
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 11, NOVEMBER 2000 1053

Surface-Bounded Growth Modeling Applied to
Human Mandibles

Per Rønsholt Andresen*, Fred L. Bookstein, Knut Conradsen, Bjarne Kjær Ersbøll, Jeffrey L. Marsh, and
Sven Kreiborg

Abstract—From a set of longitudinal three-dimensional scans
of the same anatomical structure, we have accurately modeled the
temporal shape and size changes using a linear shape model. On
a total of 31 computed tomography scans of the mandible from
six patients, 14851 semilandmarks are found automatically using
shape features and a new algorithm calledgeometry-constrained
diffusion. The semilandmarks are mapped into Procrustes space.
Principal component analysis extracts a one-dimensional sub-
space, which is used to construct a linear growth model. The worst
case mean modeling error in a cross validation study is 3.7 mm.

Index Terms—Geometry-constrained diffusion, morphometrics,
nonrigid shape-preserving registration, principal component anal-
ysis, Procrustes analysis, semilandmarks.

I. INTRODUCTION

PEDIATRIC craniofacial surgeons need insight into ex-
pected facial growth. This paper is concerned with the

mandible, a particularly complex bony structure both in its
shape and in its growth process, as two sets of teeth erupt
asynchronously while the direction of the condylar process
changes by a considerable angle.

Our data set here comprises 31 mandibular surfaces extracted
from computed tomography (CT) scans of a total of six children
diagnosed with Apert syndrome.

The analysis falls under two major headings. First is the rep-
resentation of the set of mandibular surfaces by one vector of
14 851 points that can be considered to be semilandmarks: that
is, points that do not have names, but that correspond across all
the cases of a data set under a reasonable model of deformation
from their common mean [1]. Second is the summary of these
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31 point sets in a linear subspace of surprisingly low dimension,
affording surprisingly accurate growth predictions.

The organization of the remainder of this text is as follows.
Section II sets the stage for our algorithm by reviewing the
literature of nonrigid registration by deformable models. Sec-
tion III introduces the patients to which we have access, their
CT images, and the mechanism by which we produced the 31
mandibular surfaces of the data set. Section IV describes the ini-
tialization of our diffeomorphism by detection and matching of
crest lines, and Section V shows how we proceed to a full sur-
face-constrained diffusion. In Sections VI and VII, the (
)-dimensional sample subspace of the full space of semiland-

mark shape is subjected to certain conventional multivariate bio-
metric analyses that yield powerful predictors of unobserved
(future) form. We assess their accuracy using measures of sur-
face-to-surface discrepancy. Section VIII is a retrospect over all
these tactics, emphasizing the surprising power of the diffusion
methodology to uncover commonalities in the six independent
growth processes of this sample. We close with a plea for cor-
responding studies of normative samples.

II. RELATED WORK

The literature treating registration methods is very extensive
(e.g., [2] or [3] for surveys). This section, therefore, mainly
concentrates on the literature covering both registration and de-
formable models (for reviews, e.g., [4] or [5]) or morphometrics
(e.g., [6] and [7]). We will emphasize the registration method of
Feldmar and Ayache [8], as it most resembles the geometry-con-
strained diffusion method [9], [10]. Feldmar and Ayache [8] per-
form a surface registration based on a distance measure that re-
lies on local geometrical properties of the surfaces. The surface
registration is a collection of local affine registrations, spatially
blurred so as to result in a smoothly varying global registration.
Geometry-constrained diffusion (Section V) does not make a
collection of local affine frames, but a global registration field.
We do not exploit any metric properties of the surfaces, but look
for a globally simple registration field. This also creates a ten-
dency to match points of similar geometry since the field, oth-
erwise, must be more complex.

Deformable models have been widely studied [4], [5]. When
using landmarks to drive the correspondence between objects
one main drawback is the the need for their manual location in
advance. A lot of researchers have worked on this. Bookstein
has reported a method where the semilandmarks are placed on
contours automatically [1]. Note, a landmark is a point that can
be identified by verbal characterization on the single case [11].

