated with inaccuracies,
compared to the tolerance of an effect missing completely.

Considering the simplicity of the proposed model and the relatively good
results, one might argue that it would be possible to determine the average
atmospheric density based only on observer altitude while ignoring eleva-
tion differences in the terrain. This approach would be feasible for scenes
containing flat terrain, where all visible terrain features were at roughly the
same altitude. But, as can be seen from figure 7.7, for rough mountainous
terrain, the difference in atmospheric density in valleys and at mountain
peaks results in visible difference in the effect of areal perspective. This
shows that the vertex altitude can not be ignored when determining the
optical depth.

8.5 Problems and Future Improvements

Two main issues remain with the proposed method. One is adjusting the
inscattered sunlight to prevent clamping issues as those presented in figure
7.15. The other issue is assuring that the horizon and the terrain blends
together smoothly, failing to do this will cause artifacts as the one shown
on figure 7.14.

Clamping issues are a result of the inscattering values exceeding displayable
values. The most obvious source of clamping problems arises when the sun
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sets. As the sun approaches the horizon, the strong directional inscattering
resulting from Mie scattering combines with the already bright Rayleigh
inscattering through the thick atmospheric path close to the horizon.

Because the problem is caused by the Mie scattering part βM (θ) from
equation (5.1), which is enforced by the large optical depth if the viewing
path is closer to the horizon, it is hard to totally eliminate the problem.
The sky should be bright close to the sun even when the sun is high in the
sky as demonstrated on figure 7.4, and, at the same time, The directional
factor should remain at sunset and sundown without half of the sky turning
white.

The problem is partly solved by reducing the intensity of the sunlight as
the sun descents and partly by reducing the directionality of the Henyey-
Greenstein phase function as described in section 5.2.2 equation (5.4).

Unlike the method proposed by Dobashi, Yamamoto and Nishita [3], the
proposed system is unable to capture volumetric effects like shafts of light
and cast shadows. However, rendering these effects requires an amount of
resources, especially from the graphics card, that prohibits the simultaneous
running of a flight simulator.

Their method is able to render environments similar in structure to those
presented in this work at around 5 frames per second, with a screen reso-
lution of 720x480. With modern graphics hardware this might be 10 - 15
today, but for this method to be used in a flight simulator it is estimated
that it should be running at more than 100 frames per second in a stand
alone application. It is not unlikely that this will be possible in a few years
and, by that time, their method would be capable of increasing the visual
realism beyond the capabilities of the proposed system.

In the near future (first half of 2004), hardware capable of doing texture
lookups in vertex shaders will emerge. Such a texture could be used to
determine the optical depth, using the altitude of the vertex and the eye
point as texture coordinates. It could also be possible to use textures for
phase functions and, as such, they could present a potential speedup of the
proposed system.
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Chapter 9

Conclusion

Computer hardware has reached a level, where new levels of visual real-
ism are becoming possible. For demanding real time rendering systems
like flight simulators, one such improvement is the realistic rendering of
atmospheric scattering effects.

In this thesis, a system is proposed that is capable of rendering effects,
which, so far, have been limited to non real time rendering or, at best,
interactive rendering systems. The developed system builds on the work
of previous researchers, particularly on the work of Hoffman and Preetham
[10].

These effects represent important visual clues like the change in the color
of the sky for different positions of the sun, varying observer altitude and
different concentrations of atmospheric aerosols.

In addition to the improved simulation of sky color, the method contains
a clear improvement to the simulation of areal perspective, which has tra-
ditionally been simulated using range based fog. The proposed method
is capable of capturing the change in areal perspective that results from
changes in observer altitude and variation of terrain height.

These effects are important in flight simulator environments. They play a
role both for the immersion and for the tactical environment. Some im-
provements are possible, specifically to the functions that adjust the direc-
tionality of the Henyey-Greenstein parameter and the intensity of sunlight.
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In the future rendering of scattering effects, could be simulated using vol-
umetric rendering techniques. Such techniques have been introduced by
Dobashi [3] but are not yet efficient enough for inclusion in a flight simula-
tor rendering system.

9.1 Summary of the Proposed System

The main new idea in the proposed system is that a relatively simple set of
equations can be used to calculate the optical depth between a point in the
scene and the eyepoint. The main problem when calculating the optical
depth is the variation in atmospheric density, which requires the solution
of an integral to determine the optical depth.

In this thesis, it is proposed to determine the optical depth as the aver-
age density along the view path multiplied by the length. Two different
methods have been proposed to calculate the average density.

1. To calculate the density at the average altitude (the midpoint of the
view path).

2. To calculate the average density as the average of the density at the
two endpoints.

It was determined that the last method provided the most visually con-
vincing results, even though the first method provided the most physically
correct results (figure 5.2).

Another important improvement is a way of adding a variable optical depth
to the skydome. The variable optical depth is dependent on the altitude
of the observer, and this dependency is strongest close to zenith and then
gradually falls, resulting in a constant optical depth at the horizon. This
allows the horizon to be seen as having a constant infinite optical depth,
which is coherent with what is seen in the real world.

The proposed method of determining the average density, combined with
improvements to the optical depth of the skydome, adjustments to the
Rayleigh Phase function and the calculation of the Mie scatter factor g,
has expanded the system proposed by Hoffman and Preetham to the point,
where it is suitable for inclusion in a pc based flight simulator.
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9.2 Fulfillment of the Hypothesis

The ideas and propositions presented in the hypothesis have all shown to
be possible. Thus, they represent a solution to the problem described in
section 1.2.

