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Abstract

The three-dimensional bin packing problem is concerned with packing
a given set of rectangular items into rectangular bins. We are interested
in solving real-life problems where rotations of items are allowed and the
packings must be packable and stable. Load bearing of items is taken
into account as well. An on-line heuristic and an exact method have been
developed and compared on real-life instances and as well on some bench-
mark instances. The on-line algorithm consistently reaches good solutions
within a few seconds. The exact method is able to improve the solutions,
but a significant amount of computation time is required.

1 Introduction

The three-dimensional bin packing problem (3D-BPP) is concerned with orthog-
onally packing a given set of rectangular items in rectangular bins. The bins
can be identical or of different sizes. If they are identical we want to minimize
the number of bins used; in case we can choose from different sizes, we want to
minimize the cost of the used set of bins. We assume that it is possible to fit
each item in at least one of the bin types.

We are interested in solving real-life problems, and hence additional con-
straints must be taken into account. It is generally allowed to rotate the items
in the 6 different possible orientations, but restrictions on some items can occur,
allowing only a subset of the orientations. The packing of items must be stable
and possible to pack by a person or a packing robot. In order to guarantee this
we will restrict ourselves to so-called robot-packable packings a concept intro-
duced in den Boef et.al. [5] and Martello et. al. [11]|. Basically items are placed
starting from the bottom-left-back corner of the bin and successively placing
items in front, on top or right of already placed items. The robot arm will in
that way avoid collision with already placed items.

Dyckhoff [6] introduced a typology of cutting and packing problems denoting
the 3D-BPP as 3/V/D/M. V and D denote problems where all items must be
packed in possibly different bins and M that we consider instances of many items
of different sizes. In principles of optimization there is no difference between
cutting, nesting and packing problems. Note however that usually all items are



considered different in Bin Packing, but we also consider the case of many items
of a few different types denoted 3/V/D/R.

Lodi et. al. introduce a more detailed classification scheme focused on bin
packing problems. They classify problems in the following dimensions:

e Dimension of the problem: 1,2,3,..
e Orientation of items: fixed orientation (O) or rotation allowed (R).
e Cutting restrictions on packings: guillotine cutting (G) or free cutting (F)

In our version of the problem we only allow robot-packable packings, which
we denote (R) and the problem class is then 3BP|R|R.

The first attempt on solving multi-dimensional bin packing or cutting stock
problems dates back to Gilmore and Gomory [8]. They were using column
generation, but they restricted themselves to guillotine cuts. Chen et.al. [3] for-
mulates an Integer Programming Model, but it is only solvable for very small in-
stances. The first exact algorithm solving the 3D-BPP was proposed by Martello
et.al. [11], but they were not considering rotation, stability and load bearing
constraints. They used what could be considered a direct Branch & Bound ap-
proach branching on items in bins and afterwards position of the items in the
bins.

A large number of papers have been published on heuristic approaches for
the 3D-BPP. Ivancic et.al. [10] propose an integer programming based heuristic
approach, which basically is a column generation approach without branch-
ing. Feasible solutions are merely achieved by solving the integer programming
problem over the generated packings. The packings are generated with a greedy
construction heuristic taking the dual prices into consideration. More recent is
the use of Guided Local Search by Faroe et.al. [7].

We are interested in solving another variant of the problem introduced earlier
— an on-line version where the order of the items arriving at the packing site is
unknown. The items are in a queue, where we can observe and pick an item to
pack from the first ) items. At the packing site S bins are available to pack at
a time. When no more items can be packed in the bins one or more of the bins
must be shipped off and replaced by one or more empty bin(s). To solve the
on-line version we use the greedy heuristic described in section 6.