0278–0062/00$10.00 © 2000 IEEE
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Fig. 1. The raw dataset of patient 3, scan #1 (1-mo scanning). The mandibular
bone and teeth have low density, therefore, cavities and holes are introduced
when segmented.

Fig. 2. The crest lines (in red) andk -max lines (in blue) on the three Gaussian
smoothed (kernel size,� = 3 mm) mandibles at (left) 9 mo, (middle) 21 mo,
and (right) 7-yr old. The mandibles are from patient 6, scan #1, #2, and #3,
respectively. The surfaces are translucent.

Semilandmarks are points that do not have names, but corre-
spond across all the cases as images of the same point of their
average, so one can carry out statistics just as if they were land-
mark points [1].

Fleute and Lavallée [12] extrapolate a small number of range
data to obtain a complete surface representation. Principal com-
ponent analysis (PCA) is used to reduce the dimensionality.
Data sets are registered together using an elastic registration
method of Szeliski and Lavallée [13] based on octree-splines.
The method is a least squares minimization of the distances be-
tween a sparse and unorganized set of points and a dense set
used to build a three–dimensional (3-D) octree-spline distance
map. The result is a smooth deformation field.

A registration technique based on thin-plate splines that takes
landmark errors into account has been reported in [14]. The
semilandmarks are located semiautomatically or manually.

The present work has been greatly inspired by the seminal
work of Cootes and colleagues ([15] for an overview) and Dean
et al. [16] (see below). Manually detected landmarks have been
used for Cootes and colleagues’ analysis [15]. Principal com-
ponents are calculated from the Procrustes analysis and an ac-
tive shape model is made. The deformation of the active shape
model is restricted by the principal components. For segmenta-
tion, gray-level information near the object boundaries is also
modeled.

Kelemenet al. [17] have used the same method as in [15],
but in order to automate the landmark generation, Fourier-de-
scriptors [18], [19] were found very powerful. Restrictions on
the topology of the surfaces are the main drawback when using
Fourier descriptors.

Fig. 3. Matches (lines in black) between two sets of crest lines at scale 3.
The crest lines on the 21–mo and 7-yr-old mandible (patient 6, scan #2 and
#3, respectively) are red and green, respectively. For visual clarity, only every
eighth match is shown.

Fig. 4. The images show schematically how the diffusion algorithm works on
the displacement field. The Cartesian components of the initial displacement
field (arrows in the left image) are Gaussian smoothed. Some of the links have
now diverged from the surface (middle image) and must be projected back on
to the surface (right image). The fold is removed by repeating the steps until the
field does not change.

In the present paper, the registration method of Subsolet al.
[20] gives the initial object correspondence (Section IV). Crest
lines [21] are registered together taking into account the con-
straints inferred by lines and a heuristic algorithm based on the
iterative closest-point (ICP) algorithm [22].

Grenander and Miller [23] have formalized a model of
anatomy in which anatomies are represented as deformable
templates, collections of zero-, one–, two-, and three-di-
mensional manifolds. They have three principal themes in
computational anatomy: large deformations maps [24], em-
perical probability laws that represent anatomical variation in
populations, and inferences on populations, such as disease
classification.

Lorenz and Krahnstöver [25] present a 3-D shape model
based on surface points. The overall strategy is similar to that
in the present paper. However, the initial correspondence is
based on a manually defined set of landmarks on each object.
From the sparse mapping defined by the landmarks, a dense
mapping is calculated by thin-plate interpolation. If it happens
that the deformed mesh is folded, it is unfolded using a mesh
relaxation balancing bending force aginst surface mesh force
by a mass-spring model.

Deanet al. [16] analyze pairs of frontal and lateral X-rays
from 32 individuals (16 males and 16 females) aged from 3-
to 18-yr old. The objective is to investigate which 3-D land-
marks could be collected with high precision, to identify on-
togenetic trends in landmark configuration shape change, and
to detect patterns of sexual dimorphism. The 32 landmarks are
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Fig. 5. Flow diagram for the diffusion algorithm. See Section V for details.