The proposed method represents a clear improvement compared to previous
methods, when viewed both in terms of speed and visual realism. The
proposed system include effects, caused by the variation in atmospheric
density with altitude. In addition several other parts of the rendering
system, have been modified, to give better results when mapping directly
from calculated intensities to RGB colors.

The idea of using the scattering theory as a guideline for the development of
a system aimed at producing visually pleasing results rather than physically
correct ones. Has proven successful.

Some effects are still beyond the capability of the proposed method. These
include volumetric effects like shafts of light and the corresponding shadow
shafts as shown in figure 3.9.
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Appendix A

Instructions for the Demo

Application

For moving around in the landscape the arrow keys are used, the Home
and End keys are used for vertical rotation.

The Z and X keys are used to control the sun zenith angle, and the C and
V keys are used to control the amount of aerosols (Haze) in the atmosphere.

Key Action

UP ARROW Move forward
DOWN ARROW Move back
LEFT ARROW Turn left
RIGHT ARROW Turn right
END KEY Pitch up
HOME KEY Pitch down
NUM+ KEY Move vertical up
NUM- KEY Move vertical down
SHIFT KEY Increase speed of movement
Z KEY Increase sun zenith angle
X KEY Decrease sun zenith angle
C KEY Increase aerosol concentration
V KEY Decrease aerosol concentration
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The demo application is set to use the effect files called TerrainEffect4.fx
and SkyEffect2.fx. They contain the proposed solution.

The other files can be used to replace the current files to see the effect of
previous systems. The other effect files contain the following solutions.

• SkyEffect.fx Constant density rendering of the skydome, roughly cor-
responding to [10].

• TerrainEffect2.fx Constant density rendering of the terrain, corre-
sponding to [10].

• TerrainEffect3.fx Rendering of the terrain using the density at aver-
age altitude instead of the average density at the endpoints.
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Appendix B

Content of the CD-ROM

• Articles The articles referenced in the thesis, which are available for
download. Numbered as they appear in the bibliography.

• DirectX9 SDK Installer for the DirectX9 software developer kit.
Necessary for compiling the demo application.

• DirectX9 Runtime Installer for the DirectX9 runtime. Necessary
for running the demo application. (This is installed as part of the
SDK)

• Pictures The screen shots and pictures used in the thesis.
• Source The source code for the demo application.
• Source Documentation Doxygen html source code browser.

• Shortcut to Demo application exe file Shortcut to the demo applica-
tion.

• Shortcut to demo application visual studio solution fileShortcut to the
visual studio .NET solution file.

• Shortcut to sourcebrowser.html Shortcut to the doxygen source code
browser index file.
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Appendix C

Atmospheric Density
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Appendix D

Effect Files

D.1 Sky Effect

// t h i s i s the e f f e c t f i l e f o r the skydome
matrix WorldViewProj : WORLDVIEWPROJECTION;
f l o a t 3 LightDir : LIGHTDIRECTION;
vector vSunColor Intens i ty : SUNCOLORINTENSITY;
f l o a t 3 vBetaRayleigh : BETARAYLEIGH;
f l o a t 3 vBetaDashRayleigh : BETADASHRAYLEIGH;
f l o a t 3 vBetaMie : BETAMIE;
f l o a t 3 vBetaDashMie : BETADASHMIE;
f l o a t 3 vBetaRayleighMie : BETARAYLEIGHMIE;
f l o a t 3 vOneOverBetaRM : ONEOVERBETARAYLEIGHMIE;
f l o a t 4 vHG : HENYEYGG;
f l o a t 3 vEyePos : EYEPOSITION;
f l o a t 4 vDensityAlt : DENSDIST;
f l o a t 3 vToneMap : TONEMAP;

f l o a t 4 vConstants = {1.0 f , −1.4426950 f , 0 . 0 1 f , 1 000 . 0 f } ; / / constants

s t ru c t VS OUTPUT
{

f l o a t 4 Pos : POSITION;
f l o a t 4 D i f f : COLOR0;

} ;
VS OUTPUT VS( f l o a t 3 vPos : POSITION, f l o a t 3 Norm : NORMAL, f l o a t 2 Tex : TEXCOORD)
{

VS OUTPUT Out = (VS OUTPUT) 0 ;

// transform
Out . Pos = mul ( f l o a t 4 ( vPos , 1 ) , WorldViewProj ) ;

// determine angle between sun and view d i r e c t i o n
f l o a t 4 viewAngle ;
viewAngle . x = dot ( LightDir ,Norm) ;
viewAngle . y = ( viewAngle . x ∗ viewAngle . x ) / 2 + 2 ;
// viewAngle . y = ( viewAngle . x ∗ viewAngle . x ) + 1;

viewAngle . z = l e rp (Tex . y , vDensityAlt . z , Tex . x ) ;
viewAngle .w = Tex . y ;
viewAngle .w = l e rp ( viewAngle .w, vDensityAlt .w, Tex . x ) ;

// c a l c u l a t e ex t i n c t i on terms f o r i n s c a t e r ed ex t i n c t i on
f l o a t 3 ex t i n c t i on ;
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ex t i n c t i on = vBetaRayleigh ∗ viewAngle . z + vBetaMie ∗ viewAngle .w;
e x t i n c t i on = exp(− ex t i n c t i on ) ;