We use another approach for the problem where all data is known a priori.
We also adopt the column generation approach. The pricing problem is a 3D
Knapsack Problem, which we decompose as suggested by Pisinger and Sigurd
[12] for solving the 2D Bin Packing Problem. The 3D Knapsack Problem is
decomposed into a 1D Knapsack Optimization Problem and a 3D Knapsack
Feasibility Problem. The 1D Knapsack Problem is a relaxation of the 3D Knap-
sack Problem. Pisinger and Sigurd use Constraint Programming to solve their
2D feasibility problem and at failures they add cuts to the 1D Knapsack Prob-
lem in a Branch & Cut fashion. We use an algorithm similar to the ONEBIN
packing algorithm of Martello et.al [11] to solve the feasibility problem.

Figure 1 on the following page gives an overview of the entire column gen-
eration scheme. Duals from the Restricted Master Problem is sent to the 1D



Knapsack relaxation. The optimal solutions are checked for 3D Knapsack feasi-
bility. Either a cut is sent to the 1D Knapsack or a feasible packing is sent to the
Restricted Master Problem. This procedure continues until no feasible packing
exists, which will improve the LP solution of the Restricted Master Problem.
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Figure 1: Overview of the solution approach.

The rest of the paper is organized as follows: In section 2 the column gen-
eration approach is described. The pricing routine is the topic of section 3. In
section 4 we discuss branching schemes for column generation and in section
5 we give some lower bounds useful for pruning the Branch & Bound tree. In
sections 7 and 8 we consider stability issues and load bearing constraints on the
packed items. Finally in section 9 we compare the on-line algorithm described
in section 6 with the exact approach on both real-life instances and different
benchmark instances of varying difficulty.

2 Column Generation

Assume that we have generated all feasible packings of a single bin. The problem
of selecting the best subset of packings covering all items can then be formulated
as an integer programming problem in the following form where P is the set of
generated packings:

min Z Cpdp

peEP

Za;qp:dt, teT (1)

peEP

gp > 0 and integer, p € P



cp is the cost of packing p depending on the cost of the used bin type, af, is
the number of items of type ¢ in packing p and d; is the number of items of
type t to be packed. The problem can also be formulated with afj e {0,1}
and d; = 1 by regarding identical items as different items. The size of P is
exponential in the number of items, which is why we solve the problem with
column generation. The integrality constraint is relaxed in (1) and we solve
over a smaller set P’ C P of packings. The result is a lower bound for (1)
and if an integral solution is found it is optimal. This problem is called the
Restricted Master Problem. Initially we use a small set of packings for instance
generated from a greedy construction heuristic ensuring a feasible solution. In
following iterations we add columns improving the current solution. Let 7 be
the dual variables from (1). An improving packing will now have a reduced cost,
G = ¢p— >y rapm < 0. If for all p € P €, > 0, then no improving packing
exist and the current solution is optimal. After adding columns the problem is
resolved giving new dual variables etc. The problem of finding columns with
negative reduced costs is called the subproblem or pricing problem.

3 Pricing Problem

The pricing problem is a 3D Knapsack Problem. As Pisinger and Sigurd [12],
we have chosen to decompose the problem into a 1D Knapsack Optimization
Problem and a 3D Knapsack Feasibility Problem. The 1D problem is a relax-
ation of the 3D problem, which means that the solution value will be a lower
bound on the optimal value.

There is a pricing problem for each bin type. Bin types are characterized by
a length Ly, width W3, height Hp, volume V, = LW, Hp, weight limit Ej and
cost ¢p for each b of the types in B. A set of different item types ¢ € 7 are to
be packed in bins. Each type is defined by the length [;, width wy, height A,
volume v; = lywihy, possible rotations Ry C {1,2,3,4,5,6}, weight e; and the
number of items of this type to be packed d;.

We can now formulate the problem as a Knapsack Problem for a bin type
b € B, where the variable u; denote the number of items of type ¢ in the
knapsack:

Ny = min ¢, — Z Ty
teT

> vy <V, (2)

teT

Z erur < Ep,
teT

0 < wu < d; and integer, t €T

If 7, < 0 then the packing will improve the solution to the restricted master
problem. Note that the problem has two knapsack constraints while the Knap-
sack Problem only have one. The two constraints do however not increase the
dimension number of the problem.