Fig. 6. Iso-surface and crest lines for a 3-mo-old and a 56-mo-old mandible:
patient 1, scan 1, and patient 2, scan 5. The mandibles are Gaussian smoothed
(� = 3 mm) in order to capture the higher scale features. The dimensions of the
left and right mandibles are(H �W � L) 18� 57� 53 mm and 31� 79�
79 mm. Surfaces are translucent.

transformed to points in two Procrustes shape spaces (one for
each gender). Relative warps are then used to search for trends
in ontogenetic shape change. It is interesting that the result of
the analysis is almost identical to the present work even though
the 32 landmarks are placed mostly off the mandible, and the
subjects are normal children.

We are not aware of any other growth studies in which
longitudinal 3-D acquisitions from humans have been used
for growth modeling except in [26]–[28], where the growth
was modeled for the subject who is patient 6 here. Subsol
[26] modeled the craniofacial growth using a linear model
between a set of the controlling points. Bro-Nielsenet al. [27]
used a nonrigid registration method to model the growth of the
mandible. The method was a surface interpolation that did not
preserve the mandibular shape; e.g., the condyles disappeared
for intermediate interpolated time instances. Andresenet al.
[28] used the same object registration technique as in Section IV

Fig. 7. Result of running the diffusion algorithm (� = 2 mm) on the
displacement field. The surface represents the 56-mo-old mandible after
deformation to the 3-mo-old mandible in Fig. 6. The surface and wire frame
of the deformed surface are shown to the left and right, respectively. The
initial displacement, one iteration with the diffusion algorithm, and the last
iteration are shown from top to bottom, respectively. The folds are a result of
the imperfect initial registration whereby the extremal-mesh registration was
extended to the whole surface by Gaussian regularization [28]. The final result
is almost perfect, but some folds still exist, due to the discretization of the
surface and displacement field.

Fig. 8. Converged diffusion algorithm with a high value of� (� = 10
mm). The surface and wire frame of the deformed surface are shown to the left
and right, respectively. All folds remaining in the surface at the bottom of the
previous figure are now gone.

TABLE I
CT SCANS USED IN THE PRESENT STUDY.

THE 56-MONTH SCAN FOR PATIENT 2 IS THE REFENCEMANDIBLE FOR THE

SEMILANDMARK ANALYSES

to register the mandibles. A second-order polynomial was used
to interpolate the longitudinal displacement. Unfortunately,
because the polynomial model there was not well-suited to
mandibular growth modeling, the mandible was forecast to
shrink in the course of growth!

III. D ATA MATERIAL

The data consisted of CT scans of six subjects with Apert
syndrome, four males and two females. Patient 6 is Danish, the
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TABLE II
PRINCIPAL COMPONENTANALYSIS OF THE SEMILANDMARK DATA

Fig. 9. Left and right images show the deformed (green) and the original (red)
crest lines before and after applying the diffusion algorithm (� = 2 mm).
In the initial registration, crest lines are registered with crest lines. Where the
topology does not change and away from umbilic points (for which the curvature
is the same in all directions, e.g., at the condyles), (almost) no movement of the
green crest lines is seen. Because erupting teeth change the topology on the
upper surface (cf. Fig. 6), the green crest lines have moved in that region.

Fig. 10. The deformation vectors are moved too far away from the surface (the
value of� is too high) resulting in a wrong projection back onto the surface.

Fig. 11. Scatterplots of the first and second principal component for the
six cases (left) before and (right) after the geometric-constrained diffusion is
applied. For visual clarity, each patient’s mean is restored. Numbers are ages
in months. It is clear that the six growth trajectories span an angular range of
nearly 90 between the earliest growth segments of patient 2 (dashed line) and
3 (dotted line) in this projection; after diffusion (right), the alignment is far
tighter.

others American. All scans were performed by Siemens scan-
ners. The subjects were scanned for diagnostic, treatment plan-
ning, and follow-up purposes at the craniofacial clinics. The in-
dividual subjects were scanned between three and seven times,
at ages between 1 mo and 12 yr (Table I).

Fig. 12. The distribution of the six vectors (first principal component for each
patient) in the six-dimensional (6-D) subspace they span.

TABLE III
CROSS-VALIDATION OF SHAPE PC1

A previous two-dimensional roentgencephalometric study
has shown that the mandible in Apert syndrome has relatively
normal morphology except for some adaptive changes [29]. As
these subjects are prepubscent and the sample is small, we have
pooled the two sexes in the analysis to follow.