// c a l c u l a t e mie s c a t e r i n g term
//Phase2 ( theta ) = (1−g ˆ2) /(1+gˆ2−2g∗ cos ( theta ) ) ˆ(3/2)
//vHG = [1−gˆ2 , 1+gˆ2 , −2g , i n s c ]
f l o a t 4 phaseThetaMie ;
phaseThetaMie . x = vHG. z ∗ viewAngle . x + vHG. y ;
phaseThetaMie . y = r sq r t ( phaseThetaMie . x ) ;
phaseThetaMie . z = pow( phaseThetaMie . y , 3 ) ;
phaseThetaMie .w = phaseThetaMie . z ∗ vHG. x ;

// I n s c a t t e r i n g ( I ) = ( Beta R ∗ Phase R ( theta ) + Beta M ∗ Phase M( theta ) ) ∗
// [1−exp(−Beta R∗ s ) . exp(−Beta M∗ s ) ] / ( Beta R + Beta M)
f l o a t 3 r ay l e i gh ;
r ay l e i gh = vBetaDashRayleigh ∗ viewAngle . y ;
f l o a t 3 mie ;
mie = vBetaDashMie ∗ phaseThetaMie .w;
f l o a t 3 temp ;
temp = vConstants . x − ex t i n c t i on ;

f l o a t 3 i n s c a t t e r ; // I ( i n s c a t t e r i n g )
i n s c a t t e r = (mie + ray l e i gh ) ∗ vOneOverBetaRM ;
i n s c a t t e r ∗= temp ;
i n s c a t t e r ∗= vSunColor Intens i ty . xyz ;
i n s c a t t e r ∗= vSunColor Intens i ty .w;

// co l o r
Out . D i f f . xyz = i n s c a t t e r ;
Out . D i f f . z += 0.15 f ;
Out . D i f f .w = 1 . 0 ;

return Out ;
}

// PS
f l o a t 4 PS(VS OUTPUT In ) : COLOR
{

f l o a t 4 Color = ( f l o a t 4 ) 0 ;
f l o a t 4 Temp = ( f l o a t 4 ) 0 ;
Color = In . D i f f ;
r e turn Color ;

}

//Technique T0 , render ing the skydome with a constant c o l o r
// in a s i n g l e pass , no sca t e r ing , no shaders
technique T0
{

pass P0
{

f v f = XYZ | Normal | Tex1 ;
//Fil lMode = WIREFRAME;
VertexShader = compile v s 1 1 VS( ) ;
Pixe lShader = compile ps 1 1 PS( ) ;
L ight ing = FALSE;
ZwriteEnable = FALSE;
CullMode = NONE;

}
}
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// t h i s i s the t e r r a i n e f f e c t f i l e , here we w i l l apply the render ing o f the t e r r a i n

matrix WorldViewProj : WORLDVIEWPROJECTION;
matrix WorldView : WORLDVIEW;
f l o a t 3 LightDirDot : LIGHTDIRECTIONDOT;
f l o a t 3 LightDir : LIGHTDIRECTION;
vector vSunColor Intens i ty : SUNCOLORINTENSITY;
f l o a t 3 vBetaRayleigh : BETARAYLEIGH;
f l o a t 3 vBetaDashRayleigh : BETADASHRAYLEIGH;
f l o a t 3 vBetaMie : BETAMIE;
f l o a t 3 vBetaDashMie : BETADASHMIE;
f l o a t 3 vBetaRayleighMie : BETARAYLEIGHMIE;
f l o a t 3 vOneOverBetaRM : ONEOVERBETARAYLEIGHMIE;
f l o a t 4 vHG : HENYEYGG;
f l o a t 3 vEyePos : EYEPOSITION;
f l o a t 4 vDensityAlt : DENSDIST;

// l i g h t s t a t e s
vector SkyDirect ion = {0 . 000 , 0 . 000 , 1 . 000 f , 1 . 0 0 0 f } ;

// t ex tu r e s
texture TerrainTexture : TEXTURE0 < s t r i n g name = ” gcanyon texture2 2k . dds ”; >;
t exture Deta i lTexture : TEXTURE1 < s t r i n g name = ” detailMap . dds ”; >;
t exture NormalTexture : TEXTURE2 < s t r i n g name = ”NormalMap .bmp”; >;

// constants s e t by the app
f l o a t texDeta i lFactor < s t r i n g TexFactor = ” Deta i l repeat count ”; > = 100.0 f ;

sampler Sampler0 = samp le r s ta t e
{

MinFi l ter = LINEAR;
MagFilter = LINEAR;
MipFi l ter = LINEAR;
AddressU = CLAMP;
AddressV = CLAMP;

} ;

sampler Sampler1 = samp le r s ta t e
{

MinFi l ter = LINEAR;
MagFilter = LINEAR;
MipFi l ter = LINEAR;

} ;

f l o a t 4 vConstants = {1.0 f , −1.4426950 f , −0.00005 f , 0 . 1 f } ; / / constants

s t ru c t VS OUTPUT
{

f l o a t 4 Pos : POSITION;
f l o a t 4 I n s c a t t e r : COLOR0;
f l o a t 4 Ext inct ion : COLOR1;
f l o a t 2 Texcoord0 : TEXCOORD0;
f l o a t 2 Texcoord1 : TEXCOORD1;
f l o a t 2 Texcoord2 : TEXCOORD2;

} ;
VS OUTPUT VS( f l o a t 3 vPos : POSITION , f l o a t 2 Tex : TEXCOORD)
{

VS OUTPUT Out = (VS OUTPUT) 0 ;
Out . Texcoord0 = Tex ;
Out . Texcoord1 = Tex ∗ t exDeta i lFactor ;
Out . Texcoord2 = Tex ;