3.1 3D Knapsack Feasibility Problem

After achieving the solution u* to (2), it must be checked if the items can
actually be packed in the bin. wu} defines how many items of type ¢ must be
packed in the bin; let 7; us denote the set of items. Each item j € J; is then of
a specific type t € 7 and the number of items is | J;| = u}.

The variables x ¢, y;¢, 2j: specify the lower-left-back position of the item and
rjt € Ry specify the orientation of the item given the possible rotations of the
type. Given the orientation 7;; of the item we can determine the length [;,
width wj; and height hj; by using the element constraint:

element(rjt, [lt7 lta We, W, ht7 ht])ljt)7 j € \-7t)t S T
element (7j¢, [we, by, lg, by, by, wel, wie), § € Tt €T (3)
element(rjh [hta Wt, ht7 lt7wt7 lt]? hjt)7 j € t7t7t S T

Each item must be inside the considered bin of type b € B:

OéxjtSLb_ljh jejvteT
0<yu <Wy—wj, jeJ,teT (4)
ngjtSHb_hjta ]ejvteT

No pair of items j, k € J may overlap:

Tjt + it < Tpe V T+l <V

Yjt + Wit < Y V Yk + Wi < Yje V 5)

Zjt + hjt < 2 V oz + hiy < 254, gt#kt', je Ty, ke Ty,
t,t'eT

The disjunctive non-overlap constraints are exactly the constraints making the
problem extremely difficult to solve with MIP solvers. There is no guarantee
that the solution will actually be packable. Instead we use a variant of the
ONEBIN procedure by Martello et. al. [11]. The items are packed in so-called
corner points. Initially the only corner point is the lower-left-back corner of the
bin. At any following stage, items can only be placed to the right, above or in
front of already placed items. Figure 2 on the next page is an illustration of
available corner points for a given set of packed items.

The procedure is a depth first search where we at a given node consider
placing all item types in all possible corner points and with each feasible item
rotation. Each time an item is placed, the corner points are updated. The
search is stopped when a feasible solution is achieved. As in Martello et. al. [11]
we prune a node in the search tree if the volume of the remaining items is larger
than the remaining volume of the bin.

Any packing found during the search phase with negative reduced cost is
added to the master problem. If it was not possible to find such a packing, we
want to resolve the 1D Knapsack Problem, but with the infeasible solution cut
off the solution space. The procedure is then to add a cut removing the infeasible
solution, resolve the 1D Knapsack Problem, check 3D Knapsack feasibility etc.
until we achieve a feasible 3D packing. This approach was first suggested by
Pisinger and Sigurd [12] for solving the 2DBPP.
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Figure 2: Illustration of corner points for a given packing.

3.2 Adding Infeasibility Cuts

Let U be the set of item types picked by the 1D Knapsack Problem. Now
consider the following inequality:

<> ui-1 (6)

€U €U
At first sight this may seem like a valid inequality to cut off the solution u*
with item types U. Assume that U = {1, 2}, u} = 2 and u3 = 1 resulting in the
cut u; + ug < 2. This cut will however remove for instance the solution u; = 0
and us = 3 as well, which is not what we want. Instead we reformulate the 1D
Knapsack in the following equivalent way where the variables u;; is 1 if the j’th
item of type t is placed in the knapsack:

Ny = min ¢, — Z Z iUt

teT jeTt

Z Z veuje < Vp,

teT jeTt

> ey < By,

teT jeTt

i > uy,  j<i, ,jE€T, te€T (7)



ujp €{0,1}, je R, teT

The constraints (7) are included to avoid symmetries and are actually necessary
for the introduced 3D infeasibility cuts: Consider again our example U = {1, 2},
u} =2 and u5 = 1. In the new variables, we will have u}; = 1,u3; =1, uj, =1
and all other variables equal to zero. The cut will then be w11 + us1 + u1o < 2
allowing the solution u}j, = u3y = u3y = 1. Without constraint (7) the solution
w11 = 1,u91 = 1,u12 = 0 and uge = 1 would be feasible, which is obviously an
error.

