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Abstract

This thesis describes methods for modelling the shape, texture and ap-
pearance of human faces in three dimensions. These models provide a
foundation for applications such as image segmentation and object recog-
nition.

The models use a data set of 24 faces acquired using a 3-D scanner. To make
the data useful in a statistical context, the representation of the objects
must be unified, a process called registration. The registration method
described here uses a set of nine manually placed points of correspondence
on each face. These are used to form a dense correspondence of thousands
of points. This makes sure the model is able to capture the subtle details
of a human face.

The thesis presents the mathematical methods, with in-depth descriptions
of key concepts, as well as the outlines of the implementation. The ca-
pabilities of the models are demonstrated in applications such as 2-D face
segmentation and fully automated face registration.

The results are promising, but calls for higher quality and quantity of face
data. The models were successfully used to automatically register new
face scans, however the image segmentation, implemented using a simple
optimization algorithm, fails in most cases. A number of suggestions for
future work are given, for example the implementation of a 3-D active
appearance model for face recognition.

Keywords: Statistical Image Analysis, Shape Analysis, Shape Modelling,
Appearance Modelling, 3-D Registration, Face Model, 3-D Modelling, Face
Recognition, VTK.
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Chapter 1

Introduction

The human face is one of the most popular and best understood objects in
research areas such as statistical shape analysis, object recognition, feature
extraction, synthesis and tracking. The reason for this is the importance
of the face in our daily life. The appearance of faces helps us determine
characteristics such as gender, age and race, along with more intricate
properties such as mood and health status. Because the appearance of
faces is so important, the human has developed into an expert in face
interpretation and recognition. Our ”database” spans thousands of faces
learned through our whole lives, yet any face can instantly be recognized,
even though it might have changed over time. This appearance expertise
puts high demands on an area such as face synthesis.

There are several difficulties involved in creating a model of a human face.
One problem is that the shape of a face is very complex. Building a purely
mathematical model, for example with a set of parameterized curves, will
produce unnatural and unrealistic faces. Another problem is the great vari-
ability found in faces. Age, gender and race are sources of great diversity,
but the variation is also specific. Even a minor change in shape or tex-
ture can make a face unacceptable to a human observer. Several attempts
have been made to address these problems. So far, the most popular and
successful method has been the appearance model.

An appearance model is a deformable model built from a database of ex-
amples. The model can be used in many different applications, the most

12 Chapter 1. Introduction

important being face synthesis, segmentation and recognition. The match-
ing algorithm used for interpreting images is called the active appearance
model.

This thesis presents the design of a three-dimensional appearance model.
Models in three dimensions are still fairly uncommon because of the large
amount of overhead and computational difficulty involved in working with
a three-dimensional data set. However, as computer power increases and
equipment for acquiring three-dimensional data becomes reasonably priced,
this type of model will be more widely used.

Even though this material deals with human faces exclusively, the methods
described herein are applicable to most three-dimensional surface data.

The next chapter will present the relevant precursors to the (active) ap-
pearance model. These methods deal with image data in two dimensions.
The most important attempts at extending the appearance model to three
dimensions will also be described. The ”preliminaries” chapter will give a
brief explanation of the basic concepts in shape analysis. This should make
the rest of the report understandable to people outside the field of computer
vision. ”Methods and Materials” presents the ideas and algorithms of the
model, as well as giving a presentation of the imaging equipment used. The
”Implementation” chapter explains how the presented algorithms can be
realized on a computer. This is followed by a presentation of the results,
a summary, and ideas for future work. The appendices cover some of the
mathematical methods more in detail, and shows images from the database
of faces.
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Chapter 2

Background

This thesis presents a method of creating a statistical model of human
faces. Model-based interpretation of images is one of the main disciplines
in computer vision. Several types of models exist although the application
and useability of these varies. This chapter will list a few models that can
be seen as precursors to the (active) appearance model. It will also present
attempts at extending the model to three dimensions.

2.1 Precursors of Appearance Models

2.1.1 The Golden Image

The simplest way of creating a model of an object is to use a single image.
If the variability of the object class is low, this model can successfully be
matched to a new image. According to [8], this method has successfully
been used to locate brain structures in magnetic resonance images.

To precisely match and segment structures of objects with varying appear-
ance, the model needs to be deformed. Since the golden image used here is
static, this is not possible. Therefore, a more advanced model is needed.

14 Chapter 2. Background

2.1.2 Eigenfaces

The concept of eigenfaces was introduced by Turk and Pentland in 1991
[27]. The idea is to create a 2-D model of the human face using a database
of example images, also known as a training set. Each image of k×n pixels
is represented by a single vector in kn-dimensional space. The model is
built by finding a compact representation of the subspace defined by the
training set. This is done using principal component analysis, which yields
a parameterized, efficient model. This is then used to interpret images.

The main difference between eigenfaces and the modelling of texture varia-
tion in appearance models, is the lack of landmarks. No points of correspon-
dence are defined in the eigenface approach, and therefore it is impossible
to use methods such as Procrustes analysis to filter out differences in lo-
cation, orientation and scale in the images of the training set. This makes
the eigenface method less accurate.

2.1.3 Contour Models

The concept of active contour models (ACM), or snakes, was introduced by
Kass et al. [16]. A snake is a physically based model, defined by an energy
minimizing spline. The model can be used to find structures with high
gradients, contours, in an image. Since the model is not based on statistical
information on a specific class of objects, it is very general. Therefore, it
can be matched to any type of object.

To find a certain structure in an image, a set of control points are manually
defined to construct an initial spline. The snake is then iteratively deformed
to fit to an appropriate solution around the desired contour. The energy
constraints guiding the snake are divided into internal and external forces.
The internal forces are elasticity and rigidity of which the former makes the
control points stay regularly inter-spaced, while the latter keeps the curve
smooth. The image gives rise to the external forces; the control points are
attracted to edges and corners - high gradients.

2.1.4 Shape Models

In 1995 Cootes et al. introduced the concept of shape models [9] where
shapes are defined by a set of landmarks. From a database of shapes, a
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statistical point distribution model (PDM), or shape model, can be built,
describing the main modes of shape variation. New shapes can be con-
structed by changing a set of parameters of the model. As long as the
parameters are within certain constraints, the model will produce plausible
shapes.

The shape model can be used for matching to information in images. The
method is called active shape models. The shape model is given an initial
position somewhere in the image, and is then iteratively translated, rotated,
scaled and deformed until a solution is found. Since the model is defined by
its parameters and since these only generate plausible shapes, the algorithm
will not match to image structures which cannot be described by the model.
This makes the matching procedure robust and accurate. The obvious
drawback of the method is that it only handles object of a certain class.

2.2 Appearance Models

In 1998 the shape model was extended to include texture, the intensity val-
ues contained by the shape boundaries. Such models are called appearance
models [8]. The parameters of the appearance model control the shape and
texture simultaneously. This makes it possible to synthesize photo-realistic
new examples.

The most common application for an appearance model is the active ap-
pearance model [23] which can be used to match, segment and interpret
information in images. The basic idea of the algorithm is to provide a-priori
knowledge on how to correct the parameters of the model according to the
current residuals between the model and the image. This is done using
principal component regression.

2.2.1 Three-dimensional Appearance Models

The original appearance model formulation was for two-dimensional im-
ages. The majority of work on appearance models since, has been done
using two-dimensional data. The reason for this is the ease of gathering
and annotating data, and the low demands for computational power.

To be able to synthesize and match to images where the pose of the object
varies significantly, there are two basic approaches. One is to construct a
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two-dimensional model that includes different viewing angles. These are
called view-based active appearance models [24]. The other is to keep a
three-dimensional model, which naturally can be used to synthesize images
of objects from any viewpoint. This section will list relevant work using
this method.

Mitchell et al. describe the building of a three-dimensional appearance
model from volumetric cardiac magnetic resonance (MR) images [22]. This
paper also describes the implementation of an active appearance model for
image segmentation and recognition.

Blanz and Vetter show how a three-dimensional morphable model of human
faces can be built [4]. Although the model is similar to the appearance
model, separate models for shape and texture are used. The dense point-
to-point correspondence between shapes are formed using an optical flow
algorithm along with a bootstrapping method for automatic registration.
To fit the model to two-dimensional images, a gradient descent optimization
function is used.

Hutton et al. build a dense correspondence model of the human face using
a semi-automatic algorithm [26]. Each face is manually annotated with a
sparse set of landmarks which are used to form the dense correspondence.
This is the method used in this thesis, with a minor modification suggested
by Paulsen [18].
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Chapter 3

Preliminaries

In this chapter, a brief explanation of the basic concepts in statistical shape
analysis will be given. This knowledge is a prerequisite for the rest of this
thesis. For those already familiar with these terms, it might serve as useful
remainder.

3.1 Shape Definition

Statistical shape analysis is concerned with the shapes of objects of a spe-
cific class. The shape class can be anything from the shape of cars to the
shape of the human brain. Since man-made objects seldom contain any
interesting or uncharted variation, shape analysis most often involves data
from disciplines such as medicine, biology, image analysis, geography and
archaeology.

There is no strict definition of shape, but the most intuitive and common
definition is given by D.G. Kendall (1977):

Shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out from an
object.

In other words, shape is invariant under what is called similarity trans-
forms. These transforms rotates, scales and translates an object. A trans-
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formation that only rotates and translates an object is called a rigid-body
transform. This type of transform leads to the following definition

Size-and-shape is all the geometrical information that re-
mains when location and rotational effects are filtered out from
an object.

Two objects have equal shape if one can be transformed using a similarity
transform so that it perfectly matches the other. This is called shape
alignment. If a rigid-body transform is sufficient, the objects have equal
size-and-shape. Statistical shape analysis often involves working with a set
of similar, but not equal shapes. It is therefore necessary to obtain the best
possible alignment, and then measure the distance between pairs of shapes.
This can be done using Procrustes analysis, a topic covered in appendix D.

3.2 Landmarks

It is intuitive to define a shape by its outline, contour or surface. The
question is how to represent this in mathematically useful manner. One
way is to define implicit or parametric curves or surfaces as functions [3]. A
simpler way is to define a set of points along the outline or surface. These
points are called landmarks.

A landmark is a point of correspondence on each object that
matches between and within populations.

Three basic types of landmarks exist

Anatomical landmarks are points of correspondence assigned by an ex-
pert in positions motivated by the object type. Such positions include
the tip of the nose or the corner of the mouth on a human face, the
base of a monkey’s scull, or the start of the line forming a hand-
written digit.

Mathematical landmarks are points connected to some mathematical
or geometrical property of an object. These might be in positions of
high curvature, at an extreme point or similar.

Pseudo-landmarks are made-up points dependent on other landmarks.
A common example of pseudo-landmarks is a set of equidistant points
between two anatomical landmarks.
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Shape analysis is preformed using the landmarks. To keep track of the
correspondence of landmarks between objects, they must be labelled in
some way. The easiest way of labelling landmarks is to keep the landmarks
of an object in a list, and make sure that the landmark order is the same for
all objects. Assume the shape of k objects xi, 1 ≤ i ≤ k, in m dimensions
are each marked with n landmarks. One possible shape representation is
then

xi = [x0
0 . . . x0

n . . . xm
0 . . . xm

n ], i = 1 . . . k (3.1)

where xj
i is the ith point of the jth dimension. To clearify, consider k

objects with three points in two dimensions. The representation then be-
comes

xi = [x0 x1 x2 y0 y1 y2], i = 1 . . . k (3.2)

Of course, any other representation is just as good, however this is the one
used in this thesis along with many other applications.

3.2.1 Placing Landmarks

The process of defining a shape by placing landmarks is called annotation
or registration. This can be done manually, semi-automatically or auto-
matically. Shapes in two dimensions may require hundreds of landmarks
to capture the shape, and three-dimensional shapes may require magni-
tudes more. This has sparked the development of semi or fully automated
registration algorithms. In this thesis, a semi-automatic algorithm is used
[26, 18]. Fully automated registration algorithms exist for general shapes.
These have proved to be fairly successful for data in two dimensions. One
such method is Minimum Description Length (MDL) [25]. This method
generalizes to three dimensions, but very few implementations yet exist.