The mandibles were extracted from the CT scans by
thresholding, with manual segmentation around the condyles.
Holes inside the object were filled and the mandibles trilin-
early resliced to 0.5-mm cubic voxels (Fig. 1). The reference
mandible from which we propagated all the semilandmark
points in this study is the 56-mo scan for patient 2; the semi-
landmarks were chosen to be the vertices of the triangulated
mandibular surface.

IV. REGISTRATION: OBJECTCORRESPONDENCE

In order to establish object correspondence, we search for fea-
tures that match areas with equivalent morphology. Since the
topology is not changed dramatically for the mandible when
growing, features reflecting the “stable” geometry are used. The
local shape of a surface is totally characterized by the principal
curvatures and their derivatives in the coordi-
nate system defined by the principal directions [30].
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We work with the extraction and matching of ridge lines [21],
[28], [31].

Ridge lines come in four type types, corresponding to max-
imum or minimum Gaussian curvature and . Here, we use
the maximal type and the maximal type, called “crest
lines” and “ -max lines,” respectively. For three mandibles,
these are shown in Fig. 2.

The overall framework follows the ideas originally proposed
in [20] and already used in [28]. First, the crest lines and-max
lines for each dataset are extracted at a high scale, in order to get
the more global features (Fig. 2). The crest lines are registered
(Fig. 3) to provide a sparse initial deformation field. A dense
field is then calculated by adaptive Gaussian filtering [32] (Sec-
tion IV-A). The -max lines are then deformed according to
the initial dense deformation field and subsequently registered.
From the two sets of matches (one from the crest lines, the other
from the -max lines) a combined deformation field is calcu-
lated. This sparse field is also interpolated to a dense field by
adaptive Gaussian filtering. The resulting sparse deformation
field is used as an initial guess in the point matching algorithm
in Section V. Another iteration is done at a fine scale, but using
the dense high-scale deformation field as initial displacement
for the crest lines at fine scale.

This extremal mesh is manipulated in the course of registra-
tion first by a second-order moment registration to the target
form (Section IV-B); then by two first-order polynomial defor-
mations and two second-order polynomial deformations (Sec-
tion IV-C); finally, by an unconstrained nonrigid deformation
for all points on all lines (Section IV-D). Details of these steps
are as follows.

A. Adaptive Gaussian Filtering

Gaussian filtering equals Gaussian smoothing for unevenly
distributed points with a renormalization so that the total filter
weight becomes unity.AdaptiveGaussian filtering [32] equals
Gaussian filtering, but the scale parameter (the size of the
Gaussian kernel) equals the square root of the distance to the
nearest point.

B. Second-Order Moment Registration

The description in this section is adopted from [33]. The dis-
persion matrix for the mesh is given by

(1)

where
three–dimensional points in the mesh;
center of mass for the points;
number of points;
transpose.

is factorized by determining the eigensolution of the matrix.

(2)

where is the orthonormal matrix of eigenvectors andis a
diagonal matrix containing the eigenvectors.

The affine transformation ( , where is the
rotation matrix, is the translation vector, and is the trans-
formed set) that gives set the same first and second-orderma-
trix as set is determined by

(3)

(4)

C. th-Order Polynomial Deformation,

Having the point correspondence between the two setsand
(Section IV-E), the th-order polynomial deformation that

optimally—in a least square sense—mapsto is given by

(5)

where is the mapped dataset and is one of the , , or
coordinates. The parameters are determined from the

correspondence between the two sets by least squares [34].

D. Totally Nonrigid Deformation

All the points are freely moved to their corresponding match
in the other set (Section IV-E).

E. Making the Point Correspondence

The correspondence between meshes is determined by the
ICP algorithm [22] modified as in [20] to take the line con-
straints into account.

V. REGISTRATION: POINT CORRESPONDENCE

From the sparse deformation field (the mapping between the
two extremal meshes), derived from Section IV, a dense field
must be calculated as we wish to register all the points on the
whole surface, not only the extremal mesh. The points are the
vertices of the triangulated mandibular surface. These points
will be assumed to make up the semilandmarks after the geom-
etry-constrained diffusion algorithm has been applied.