// po s i t i on
//Out . Pos = mul ( f l o a t 4 ( vPos , 1 ) , WorldViewProj ) ;

f l o a t 4 vEyeVert = ( f l o a t 4 ) 0 ;
f l o a t 4 viewAngle = ( f l o a t 4 ) 0 ;
f l o a t 3 ex t i n c t i on = ( f l o a t 3 ) 0 ;

// determine r ay l e i gh and Mie op t i c a l depth ( approximation ) ; −)
viewAngle . z = exp(−vPos . y / 15000 . 0 f ) ;
viewAngle .w = exp(−vPos . y / 5000 . 0 f ) ;
viewAngle . zw += vDensityAlt . zw / 2 ;
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vEyeVert . xyz = vPos − vEyePos ;
vEyeVert .w = length ( vEyeVert . xyz ) ;
vEyeVert . xyz /= vEyeVert .w;

viewAngle . zw ∗= vEyeVert .w;

// c a l c u l a t e ex t i n c t i on terms
ex t i n c t i on = vBetaRayleigh ∗ viewAngle .w + vBetaMie ∗ viewAngle . z ;
e x t i n c t i on = exp(− ex t i n c t i on ) ; //= eˆ(−beta ∗ depth )

// determine angle between sun and view d i r e c t i o n
viewAngle . x = dot ( LightDir , vEyeVert . xyz ) ;
viewAngle . y = ( viewAngle . x ∗ viewAngle . x ) / 2 + 2 ;

// c a l c u l a t e mie s c a t e r i n g term
//Phase2 ( theta ) = (1−g ˆ2) /(1+g−2g∗ cos ( theta ) ) ˆ(3/2)
//vHG = [1−gˆ2 , 1+g , −2g , i n s c ]
f l o a t 4 phaseThetaMie ;
phaseThetaMie . x = −vHG. z ∗ viewAngle . x + vHG. y ;
phaseThetaMie . y = r sq r t ( phaseThetaMie . x ) ;
phaseThetaMie . z = pow( phaseThetaMie . y , 3 ) ;
phaseThetaMie .w = phaseThetaMie . z ∗ vHG. x ;

// I n s c a t t e r i n g ( I )
f l o a t 3 r ay l e i gh = ( f l o a t 3 ) 0 ;
r ay l e i gh = vBetaDashRayleigh ∗ viewAngle . y ;
f l o a t 3 mie = ( f l o a t 3 ) 0 ;
mie = vBetaDashMie ∗ phaseThetaMie .w;
f l o a t 3 temp = ( f l o a t 3 ) 0 ;
temp = vConstants . x − ex t i n c t i on ;

f l o a t 3 i n s c a t t e r = ( f l o a t 3 ) 0 ; // I ( i n s c a t t e r i n g )
i n s c a t t e r = (mie + ray l e i gh ) ∗ vOneOverBetaRM ;
// i n s c a t t e r = ray l e i gh / vBetaRayleigh ;
// i n s c a t t e r = mie / vBetaMie ;
i n s c a t t e r ∗= temp ;
// i n s c a t t e r ∗= vHG.w; // i n s c a t t e r i n t e n s i t y
i n s c a t t e r ∗= vSunColor Intens i ty . xyz ;
i n s c a t t e r ∗= vSunColor Intens i ty .w;

// ex t i n c t i on ∗= vSunColor Intens i ty . xyz ;
// ex t i n c t i on ∗= vSunColor Intens i ty .w;

// co l o r
//Out . I n s c a t t e r . xyz = ex t i n c t i on ;
Out . I n s c a t t e r . xyz = i n s c a t t e r ;
Out . I n s c a t t e r . z += 0.15 f ;
Out . I n s c a t t e r . a = 1;
Out . Ext inct ion . xyz = ex t i n c t i on ;
Out . Ext inct ion . a = 1;

// po s i t i on
viewAngle = f l o a t 4 ( vPos , 1 ) ;
viewAngle . y −= (vEyeVert .w ∗ vEyeVert .w) / 5000000 .0 f ;
Out . Pos = mul ( viewAngle , WorldViewProj ) ;

re turn Out ;
}

// PS
f l o a t 4 PS(VS OUTPUT In ) : COLOR
{

f l o a t 4 Color = ( f l o a t 4 ) 0 ;
Color . rgb = 2 ∗ tex2D ( Sampler0 , In . Texcoord2 ) −1; //normal map l i g h t i n g
Color . rgb = clamp ( dot ( Color . rgb , LightDirDot ) ,0 ,1 ) ; //normal map l i g h t i n g
Color ∗= tex2D ( Sampler0 , In . Texcoord0 ) ; //Apply texture
Color . rgb ∗= tex2D ( Sampler1 , In . Texcoord1 ) ∗2 ; // apply d e t a i l t exture
Color . rgb ∗= vSunColor Intens i ty . rgb ; // apply sun co l o r ;

Color . rgb ∗= In . Ext inct ion . rgb ; / / Apply ex t i n c t i on
Color . rgb += In . I n s c a t t e r . rgb ; //Add i n s c a t t e r
Color . a = 1.0 f ;
re turn Color ;

}
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technique SHADER11
{

pass P0
{

f v f = XYZ | Tex1 ;
L ight ing = FALSE;
//Fil lMode = WIREFRAME;
Sampler [ 0 ] = ( Sampler0 ) ;
Sampler [ 1 ] = ( Sampler1 ) ;
Sampler [ 2 ] = ( Sampler0 ) ;
Texture [ 0 ] = ( TerrainTexture ) ;
Texture [ 1 ] = ( Deta i lTexture ) ;
Texture [ 2 ] = (NormalTexture ) ;
VertexShader = compile v s 1 1 VS( ) ;
Pixe lShader = compile ps 1 1 PS( ) ;