3.3 Shape Analysis Data

Data used for shape analysis can be in any form. The majority of two-
dimensional data comes in the form of digital raster images, but vectorial
images are also possible. As long as the images reside in some form of co-
ordinate system, landmarks can be defined and shape analysis preformed.
Three-dimensional data is more complicated to represent. The most com-
mon representation is polygonal data, where surfaces are defined as the area
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enclosed by a set of 3-D points. See section 4.1.2 for a detailed description
of one way to represent 3-D polygonal data.

3.4 Terminology

In this thesis, a number of synonyms are used which are listed here.

• Object, face, scan, example, sample, shape (the shape of an object,
as opposed to the texture)

• Bringing objects into correspondence, registration, forming a (sparse
or dense) correspondence

• Unregistered object, novel object, new object
• Training set, examples, object database
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Chapter 4

Methods and Materials

This chapter will cover procedures for data acquisition and the mathemat-
ical methods for building models and applications. Chapter 5 will give the
outlines of an implementation of these methods and chapter 6 renders the
results.

4.1 Data Acquisition

An important step towards building a 3-D appearance model is the data
gathering. Building a data set of two-dimensional images is rather straight-
forward, requiring only a digital camera, an appropriate setting, suitable
lighting equipment and people to photograph. Three-dimensional data, on
the other hand, requires rare and expensive equipment, more commitment
from the people being registered and more time. As the models become
rather large in size, data storage and transfer can also pose a problem.

4.1.1 Hardware

The data was acquired using a Minolta Vivid 900 laser scanner provided by
the 3D-Laboratory at the School of Dentistry, University of Copenhagen.
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The camera has a single CCD1 which registers both the reflected laser
beam and the digital image used for texturing. The scanner performs the
following steps for a single data registration:

1. The scanner probes the object in front of it using the laser beam.
This is done to set the target area for the laser to scan.

2. The scanner forms a horizontal laser plane which scans the object top
down. The reflections are measured by the CCD and stored as 3-D
points.

3. Finally, the CCD is used to acquire a digital 2-D image. The CCD is
monochrome, so to register a color image, three images are registered,
each with a different filter put in front (red, green, blue).

The laser beam, as any directed light, casts shadows. When a human
face is scanned, protruding parts, such as the nose and the chin, cause
problems with shadows, leaving parts of the face unregistered. The amount
of shadows is dependent on the angle from which the scanning is performed,
however, no single angle can capture the whole face area. This is solved by
scanning a face from multiple angles, and then merging the data. Extensive
testing was done to find the optimal angles and number of scans. Since the
scanner weighs roughly 20 kilos with the tripod, it proved to be easier to
rotate the person being scanned than moving the camera. To facilitate
this, a dentist’s chair was used which can be raised, lowered and turned in
an exact fashion.

It is difficult for the person being scanned to keep absolutely still, and to
establish the exact same pose before each scan. For this reason, as few
scans as possible should be used, but too few scans result in an incomplete
face representation. With careful positioning of the scanner and the object,
as little as three scans suffice. By putting the scanner in a slightly lower
position than the person being scanned, a decent representation of the chin
and nostrils can be achieved. To register the whole face, including the
cheeks and the sides of the nose, the three scans were performed from 0◦

and ±30◦.

The drawback of moving the person instead of the camera is the change
in lighting conditions. As the person rotates, the face will be differently
illuminated. This is the case when the ambient light of the room is directed
instead of diffuse. The light should therefore be as diffuse as possible. To

1CCD is short for ”Charged Coupled Device” and is the component capturing an

image in digital cameras, similarly to the photographic film of classic cameras.
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achieve this, professional lighting equipment for common photography was
used. This consisted of two 1000 watt lamps mounted on tripods. The
light from these lamps were bounced of parabolic reflectors, resulting in
diffuse lighting conditions. However, perfect diffuse light is very hard to
achieve, and the placement of the lighting equipment was crucial for high
quality results. The optimal setting proved to be one light on each side
of the camera, approximately 0.6 meters perpendicular to the direction of
photography. One light was placed at face height and the other slightly
higher. Both lights were directed towards the face.

Figure 4.1 shows the camera flanked by the lighting equipment.

4.1.2 Scanner Software

The Minolta scanner comes with a 3-D data processing software called
Polygon Editing Tool. Using this, the camera can be controlled and data
can be imported, processed and exported.

After scanning and importing the three views that make up a complete face
scan, the program shows the three scans represented as polygon meshes
with texture in the same frame. The meshes are placed as they were
scanned, i.e. the side views are rotated and therefore out of place. To
merge the separate views into one, the software uses an unknown registra-
tion algorithm, possibly ICP (see appendix C), to align the meshes. This
works surprisingly well as long as the overlap is significant. In almost all
cases, the software was able to align the surfaces without manual guid-
ance. When the surfaces are aligned, they can be merged. The merged
representation is then saved, and the individual views are discarded.

Not only the 3-D data is merged. The three texture maps are also merged,
i.e. for each 3-D point, a decision must be made to which texture map
the point should be linked. Because of the imperfect lighting conditions,
the merged texture has many neighboring pixels with large differences in
illumination. This effect can be reduced with a built-in function for texture
blending, which makes sure transitions between the three texture maps are
smooth.

Despite merging three scans, there might still exist small unregistered areas.
These show as holes in the polygon mesh. The software aids in finding these
holes and eliminates them by inserting new points and polygons. This is
done so that the local curvature of the mesh is preserved.

24 Chapter 4. Methods and Materials

Figure 4.1: The scanning setup. The lens can be seen on the upper front
part of the camera. The opening below holds the laser.
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When the post-processing of the data is finished, the result is saved using
a suitable format. Minolta’s own format produces binary files, and no
documentation on how the format works exist. It is therefore not useable
outside the Polygon Editing Tool. Luckily, the program is able to export the
file to a few other formats. The only non-binary (ASCII) format that saves
all information, including texture and texture coordinates (see below), is
VRML. VRML is an abbreviation for Virtual Reality Modelling Language
and is a format for creating 3-D graphics for the web. A typical VRML file
contains an object description consisting of 3-D points, polygons, coloring
and texture. It can also hold animation specifications, lighting parameters
etc. Refer to www.web3d.org/VRML2.0/FINAL/ for the full specification.
Since the file format is easy to understand and read, and because the models
can be investigated using a web browser, this format was chosen as the most
suitable.

The finished models consist of around 30 000 3-D points, saved as triplets
of floating point numbers. Roughly the same amount of vertex references
make up the polygons. The texture map is included in the file as hexadec-
imal numbers. Six hex numbers represent a pixel. The first two denote the
amount of red, from 0 (0 hex) to 255 (FF hex). The middle two numbers
represents green and the last two blue. 320 000 such numbers make up the
whole texture map, which results in an 800 × 400, 24 bit color image. To
be able to represent the texture of a 3-D surface by a 2-D image, the tex-
tural data must somehow be projected onto a flat surface. The projection
used here is cylindric, which is suitable for faces, since a face can (very
crudely) be approximated by a vertical cylinder. To map the 3-D points to
the texture image, texture coordinates are used. For each 3-D point, there
is a texture coordinate telling where in the texture map this point has its
color information. The texture coordinates are normally denoted (s, t) and
range from 0 ≤ s, t ≤ 1. This mapping actually defines a bivariate function
(s, t) = (f(x), g(x)) where x ∈ Z is a point index and s and t are the re-
sulting coordinates. The model’s polygons are textured using interpolation
of the texture-coordinates of each vertex.

Below is a simple example VRML file, which defines a triangle with texture
coordinates. Note that only the first three pixels of the texture map are
represented.
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#VRML V1.0 ascii

...

Texture2 {

image 800 400 3

0x1a0010 0x1b0109 0x1a0008

...

}

Coordinate3 {

point [

0.00 0.00 0.00,

10.00 0.00 0.00,

5.00 5.00 0.00

]

}

IndexedFaceSet {

coordIndex [

0, 1, 2, -1

]

}

TextureCoordinate2 {

point[

0.120453 0.114399,

0.003498 0.001515,

0.357738 0.424964

]

}

...

4.1.3 The Face Database

24 faces were scanned during two major and a few minor sessions. Ages
ranged from 20 to 40, plus one child. Most of the people were students
and staff from the Technical University of Denmark, hence, many of the
subjects were male and of Scandinavian origin. The age, gender and race
distribution is therefore limited. When constructing a database of faces
used for modelling, the usual objective is to make the model as general as
possible. If the model is going to be used for a specific purpose, it might
make sense to create a more specific model. The limited variation and
number of scans puts high constraints on the model.
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The scanner is not able to register hair, so a full head representation is not
possible to acquire. Eyes are also hard to register since the reflected laser
beam is too dispersed to capture. Therefore, all scans are performed with
the eyes closed.

A scan from one angle takes approximately 5 seconds. The total scanning
process lasts approximately two minutes, and including post-processing,
the total time is around 15 minutes per person.

The resulting shape and texture data is partially of poor quality.

• The shape is well represented but has a rough surface. This is a result
of the difficulty in maintaining the exact same pose throughout the
whole scanning process.

• The texture projection from surface to cylinder have resulting arti-
facts. Areas at (almost) right angles to the cylinder have insufficient
mappings.

• The color balance is incorrect which might be a result of the type of
lighting used. The camera is, according to the user’s manual, made to
operate in ”office lighting”. The color temperature of the equipment
used is similar to that of daylight. The problem shows as low intensity
of green colors, or equivalently, an excess of red and blue tones.

• The texture-coordinate mapping has missing entries. This shows as
the mapping (s, t) = (0, 0). Although this mapping is valid, it is in-
correct, something which is easily seen when the scans are examined.

Despite this, the database should be useful for anyone interested in three-
dimensional modelling. As will be shown, the data quality is sufficient for
creating a useful model. Appendix E shows 2-D images of the faces in the
database.

The work with acquiring the data and finding the optimal scanning setup
was performed together with Ph.D. student Brian Lading, IMM, Technical
University of Denmark.

4.2 Model Creation

This section describes a method for building a three-dimensional appear-
ance model from a training set of human faces. Only the mathematical
methods and the outlines of the algorithms are presented here. How this
is implemented in code is described in chapter 5.
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4.2.1 Shape Registration

When constructing a 2-D shape- or appearance model, each object in the
data set is annotated with corresponding landmarks. Around 60 landmarks
suffice for a 2-D facial image. In three dimensions, thousands of landmarks
are required to capture the complex surface of a human face. Obviously, it
is not feasible to annotate these by hand. Instead, some sort of automated
process is necessary. A semi-automatic algorithm is used here, which con-
structs a dense distribution of corresponding points from a sparse set of
manually placed landmarks [26].

The unregistered face data is unordered. This means that a certain 3-D
point can be placed anywhere on a face. On one face the point can be part
of the ear, while on another it is part of the nose. If each point represented
the same position on every face, they would be in correspondence. The idea
of the registration algorithm is to change the order of the points to give
all objects the same representation. If all objects have an equal amount
of points and the same point ordering, every point will act as a landmark.
Since a face consists of tens of thousands of points, there will be enough
landmarks to perform statistically satisfying shape analysis.

The Template Shape

The algorithm uses one of the objects as a template shape. The idea is to
pick a suitable face as the template, and then change the extent and point
ordering of the other faces to match the template.

The template should be well represented and have an ”average” shape.

Since the registration algorithm will give all the faces in the database the
same number of points as the template, it is essential that the area repre-
sented by each point is present in all the other objects. To ensure this, the
objects are carefully examined. The template is then pruned so that the
resulting face area is present in all examples.

Defining a Sparse Set of Landmarks

Each object is manually annotated using a 3-D landmarking program, ISA,
developed by Rasmus Paulsen, IMM, DTU. This software was originally
used to annotate 3-D models of human ear canals, and had to be improved
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Figure 4.2: A schematic face with enumerated landmarks.

Number Description
1 The tip of the chin
2 The left corner of the mouth
3 The right corner of the mouth
4 The tip of the nose
5 The left corner of the left eye
6 The right corner of the left eye
7 The minimum of the curve defined by the adjoining

of the nose and the forehead
8 The left corner of the right eye
9 The right corner of the right eye

Table 4.1: The sparse set of manually defined landmarks

to be able to work with face data. The most important improvement was
the addition of the ability to work with textured objects. Placing a land-
mark at the corner of an eye is much easier using the texture as guidance
than just the shape.

Nine landmarks were used. These are shown in figure 4.2 and listed in table
4.1. Note that all landmarks are anatomical, except landmark seven which
is of mathematical type.
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Forming the Dense Correspondence

The sparse set of landmarks can now be used to form a dense set of thou-
sands of landmarks.