Adaptive Gaussian filtering can fold the mesh registration. To
regularize the dense field, including simplifying (unfolding) it,
we adopt the geometry-constrained diffusion algorithm origi-
nally published in [9] and [10].

The algorithm (Fig. 4) alternates Gaussian smoothing of the
Cartesian components of displacement independently, which
pulls them away from the surface, with projection back to the
closest point on the surface. The detailed flow is as in Fig. 5;
a typical example is set out in Figs. 6–8. Fig. 9 shows the im-
proved registration achieved by the diffusion algorithm. In all
cases, the “initial displacement field” is the dense deformation
field (interpolated from the extremal mesh onto the whole
surface) constructed in Section IV.

In thediffusion step, for each Cartesian component of the dis-
placement field, a Gaussian weighted average is constructed.
The standard deviation of the Gaussian is the only param-
eter in the numerical scheme. In effect, it regulates the “time
steps” between projections onto the surface. For simple sur-
faces, it may be large. For surfaces including regions of high
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Fig. 13. CS against PC1, separately by patient. The numbers on the segmented
lines are ages of observation. The correlation coefficient equals 0.83 (for all
mandibles). The colors refer to the individual patients. The numbers on the lines
are ages. See Section VII for further discussion.

Fig. 14. The plot shows the length of the mandible calculated as the length
between the midpoint of the most posterior superior point on the condylar heads
and gnathion as done in [39]—Variable 79) versus the principal component for
the full model. It is seen that there is a clear relation between shape and the
length. The correlation coefficient equals 0.85 (for all mandibles).

curvature, must be smaller in order not to tear the surface
apart (see Figs. 7, 8, and 10). Theoretically, small values of
should yield the same result as larger values of(when the
surface is not torn apart), because of the additive nature of the
Gaussian smoothing, but the discretization of the displacement
field means that the algorithm could converge to a local op-
timum before a satisfactory result, i.e., a surface without folds,
is obtained. A good approach is:

1) Set to a small number, say one.
2) Run the algorithm.
3) If the result is satisfactory, then stop.
4) Increase , say , go to 2).

Fig. 15. The plot shows log(age) versus log(CS) for the mandibles. The
correlation coefficient is as high as 0.97 (for all mandibles) making it a 1-1
correspondence (almost) between the two variables.

The final surface registration is not sensitive to the value of
, as long as the surface is not torn apart (Fig. 10). The influ-

ence of is investigated further in [10].
For matching, as in [35], we use a kD-tree [36] for finding

the closest point on the target surface. As reference points on
the triangulated target surface we use the center of mass (CM)
points of its triangles. The closest CM point is located (by the
kD-tree) and then the closest actual surface point is estimated as
the intersection of the triangle’s plane with the line through the
reference point parallel to the target normal. If this intersection
is outside the target triangle, its neighbors are searched. The
proposed algorithm has the advantage that the points can move
continuously on the target surface.

The diffusion is stopped when

(6)

where
points on the source surface;
displacement in theth-iteration;
user-chosen parameter.

Ten iterations are normally sufficient.

VI. STATISTICAL DESCRIPTION:
GEOMETRIC MORPHOMETRICANALYSIS

In Section IV and Section V, our aim was to register the
points on the 31 mandibles in such a way that we could assume
that the points were semilandmarks. On the reference mandible
the semilandmarks were chosen to be the vertices of the trian-
gulated mandibular surface. The Gaussian-smoothed reference
mandible has 14 851 and 9087 vertices for the kernel sizes
1 and 3 mm, respectively. These meshes are deformed onto all
other mandibles using the simplified dense deformation field set
out in Section V. The semilandmarks that result are subjected
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Fig. 16. Modeled last scan (scan #5) based on the first scan (scan #1) for
patient 1. The large errors are located at the cavities as described in the text.
The left images being the observed scan seen from two different viewpoints. The
right images are the modeled mandible seen from the same two viewpoints. The
surface is rainbow color coded from blue (0 mm) to red (10 mm) with the error
(Fig. 23), calculated as the Euclidean distance between the same semilandmarks
in the observed and modeled scan. The mean error is 2.4 mm.