Let U’ be the set of pairs consisting of item type and item number in the
optimal solution for the new formulation. The cut inequality then becomes:

> w0 -1 (®)
(4,t)eu’

When we add a cut, we check if one or more of the items can be exchanged
by other dominating items and hereby add more cuts. An item of type t is
dominated by item t', if Iy > I, wy > wy, hy > hy and Ry C Ry All
combinations of dominating items are generated. If an item ¢’ is dominating all
the items in the constraint, we instead add only one stronger constraint:

> wietwy < U -1 (9)
(j,r)eu’

Thousands of cuts can be generated even on relatively small instances. This
will make it quite time consuming to solve the 1D Knapsack Problem. Many
of the cuts will fortunately dominate or be dominated by other cuts and can
hence be removed speeding up the time to solve the problem. Another trick
from Pisinger and Sigurd [12] is to identify unpackable subsets of unpackable
sets and hereby strengthening and reducing the number of cuts. Basically we
remove the smallest item from the set until the subset is packable and then the
last unpackable subset defines the cut.

3.3 Heuristic Packing Generation

The 1D/3D Knapsack phase can be very time consuming. To reduce that time
we apply a similar search, as described earlier, before solving the 1D Knapsack
Problem. The heuristic packing generation procedure is also a depth first search,
but the size of the search tree is reduced. At a given node in the tree we consider
placing only a subset of the item types with positive duals and only in a subset
of all the possible corner points. For each level from the root of the tree the size
of the subsets are halved, although always one possibility is tried. Any packing
found during the search with a negative reduced cost is added to the master
problem.

For the heuristic packing generation we apply another pruning strategy.
During the search we save the volume of the packed items in a given node, if it
is the largest volume packed so far. We then prune the tree at a node, if it is not
possible to improve the best volume found so far, given the volume of the packed
items so far and the remaining volume of the bin. The search is heuristic and if
no interesting packings are found, we switch to the 1D /3D Knapsack phase.



4 Branch & Price

There is no guarantee that the optimal solution to the restricted master problem
is integral. To achieve that we must embed the column generation in a Branch &
Bound scheme resulting in a Branch & Price algorithm. The obvious branching
strategy would be to do normal branching directly on the variables in the master
problem — basically removing columns from the solution or forcing columns into
the solution. Forcing columns into the solution works fine, but when removing
a column there is a significant probability that exactly that column will be
generated in the next pricing iteration. The branching scheme must work in the
pricing problem as well. This is relatively easy to do for Set Partitioning and
Covering type of problems, which we will see later, but we are solving general IP
problems, which make things more complicated. Vanderbeck and Wolsey [15]
developed a branching scheme also discussed in Barnhart et.al. [1], which we
will use.

4.1 The Master Problem

Assume that the optimal restricted master solution, ¢*, of (1), is fractional. We
may find a row ¢t and an integer a4, such that J in

Y. 4 =9

pe{azan)

is fractional. Basically, we sum the g; of columns p covering row ¢ resulting in
a fractional sum, §. We can then branch on the following constraints:

Z gp < 6] and Z qp > [6]

pefapza) pefapzac)

These constraints are upper and lower bounds on the number of bins in the
solution with a; > «ay. Note, that we are not able to remove or force columns
into the solution by adding these constraints — the constraints must be added
to the restricted master problem explicitly. This leads to an extra dual value in
the reduced cost of any new column with a; > .