The template face is deformed [18] to roughly fit the shape to be registered
using a thin-plate spline warp [6]. The thin-plate spline warp consists of
a non-linear transform that stretches and bends an object to fit to certain
points. The transformation is defined by the sparse landmarks. The land-
marks of the template act as source points, and the landmarks of the object
to be registered are the target points. The transform warps the template
so that the source points coincide with the target points. The rest of the
template’s shape is altered as little as possible. This is an effect of the
thin-plate spline warp being defined by an energy-minimizing function of a
thin steel plate. See appendix B for more information on thin-plate splines.

The shapes are now very similar in shape. This can be used to easily form a
dense correspondence of points between the template and the unregistered
object. As an example of how this is done, take any point in the template
mesh. Find the closest point on the surface of the other object. This
new point is part of the novel object and corresponds to the point of the
template. Doing this for all points results in the following registration
algorithm:

1. Warp the template shape using the sparse set of landmarks of each
object. This makes sure the shape of the template is similar to the
shape of the new object.

2. For each template point, find the closest point on the neighboring
surface

3. Discard the old points of the object, and replace them with the new
registered points

Note that the correspondence is found point-to-surface instead of point-
to-point. If the point distribution is very dense, the methods are almost
equal, but if the distance between points can be noticeable, the stated
algorithm gives better results. Figure 4.3 shows the registration process for
2-D curves. Note that it generalizes to three dimensions.

Each point of the new object now corresponds to the same point of the
template, while the shape of the object is preserved. The registered object
will also contain less points than before. This means that the registered
object is automatically pruned according to the template.
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Closest−point registration

Template point

Registered point

Manually defined landmark

Template shape

New shape Registered shape

Thin−plate spline warp

Figure 4.3: The registration process shown with 2-D curves.

Since the point ordering and extent of the registered object have changed,
the old polygonal vertex references are now invalid. However, since the
representation of the registered object is approximately the same as for the
template, the polygon references of the template can be used. These are
therefore simply copied into the new object. The same goes for the texture
coordinates, although this requires that the texture representation of the
template and the registered objects are similar. This topic is covered in
4.2.3.

4.2.2 Shape Alignment

The faces now have a uniform shape representation, but location and ori-
entation still differs somewhat. Before statistical shape analysis can be
performed, the shapes must be rotated and translated so that only the
shape and size, as defined in chapter 3, remains. To filter out the pure
shapes from a set of objects, scale needs to be removed as well. Since the
data used here was acquired using a laser scanner, which measures the ac-
tual size of an object, the scale of the objects is invariant. Differences in
size derives from the actual inconsistencies in face size among the people
scanned. This is an interesting feature of the model so these differences are
left unaltered, resulting in a size-and-shape model (see chapter 3).

The shape alignment is performed using Procrustes analysis. This tech-
nique was originally introduced for applications in psychology as early as
1939. The algorithms used here were mainly developed by Gower (1971,
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1975) and Ten Berge (1977). A thorough description of Procrustes meth-
ods can be found in appendix D, but the essential methods for three-
dimensional data will be rendered here.

Metrics and Representations

Shapes in three dimensions consisting of ns points si = (xi, yi, zi)
T can be

represented by a single vector in R3ns

s = (xT ,yT , zT )T = (4.1)

= (x1, . . . , xns
, y1, . . . , yns

, z1, . . . , zns
)T

The set of k shapes now consists of k points in 3ns-dimensional space.

Another way to represent an object is in matrix form. The columns are x,
y and z respectively and one row equals one point. The matrix is therefore
of size (ns × 3).

S = [x y z] (4.2)

Both representations will be used here.

The centroid of a shape is defined as the center-of-mass of all landmarks,
where a landmark is considered to be of unit mass.

sc = (x̄, ȳ, z̄)T =
1

ns

(

ns
∑

i=1

xi,

ns
∑

i=1

yi,

ns
∑

i=1

zi

)T

(4.3)

The Procrustes mean of all shapes is simply the vector built from the mean
of each corresponding point.

s̄ =
1

k

k
∑

i=1

si (4.4)

For completeness, although scale is not filtered out from the objects here,
the shape size metric commonly used is the centroid size.

T (s) =

√

√

√

√

ns
∑

i=1

(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2 (4.5)
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Removing location

To filter out location from the set of objects, they are translated so that
their centroids match. The origin is a suitable matching location. Objects
with centroid at the origin are said to be centered.

Removing orientation

To filter out differences in rotation, all shapes are aligned so that their
orientation is equal to the orientation of the mean shape. Once this is
done, calculating the mean anew will result in a different mean shape. The
objects are therefore rotated again. This process is iterated until the mean
is stable.

The rotation that optimally rotates one object to fit another can be found
using singular value decomposition (SVD) [7]. This is done using the fol-
lowing method:

• Using the matrix representation of an object, denote the object to be
rotated S1 and the target object S2.

• Construct a matrix M :

M =
ST

2 S1

‖S1‖‖S2‖
(4.6)

where the norm ‖S‖ =
√

trace(ST S).
• Calculate the SVD of M :

M = V ΛUT (4.7)

• The optimal rotation is R = UV T

This gives the follwing algorithm for removing orientation:

1. Calculate the Procrustes mean from all objects using equation 4.4
2. For each object, calulate the optimal rotation R that aligns the object

to the mean and rotate the object using S′ = SR
3. Iterate step 1 and 2 until convergence.

Convergence is declared when the RMS (Root Mean Square) value of the
difference between the old and new mean vector falls below a certain thresh-
old. Denote the mean of the last iteration s̄0 and the mean of the previous
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iteration s̄1. The RMS value is then calculated as

∆RMS(s̄0, s̄1) =

√

√

√

√

1

ns

ns
∑

i=1

(s̄0(i) − s̄1(i))2 (4.8)

Another option is to use the squared norm of the difference vector

‖(s̄0 − s̄1)‖2 (4.9)

4.2.3 Texture Alignment

The template shape not only defines the polygon references of the final
model, but also the texture coordinates. Therefore, the texture maps must
be aligned so that each pixel represents the same part of all objects. All
images already have the same size (the same number of pixels), but the
location, size and extent of the content differs significantly. The texture
maps can be given a uniform representation using a two-dimensional thin-
plate spline warp, see appendix B. This requires that suitable source and
target landmarks are defined. Since the 3-D points of all the shapes are now
in correspondence, any set of 3-D points can define a set of 2-D landmarks
by use of the texture coordinates.

For example, assume the shapes each have 20 000 3-D points, and a set
of 20 points were chosen by selecting every thousand point starting with
point number 1000. Each of these 20 points link to the texture map via the
texture coordinates (s, t). If this is done for all shapes, each texture map
will be annotated with 20 landmarks that can be used to define the warp.
The 2-D landmarks of the template are the target points. The remaining
question is how to select an appropriate set of 3-D points. Too few will
result in an inexact warp and too many will cause too much bending of
the area outside the landmarks. Also, any random choice of points may
result in an inhomogeneous distribution of 2-D points. However, a suitable
amount and distribution is defined by the set of 3-D landmarks listed in
table 4.2. For each landmark position, the corresponding 3-D point of the
shape is found and a 2-D landmark is registered.

The warp defined by these landmarks causes no distortion of the area out-
side the landmarks and is accurate enough. Because of the distribution, it
is most accurate around the central part of a face which is important. The
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areas around the cheeks and chin is not as important since the textures
tend to be rather invariant there.

Just as the registration algorithm described in section 4.2.1 pruned all the
shapes according to the template, the textures also need to be pruned. The
only textural information needed is defined within the convex hull of the
2-D landmarks off all 3-D points. There is, however, a more efficient way
of calculating this area. The outline of the template shape forms a three-
dimensional closed loop. By using the texture coordinates, the outline can
be mapped to 2-D. The area enclosed by this loop defines the extent of the
texture maps needed by the model. Once this is defined, all the information
outside the loop can be removed in all the texture maps.

Intensity Alignment

Even though the images have been aligned with respect to location, rota-
tion and scale, they might still contain variation in overall intensity. The
differences in individual pixel intensities is of course what defines the ap-
pearance of the different texture maps, but global intensity variation such
as illumination and color balance can be filtered out to improve the speci-
ficity of the texture model.

By placing the intensity value of each pixel on a single axis it is understood
that the intensities can be aligned using a one-dimensional Procrustes anal-
ysis. Since each pixel has three intensity values in color images, one each
for red, green and blue intensity, three separate alignments are performed.
This is preferred over a single three-dimensional Procrustes analysis, since
it better handles differences in color balance. The discussion below con-
cerns only one color component. The same method is used for the other
two.

Let the intensities of a texture map of nt pixels form a vector.

t = [t1, . . . , tnt
]T (4.10)

The analytical solution for planar ordinary Procrustes analysis is given in
appendix D. The one-dimensional case is similar, except that real numbers
are used instead of complex and rotations does not exist.

Assume that the mean texture t̄ is known. Assume also that all textures
have been centered, i.e. the sum of each texture vector tT 1nt

is zero. To
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find the optimal parameters that scales and translates the intensity of a
texture according the the mean, the mean is expressed in terms of the
unaligned texture.

t̄ = γ1nt
+ βt + ε (4.11)

γ represents translation, β scaling and ε is an error vector describing the
remaining difference between the two textures after alignment. To find the
optimal parameters γ̂ and β̂, the error sum-of-squares εT ε is minimized.

εT ε = (t̄ − γ1nt
− βt)T (t̄− γ1nt

− βt) (4.12)

The optimal parameters are easily found to be

γ̂ = 0 (4.13)

β̂ =
tT t̄

tT t
(4.14)

The mean texture can be found using singular value decomposition. The
approach used here is the iterative methods of generalized Procrustes anal-
ysis for higher dimensions.

1. Center the intensities of all texture vectors using

tcentered = t− (tT 1nt
/nt)1nt

(4.15)

2. Calculate the mean of all k texture vectors

t̄ =
1

nt

k
∑

i=0

ti (4.16)

3. Align the textures using

tfit =
tT t̄

tT t
t (4.17)

4. Iterate step 2 and 3 until the mean is stable.

4.2.4 Building a Shape Model

Now that the shapes are registered and aligned, they reside in a common
coordinate frame. This means that the differences in point locations are
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solely due to differences in shape. The aligned shapes that are used as
input to the model are called training shapes or example shapes.

A shape model produces linear combinations of the training shapes. This
makes it possible to produce shapes not present in the training set. The
shape space created by the model spans all the training shapes, all in-
between shapes as well as extrapolations, depending on the coefficients.
As long as the choice of coefficients are reasonable, plausible, i.e face-like,
shapes are generated.

Since there will be as many coefficients of the model as there are examples,
it is desirable to change the representation to something more manageable.
One effective approach is Principal Component Analysis (PCA). Using the
vector representation of equation 4.1, the m examples of ns points will form
a point cloud in 3ns-dimensional space. With enough shapes in the training
set, this point cloud will have a shape depending on the characteristics of
the examples. For example, male and female faces will form partitions in
space, as well as different ages, face sizes and shapes. The distribution of
points will therefore not be gaussian. PCA rotates the current coordinate
system, so that the axes point in directions of maximum variation of the
point cloud. The new axes are called the main axes. The result is that
as much of the training set variation as possible is explained by the first
axis. The second axis will be orthogonal to the first and will contain as
much of the remaining variation as possible. The other axes will have the
same properties. If, for example, age cause most of the variation among
the examples, the first axis will be along this direction, from young to old.
In reality, each axis normally represent a collection of attributes, although
the dominant one can easily be identified.

The variation drops rapidly with each axis. When a certain proportion of
the total variation is reached, e.g 98%, the rest of the axes can be omitted.
This reduces the dimensionality of the model and makes it more manage-
able. Appendix A describes PCA in detail, however, the results are given
here.
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Modelling Shape Variation

The main axes of the point cloud are given by the eigenvectors of the
covariance matrix. The covariance matrix Σs is

Σs =
1

k

k
∑

i=1

(si − s̄)(si − s̄)T (4.18)

where s̄ is the mean shape of equation 4.4. The eigenvectors are collected
in the (ns × k) column matrix Φs and the corresponding k eigenvalues are
denoted λs(i). The resulting shape model is

s = s̄ + Φsbs (4.19)

where bs are the shape parameters. These replace the coefficients of the
original linear combination model and determine the weights of the new
set of axes. It is easily seen that bs = 0 returns the mean shape. The
parameters of an example s can be found by solving equation 4.19 for bs.

bs = ΦT
s (s− s̄) (4.20)

Suitable Parameter Values

Suitable parameters can be found by using the examples and equation 4.20
to find the standard deviation of each entry of bs. There is however an
easier way. The eigenvalues λs(i) represent the variation of each parameter.