Fig. 17. Modeled last scan (scan #7) based on the first scan (scan #1)
for patient 2. The large errors are located at the cavities introduced by the
segmentation of the 1-mo-old scan. The mean error is 3.5 mm. The staircases
on the observed scan #7 is due to errors in the original volume.

to conventional multivariate biometric analyses that yield pow-
erful predictors of unobserved (future) form.

At the outset, the configurations of 14 851 semilandmarks,
specimen by specimen, are aligned in a common coordinate
framework by Procrustes analysis [7], [37], which is a least-
squares superposition in which position, orientation, and scale
are jointly standardized. We used the usual iterative approach
to produce an average shapeto which the specimens are all
aligned. Let be the matrix of 3-D semilandmarks for
the th specimen.

1) The center of mass (the centroid) for each shape is trans-
lated to the origin.

2) For each specimen,centroid size(CS) is computed,
square root of the the summed squared distance of
all semilandmarks from this centroid, and the form is
rescaled so that this sum of squares becomes 1.0.

3) Make an initial guess at , for instance, .

Fig. 18. Modeled last scan (scan #5) based on the first scan (scan #1) for
patient 3. The mean error is 2.8 mm. By looking at the first scan (Fig. 1) it
is not surprising to find the large errors at the cavities. The notch in the side of
the modeled mandible is related to the hole found at the same place on the first
scan.

Fig. 19. Modeled last scan (scan #7) based on the first scan (scan #1) for
patient 4. The mean error is 3.7 mm. The quality of the model is surprising.
None of the scans in the model is as old as scan #7 (12-yr old). The oldest
scan in the model is 7-yr old (patient 6, scan #3). This indicates the stability of
the growth. The red area shows a missing tooth, which has been extracted. The
prominent chin is not modeled very well. Using older scans solves the problem
(Figs. 24 and 25).

4) Orient each shape to this tentative mean. To do so, let
be the singular value decomposition of .

As long as all elements of are positive (which will
be the case in all realistic applications), the rotation that
superimposes on is the 3 3 matrix .

5) Re-estimate the mean shape as the average of these ro-
tated configurations.

6) Return to step 4) until convergence, which is invariably
after two or three iterations.

Now that all the shapes are aligned, we calculate the patient
mean shapes for each patient

(7)
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Fig. 20. Modeled last scan (scan #4) based on the first scan (scan #1) for
patient 5. The mean error is 2.6 mm. An almost totally blue surface shows the
high accuracy of the model.

Fig. 21. Modeled last scan (scan #3) based on the first scan (scan #1) for
patient 6. The mean error is 2.8 mm. The model is very accurate, only a slight
twist of the condyles are seen.

where is the count of scans for theth patient. Write for
the patient-specific deviation from his/her own average

(8)

Rearrange each into a column vector of length , where
is the count of semilandmarks (9087 or 14 851, depending on

the computation), and concatenate all of these column vectors
into a new data matrix 3 31.

The covariance matrix of the patient-specific residual coor-
dinates is , 3 3 . By the Eckart-Young’s the-
orem [38], we can extract its eigenvectors very simply from the
corresponding eigenvectors of , which is 31
31.

Let be the eigenvector of with corresponding eigenvalue
, sorted in descending order. It follows from [38] that the 31

vectors

(9)

Fig. 22. Histogram of the prediction errors (Euclidean distance between the
two same semilandmarks in the observed and modeled scan) for the six predicted
mandibles shown in Figs. 16–21 (starting top left and ending bottom right). The
larger error is mainly due to cavities coming from the segmentation of the very
young scans (1–3 mo) as seen in Fig. 1.

Fig. 23. Rainbow color-code from blue (0 mm) to red (10 mm) used to
visualize the errors in the mandibular growth model.

are all eigenvectors of with corresponding eigenvalues .
The last eigenvectors are all zero.