}
}//Technique SHADER11, Render the t e r r a i n with shaders ve r s i on 1 . 1

technique SHADER20
{

pass P0
{

f v f = XYZ | Tex1 ;
L ight ing = FALSE;
//Fil lMode = WIREFRAME;
Sampler [ 0 ] = ( Sampler0 ) ;
Sampler [ 1 ] = ( Sampler1 ) ;
Sampler [ 2 ] = ( Sampler0 ) ;
Texture [ 0 ] = ( TerrainTexture ) ;
Texture [ 1 ] = ( Deta i lTexture ) ;
Texture [ 2 ] = (NormalTexture ) ;
Pixe lShader = compile ps 1 1 PS( ) ;
VertexShader = compile v s 2 0 VS( ) ;

}
}//Technique SHADER20, Render the t e r r a i n with shaders ve r s i on 2 . 0



128 Appendix D. Effect Files



129

Appendix E

Source Code Snippets

In this section snippets of source code that are considered important for
understanding the functionality of the program is listed.

E.1 Roam.cpp

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Name : CROAM: : PreRender − pr iva t e
// Desc r ip t i on : I n i t s v a r i a b l e s needed by the e f f e c t
// Return Value : HRESULT: po s i b l e e r r o r
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
HRESULT CROAM: : PreRender (CSky∗ pSky )
{

HRESULT hr = S OK;
// Update vertex shader constants from view p ro j e c t i on matrix data .
D3DXMATRIX mat , matView , matProj ;
m pd3ddevice−>GetTransform (D3DTS VIEW,&matView) ;
m pd3ddevice−>GetTransform (D3DTS PROJECTION,&matProj ) ;
D3DXMatrixMultiply(&mat,&matView,&matProj ) ;

// s e t the transform , cu r r en t l y world t r an s f o r f o r t e r r a i n i s i d en t i t y
hr = m pEffect−>SetMatrix (m hTransForms ,&mat) ;

// s e t the viewTransform , cu r r en t l y world t r an s f o r f o r t e r r a i n i s i d en t i t y
hr = m pEffect−>SetMatrix (m hWorldView ,&matView) ;

CAtmosphere∗ pAtmosphere = pSky−>GetAtmosphere ( ) ;

// Sca t t e r i ng mu l t i p l i e r s .
f l o a t fRayMult = pAtmosphere−>GetParam( eAtmBetaRayMultiplier ) ;
f l o a t fMieMult = pAtmosphere−>GetParam( eAtmBetaMieMultiplier ) ;

D3DXVECTOR3 vSunDir = pSky−>GetSunDir ( ) ;
hr = m pEffect−>SetValue ( m hLightDir ,&vSunDir , 1 2 ) ;
D3DXVECTOR3 vSunDirDot ( vSunDir . x,−vSunDir . z , vSunDir . y ) ;
hr = m pEffect−>SetValue ( m hLightDirDot ,&vSunDirDot , 12 ) ;

D3DXVECTOR4 vSunColor Intens i ty = pSky−>GetColorAndIntensity ( ) ;
// vSunColor Intens i ty .w = 9.677 f − 352 .95 ∗ fMieMult ;
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vSunColor Intens i ty .w = 9.2 f − 550.0 f ∗ fMieMult ;
hr = m pEffect−>SetVector ( m hSunColorInt ,& vSunColor Intens i ty ) ;

D3DXVECTOR3 vEye = m pCamera−>GetEyePt ( ) ;
// Eye Pos i t i on
m pEffect−>SetValue ( m hEyePosition ,&vEye , 12 ) ;

// c a l c u l a t e base he ight f o r dens i ty d i s tance f o r a athmosphere
//asuming a exponent ia l dens i ty d i s t r i b u t i o n dens = 1 . 2 ∗ e ˆ(ALT/8000)
// densbase = in tgg ra t e [ a l t to top ] top dens de f ined = 0.0 f
f l o a t fDens i tyAltBase [ 4 ] ;
fDens i tyAltBase [ 0 ] = vEye . y / 1000 . 0 f ;
fDens i tyAltBase [1 ] = 9 .06418430158 f ∗ powf (0 . 95 f , fDens i tyAltBase [ 0 ] ) ;
fDens i tyAltBase [ 2 ] = expf(−vEye . y / 15000 . 0 f ) ;
fDens i tyAltBase [ 3 ] = expf(−vEye . y / 5000 . 0 f ) ;
hr = m pEffect−>SetValue ( m hDensityDist , fDensityAltBase , 1 6 ) ;

D3DXVECTOR3 vBetaR , vBetaDashR , vBetaM , vBetaDashM , vBetaRM , vOneOverBetaRM ;

// Rayleigh
vBetaR = pAtmosphere−>GetBetaRayleigh ( ) ;
vBetaR ∗= fRayMult ;
m pEffect−>SetValue ( m hBetaRayleigh ,&vBetaR ,12 ) ;
vBetaDashR = pAtmosphere−>GetBetaDashRayleigh ( ) ;
vBetaDashR ∗= fRayMult ;
hr = m pEffect−>SetValue ( m hBetaDashRayleigh ,&vBetaDashR ,12 ) ;

// Mie
vBetaM = pAtmosphere−>GetBetaMie ( ) ;
vBetaM ∗= fMieMult ;
m pEffect−>SetValue (m hBetaMie ,&vBetaM ,12 ) ;
vBetaDashM = pAtmosphere−>GetBetaDashMie ( ) ;
vBetaDashM ∗= fMieMult ;
m pEffect−>SetValue (m hBetaDashMie ,&vBetaDashM ,12 ) ;