Hence, the standard deviation of parameter value i is
√

λs(i). Suitable
values of bs are usually in the range of 2 − 3 standard deviations.

Reducing Model Dimensionality

As mentioned above, with enough examples in the training set, not all the
axes of the shape model are necessary to produce a satisfying model. To
determine how many parameters that can be omitted, a suitable proportion
p of the total variation to be included in the truncated model is chosen. As
mentioned, the common choice is p = 98%. Since the eigenvalues represent
the variation of the corresponding eigenvalue or axis, they are sorted in
descending order. Thus, the t parameters [21] that explain a proportion p
of the total variation are found that satisfies
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p ≥
∑t

i=1 λs(i)
∑k

i=1 λs(i)

(4.21)

The unused eigenvalues and eigenvectors can be discarded. Φs is now of
size (ns × t) which among other things reduces the memory requirements
in an implementation.

4.2.5 Building a Texture Model

Building a model that describes the texture variation is done using the
same techniques as for the shapes. The vector representation of a texture
with color components red, green and blue (r, g, b) is

t = [r1, . . . , rnt
, g1, . . . , gnt

, b1, . . . , bnt
]T (4.22)

The covariance matrix is

Σt =
1

k

k
∑

i=1

(ti − t̄)(ti − t̄)T (4.23)

and the texture model formulation is

t = t̄ + Φtbt (4.24)

Parameters for the examples can be found by

bt = ΦT
t (t − t̄) (4.25)

Just as for shapes, the dimensionality of the texture model can be reduced.
This is even more useful here, since textures can contain hundreds of thou-
sands of points, ten times the amount of shapes.

Note that the texture model described here is essentially the same as the
eigenface model introduced by Turk and Pentland in 1991 [27].
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4.2.6 Building an Appearance Model

To generate a complete representation of an object, a set of shape parame-
ters bs and a set of texture parameters bt could be chosen, and the results
could be used to form a single textured object. However, it is desirable
to control a single model of both shape and texture with a single set of
parameters. Setting bs = bt is not sufficient since the texture and shape
variations may be correlated. To remove this correlation, a third PCA is
applied to the concatenated parameter vectors of the textures and shapes
as follows.

Using equations 4.20 and 4.25, the parameters of each example are found
and concatenated into a single vector.

b =

[

Wsbs

bt

]

(4.26)

The use of the matrix Ws will be described below. The third PCA is now
applied to these vectors giving a third model

b = Φc (4.27)

Here, c denotes the appearance parameters controlling both shape and tex-
ture. Note that since both the shape and texture parameters have zero
mean, c̄ = 0.

A more straightforward way of constructing the appearance model is to
directly concatenate the shape and texture vectors and perform a single
PCA on the resulting correlation matrix to reach the same result as above.
Using the method of constructing separate shape and texture models as
described here, it is easier to understand the details of an appearance model.
The shape and texture models are also interesting to investigate separately.

Balancing shape and texture variation

The concatenated parameter vector b include a shape with points measured
in distance units, and a texture with pixels measured in intensity units. The
difference between these can be eliminated by multiplying bs by a diagonal
matrix Ws of parameter weights.

In a two-dimensional appearance model, a change in shape also changes
the texture vector. Therefore, a somewhat complicated method must be
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used to estimate the impact on the texture from varying the shape. In a
three-dimensional model, the use of a texture map means that the texture
vector is independent of changes in shape. Therefore, it is only necessary
to make sure the texture and shape parameters exhibits the same variation.
This can be done using the eigenvalues of the separate shape and texture
models. The total variation is the sum of all eigenvalues.

σs =
k
∑

i=1

λs(i) (4.28)

σt =
k
∑

i=1

λt(i) (4.29)

Ws is then chosen to be Ws = rI where r = σt/σs.

4.3 Model Application

This section describes a few ways of using the 3-D appearance model for
image analysis purposes. Of course, there are a myriad of ways to use a
general model of human faces; these are the ones implemented here.

4.3.1 Face Synthesis

By altering the appearance parameters c of equation 4.27, new faces can be
synthesized. c = 0 results in the mean shape with the mean texture. To be
able to create new faces, the shape s and the texture t must be expressed
in terms of c.

b = Φc ⇐⇒ (4.30)
[

Wsbs

bt

]

=

[

Φ(s)c
Φ(t)c

]

⇐⇒ (4.31)

[

WsΦ
T
s (s− s̄)

ΦT
t (t − t̄)

]

=

[

Φ(s)c
Φ(t)c

]

⇐⇒ (4.32)

[

s
t

]

=

[

s̄ + ΦsW
−1
s Φ(s)c

t̄ + ΦtΦ(t)c

]

(4.33)
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Note that Φ(s) is the part of Φ occupied by the shape parameters and Φ(t)

is the corresponding part for the texture parameters.

As an alternative, new faces can be synthesized using all three models by
first calculating b from c using equation 4.27. From b, bt is found directly
and bs = W−1b(s). Using equations 4.19 and 4.24, s and t can finally be
calculated. This is the method used in the implementation.

As before, suitable parameter values are in the range ±3
√

λi, where λi are
the eigenvalues of the combined model.

4.3.2 Face Segmentation in 2-D Images

The most obvious use of an appearance model of human faces is face de-
tection and segmentation. By using a snapshot of the current view of the
3-D model, a 2-D image representation can be created. Segmentation algo-
rithms using a 3-D model are based on a comparison between the image to
be interpreted and the snapshot. Using information from this comparison,
the model is updated, a new snapshot is created and the result is used to
further improve the fit. Convergence is declared when the difference be-
tween the underlying image and the model snapshot has reached a (local)
minimum. Because of the high complexity of a 3-D model, the algorithm
requires careful initialization to converge to the global minimum.

The common method of deciding how to update the model, using the in-
formation from the image comparison, is the active appearance algorithm.
As described in chapter 2, the method is based on prior knowledge on how
to alter the model to improve the fit. The method used here does not
make use of any prior knowledge. Instead it is based on a general min-
imization algorithm. Most high-dimensional optimization algorithms are
gradient based, meaning that the minimization path is along descent direc-
tions. The method used here is called an amoeba minimizer. Following a
certain scheme, the algorithm feels around in the parameter space looking
for directions where a better fit can be found.

The objective function G is based on the norm of the difference between the
image to be interpreted I and the 2-D representation of the model M2D.
The variables of G are the appearance parameters c, the position of the
model in 3-D space t = [tx, ty, tz]

T and the uniform model scale β.

G(cT , tT , β) = ‖I − M2D‖2 (4.34)
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Note that tz and β has a similar function if a perspective projection of the
model is used. The parameters are just affecting the model, the image I is
static throughout the optimization process.

The 2-D target image often contain significant background information
while the model image is empty outside the model itself. To make the
differentiation work, only the area of the target image that is covered by
the model is included. Differences in brightness and color balance are taken
care of by normalizing the images before differentiation.

More parameters could be added to improve the specificity of the model
such as lighting direction, projection parameters etc.

4.3.3 Automatic Registration of New Face Scans

The appearance model can synthesize new 3-D faces as described in section
4.3.1. If the model is general enough, it will be able to approximate any
unseen 3-D face. This can be used to automatically register new face scans.
These registrations can then be included in the model to further generalize
it.

In section 4.2.1, the original semi-automatic registration algorithm is ex-
plained. A thin-plate spline warp is used to approximate the new shape
using the template shape. The warp is defined by the manually defined
sparse sets of source and target landmarks. Using the finished appearance
model, the new face can be approximated by the model instead. This can
be done automatically (possibly with manual initialization) by an algorithm
proposed by Hutton [26].

The algorithm is an iterative procedure including two basic steps.

The ICP step: Iterative Closest Point (ICP) [3] is an iterative process
that optimally aligns a shape to another using either a rigid-body
transform or a similarity transform. ICP is described in detail in
appendix C. Here, the unregistered shape is aligned with the model
shape.

The model refinement step: The novel shape is registered using the
point-to-surface technique described in 4.2.1. Using equation 4.20,
the parameters that best approximate the registration are found. The
parameters are clamped to the range ±3 standard deviations. The
result is used to update the model using equation 4.19.
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Since the model changes in the model refinement step, the new shape needs
to be aligned again with ICP. The new alignment is then further refined
until convergence. When the algorithm finishes, the current registration is
used as the final registration result.

Details

The ICP algorithm [3] is very robust, and usually it is only necessary to
match the scans by their centroids to make ICP converge correctly. On
some occasions manual initialization may be required.

Since ICP works by using the same point-to-surface method as the registra-
tion algorithm, the new face scan must have an extent greater or equal to
the model. This is also a prerequisite for producing a satisfying registration.

ICP translates, rotates and scales the model according to the new face
scan. Since the extent of the new shape is greater or equal to the extent
of the model, ICP can only align the model to the new shape, not the
other way around. If the larger of the two is used as the source, some
points will not have a correctly corresponding point on the target surface.
Transformations of the model should, however, be avoided, as this brings
it out of shape-space. Outside shape-space, the model refinement step
does not work. The transformation found above is therefore inverted, and
applied to the unregistered shape instead. This aligns the new shape with
the model.

To measure the converge of the algorithm, the squared Procrustes distance
between the registrations of the current and former iterations is used. Equa-
tion D.2 states the expression of this. When the distance drops below a
certain threshold, the registered shape is stable and cannot be improved
any further.
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Chapter 5

Implementation

This chapter presents how the methods of the previous chapter are imple-
mented, as well as listing the software used.

5.1 Software

5.1.1 VTK

The majority of the project was implemented using the Visualization Tool-
kit, also known as VTK. VTK is an open-source project with the aim to
create a powerful and versatile toolkit for visualization in two, three and
four dimensions. Source code, binaries and documentation can be found at
the VTK web site:

www.vtk.org

The VTK project is administered by Kitware inc., which also offers other
computer vision packages. Visit www.kitware.com for more information.

VTK is implemented in C++. A binary distribution exist, but to get
the full distribution, the source code must be compiled. All VTK classes
comes with a set of wrapper classes so that VTK can be used through
Tcl/Tk, Python and Java. In this project, as much as possible has been
implemented using Tcl/Tk because of the rapid development and the ease
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of creating graphical user interfaces. Complicated and high performance
methods has been implemented using Microsoft Visual C++ 6.0.

5.1.2 Miscellaneous Software

Code-Genie is a small, simple yet powerful code editor. It is free to try
and can be found at www.code-genie.com.

The Gimp is a free image-editing program similar to the popular com-
mercial program Photoshop from Adobe. The program was originally
written for UNIX computers, but the version used here is the port
for Windows computers. The Gimp can be found at www.gimp.org.

WinEdt is a text editor for creating LATEX documents, such as this thesis.
WinEdt is free to try and can be found at www.winedt.com.

MiKTeX creates DVI, Postscript and PDF documents from TEX files
on Windows computers. MiKTeX is required for WinEdt to run
properly. MiKTeX can be downloaded from www.miktex.org.

Cygwin provides a suite of programs to give a Windows computer the
command-line power of a UNIX computer. It also provides an imple-
mentation of XFree86 which is an X-server. This makes it possible
to graphically connect to UNIX computers. Cygwin can be found at
www.cygwin.com.

Xfig is a program for drawing vectorial images for documents such as this
one. See www.xfig.org for more information.

Emacs is an advanced text editor with support for most programming lan-
guages. Emacs is free, exists both for UNIX and Windows computers,
and can be downloaded from www.gnu.org/software/emacs.

5.2 Registration Implementation

Figure 5.1 shows the flow of programs used to create an appearance model
from a set of unregistered VRML files. The following sections will describe
these programs in detail.

5.2.1 File Format Conversion

The VRML files created by the camera software must be converted to a
format which can be used by VTK. The toolkit contains functionality for
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VTK Template

wrl2vtk.tcl

polydata_prep.tcl

ISA.tcl

face_registration.cpp

shape_alignment.tcl

texture_intensity_alignment.tcl

texture_model.tclshape_model.tcl

texture_alignment_9LM.tcl

texture_optimizer.cpp

template_pruning.tcl

appearance_model.tcl

VRML (.wrl) files from Scanner Software

VTK (raw)

VTK (centered, smoothed, etc.)