In some cases it is not possible to achieve a fractional § when considering one
row only and we will have to consider multiple rows. For instance for the Set
Partitioning Problem oy is always one, since a}, € {0,1} and > e {at>1) g =1
for every row. To overcome this in the general case we search for two rows ¢ and
t’ with oy and ay such that ¢ is fractional in

*
> g =9
pE{a}ézat/\aﬁ Zat/}

We continue increasing the number of rows until ¢ is fractional. Let a be a vector
with an entry for each constraint row and P(a) = {p € P'|al, > a;,t € T}. Then
generally we search for a vector a where ¢ is fractional in

> 4 =4 (10)

peEP(a)



The restricted master problem at node n now becomes

min Z CpQp

peP!
Z a;qp:dt, teT
peP!
Y < I[¥), jeFn (11)
pEP(ad)
Y @ =[d], jea” (12)
peEP(ad)

¢p > 0 and integer, p € P’

F™ and G™ in (11) and (12) are index sets over branching constraints defined by
the pairs (a’, 67) where ¢/ is fractional in (10). The constraints are added from
the root of the tree and down to the present node n. At a node a constraint of
type (11) is added in one branch and of type (12) in the other branch.

4.2 The Pricing Problem

Now let us consider the changes to the pricing problem, (7). Let R(«) denote
the chosen set of branching rows for a given a: R(a) = {t € T|ay > 0}.
Further, let A be the dual variables corresponding to the added upper bound
branching constraints and x for the lower. The values of the dual variables
will be A < 0 and « > 0. Finally, let s be a binary variable, where s = 1, if
> jeq, Wit = ar, YVt € R(a) and s = 0, otherwise. The pricing problem at node
n of the tree now becomes

Ny = min ¢, — Z Z TtUjt — Z )\jsj - Z KjSj (13)

teT jeT jeFm jeGn
S v < Vi,
teT jeTt
S ey < By,
teT jeTt
thZUit, J<7’717]€b7tat€7-
sj < Uiy jE€G™, te R() (14)
t
s;>1— > (1- uagt), jeFm, (15)
teR(ad)

ujp €{0,1}, je R, teT

s;€{0,1}, jeFruG"



For each node n in the search tree extra constraints are added. Type (14) is
added in the case that an upper bound has been added to the master problem
and (15) in case of a lower bound.

There is a constraint of type (14) for each row t € R(a/) for j € G™. For
kj > 0 implies that s;, j € G" should be 1 to minimize the objective. s;,j € G™
can only be 1, if for all types t € R(a/) the ag 'th item is chosen, which basically
is Ugiy = 1.

In case of a type (15) only one constraint is added in the given node. For
Aj < 0 implies that sj,j € G" should be 0 to minimize the objective. Here the
variable s; is forced to 1, if for at least one of the item types t € R(a?), the
a{ 'th item is chosen.

4.3 Searching for Branching Constraints

Clearly we want |R(«)| and the number of Branch & Bound nodes n to be
as small as possible. Different strategies can be applied to find R(«) or more
specifically «, such that |R(«)| is small or minimal. Other possibilities is search-
ing for 0 — |¢] fractional, but close to one in order to quickly find an integral
solution or § — |§] close to 1/2 in order for the duals in the pricing problem to
be as large as possible. We decided to consider only the last two. We show on
this page the algorithm implemented in the procedures findAlphaAndDelta and
searchForOtherAlphas. We assume that we have a compact representation of
each column, p € P’, consisting of two arrays, A? and TP with entries for each
al > 0 in AP and corresponding ¢ € 7 in TP. The arrays have length mP. The
results are stored in a global storage object, Save, which is accessibly by both
findAlphaAndDelta and searchForOtherAlphas.

First the algorithm iterates through all fractional variables. For the corre-
sponding column, f, we iterate through the positive entries and save the row
number from 77 in the set R. Then searchForOtherAlphas is called.