// Rayleigh + Mie
vBetaRM = vBetaR + vBetaM ;
m pEffect−>SetValue ( m hBetaRayleighMie ,&vBetaRM,12 ) ;
vOneOverBetaRM [ 0 ] = 1 . 0 f /vBetaRM [ 0 ] ;
vOneOverBetaRM [ 1 ] = 1 . 0 f /vBetaRM [ 1 ] ;
vOneOverBetaRM [ 2 ] = 1 . 0 f /vBetaRM [ 2 ] ;
hr = m pEffect−>SetValue (m hOneOverBetaRayleighMie ,&vOneOverBetaRM ,12 ) ;

// each term ( ext inc t i on , i n s c a t t e r i n g mu l t i p l i e r )
f l o a t f I n s = pAtmosphere−>GetParam( eAtmInsca t t e r ingMul t ip l i e r ) ;

// Henyey Greenstein ’ s G value . and i n s c a t e r i n g
f l o a t g = pAtmosphere−>GetParam(eAtmHGg) ;
//g = 0.163 f + vEye . y ∗ 1 . 393 e−5;
g = 0.444 f + vEye . y ∗ 1 . 053 e−5 − 5.984e−2 ∗ pSky−>GetSunTheta ( ) − 3.521 e−6 ∗ pSky−>

GetSunTheta ( ) ∗ vEye . y ;
f l o a t g2 = 0.100 f + vEye . y ∗ 1 . 1 1 e−5 − 3.18e−2 ∗ pSky−>GetSunTheta ( ) − 6.01 e−6 ∗

pSky−>GetSunTheta ( ) ∗ vEye . y ;
//g = 0.25 f + vEye . y ∗ 1 . 3 e−5 − 0.00e−2 ∗ pSky−>GetSunTheta ( ) − 9.2 e −6 ∗ pSky−>

GetSunTheta ( ) ∗ vEye . y ;
f l o a t c = −0.076923 f + 153.846 f ∗ fMieMult ;
g = g + c∗( g2 − g ) ;
D3DXVECTOR4 vG(1−g∗g , 1+g∗g , 2∗ g , f I n s ) ;
m pEffect−>SetVector (m hHenyeyGG,&vG) ;

return hr ;
}
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E.2 Sky.cpp

HRESULT CSky : : Prerender (LPDIRECT3DDEVICE9 pd3ddevice )
{

HRESULT hr = S OK;

D3DXMATRIX tempWV, tempWVP;

D3DXMATRIX matWorld ;
const D3DXVECTOR3∗ vEye = m pCamera−>GetPos it ion ( ) ;
D3DXMatrixIdentity ( &matWorld ) ;
D3DXMatrixTranslation ( &matWorld , vEye−>x , vEye−>y − (vEye−>y/2000.0 f ) , vEye−>z ) ;

D3DXMATRIX matView ;
pd3ddevice−>GetTransform (D3DTS VIEW,&matView) ;
D3DXMatrixMultiply(&tempWV, &matWorld , &matView) ;

D3DXMATRIX matProj ;
pd3ddevice−>GetTransform (D3DTS PROJECTION,&matProj ) ;
D3DXMatrixMultiply(&tempWVP,&tempWV,&matProj ) ;

// Set e f f e c t t r an s f o r matrix
hr = m pEffect−>SetMatrix (m hTransForms ,&tempWVP) ;

// Sca t t e r i ng mu l t i p l i e r s .
f l o a t fRayMult = m pAtmosphere−>GetParam( eAtmBetaRayMultiplier ) ;
f l o a t fMieMult = m pAtmosphere−>GetParam( eAtmBetaMieMultiplier ) ;

D3DXVECTOR3 vSunDir = m pSun−>GetDirect ion ( ) ;
hr = m pEffect−>SetValue ( m hLightDir ,&vSunDir , 1 2 ) ;

D3DXVECTOR4 vSunColor Intens i ty = m pSun−>GetColorAndIntensity ( ) ;
// vSunColor Intens i ty .w = 9.677 f − 352 .95 ∗ fMieMult ;
vSunColor Intens i ty .w = 9.2 f − 550.0 f ∗ fMieMult ;
m pSun−>SetSunIntens i ty ( vSunColor Intens i ty .w) ;
hr = m pEffect−>SetVector ( m hSunColorInt ,& vSunColor Intens i ty ) ;
m mtlSunClr . Emissive . r = vSunColor Intens i ty . x ∗ 1 . 5 f ;
m mtlSunClr . Emissive . g = vSunColor Intens i ty . y ∗ 1 . 5 f ;
m mtlSunClr . Emissive . b = vSunColor Intens i ty . z ∗ 1 . 5 f ;
m mtlSunClr . Ambient = m mtlSunClr . D i f f u s e = m mtlSunClr . Emissive ;

// c a l c u l a t e base he ight f o r dens i ty d i s tance f o r a athmosphere
//asuming a exponent ia l dens i ty d i s t r i b u t i o n dens = 1 . 2 ∗ e ˆ(h/8000)
//h/8000 does not qu i t e work , the eye i s s e n s i t i v e to log ( i n t e n c i t y )
// densbase = in tgg ra t e [ a l t to top ] top dens de f ined = 0.0 f
f l o a t fDens i tyAltBase [ 4 ] ;
fDens i tyAltBase [ 0 ] = vEye−>y / 1000 . 0 f ;
fDens i tyAltBase [ 1 ] = powf (0 . 95 f , fDens i tyAltBase [ 0 ] ) ;
fDens i tyAltBase [ 2 ] = 20000 . 0 f ∗ expf(−vEye−>y/10000.0 f ) ;
fDens i tyAltBase [ 3 ] = 8000 . 0 f ∗ expf(−vEye−>y/20000.0 f ) ;
hr = m pEffect−>SetValue ( m hDensityDist , fDensityAltBase , 1 6 ) ;