VTK landmark files

VTK registered shapes

Appearance model

PNG aligned + optimized textures

PNG textures

VTK aligned shapes

Texture coordinate change

Figure 5.1: The range of implemented programs used to create an appear-
ance model from a set of VRML files.
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reading many different formats, but the native VTK format is similar to
VRML and therefore suitable. Rendered below is an example file with data
identical to the VRML file of section 4.1.2.

# vtk DataFile Version 3.0

vtk output

ASCII

DATASET POLYDATA

POINTS 3 float

0.0 0.0 0.0 10.0 0.0 0.0 5.0 5.0 0.0

POLYGONS 1 3

3 0 1 2

CELL_DATA 1

POINT_DATA 3

TEXTURE_COORDINATES textureCoords 2 float

0.120453 0.114399 0.003498 0.001515 0.357738 0.424964

The file contains 3 points defining a triangle in the xy-plane. ”POLYGONS
1 3” means there is one triangle and the total number of vertex references
is three. A polygon is defined by first specifying the number of references
(3) and then specifying the references (0, 1, 2). The texture coordinates
are defined as pairs of floating point numbers.

Since the VRML and the VTK formats are similar, the file conversion
is straightforward to implement. Using the powerful regular expression
functions of Tcl, a robust implementation is created. The program converts
any VRML file created by the camera software to the VTK format, but it
is not a general VRML to VTK converter, since there are many features of
VRML that are not handled.

The VRML file contains the texture map as ASCII data while VTK lacks
this feature. Instead, the texture map is read from the VRML file and
saved as a regular image for use with VTK. The image format is PNG
which is a non-degenerative format with high compression.

5.2.2 Preparing Files for Registration

The camera measures actual distances from the CCD. The faces of the
training data is therefore placed far away from the origin. Since it is more
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natural to work with objects centered at the origin the objects are trans-
lated accordingly. The true centroid is not calculated, instead a simpler
approach is chosen where the center of the object’s bounding box is used.

The scanning process sometimes registers hair and pieces of clothing which
results in small ”islands” of polygons around the model. These are removed
by analyzing the connectivity of the model. The largest connected surface
is found and saved, while all disconnected parts are discarded.

As explained in section 4.1.3, the surfaces resulting from the scanning pro-
cess are rather rough. Therefore, they are smoothed using an algorithm
that adjusts the point coordinates according to a windowed sinc func-
tion interpolation kernel [11]. The operation results in a relaxation of
the mesh, making the polygons better shaped and the vertices more evenly
distributed.

5.2.3 Template Preparation

The 3-D annotation software has functionality for defining and saving
planes in three dimensions. This can be used to define a set of bound-
aries which in turn can be used for pruning the template. By examining all
the objects of database using the annotation software, a suitable template
area is found. Three planes are used to prune the model, one for remov-
ing parts of the neck, one for removing the top of the head and one for
removing the back of the head, including the ears.

The template defines the polygon references and texture coordinates of all
the other objects during the registration process. It is therefore crucial for
the quality of the final model that these are of the best possible quality.
The polygon references are acceptable and need no alteration. The texture
coordinates, on the other hand, need to be improved. The top left corner of
all texture maps is empty. The mapping (s, t) = (0, 0) is therefore incorrect,
yet several entries are mapped this way. Since the neighboring texture
coordinates with (s, t) 6= (0, 0) are assumed to be correct, the missing
mappings can be filled in using linear interpolation. Let s0 denote the s-
value to interpolate from and let sn be the target value. In between, there
are n − 1 faulty values to fill in. The expression for the value of slot k is

f(k) = s0 +
k

n
(sn − s0), 1 ≤ k < n (5.1)
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Figure 5.2: The landmarking software showing a completely annotated face.

The same formula applies for t-values. The result is a complete represen-
tation of texture coordinates.

5.2.4 Improving the Annotation Software

Even though a sparse set of only nine landmarks are manually defined on
each object, this is a time-consuming process with a large database. The
3-D annotation software (see section 4.2.1) is a great aid. The software
was originally written for annotating 3-D models of human ear canals, and
therefore it lacks functionality for textured objects. Hence, the program has
been improved to include this. A function for changing the tolerance when
selecting vertices has also been added. This makes the program capable of
annotating objects of different scale with greater accuracy.

Adding texture to 3-D objects can make the annotation process easier since
the user is guided by both shape and texture when placing landmarks.
Some landmarks, like the corner of an eye, is defined more in terms of the
texture than of the shape. Other landmarks, like the tip of the chin, is
easier to define using the shape.

The landmarks are saved in regular VTK files containing point data only.

Figure 5.2 shows the software with an annotated face.
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5.2.5 Shape Registration

The registration algorithm is straightforward to implement since the com-
plicated concepts of the thin-plate spline warp and finding the closest point
of a surface are supported by VTK.

As mentioned earlier, the polygon definitions of the registered objects are
discarded and replaced by the references of the template. In the final model,
the texture coordinates of the template are also used for all models, but to
be able to view individual registered faces with their original texture, new
texture coordinates are calculated. When the closest point on a polygon is
found, new texture coordinates for that point is calculated as follows.

1. Express the new position as a linear combination of the positions of
all vertices included in the polygon. Denote the new position x′ and
the n vertices of the polygon xi. The expression is then

x′ = w1x1 + . . . + wnxn (5.2)

This is an underdetermined system of equations, but unique values
of wi can be found using barycentric coordinates [1].

2. Use the weights wi to find the new texture coordinates t′ by

t′ = w1t1 + . . . + wntn (5.3)

5.3 Alignment and Optimization

5.3.1 Shape Alignment

VTK also provides functionality for performing a Procrustes analysis on
the vertices of polygonal objects. The alignment is very quick and works
well with the extremely large amount of points used here. Internally the
Procrustes analysis is performed using a quaternion-based landmark trans-
form, see appendix C.

The aligned objects are saved so that the modelling implementations de-
scribed below have easy access to prepared data.
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5.3.2 Texture Alignment

The texture alignment implementation is a surprisingly complicated pro-
cess. As described in section 4.2.3, the alignment is based on landmarks
defined by the 3-D landmarks which are transformed into 2-D landmarks by
means of the texture coordinates. Since the sparse landmarks are defined
as a set of separate points, the corresponding points of the model must be
found. Therefore, the implementation uses the 3-D data, the texture and
the landmark points of each model.

The point correspondence landmark-to-model is found using a point-to-
point locator supplied by VTK. The landmark transform is defined by a
thin-plate spline warp just as for 3-D surfaces. The only difference is that
the z-coordinate is kept constant.

The next step is to prune the textures to remove all the unused textural
information and to make sure all textures have uniform extent. The outline
of the 3-D model is transformed to a 3-D loop using the texture coordinates.
Before this is done, the 3-D points are sorted so that the sequence of points
describe the loop one-by-one until the loop is closed. When this is done
the points are used to define a polygon so that the loop is transformed into
a filled area. The 2-D coordinates of the points are then found and the
polygon references are copied into the new 2-D polygon. This polygon is
then used to build an image stencil which can be used to mask parts of
an image. The stencil has to be reversed so that the correct parts of the
images are masked out. Using this stencil all the textures are trimmed and
saved.

After alignment, the textures have a uniform representation. The texture
coordinates of the template will correctly match the polygons of any of the
registered shapes to any of the textures. As a side effect, this makes it
possible to combine any shape with any texture.

5.3.3 Optimizing Texture Size

The textures are 800 by 400 pixels large. Three bytes are used to encode
the color information of each pixel, resulting in an image of 800 · 400 · 3 =
0.96MB. The actual image information of the aligned textures occupy an
area of 371 by 279 pixels, just 11% of the total size. If the image size
is changed to this, considerable savings in computational power can be
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made. This is easily done, but the common texture coordinates have to be
transformed since the image effectively has been translated and scaled. Let
xmin, ymin, xmax and ymax denote the boundaries of the target area. Let
∆X and ∆Y represent the width and height of the original image. The
new texture coordinates can be expressed as a function of the old by

(s′, t′) = (
s∆X − xmin

xmax − xmin

,
t∆Y − ymin

ymax − ymin

) (5.4)

5.3.4 Intensity Alignment

The intensity alignment algorithm described in section 4.2.3 is implemented
in a VTK extension called vtkImageIntensityAlignmentFilter. This
will eventually be submitted to possibly be included in the VTK distribu-
tion. Before this can be done, the iterative approach should be changed to
the analytical alternative since this is magnitudes faster. Also, the filter
works on a copy of the data. If the implementation would be able to work
on the data directly, the memory requirements would be halved.

5.4 Model Implementation

The shape, texture and appearance models are implemented in Tcl/Tk. All
three programs contain a graphical user interface with the current shape
visible in the main window. The interface also contains scales for the first
ten modes of variation which can be altered interactively. The shape and
appearance models can be rotated, panned and scaled by the user. The
programs essentially read the aligned data, performs the necessary decom-
position (PCA) operations and displays the results.

5.4.1 The Shape Model

Using the aligned shapes, the shape model implementation is uncompli-
cated. VTK includes a filter called vtkPCAAnalysisFilter for performing
PCA on 3-D points.

Figure 5.3 shows the shape model software in action.

54 Chapter 5. Implementation

Figure 5.3: The shape model viewing software.

5.4.2 The Texture Model

The texture model requires more effort to implement since VTK lacks func-
tionality for performing PCA on a set of images. This ability was added
in a filter called vtkImagePCAFilter. Just as the intensity alignment filter
described above, this will be contributed to the VTK distribution. With
this available, the implementation is identical to that of the shape model.

As mentioned above, a similar viewing program as for the shape model has
been implemented. This can be seen in figure 5.4.

5.4.3 The Appearance Model

The appearance model combines the functionality of the shape and the tex-
ture model, see section 4.2.6. To perform the final PCA on the resulting pa-
rameter vectors, neither vtkPCAAnalysisFilter nor vtkImagePCAFilter

can be used. Instead, a third PCA variant, vtkArrayPCAFilter had to
be implemented. The usefulness of this outside appearance modelling is
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Figure 5.4: The texture model viewing software.

questionable, and this file will probably not be contributed to the VTK
distribution.

Figure 5.5 shows a snapshot of the appearance model viewing program.

5.5 Implementation of Applications

5.5.1 Fitting to 2D Images

The implementation of the face image segmentation algorithm is very basic
and does not provide a user friendly interface. The only user interaction
that occurs is the manual initialization of the 3-D model according to the
2-D image. Preferably, the model and the image would be displayed in
the same window to facilitate this. Unfortunately, the computer used for
the development of this program is equipped with an ATI graphics board.
Hardware from this manufacturer contains a bug that makes such overlay
operations impossible. The program therefore exists in two versions, one
for ATI and one for non-ATI graphics boards.
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Figure 5.5: The appearance model software. The scales control the ten
first modes of variation.

VTK supports methods for creating 2-D snapshots from 3-D models and
the other necessary operations. A new class, vtkImageStatistics, was
created which eventually will contain all sorts of methods for acquiring
statistical information from images.

5.5.2 Automatic Face Registration

The automatic registration software has a menu-driven graphical user in-
terface. The model used for the fitting process is visible in the main window
together with the shape to register. Three sub windows show the original
shape, the current registration and the best model approximation of the
current registration. The program contains functions for loading an unreg-
istered shape and for saving the registered shape. The registration process
can either be followed one iteration at a time, or be performed all at once.

The registration algorithm itself cannot be implemented in Tcl/Tk. There-
fore, a helper VTK extension class, vtkAutoRegEngine, had to be imple-
mented.
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Figure 5.6: The automatic registration software. The top window shows
how the new shape is fitted to the model.

Figure 5.6 shows the output of the automatic registration software.
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Chapter 6

Results

This chapter presents the results of the methods and algorithms used to
create models and applications.

6.1 Face Data

As described in section 4.1.3, the quality of the face scans is poor. The
main imperfections are

• a rough shape surface resulting from the difficulty for the people being
scanned to maintain the same pose during all three scans,

• no texture projection can give a perfect representation, the cylindrical
projection used here gives poor results in areas perpendicular to the
cylinder surface,

• incorrect texture color balance, possibly a result of improper lighting,
• missing texture-coordinate mappings showing as the mapping (s, t) =

(0, 0).