VII. SHAPE EVALUATION AND PREDICTION

Table II shows some results of these PCAs. There are two
comparisons here: the effect of the surface-bounded diffusion
algorithm (Section V), expressed in the difference of the two
conditions for 3, and the effect of reducing the spatial scale

of the smoothing, observable in the relation of the diffusion
with 3 to that with 1. For each set of 31 semilandmark
configurations, the table shows the first four eigenvalues and the
percentages of total Procrustes variation for which they account.
The diffusion greatly strengthens the systematic aspects of the
analysis; for instance, the shape variation along the first eigen-
vector increases by a factor of one and a half. Decreasing the size
of the Gaussian smoothing radius, conversely, results in local
differential changes that are less likely to be aligned across these
31 mandibles and, thus, a decrease of the explanatory power of
these same eigenvectors.

Any summary of an ostensibly homogeneous sample of bi-
ological material, in this case, observed growth in six children
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with the same diagnosis of synostosis, is persuasive to the ex-
tent that that categorization “explains” the quantifications: the
extent to which the extracted measurements are homogeneous
over the class. From Fig. 11, it is clear that the six growth trajec-
tories span an angular range of nearly 90between the earliest
growth segments of patients 2 and 3 in this projection; after dif-
fusion, the alignment is far tighter. As shown in Table II, there is
far less variation around the common direction of these growth
trajectories after diffusion than before (68% vs. 45%).

From the right image in Fig. 11, it appears that the three to
seven forms of each case lie reasonably close to a line in Pro-
crustes space. We can, thus, summarize each by its own first
principal component [16], and then examine the resulting six
vectors to see how they may be ordinated.

Fig. 12 indicates the distribution of these six vectors in the
6-D subspace they span. Each principal component is normal-
ized for its actual Procrustes variance explained, and the presen-
tation here preserves that metric. We see a strong central ten-
dency in these six growth vectors, closest to the observed trend
for patient 3 or patient 4. The variation of the tips of these six
vectors seems to cover about the same diameter in the six dif-
ferent directions plotted here, without apparent correlation in the
planes selected for plotting, and so it is reasonable to imagine
it to be spherical, i.e., without a preferred directional structure
within this space.

We demonstrate the power of this procedure by a series of
growth predictions that, in all cases, predict the oldest form for
each of the six patients by altering each of the earlier forms
for that patient according to the regression on CS and the first
principal component (PC1) given by theother five patients.

The model is built as described above except that one patient
at a time, 1, , 6, is excluded from the analysis. We will
attend to the eigenvectors that arise as first eigenvectors of
the data set excluding patient’s scans. As seen in Table III the
growth models prove highly stable: fractions of Procrustes vari-
ance explained by the six eigenvectors range from 60.8% to
65.8% only, and the angle that these eigenvectors make with the
pooled is limited to no more than 8(a cosine of 0.99). No pa-
tient controls the variability of the pooled analysis. Other com-
putations, not shown here, confirm the observation, first set out
in [16], that removing variation of patients’ mean shape greatly
enhances the reliability of the resulting PCA analysis of growth
per se. Because patient ’s scans are already aligned with the
grand mean shape, a new shape may be modeled by

(10)

where is a growth index parameter and is one of patient
’s earlier forms. If the new form is already available, the value

of can be found by projection of the form onto the line of
slope through the earlier form. In a context of prediction
instead, we can estimate an appropriate value ofby regression
using age or its transforms, CS, or mandibular length. These
lead to equivalently accurate predictions (Figs. 13–15); we will
use the one calibrated by CS, as that is the commonest in other
applications of these Procrustes coordinates. Fig. 13 shows the
clear relationship between CS and PC1 for the complete data

TABLE IV
PREDICTION ERRORS OFMANDIBULAR SHAPE. FOR EACH PATIENT, THE

OLDEST MANDIBULAR SHAPE IS PREDICTED FORITS CENTROID SIZE BY EACH

EARLIER FORM USING SHAPE PRINCIPAL COMPONENTS ANDREGRESSIONS

BASED ON THEOTHER FIVE PATIENTS OF THEDATA SET

set of all 31 mandibles. To evaluate this prediction, of course
we need to use the regression coefficientbased on the data
set omitting the th case, the one we are predicting. The final
model is, therefore

(11)

From (11), it is seen that only one scan of the patient and the
future CS or age (Fig. 15) is needed to make the prediction.