D3DXVECTOR3 vBetaR , vBetaDashR , vBetaM , vBetaDashM , vBetaRM , vOneOverBetaRM ;

// Rayleigh
vBetaR = m pAtmosphere−>GetBetaRayleigh ( ) ;
vBetaR ∗= fRayMult ;
m pEffect−>SetValue ( m hBetaRayleigh ,&vBetaR ,12 ) ;
vBetaDashR = m pAtmosphere−>GetBetaDashRayleigh ( ) ;
vBetaDashR ∗= fRayMult ;
hr = m pEffect−>SetValue ( m hBetaDashRayleigh ,&vBetaDashR ,12 ) ;

// Mie
vBetaM = m pAtmosphere−>GetBetaMie ( ) ;
vBetaM ∗= fMieMult ;
m pEffect−>SetValue (m hBetaMie ,&vBetaM ,12 ) ;
vBetaDashM = m pAtmosphere−>GetBetaDashMie ( ) ;
vBetaDashM ∗= fMieMult ;
m pEffect−>SetValue (m hBetaDashMie ,&vBetaDashM ,12 ) ;

// Rayleigh + Mie
vBetaRM = vBetaR + vBetaM ;
m pEffect−>SetValue ( m hBetaRayleighMie ,&vBetaRM,12 ) ;
vOneOverBetaRM [ 0 ] = 1 . 0 f /vBetaRM [ 0 ] ;
vOneOverBetaRM [ 1 ] = 1 . 0 f /vBetaRM [ 1 ] ;
vOneOverBetaRM [ 2 ] = 1 . 0 f /vBetaRM [ 2 ] ;
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hr = m pEffect−>SetValue (m hOneOverBetaRayleighMie ,&vOneOverBetaRM ,12 ) ;

// each term ( ext inc t i on , i n s c a t t e r i n g mu l t i p l i e r )
f l o a t f I n s = m pAtmosphere−>GetParam( eAtmInsca t t e r ingMul t ip l i e r ) ;

// Henyey Greenstein ’ s G value . and i n s c a t e r i n g
f l o a t g = m pAtmosphere−>GetParam(eAtmHGg) ;
//g = 0.293 f + vEye−>y ∗ 1 .18333 e−5;
//g = 0.193 f + vEye−>y ∗ 1 . 0 3 e−5;
//g = 0.100 f + vEye−>y ∗ 8 . 333 e−6;
//g = 0.163 f + vEye−>y ∗ 1 . 393 e−5;
g = 0.444 f + vEye−>y ∗ 1 . 053 e−5 − 5.984e−2 ∗ m pSun−>GetSunTheta ( ) − 3.521 e−6 ∗

m pSun−>GetSunTheta ( ) ∗ vEye−>y ;
f l o a t g2 = 0.100 f + vEye−>y ∗ 1 . 1 1 e−5 − 3.18e−2 ∗ m pSun−>GetSunTheta ( ) − 6.01 e

−6 ∗ m pSun−>GetSunTheta ( ) ∗ vEye−>y ;
f l o a t c = −0.076923 f + 153.846 f ∗ fMieMult ;
g = g + c∗( g2 − g ) ;
//g = 0.250 f + vEye−>y ∗ 1 . 3 e−5 − 0.00e−2 ∗ m pSun−>GetSunTheta ( ) − 9.2 e−6 ∗ m pSun

−>GetSunTheta ( ) ∗ vEye−>y ;
D3DXVECTOR4 vG(1−g∗g , 1+g∗g , 2∗ g , f I n s ) ;
m pEffect−>SetVector (m hHenyeyGG,&vG) ;
m pAtmosphere−>SetParam (eAtmHGg, g ) ;

// Eye Pos i t i on
m pEffect−>SetValue ( m hEyePosition ,&vEye , 12 ) ;

// c a l c u l a t e the max l i g h t i n t e n s i t y
f l o a t Ny = co s f (m pSun−>GetSunTheta ( ) ) ;
f l o a t k = powf (Ny , 0 . 3 f ) ;
f l o a t a = (1 .05 f − powf (Ny , 0 . 3 f ) ) ∗190000;
f l o a t Sr = a + k∗( fDens i tyAltBase [2]−a ) ;
f l o a t Sm = a + k∗( fDens i tyAltBase [3]−a ) ;
f l o a t betaRay0 = 2.0 f ;
f l o a t betaMie0 = vG [ 0 ] / powf ( (vG. y − vG. z ) , ( 3 . 0 f /2 .0 f ) ) ;
D3DXVECTOR3 vInMaxSun ;
f o r ( i n t i =0; i <3; i++)
{

vInMaxSun [ i ] = (vBetaDashR [ i ] ∗ betaRay0 + vBetaDashM [ i ] ∗ betaMie0 ) ∗
vOneOverBetaRM [ i ] ∗ vSunColor Intens i ty [ i ] ∗
(1 − expf (−(vBetaR [ i ]∗ Sr + vBetaM [ i ]∗Sm) ) ) ;