Appendix E shows the face database where these imperfections are more
of less visible.

Figure 6.1 shows the result of a single scan of a smiling person with open
eyes. This demonstrates the problems with registering eyes and expressions.
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Figure 6.1: The results of a single scan of a smiling person. Notice the
poor representation of eyes, teeth and hair.

6.2 Model Creation

The quality of the models are dependent on the quality of the data and the
registration algorithm. The results of the latter are listed here.

6.2.1 Annotation

After modifying the landmarking software, the program is ideal for anno-
tating most textured objects. The ability to set the tolerance when picking
vertices in the mesh makes it possible to work with objects of any scale.
When placing a landmark in a position defined in terms of the shape, the
texture can be distracting. It is therefore possible to turn the texture on
and off.

6.2.2 Registration

The semi-automatic registration algorithm works well, but requires that
the template and surface to be registered are rather similar. Any scale and
aspect ratio differences are handled by the thin-plate spline warp, but large
shape variation results in uneven and incorrect registration. The problem
becomes apparent when the template surface has high curvature and the
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Template

Unregistered Object Resulting Registration

Figure 6.2: The registration of two surfaces with differing curvature. Notice
the difference between the original and the registered shape.

novel surface curvature is low. The resulting surface will have an uneven
point distribution and the high curvature parts will be cut off. This is
depicted in figure 6.2. For the human face, problems occur mainly around
the nose and eyebrows. A method for regularizing correspondences found
through methods such as this one is described in [17].

6.2.3 Alignment

The shape alignment is fast, easy to use and accurate thanks to the Pro-
crustes analysis methods of VTK.

The texture alignment works surprisingly well. Many other landmark con-
figurations to drive the thin-plate spline warp were tested. These either
gave an uneven or unsuitable distribution of landmarks, resulting in inex-
act alignment of important texture areas. Too many landmarks resulted in
an overly bent and twisted texture.

Intensity Alignment

The intensity alignment of the geometrically aligned textures is immacu-
late, although a bit slow. By using the analytical approach to finding the
mean intensity described in appendix D, the algorithm would be two to
four times faster. Figure 6.3 shows three unaligned texture examples and
figure 6.4 shows the corresponding aligned textures.
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Figure 6.3: Cropped textures with unaligned global intensity and color
balance.

Figure 6.4: The same textures as in figure 6.3, but with aligned global
intensity and color balance.

6.2.4 The Shape Model

The implementation of the shape model and the accompanying face syn-
thesis program work as expected.

Figure 6.5, 6.6 and 6.7 show the first three modes of shape variation.

6.2.5 The Texture Model

The texture model software was created principally for testing the imple-
mentation of the image PCA filter for VTK, and the impact on the texture
model from the intensity alignment.

Figure 6.8, 6.9 and 6.10 show the first three modes of texture variation.

6.2.6 The Appearance Model

Figure 6.11, 6.12 and 6.13 show the first three modes of variation. All three
modes has a face size component, since the model is of size-and-shape type.
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Furthermore, the first mode seem to model gender, while the second and
third mode model aspect ratio and amount of beard.

The six first modes each describe 10% of the total model variation. This
is an effect of the low number of faces in the training set. No apparent
clustering of the face vectors can occur for such a small number of exam-
ples, instead they form a roughly gaussian distribution. With more faces
in the database, the PCA transform would construct a basis with clearly
descending modes of variation.

6.3 Applications

The applications of the model were implemented during a short period of
time, and the results might suffer somewhat from this.

6.3.1 Face Segmentation

The results of the face segmentation algorithm are disappointing. Even in
the easiest case imaginable, fitting the model to an image of the model, the
matching fails in most cases. Of course, segmenting a regular photo of an
unseen face, or a person in the database, also fails. In figure 6.14, the model
has converged to a solution some distance from the correct minimum. The
model was initialized to a seemingly accurate position, but wandered off to
an incorrect position during the optimization process.

6.3.2 Automatic Registration

The automatic registration software works satisfyingly. The algorithm ini-
tially converges quickly and monotonically, less than ten iterations are usu-
ally sufficient to obtain a satisfying registration. The convergence rate
drops with more iterations, and the process is no longer monotonic. How-
ever, the trend is still towards a better fit.

Because of the robustness of the ICP algorithm, the initial position and
orientation of the template seldom has to be changed manually for the
algorithm to converge. The method is therefore fully automatic, as desired.
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Figure 6.5: The first mode of shape variation.

Figure 6.6: The second mode of shape variation.

Figure 6.7: The third mode of shape variation.
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Figure 6.8: The first mode of texture variation.

Figure 6.9: The second mode of texture variation.

Figure 6.10: The third mode of texture variation.
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Figure 6.11: The first mode of combined appearance variation.

Figure 6.12: The second mode of combined appearance variation.

Figure 6.13: The third mode of combined appearance variation.
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Figure 6.14: The model incorrectly fitted to a 2-D image.
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Chapter 7

Summary and Conclusions

This thesis has described methods for building three-dimensional models
of shape, texture and appearance of human faces.

A data set of 24 faces was used. These were acquired using a 3-D scanner
at the School of Dentistry, University of Copenhagen. Each complete scan
required three sub-scans that were merged using the software provided by
scanner manufacturer. It proved to be hard to get a complete and well-
defined representation of a whole face. This was due to the difficulty for
the people being scanned to maintain the exact same pose during all three
shots. The imperfections show as rough surface patches, missing texture
mappings and incomplete polygon coverage. The color balance of the tex-
ture was also unsatisfying, possibly due to incorrect color temperature of
the lighting used. Despite this, the resulting database is good enough for
many image analysis applications.

Each face scan consists of a set of 3-D points, polygonal point references, a
texture and texture coordinates. Every shape has a different point ordering
and extent. To be able to analyze the data statistically, the representation
of the shapes must be unified. This registration process, suggested by Hut-
ton et al. [26], uses nine manually defined landmarks to automatically
register thousands of points on each shape. The point ordering, polygonal
representation, texture coordinates and extent is determined by one of the
examples, called the template shape. Using a thin-plate spline warp, the
template is transformed, using the nine manually defined landmarks, so

70 Chapter 7. Summary and Conclusions

that it takes on a shape similar to the new shape. The extent and point or-
dering is then unified by finding the closest point on the new shape’s surface
from each template point. The results of the registration are satisfying, but
some artifacts occur which calls for a replacement of the point-to-surface
closest point operation.

The registered shapes were then aligned using a partial Procrustes analysis.
This translates and rotates the objects optimally with respect to their mu-
tual mean. The shapes are thereby brought into shape-space. The textures
were also aligned so that size, location and shape of each texture became
identical. This was done using the nine manual landmarks and a thin-plate
spline warp.

Using principal component analysis (PCA), two separate models of shape
and texture were built from the aligned data. These were combined into a
model of appearance, using a third PCA. Programs for viewing the models
and interactively change the modes of variation were implemented using
the Visualization Toolkit (VTK), Tcl/Tk and C++. The quality of the
synthesized faces is better than the input data, and produce near photo-
realistic results. This shows that the methods used, despite drawbacks, are
good enough for the purpose of face synthesis.

Two other applications of the models were implemented. As a first attempt
of using the appearance model for 2-D image segmentation, the model was
matched to information in images using a simple optimization method. The
algorithm seldom converged to a correct solution. Using a gradient based
method instead should improve the results. The shape model was used in
an algorithm for automatic registration of new face scans. The quality of
the resulting registrations were comparable to the ones created using the
semi-automatic method described above.

In conclusion, building shape and appearance models in three-dimensions
comes with a high amount of overhead. Everything from data acquisition
to registration requires more work, complicated algorithms and powerful
computers. 2-D models are easier to create, requires less computer power
and can be almost as general as a 3-D model [24]. However, as computers
get faster, equipment for acquiring 3-D data becomes reasonably priced
and new research emerges, this type of model is expected to be more com-
mon. This project has provided the author, and possibly the reader, with
a detailed introduction to this exciting field of research.
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Chapter 8

Future Work

This chapter presents a few ideas for directions of future work. Some
ideas have the purpose of improving the existing models while others are
suggestions for new extensions and applications.

8.1 Increased Quality and Diversity of Face

Scans

The face data is the foundation of the methods in this thesis. As described
in section 4.1.3, the data is far from perfect. Although these imperfections
are dealt with using smoothing, interpolation, intensity alignment etc., it
would be preferable to have data of sufficiently high quality from the start.
Even though a lot of time has been put into finding an optimal scanning
process, there may still be changes that improves the quality.

A major limitation to the database is that all faces are scanned with the
eyes closed. This makes it difficult to fit the model to most 2-D images,
since these normally depict faces with open eyes. While the camera has
trouble registering eyes, this improvement might be hard to accomplish.

The database only covers people with natural expressions. To make the
model more general, faces with expressions ranging from a frown to a smile
should be included. The difficulty here is for the people being scanned to
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maintain the exact same expression during three scans. Experiments show
that even after practicing a few times, it is hard to keep a static expression
for several minutes. One solution to this problem could be to scan each
expression only once, from straight ahead. The extent of the data will be
insufficient, but the necessary area of the face will be covered. This can
then be pasted onto the complete face with the natural expression to yield a
complete face with another expression. Data for this exist in the database.

The database should also be extended, preferably including a greater diver-
sity of people. The age range should be broadened and an even distribution
of race and gender should be fulfilled.

The conclusion drawn from the discussion above is that the camera used is
not ideal from scanning human faces. Scanners used for this purpose often
use structured light instead of lasers to capture the shape of an object.
These are also magnitudes faster and cover more of a face with a single
scan. However, at the time of writing, this type of equipment is very
expensive, around 50 000 USD.

8.2 Assessment of an Alternative Registra-

tion Algorithm

Several algorithms exist for registering 3-D surfaces. Of particular interest
is a method composed by R. R. Paulsen and K. Hilger [17] which can be
used to regularize registrations of the type described in this thesis. Using
Markov random fields, a set of constraints are imposed on the landmarks
which makes them more regularly interspaced and matches local curvature
of the template and the new shape.

A suitable task would be to compare this registration algorithm to the one
used here, and assess the differences of the results.

8.3 Improved Registration by Iterative

Model Refinement

The registration method used in this thesis works satisfyingly and requires
fairly little work, since only nine landmarks have to be defined manually.
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However, if a database of hundreds of objects are to be registered, it would
be desirable to automate the process. The proposed algorithm can be used
to drive a fully automatic registration method by ”bootstrapping”. This
means that a subset is registered semi-automatically and the result of these
registrations are used to automatically register the rest.

The proposed algorithm is as follows

1. Annotate a small subset of objects with sparse sets of landmarks.
2. Register these examples using the method described in section 4.2.1.
3. Using the registered shapes, build a shape model described by equa-

tion 4.19.
4. The remaining unregistered shapes are registered using the auto-

mated registration process described in section 4.3.3.
5. All shapes are now registered, however the shape model used is in-

complete because low amount of examples included. The shape model
is therefore rebuilt using all examples.

6. The old registrations are now discarded and the new shape model is
used to re-register all examples.

7. The improved registration are once again used to build an improved
shape model which is used to register all shapes. This process is
iterated until the registrations are stable.

Since the registration is dependent on quality of the model, and since the
model will be increasingly accurate, the registrations are assumed to con-
verge to a correct solution.

8.4 Improving the Image Matching

Algorithm

The algorithm and implementation that matches the appearance model to
2-D images is only briefly tested on a small set of images, with disappoint-
ing results. The method includes many parameters, and better values of
these could improve the results significantly. Also, the amoeba optimiza-
tion algorithm used should be changed to one which is less prone to wander
off from the closest minimum. Any gradient-based method should suffice.
More parameters could also be included, such as camera projection and
light parameters.
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8.5 Implementing a 3-D Active Appearance

Model

One of the most interesting opportunities for extending the work presented
in this thesis is an implementation of the active appearance model for 3-D
surface data.

The idea of the active appearance model is to learn how to correct the
model parameters according to the image residuals between the model and
the new image. This method should also be appropriate with a 3-D model.
In each iteration, an image of the current view of the model is created and
used for the comparison with the new image. The model is then moved
and deformed to improve the fit.

The 2-D appearance model is positioned in the frame of the new image
using a set of pose parameters. These include translation, an in-plane
rotation and scaling. In three dimensions, more parameters are required,
for example to describe a full 3-D rotation. This should, however, not be a
problem to the method.