Procedure findAlphaAndDelta
Data : Given ¢* and AP, TP, mP, p € P’, global object Save

Result : Return the best a and § from Save
for all fractional variables, q} do

fori=1,...m/ do

R={T/[i}
searchForOtherAlphas(Af, T/, m/ i, R, Save)

In searchForOtherAlphas iteration is done over the remaining positive en-
tries in column f. The procedure is called recursively to consider all combina-
tions of entries. For each combination we, in the procedure saveAlphaDelta,
save the corresponding « and ¢, if § is fractional in the corresponding sum
>pe{ap>a} @y = 0. The values are stored in Save.
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Procedure searchForOtherAlphas(Af, TP, m7 i, R, Save)
Data : Given ¢* and global object Save
Result : The sets of potential R’s are stored in Save
for j=i+1,...,m/ do
R = RU{T]j]}
if fractionalSum(q*, R) then
| saveAlphaDelta(A/, R, Save)

searchForOther Alphas(Af, m/, j, R, Save)
R=R\{T[j]}

If several rows have d, = 1, then we can in some cases simplify the branching.
For fractional ¢*, if there exists a pair of rows t, ¢’ and oy = ay = 1, such that
0 < Zpe {ar>1} ¢, < 1, then we avoid explicitly adding branching constraints.

In one branch we simply remove all columns with a;’f, = ag = 1 and add the
constraint uy; + u1p < 1 to the pricing problem, i.e. items ¢ and ¢ cannot be
packed together. In the other branch we remove all columns with af, + ag <1
and add the constraint u1; = uyy to the pricing problem, i.e. items ¢ and #’
must be packed together. This is the branching strategy of Ryan and Foster
[14].

5 Lower Bounds

Good lower bounds are always important for pruning the search tree when
applying Branch & Bound. When using heuristics lower bounds are of interest
for measuring the quality of the heuristic. For the 3D-BPP we can derive lower
bounds directly from the problem data, but when applying column generation
we can use the LP-solution of the restricted master problem to derive bounds
as well.

The most obvious bound to calculate is the continuous lower bound:

i 2 oteT dtvt-‘ "ZteT dtet-‘ }
Ly = Igéllrgl max { { Vi , i

Martello et. al. [11] show that the asymptotic worst-case performance ratio
of Ly is %. It is quite simple to realize that it must be close to that value, but
harder to prove that it is tight. Here we are satisfied with the first. Consider
the case of an instance with T items all of size | = % 4+ o,w = % + o and
h = % + 0. For 0 = 0 exactly % bins are needed to pack the items. For o > 0,
T bins are necessary, but Ly is still be close to % for o sufficiently close to 0.

The continuous bound is reasonably good when the item sizes are small
compared to the bin size, but as we have seen can be very poor for relatively
large items. Martello et.al. [11] introduce a new stronger bound, Lo, taking all
three dimensions into account. When rotation of items is allowed, we have to use
the smallest possible size of the items in all three dimensions, which deteriorates
the bound. An alternative is to generalize the bounds of Dell’Amico et.al. [4]
for the non-oriented 2D-BPP. All items are cut into smaller cubes, which allows
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a simplification of the bound calculation. The number of items created on the
other hand can be quite large. If rotation is restricted to a subset of items
and/or orientations, then the Lo is definitely preferable. We still calculate the
bound using the smallest possible size in each dimension, but these sizes can now
be different for each side of the item, since the possible rotations are restricted.
This makes the bound stronger than the Dell’Amico bound where the items are
cut in cubes.

Note that the bound is not only used to get an initial lower bound on the
number of bins. It is also used for detecting infeasible 1D Knapsack solutions
in the pricing procedure.