Table IV shows mean, standard deviation, and root-mean-
squared errors of surface prediction when each patient’s last
scan is predicted by each of his or her earlier scans at the appro-
priate CS, using predictions of size-related shape change based
on the other five patients. In general, accuracy increases with
decrease of age interval, but the prediction errors from earliest
to latest scan seem gratifyingly homogeneous, in keeping with
the evident parallelism of individual growth curves in Fig. 11.

Some of the predicted mandibles are shown in Figs. 16–21.
The histograms of the errors for the figures are shown in Fig. 22.
The left images in Figs. 16–21 represent the last observed scan
for each patient. The right images show the modeled mandibles.
The rainbow color coding shows the errors (Fig. 23). Error is the
unsigned Euclidean distance between matched semilandmarks
when the modeled surface is rescaled to match the observed scan
in CS.

When segmenting the scans at 1–3 mo of age, large cavities
are erroneously introduced because of the very low X-ray ab-
sorption (Fig. 1). As seen from Fig. 18, these errors are not re-
moved by the growth model, as expected. For that reason, the
largest errors ( mm) are seen at the cavities. Also, removal
of a tooth is obviously not modeled, as seen in Fig. 19. Besides
these very specific errors, we do not see errors larger than ap-
proximately 5 mm, except for patient 4, scan #7 (Fig. 19). This
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Fig. 24. Predicted shape of the most recent scan of patient 4 using each
of her earlier scans, from top left to bottom right. The problem of cavities
occurs only for the prediction from the earliest surface, and the accuracy of
the prediction increases as the prediction interval becomes shorter. Notice, the
model itself—the first eigenvector in (11)—stays the same.

patient, unlike the others, has a prominent chin, about which the
prediction has no information.

The ability to model patient 4, scan #7 accurately is a bit
surprising. None, of the other patients have been scanned at that
age, the oldest scan (when patient 4 is excluded) being 7-yr old
(patient 6, scan #3), but patient 4, scan #7 is 12-yr old. This also
indicates that the growth is modeled correct.

Figs. 24–25 are included to show how the errors decrease as
successively older scans are used. Notice, how small the errors
are when patient 4, scan #6 (11-yr old) is used as the basis for
the model. 12 715 of the 14 851 semilandmarks (85.6%) have an
error less than 3 mm. Fig. 26 shows the histograms.

VIII. C ONCLUSION

We have presented a linear 3-D growth model that relies
on principal components of Procrustes shape coordinates. The
model, which is formally independent of mandibular form
per se[seen by subtracting from (11)], is able to predict
mandibular shape changes to an acceptable accuracy. The great
increase in percent of Procrustes variance explained by the first
eigenvector after geometry-constrained diffusion (Table II)

Fig. 25. The same six predicted mandibles, viewed from behind.

Fig. 26. Histograms for the errors of prediction in Figs. 24 and 25.

is surprising and deserves further investigation. Inclusion of
zero-dimensional and one-dimensional constraints (landmark
points and curves) would further improve this step in the
processing.

Other studies, such as [40], show that the growth of the
mandible is nonlinear, when using a “biological coordinate
system.” The present study does not reject that hypothesis,
but indicates that the growth is linear if modeled in Procrustes
space. This also complies very well with the result of [16].
A combination of the two “frames” might be very fruitful.
Procrustes space could be used for the growth modeling and
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the “biological space” for the visualization. The ability to ex-
trapolate the growth period by 5 yr strengthens our hypothesis
about linear growth.

At present, we can only obtain the closely spaces CT scans
that allow this kind of analysis from clinical cases with var-
ious types of craniofacial growth disturbances. As mentioned
above, in Apert syndrome, the mandible is not affected by the
primary anomaly [29]. Other craniofacial syndromes also show
fairly normal mandibular development e.g., Crouzon syndrome
and achondroplasia. It will be interesting to ascertain which of
these groups are characterized by these same mean growth tra-
jectories. If the predictive accuracy we have demonstrated here
extends to other syndromes lacking a primary mandibular dys-
morphology, one might then speculate that it characterizes the
normal growth process as well.
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