To learn to correct the model parameters two methods can be used, either a
method based on principal component regression or another, gradient-based
method. Both should be tested to determine which is most appropriate for
the three-dimensional case.

The increased dimensionality of the model and the parameters are expected
to make the model less robust, but the method should still be useful.
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Appendix A

Principal Component

Analysis

Principal Component Analysis (PCA) [15] involves a change of basis for
data to a basis with the following properties:

• The first axis is chosen so that the variance of the projected data
along this axis is maximized. The second axis is chosen so that the
remaining variance is maximized along that axis, and so on for all
axes.

• All axes are orthogonal.
• Each new variable (axis) is a linear combination of the original vari-

ables (axes).
• The transformation does not contain scaling.

To illustrate these ideas, a simple example with two-dimensional geometri-
cal data will be given. This can then be generalized to higher dimensions.
Figure A.1 shows a set of points on a plane, and table A.1 lists the coordi-
nates.

It is immediately seen that there is strong correlation between the points,
they seem to roughly fulfill the equation x1 = x2. Let’s assume that the
greatest variation indeed can be found along this line and choose x1 = x2

as the first new axis. The second and last axis then becomes x1 = −x2 as
this is the only choice for orthogonal axes. Projecting the points onto these
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new axes by

x̃1 = cos
π

4
x1 + sin

π

4
x2 =

1√
2
x1 +

1√
2
x2 (A.1)

x̃2 = −sin
π

4
x1 + cos

π

4
x2 = − 1√

2
x1 +

1√
2
x2 (A.2)

gives the the updated data in table A.2.

Almost all variance is now along x̃1, just as expected. This leads to the sus-
picion that there is an optimal choice of x̃1, which maximizes the variation.
There is, and the choice is the eigenvector corresponding to the largest
eigenvalue of the covariance matrix of x. The eigenvector corresponding to
the second largest eigenvalue gives the second axis, and so on. The proof
given here follows the one given by S. Sharma [19].

Let x be a p × n matrix where p is the number of variables and n is the
number of observations. In our case p = 2 and n = 10. The sample
covariance matrix, Σx, is given by

Σx =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)T . (A.3)

where x̄ is the (p × 1) vector describing the sample mean. The new de-
correlated, or variance maximized, variables will be given by linear com-
binations of the old. Let x̃ = Cx denote the new set of variables, where
C = (c1c2 . . . cp)

T is the (p × p) matrix where the rows cT
i contain the

weights of the linear combination . In the example above, C equals

C =

[

1√
2

1√
2

− 1√
2

1√
2

]

. (A.4)

The covariance matrix of the new variable is given by

Σx̃ =
1

n

n
∑

i=1

(x̃i − ˜̄x)(x̃i − ˜̄x)T = (A.5)

=
1

n

n
∑

i=1

(Cxi − Cx̄)(Cxi − Cx̄)T = . . . =

= CΣxC
T
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Figure A.1: Some geometrical data along with the line x1 = x2

Observation x1 x2

1 1.02 0.546
2 1.44 0.372
3 1.21 0.897
4 4.31 5.19
5 4.17 4.39
6 5.75 5.78
7 5.12 6.93
8 6.86 5.53
9 8.33 7.75
10 9.19 8.35

Variance 48.7 % 51.3 %

Table A.1: Coordinates of the geometrical data
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Observation x̃1 x̃2

1 1.09 −0.372
2 1.26 −0.790
3 1.48 −0.260
4 6.73 0.456
5 6.05 0.0015
6 8.15 −0.183
7 8.55 1.06
8 8.73 −1.16
9 11.4 −0.692
10 12.4 −0.906

Variance 97.4 % 2.6 %

Table A.2: Coordinates of the projected data

This means that the variance of x̃i = cT
i x equals cT

i Σxci. To maximize
this, the optimal C must be determined subject to cT

i ⊥ cT
j , i 6= j.

The solution can be found by optimizing CΣxC
T , subject to CCT = I

(i.e. no scaling), using Lagrange multipliers.

Let
Z = CΣxC

T − λ(CCT − I). (A.6)

The partial derivative is given by

∂Z

∂C
= 2ΣxC

T − 2λCT . (A.7)

Setting the above to zero yields

(Σx − λI)CT = 0 (A.8)

Rearranging we get,
ΣxC

T = λCT . (A.9)

This is recognized as the definition of eigenvectors and eigenvalues. That
is, for the above to be true, the rows of C must contain the eigenvectors of
Σx and λ holds the corresponding eigenvalues.

In conclusion, to find the new basis that maximizes the variance of the
data, the rows of C should be chosen as the eigenvectors of Σx. In the
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example above we get eigenvalues 152.1 and 4.019 corresponding to eigen-
vectors (0.6970, 0.7171) and (−0.7171, 0.6970) respectively. The first prin-
cipal component is therefore the line x1 = 0.7171

0.6970x2 = 1.029x2, not far off
the initial guess. This component accounts for 97.4% of the total variance.
Therefore, if suitable, the second principal component could be omitted,
thus reducing dimensionality; one of the main purposes of PCA.
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Appendix B

Thin-Plate Spline

Warping

Imagine an image printed on an (infinitely) elastic rubber sheet. Picture
piercing the sheet with a set of pins and dragging these to new positions,
thus transforming the image. The image represents visualization data and
the pins represent landmarks. Dragging the pins to new positions translates
to transforming the data to fit to new landmark positions, such as the mean
landmarks. This type of transformation is an example of image warping.

Warping m-dimensional data x with landmarks xi to m-dimensional data
y with landmarks yi is performed using a multivariate function y = f(x) =
(f1(x), f2(x), . . . , fm(x)) which preferably holds the following properties:

• continuous
• smooth
• bijective
• interpolating, i.e. f(xi) = yi, i = 1 . . . n

The rubber sheet warping mentioned above can be achieved using the bi-
variate function (x′, y′) = f(x, y) = (f1(x, y), f2(x, y)). Since the equations
for x′ and y′ are independent, the rest of the discussion will focus on a
single scalar valued thin-plate spline function.

Warping is essentially the same as interpolation. With interpolation, the
task is to find suitable values in-between known data while with warping,
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the task is to find suitable positions for data in-between known positions.
In one dimension interpolation can be performed using piecewise cubic
polynomials called natural cubic splines. These lead to globally smooth
functions, i.e. the second order derivatives are continuous throughout the
spline. Physically, the cubic spline represents a thin metal rod which is
somehow held in place at the points where data is known. The rod will
take on a shape that minimizes its internal bending energy. The extension
of cubic splines to m ≥ 2 dimensions are thin-plate splines where, as the
name suggests, the steel rod has been replaced by a thin steel plate.

The bending energy function of the steel plate is

∫∫

R2

(f2
xx + 2f2

xy + f2
yy) dx dy (B.1)

not taking into account other physical factors such as gravity. The function
f(x, y) that minimizes this bending energy is

f(x, y) =

n
∑

j=1

wjU(r) + a0 + a1x + a2y (B.2)

where
U(r) = r2 log r2 (B.3)

and
r =

√

(x2 + y2) (B.4)

The coefficients wj , a0, a1 and a2 are unknown, but the constraints imposed
by f(xi) = yi and the wish to minimize the total bending energy makes it
possible to determine these by solving linear systems of equations.

For n landmarks, the exact interpolation requirement gives the following n
equations:

x′
i =

n
∑

j=1

wjUij + a0 + a1xi + a2yi , 1 ≤ i ≤ n (B.5)

where Uij = U(
√

(xi − xj)2 + (yi − yj)2). This can be expressed in matrix
form as

x′ = Ew + Xa (B.6)
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where E = [Uij ] (n×n) and X = [Xi] = [1 xi yi] (n×3). The requirement
for minimized bending energy gives

XTw = 0 (B.7)

Solving equation B.6 for w gives

w = E−1(x′ − Xa) (B.8)

Inserting this into equation B.7 and solving for a gives

a = (XT E−1X)−1XT E−1x′ (B.9)

Equations B.8 and B.9 are the analytical expressions for all unknown pa-
rameters collected in w and a. Together these form n+3 equations for the
same number of unknowns. The system can therefore be solved, and the co-
efficients are put into equation B.2 which then can be used for interpolation
or warping.

For an exhaustive description of thin-plate spline warping, see Bookstein
[6].
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Appendix C

The Iterative Closest

Point Algorithm

In 1992 General Motors scientists Paul Besl and Neil McKay presented the
paper A Method for Registration of 3-D Shapes [3] where the popular Iter-
ative Closest Point (ICP) algorithm is stated. The algorithm is concerned
with rotating and translating a shape P according to a model shape X
so that the inter-shape distance is minimized. Any type of geometric data
can be used such as point sets, implicit and parametric curves, implicit and
parametric surfaces, polygon sets etc., as long as it is possible to calculate
the closest point on X from a given point in P .

The discussion here concerns polygonal surfaces defined from a set of points
since that is what applies in this thesis. However, the methodology is the
same for any other type of geometry, since a suitable set of points can be
chosen from any representation.

The algorithm is sure to converge monotonically to the nearest local min-
imum, represented by the local best fit of P onto X . To find the global
minimum, P must be given an appropriate initial position and orientation.

Let nP denote the number of points in P . For each point pi of P , find the
corresponding closest point of X . The resulting set of closest points {yi},
i = 1 . . . nP is denoted Y . In other words, Y is an approximation of X with
the same number of points and point ordering as P . Note that unless X
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is a pure point set, the closest point operation is calculated as the shortest
distance from a point in P to the continuous surface or curve of X .

To measure how well P has been fitted to X any distance metric can be
used. The most common choice is the sum of mean squares metric,

dMS =
1

nP

nP
∑

i=1

‖yi − pi‖2 (C.1)

Other choices are the RMS metric, dRMS =
√

dMS , and the mean absolute
value.

The ICP algorithm proceeds as follows:

1. Compute the set Y of nP closest points from P to X
2. Compute the rigid-body transformation Γ that optimally aligns the

points of P with Y
3. Iterate until Y is stable, which means that the change in the error

bound d has fallen below a certain threshold.

The idea is simple, but as Besl and McKay shows, it is magnitudes faster
than any regular multivariate optimization technique such as Nelder-Mead
[5] and conjugate gradient [5].

The remaining issue is how to find the optimal transformation Γ. This can
be done using singular value decomposition of the cross-covariance matrix
of P and Y . Besl and McKay have adopted a quaternion-based approach
described by Horn [14].

Quaternions are complex number with one real and three imaginary parts,
q = q0+iq1+jq2+kq3. The unit quaternion, here represented as a vector, is
qR = [q0q1q2q3]

T where q0 ≥ 0 and q2
0 + q2

1 + q2
2 + q2

3 = 1. Unit quaternions
can be used to represent rotations in 3-D. The 3 × 3 rotation matrix R
generated by a unit quaternion is

R =





q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2



 (C.2)

Let qT = [q4q5q6]
T denote a translation vector. The transformation Γ can

now be defined by the vector q = [qT
R|qT

T ]T . For q to optimally align the
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computed points Y to the points on P we wish to minimize the mean square
objective function

f(q) =
1

nP

nP
∑

i=1

‖yi − R(qR)pi − qT ‖2 (C.3)

Let

Q(ΣPY )4×4 =

[

trace(ΣPY ) ∆T

∆ ΣPY + ΣT
PY − trace(ΣPY )I3

]

(C.4)

where ΣPY is the 3 × 3 cross-covariance matrix of P and Y and ∆ =
[A23A31A12] where Aij = (ΣPY −ΣT

PY )ij . The unit eigenvector [q0q1q2q3]
T

corresponding to the largest eigenvalue of matrix Q is then the optimal
rotation quaternion qR. The optimal translation is found by rotating the
center of mass p̄ of P with qR and subtracting the result from the center
of mass x̄ of X, i.e. qT = x̄ − R(qR)p̄.

The optimal transformation Γ is here defined as a rigid-body transforma-
tion, but can be any other transformation. To allow scaling in the fitting
process, a similarity transform can be used.

88 Appendix C. The Iterative Closest Point Algorithm



89

Appendix D

Procrustes Analysis

The notation and majority of equations in this section are from [10].

Procrustes analysis [13, 2, 12] is an important method in shape analysis.
Following D.G. Kendall, the following definition of shape is given.

Shape is all the geometrical information that remains when location, scale
and rotational effects are filtered out from an object.