The LP-solution to the restricted master problem is only a valid lower bound
when no more columns can improve the solution. Let us formulate the La-
grangian Relaxation of the restricted master problem at node n (shown on

page 9):

L(m, A\, k) = min Z cpdp + Z m (dt — Z aﬁ,qp) (16)

peEP teT peEP

+2Aj<L5jJ— S qp)+zﬁj([5ﬂ— > qp)

jeEF™ pGP(OLj) jeGn pEP(aj)
peRy, peP, meR, teT, N<O0,j€F", k>0 jeG"

L(m, \, k) is a lower bound to the LP-relaxation of the master problem — specif-
ically m, A, k taking the values of the dual variables from the restricted master
problem. By rearranging the terms in (16) we reach the following expression:

L(m, A\, k) = min Z <cp - Za;m> ap — Z (Z Aj+ Z /{j) dp
pEP teT peP(aj) \JEF™ JEG™

+ Zdtﬂ't + Z )\j L(SjJ + Z K ((Sj_l (17)

teT JjeEF™ jEG
WweEZy,peP, meR, teT, N<O0, jeF", k>0 jeG"

Note that the first line of the expression is a sum over the reduced costs, which is
basically the pricing problem. Assume that we have a found a feasible solution
for each bin type and let U, be the number of bins of type b for each solution.
Assume further that we have the optimal reduced costs for each pricing problem,
My, from the last iteration. A valid lower bound is then
LB™ = Z Upny + Z dyms + Z Aj Léjj + Z Kj [(5j-|
beB teT jeEFn jean

For instances with more than one bin type this bound is rather weak. In con-
clusion we have a valid lower bound for each iteration of the column generation
using the reduced costs of the pricing problems. We can at any time stop
the column generation, if [LB™] > LP"™, where LP" is the solution value to
LP-relaxation of the restricted master problem, since no better bound can be
achieved in that node. If [LB™] > UB where UB is any upper bound to the
3D-BPP, then we can prune the node altogether.
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6 The On-Line Algorithm

We have developed an on-line greedy algorithm to solve the on-line packing
problem. The order of the items arriving at the packing site is unknown. The
items are in a queue, where we can observe and pick an item to pack from the
first @) items. At the packing site S bins are available to pack at a time. When
no more items can be packed in the bins, then one or more of the bins must be
shipped off and replaced by one or more empty bin(s).

When considering which item to place, we evaluate the placement of each
available item in each available bins, in all available corner points and all pos-
sible rotations. We primarily choose that combination of item, bin, corner and
rotation where the increase in wasted space is minimal. Wasted space is basi-
cally space, which is not used by an item, but is unavailable for packing after
the particular item is placed. Before evaluating all the items we sort them in
non-increasing order of the volume of the items. Hence in cases of equal waste,
we place the larger item first. When none of the available items can be placed,
we replace all available bins with new empty bins. The procedure continues
until all items are placed.

The algorithm is not only used for solving the on-line problem, but is also
used off-line to generate an initial upper bound and first columns in the Branch
& Price approach.

7 Stability Issues

In real-life there is requirements on how items may be packed. Items should be
placed on the floor of the bin or be somewhat supported underneath by other
items. Support of items from the side of the bin or from the side of other items
is not considered. An example of no support from the sides is the case where
the bins are pallets.

A common measure of support is to require a certain percentage of an item
to be supported — for instance at least 90%. Items supported by more than
one item, may result in more stable packings. Generally the presence of guil-
lotine cuts in packings make the packing less stable, but often these cuts are
unavoidable, or deeming them infeasible is too restrictive causing less efficient
packings.

The above measure of support is however not a sufficient condition for a
packing to be stable. Subsets of items in the packing must also be stable.
Consider for instance items placed as a stair-case. At some stage, increasing
the number of items constructing the stair-case will make the packing unstable,
caused by the combination of weight of the items and gravity. Stair-case types
of packings are however not likely to be produced when requiring a significant
amount of support. Things get even more complicated if the weight of an item
is not evenly distributed (which we generally assume is the case). An additional
measure of stability is the location of the center of gravity of a packing, which
should preferably be located near the center of the bottom face of the bin.

We have in spite of the above considerations only implemented a simple
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constraint on the amount of support and number of supporting items.

