
On Left-balancing Binary Trees

J. Andreas Bærentzen (jab@imm.dtu.dk)

August 25, 2003

Keywords: kD tree, binary tree, bal-
ancing.

[Note that this document is not meant

to be read by itself. It is important

to have some idea about binary trees.

Probably there is nothing new in this

document - see e.g. Sedgewick, Algo-

rithms in C++. However, I found no

document on the net discussing this is-

sue.]

There is a simple idea which makes it
possible to store a binary tree structure
in an array. The idea is that instead of
explicitly storing pointers which point
from a given node to its child nodes, we
use arithmetic to compute the index of
child nodes. The scheme works as fol-
lows: The root node is stored in posi-
tion 1 in the array, and when a node
is stored in position n in the array, the
child nodes are stored in 2n and 2n+1.

The scheme is illustrated below

1

2 3

4 5 6 7

It should be mentioned that there are
other ways of storing binary trees in
arrays, but this method has the advan-
tage that all nodes on a given level lie

in a consecutive block. In addition, left
and right children are adjacent which
should make the scheme more cache
friendly.

The scheme is useful not only for bi-
nary trees but also for so called k-D
trees which are really binary trees where
the key used differs between levels. How-
ever, for the sake of simplicity, I’ll just
discuss this scheme for binary trees.
The technique is precisely the same for
k-D trees.

The normal way of constructing a bi-
nary tree is to sort the elements and re-
cursively split them into left and right
parts with respect to the median ele-
ment.

For instance, for the sequence 2,3,7,9,11
the median element is 7 which becomes
the root node, and then the sequence
recursively split. The left sequence is
2,3 and the right sequence is 9,11. When
there are only two elements, the second
element becomes the median, and the
first element is the left (and only) child.
The resulting tree is shown below

1

2 3

4 5 6 7

7

3

2

11

9

1

There are problems, though. The ar-
ray element number 5 is unused. This
is bad because it means that we have to
use a larger array than what is needed
to store all nodes. Moreover, it means
that we have to store somewhere the
information that the node in position
2 does not have a right child.

To get around this problem, we have
to ensure that the tree becomes left
balanced. Left balanced simply means
that all levels except the bottommost
are filled, and in the bottommost level,
positions are filled from the left. In
practice we compute the median in a
special way (not just dividing by two).
The median has to be computed in such
a way as to ensure that we fill up the
entire bottommost level of the left sub-
tree before filling the bottommost level
of the right subtree.

To do so, we first have to find out how
many elements it takes to completely
fill the tree on all levels except the bot-
tommost (which is perhaps not possi-
ble to completely fill). If the number
of levels excluding the bottommost is
n this part of the tree will hold M − 1
elements where M = 2n. We divide
these M − 1 elements evenly between
1 element for the root and split the re-
maining in two even piles for the left
tree (LT = (M − 2)/2) and the right
tree (RT = (M − 2)/2). See below

1

LT RT

The last step is to divide the remaining
elements between the left part of the

tree and the right part of the tree. To
make the tree left balanced we simply
fill up the lowest level of the left tree
and put the remainder in the right tree.

In practice, we first find the greatest
power of two M = 2n so that M ≤ N
where N is the number of elements we
wish to insert. The tree will hold M −

1 elements on all levels excluding the
bottommost. The bottommost level it-
self will hold M elements divided be-
tween M/2 in the left subtree and M/2
in the right subtree.

We compute the remainder R = N −

(M − 1) and then if R ≤ M/2

LT = (M − 2)/2 + R (1)

RT = (M − 2)/2 (2)

Otherwise, if R > M/2

LT = (M − 2)/2 + M/2 (3)

RT = (M − 2)/2 + R − M/2 (4)

In our example, (2,3,7,9,11) we have
N=5 elements and M=4, so R=5-(4-
1)=2. Hence LT is 3 and RT is 1.
Therefore, 9 becomes the median el-
ement used as root node, and 2,3,7 is
put into the left subtree whereas 11 be-
comes the right tree. We recurse to
compute the entire tree and finally ob-
tain the tree seen below

1

2 3

4 5 6 7

9

3

2

11

7

2