From this, it is understood that before shape analysis can be performed
on a set of objects, they must first be transformed, giving them the same
position, orientation and scale. This can be achieved using Procrustes
analysis.

The following main variants on Procrustes analysis exist

• Full Ordinary Procrustes Analysis (Full OPA). The match-
ing of two configurations using the full set of similarity transforms,
rotation, translation and scaling.

• Partial Ordinary Procrustes Analysis (Partial OPA). The
matching of two configurations using only rotation and translation
resulting in a shape-and-size model.

• Full Generalized Procrustes Analysis (Full GPA). The align-
ment of two or more configurations to their mutual mean using the
full set of similarity transforms, rotation, translation and scaling.
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• Partial Generalized Procrustes Analysis (Partial GPA). The
alignment of two or more configurations to their mutual mean using
only rotation and translation resulting in a shape-and-size model.

Note that contrary to generalized Procrustes analysis, ordinary Procrustes
analysis is not symmetric to the ordering of objects.

To be able to perform measurements on shapes, two important metrics are
needed, shape size and shape distance. It is also important to be able to
make an estimation of the average shape.

The shape size simply determines the size of a shape, so that it can be
compared to other shapes of the same class. The measure most commonly
used is the centroid size

S(X) =

√

√

√

√

n
∑

j=1

k
∑

i=1

(Xj
i − X̄j)2 (D.1)

where n is the number of dimensions, k is the number of points, Xj
i is the

ith point of the jth dimension and X̄j is the mean of all points of the jth
dimension.

The shape distance is the distance between two shapes. A low distance
indicates that the shapes are similar. The measurement is called the (full
or partial) Procrustes distance. The calculation is based on the eigenvalues
of a matrix derived from the object data. The shapes need to be pre-shapes,
i.e. translation and scaling are filtered out. However, if the shapes are fully
aligned, a simpler estimate of the distance can be used

d(X1, X2) =

√

√

√

√

n
∑

j=1

k
∑

i=1

(Xj

1(i) − Xj

2(i))
2 (D.2)

As can be seen, this is the root of the sum of all squared point distances.

The estimate of the average shape is based on an estimate of the mean
shape. Notice the difference between the average shape, which is the true
average of the object class in question, and the mean shape, which is the
mean of the objects at hand. The question is now how to estimate the mean
shape. Once the objects are aligned, the easiest and most commonly used
method is to calculate the mean position of each landmark throughout the
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set.

X̄ =
1

m

m
∑

i=1

Xi (D.3)

For planar data, there exists a method where the data does not have to be
aligned. This is described below, see equation D.23.

In the following sections, it is assumed that the objects are centered. This
means that the center-of-mass of the landmarks is at the origin. Objects can
easily be centered by subtracting the center-of-mass from each landmark.
In matrix form this can be written as

Xcentered = CX (D.4)

where C = Ik − 1
k
1k1

T
k and k is the number of landmarks.

D.1 Planar Ordinary Procrustes Analysis

For two-dimensional (planar) geometry it is advantageous to represent co-
ordinates as complex numbers with the first and second dimension repre-
sented by the real and imaginary part. A complex number z can be written
in either euclidian or polar form:

z = a + ib = reiθ (D.5)

where (a, b) ∈ R, r = |z| and θ = arg z. For vectors and matrices of complex
numbers, y∗ denotes the complex conjugate of the transpose of y. The
complex conjugate of a complex number is a + ib = a − ib = reiθ = re−iθ.

Let y = [y1, . . . , yk]T and w = [w1, . . . , wk]T be landmarks in Ck of two
objects. Assume that both configurations are centered, i.e. y∗1k = w∗1k =
0. To find the rotation, translation and scaling that optimally aligns w with
y, y is expressed in terms of w with a complex regression equation:

y = (a + ib)1k + βeiθw + ε (D.6)

Here, (a + ib)1k is a k × 1 vector representing translation, β is uniform
scaling, θ represents rotation and ε is an error vector. The optimal values
of a, b, β and θ occur when the sum of squares of ε is minimal. The
objective function to be minimized is therefore

D2(y,w) = ε∗ε = (D.7)

(y − (a + ib)1k − βeiθw)∗(y − (a + ib)1k − βeiθw)
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The expansion of this product is:

y∗y − (a + ib)y∗1k − βeiθy∗w − (D.8)

(a − ib)1∗
ky + (a − ib)(a + ib)1∗

k1k + (a − ib)βeiθ1∗
kw −

βe−iθw∗y + (a + ib)βe−iθw∗1k + β2e−iθeiθw∗w

Since y∗1k = w∗1k = 0, this can be simplified to:

y∗y − βeiθy∗w + k(a2 + b2) − βe−iθw∗y + β2w∗w (D.9)

It is immediately seen that for D2 to be minimal, a and b must be zero.
It is also seen that β(y∗weiθ + w∗ye−iθ) should be maximal. Substituting
y∗w with γeiφ and noting that w∗y = (y∗w)∗ = γe−iφ yields

β(γeiθeiφ +γe−iθe−iφ) = β(γei(θ+φ) +γe−i(φ+θ)) = 2βγ cos(θ +φ) (D.10)

This is maximal for θ + φ = 0 + k2π, k ∈ Z. Since φ = arg(y∗w), one

solution is θ̂ = − arg(y∗w).

To find the scaling, D2 is differentiated with respect to β and set to zero.
Using D.10 this yields

∂D2

∂β
= 2βw∗w − 2γ cos(θ + φ) = 2βw∗w − 2γ = 0 (D.11)

Hence,

β̂ =
|y∗w|
w∗w

=

√
w∗yy∗w

w∗w
(D.12)

To sum up, the optimal parameters for aligning a set of landmark y onto
w using equation D.6 are

â + ib̂ = 0 (D.13)

θ̂ = − arg(y∗w) = arg(w∗y) (D.14)

β̂ =
|y∗w|
w∗w

=

√
w∗yy∗w

w∗w
(D.15)

This solution seems simple enough, but can be further simplified. Rewrite
equation D.6 in matrix form:

y = XP + ε (D.16)
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where X = [1k w] and P = [a+ib βeiθ ]T . Let P̂ = [0 β̂eiθ̂] be the optimal
parameters. The solution can be written in the same form as the standard
least squares solution, but with complex variables. Consult a statistics
textbook for a comparison.

P̂ = (X∗X)−1X∗y (D.17)

Expanding this equation gives

P̂ =

[

0

β̂eiθ̂

]

=

([

1∗
k

w∗

]

[1k w]

)−1 [
1∗

k

w∗

]

y = (D.18)

[

k
∑

w
∑

w∗ w∗w

]−1 [
1∗

k

w∗

]

y = (D.19)

[

1
k

0
0 1

w∗w

] [

1∗
k

w∗

]

y = (D.20)

[

1
k
1k

w∗

w∗w

]

y =

[

0
w∗y

w∗w

]

(D.21)

This results in the convenient expression β̂eiθ̂ = w∗y/w∗w. The full Pro-
crustes fit of w onto y can now be expressed as

wfit =
w∗yw

w∗w
(D.22)

To perform partial OPA, scaling can be left out of the process descibed
above.

D.2 Planar General Procrustes Analysis

General Procrustes analysis in two dimensions is similar to its ordinary
counterpart. The difference is that the objects are aligned with respect
to their mutual mean. However, before the shapes are aligned, the mean
estimate in equation D.3 cannot be used. Instead, the mean shape can be
found by solving an eigenvalue problem.

The full Procrustes mean shape of n objects is the eigenvector correspond-
ing to the largest eigenvalue of the matrix

S =

n
∑

i=1

wiw
∗
i

w∗
i wi

(D.23)
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When an estimate of the mean shape exist, equation D.22 can be used to
align the shapes.

D.3 Multidimensional Ordinary Procrustes

Analysis

In n dimensions, ordinary Procrustes analysis is similar to the planar case.
Objects are now represented by (k×n) matrices, where k is the number of
landmarks. Just as above, configurations are assumed to be centered. The
norm of a matrix X is calculated as ‖X‖ =

√

trace(XT X).

The full ordinary Procrustes fit of a configuration W onto another config-
uration Y is performed by minimizing the objective function

D2(W, Y ) = ‖Y − βWΓ − 1kγT ‖2 (D.24)

where Γ is an (n×n) rotation matrix, β is a scaling parameter and γ is an
(n × 1) translation vector.

The optimal parameters are

γ̂ = 0 (D.25)

Γ̂ = UV T (D.26)

β̂ =
trace(Y T W Γ̂)

trace(WT W )
(D.27)

where U and V are the result of a singular value decomposition of the
matrix

V ΛUT =
Y T W

‖W‖‖Y ‖ (D.28)

Like before, scaling can omitted to perform a partial OPA.

D.4 Multidimensional General Procrustes

Analysis

When matching configurations to a mutual mean in n ≥ 3 dimensions no
linear expression for the mean exist. Instead, an iterative procedure [13, 2]
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must be employed. Assume m objects Xi, i = 1 . . .m, each consisting of k
points in n dimensions.

1. Center all objects to remove translation, denote the centered objects
XL(i), i = 1 . . .m (Location removed).

2. For each object XL(i), estimate the mean of all other objects

X̄i =
1

m − 1

∑

j 6=i

XC(i) (D.29)

and align XL(i) to this estimate of the mean using rotation-only OPA.
Denote the rotated objects XLR(i). Repeat this process using the
updated configurations until it converges.

3. Let O be the (kn×m) observation matrix with the objects represented
by the columns as

XLR(i) = [x1
1 . . . x1

k . . . xn
1 . . . xn

k ]T (D.30)

Let Φ be the (m × m) correlation matrix of this matrix and let φ =
[φ1 . . . φm] be the eigenvector corresponding to the largest eigenvalue
of Φ. With this vector at hand, a scaling factor βi can be calculated
for each object,

βi =

√

(
∑m

k=1 ‖XLR(i)‖2

‖XLR(i)‖2

)

φi (D.31)

The scaled objects are denoted XLRS(i).
4. Repeat step 2 and 3 until a stable solution is found.

This algorithm normally converges very quickly (3-5 iterations) but may
appear cumbersome. A simpler solution [8] is to keep an estimate of the
mean shape, and in each iteration carry out an OPA which aligns all the
shapes to this mean. The new algorithm is a follows

1. Let any object be the first estimate of the mean shape
2. Align all objects to the mean using OPA
3. Make a new estimate of the mean shape using the Procrustes mean

defined in equation D.3.
4. Iterate step 2 and 3 until convergence.
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Figure D.1: Tangent space projections in 2-D. The left image shows the
mean shape and the unprojected shape. The middle image depicts pro-
jection by scaling, and the right image shows projection by scaling and
reshaping.

D.5 Tangent Space Projection

The resulting shape vectors of the Procrustes analysis reside in the non-
linear vector space called shape-space. Most methods for shape analysis,
such as principal component analysis (PCA), are linear, and may not work
perfectly in conjunction with the Procrustes data. To improve performance,
a tangent space projection can be carried out. This can be done by scaling
the vectors, stretching them to the tangent hyper-plane defined by the mean
shape. Another method is to scale and reshape the vectors in a direction
perpendicular to the plane. Figure D.1 [20] shows these operations for
two-dimensional vectors.

The equation stating how to transform the vectors from shape-space to
tangent-space by scaling can be derived using simple linear algebra.

The projection of xt onto x̄ is equal to x̄.

xT
t x̄

x̄T x̄
x̄ = x̄ ⇐⇒ xT

t x̄

x̄T x̄
= 1 (D.32)

The projected vector xt consists of a scaled version of the old vector x,
xt = αx. Using this in the equation above yields

αxT x̄

x̄T x̄
= 1 ⇐⇒ α =

x̄T x̄

x̄T x
⇐⇒ xt = αx =

x̄T x̄

x̄T x
x (D.33)

In reality, the tangent space projection has little impact on methods such
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as PCA. However, since the operation is easy to perform, and because it is
nice from a theoretical viewpoint, it should not be omitted.
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Appendix E

3-D Face Database

This chapter presents the 24 faces that make up the database used in this
project. Each row present one face, with the textured shape to the left, the
shape in the middle and the texture to the right.

E.1 Raw Data

The data shown in this section is the raw face data produced by the scanner
software. No smoothing, connectivity analysis etc. has been performed.
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E.2 Processed Data

This section shows the data as used by the modelling software. The shapes
are smoothed, registered and aligned. The textures are aligned with respect
to geometry, intensity and color balance, and cropped.
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