}

Sr = Sm = 215000.0 f ;
betaRay0 = 1.0 f + Ny ;
betaMie0 = vG [ 0 ] / powf ( (vG. y − vG. z∗Ny) , ( 3 . 0 f /2 .0 f ) ) ;
D3DXVECTOR3 vInMaxHoriz ;
f o r ( i n t i =0; i <3; i++)
{

vInMaxHoriz [ i ] = ( vBetaDashR [ i ] ∗ betaRay0 + vBetaDashM [ i ] ∗ betaMie0 ) ∗
vOneOverBetaRM [ i ] ∗ vSunColor Intens i ty [ i ] ∗
(1 − expf (−(vBetaR [ i ]∗ Sr + vBetaM [ i ]∗Sm) ) ) ;

}
//D3DXVec3Maximize(&vInMaxSun,&vInMaxSun,&vInMaxHoriz ) ;
// f l o a t maxval = max(vInMaxSun . x ,max(vInMaxSun . y , vInMaxSun . z ) ) ;

// maxval = 1.0 f / l o g f (maxval + 1.0 f ) ;
// vG.w = maxval ;

// m pEffect−>SetVector (m hHenyeyGG,&vG) ;
f o r ( i n t i =0; i <3; i++)
{

vInMaxSun [ i ] = 1 . 0 f / l o g f ( 1 . 0 f + vInMaxHoriz [ i ] ) ;
}
m pEffect−>SetValue (m hToneMap,&vInMaxSun , 12 ) ;

return hr ;
}
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//now we need to f i l l the i nd exbu f f f e r to a c tua l l y draw the t r i a n g l e s
WORD∗ pIndex ;
hr = m pSystemMesh−>LockIndexBuffer ( 0 , ( void ∗∗)&pIndex ) ;
i n t count1 = 0; // index o f the i n t e r n a l vertex
in t count2 = 1; // index o f the ex t e rna l vertex
in t t r i I ndex = 0; // current index in the t r i a n g l e bu f f e r
f o r ( i n t i =1; i < nLatBands ; i++)
{

// c a l c u l a t e the f r e e vertex spac ing
f l o a t fSpac ing = f ab s f ( bandinfo [ i ] . nVertexCount / ( f l o a t ) bandinfo [ i ] .

nVertexDelta ) ;
i n t nSpaces = 0;
i n t count1Start = count1 ;
i n t count2Start = count2 ;
i n t n ex t sp e c i a l = 0 ;
f o r ( i n t j =0; j < bandinfo [ i ] . nVertexCount ; j++)
{

// f i r s t we t r e a t the s p e i a l case o f the f i r s t point
i f ( j == 0 && bandinfo [ i ] . nVertexDelta > 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count2+1;
count2++;
t r i I ndex += 3;
nSpaces++;
nex t sp e c i a l = ( in t ) ( nSpaces ∗ fSpac ing + 0 .5 ) ;

}
e l s e i f ( j == 0 && bandinfo [ i ] . nVertexDelta < 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count1+1;
pIndex [ t r i I ndex +3] = (WORD) count2 ;
pIndex [ t r i I ndex +4] = (WORD) count1+1;
pIndex [ t r i I ndex +5] = (WORD) count2+1;
count1++;
count2++;
t r i I ndex += 6;
nSpaces++;
nex t sp e c i a l = ( in t ) ( nSpaces ∗ fSpac ing + 0 .5 ) ;

}
e l s e i f ( j == bandinfo [ i ] . nVertexCount−1 && count1 == 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count2Start ;
count2++;
count1++;
t r i I ndex += 3;

}
e l s e i f ( j == bandinfo [ i ] . nVertexCount−1 && bandinfo [ i ] . nVertexDelta

>= 0 && count1 > 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count1Start ;
pIndex [ t r i I ndex +3] = (WORD) count2 ;
pIndex [ t r i I ndex +4] = (WORD) count1Start ;
pIndex [ t r i I ndex +5] = (WORD) count2Start ;
count1++;
count2++;
t r i I ndex += 6;

}
e l s e i f ( j == bandinfo [ i ] . nVertexCount−1 && bandinfo [ i ] . nVertexDelta < 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count1+1;
pIndex [ t r i I ndex +3] = (WORD) count2 ;
pIndex [ t r i I ndex +4] = (WORD) count1+1;
pIndex [ t r i I ndex +5] = (WORD) count2Start ;
pIndex [ t r i I ndex +6] = (WORD) count2Start ;
pIndex [ t r i I ndex +7] = (WORD) count1+1;
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pIndex [ t r i I ndex +8] = (WORD) count1Start ;
count1+=2;
count2++;
t r i I ndex += 9;

}
e l s e i f ( j == nex t sp e c i a l && bandinfo [ i ] . nVertexDelta > 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count2+1;
count2++;
t r i I ndex += 3;
nSpaces++;
nex t sp e c i a l = ( in t ) ( nSpaces ∗ fSpac ing + 0 .5 ) ;

}
e l s e i f ( j == nex t sp e c i a l && bandinfo [ i ] . nVertexDelta < 0)
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count1+1;
count1++;
j−−;
t r i I ndex += 3;
nSpaces++;
nex t sp e c i a l = ( in t ) ( nSpaces ∗ fSpac ing + 0 .5 ) ;

}
e l s e
{

pIndex [ t r i I ndex ] = (WORD) count2 ;
pIndex [ t r i I ndex +1] = (WORD) count1 ;
pIndex [ t r i I ndex +2] = (WORD) count1+1;
pIndex [ t r i I ndex +3] = (WORD) count2 ;
pIndex [ t r i I ndex +4] = (WORD) count1+1;
pIndex [ t r i I ndex +5] = (WORD) count2+1;
count1++;
count2++;
t r i I ndex += 6;

}
}

}