8 Load Bearing Constraints

In practice the load bearing ability of the packed items must be taken into
account. We assume that we are given a maximum allowed load per square
unit (e.g. mm?), oy, for each item type t. This value might depend on which
face of the item is up, but we ignore this fact and assume that it is constant or
be the lowest value over the different faces. Note that it is straight forward to
generalize the method to cope with different values depending on the orientation
of the item. We assume that the load bearing ability is the same at any point
on the top face, even though it might be stronger close to the edges of the item,
also depending on the density of the item. Also we assume that the weight of
an item, e, is evenly distributed over the contact area of the items below.

The above assumptions are similar to the assumptions of Ratcliff and Bischoff
[13]. They, however, allow different load bearing depending on the orientation
of the item. In their packing heuristic, they collect a block of identical items
and place it on a surface, which completely supports the block of items.

The algorithm checkLoadBearing on the current page shows the procedure
to check if an item j can be placed at a specific location in the bin. Line
1 and the loop starting in line 2 identify items below touching j. The algo-
rithm overlap returns the size of overlap between to line segments. Line 3 of
checkLoadBearing calculates the area of overlap between the two considered
items. In this way the total area of support of item j is determined. The weight
per square unit is then calculated in line 4 and the load bearing of item j is
updated depending on its original load bearing and the maximum extra load
items below can bear. If in the end the load bearing of item j is negative, it
indicates that some item below is overloaded.

9 Experiments and Results

We have tested the approach described on a number of benchmark instances
due to Martello et.al. [11], Ivancic et. al. [10] and as well on some instances
that we have generated from real-life data made available by Bang & Olufsen.

The code was implemented in ECL'PS® [9], which is a Constraint Logic
Programming framework based on Prolog. We have used Xpress-MP 13.26 for
solving LP and IP problems. The experiments were executed on a SUN Fire
3800, 750 MHz computer.

Early experiments showed that the feasibility problem is extremely time
consuming to solve. To limit the time spent in the feasibility problem, two
phases of the packing feasibility problem is applied. We first set a time limit
of up to 60 seconds depending on the number of items to be packed. During
the search, if no more packings and branches can be applied the algorithm
switches to a state with no time limit on the feasibility packing. It is checked
at certain time intervals during the search, whether a packing has been added
to the master problem. If an item has been added, the search is halted and
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Procedure checkLoadBearing

Data : Item j to be placed. Set of already placed items, PL.
Result : The boolean variable status, which is false if constraints are
violated.
if z; = 0 then
L status = true

else
1 | PL*% ={i€ PL|z; = z + h;}
PLoverlap — @
total = 0
foreach i € PLb°v do
3 area = overlap(xzj,l;, z;, ;) overlap(y;, wj, yi, w;)
if area > 0 then

PLoverlap — PLoverlap U {Z}
L total = total + area;

f total > 0 then

for i € PLOU°'® A 0; > 0 do
— : €j

4 L 0j = min {Oi - total’oj}

| status = (0; < 0)

o

else
| status = false

Procedure overlap(xi,l1,x2,l2)

Data : Location, x, and size, [, of two line segments: (z1,l1, x2,l2)
Result : The size of the overlap between the segments: 3.

x3 = max(x1,x2)

I3 = max(0, min(zy + Iy — 23,22 + Iy — 3))
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the master problem resolved. Every 10th iteration we try to improve the upper
bound by solving the master problem including the integrality constraints.

When using ECL/PS¢ it was found that a “lazy” depth first search Branch &
Bound was the easiest approach. This basically means that when branching, we
do not find the bound in each child node before choosing the next node to branch
on. Furthermore the descendants in one of the branches are fully investigated
before considering the second branch. Better lower bounds would be achievable
if both children of a node was considered before branching further on one of
them. In fact the lower bound of the entire problem can only be improved if
the second child in the root node is considered at some stage.

9.1 Bang & Olufsen instances

The Bang & Olufsen instances are generated from real-life data on item sizes,
weight, load bearing ability and allowed orientations. Stability in form of 90%
support is also required. Data on 21 different item types were used for creating
9 instances. The data and instances are described and listed in appendix A on
page 21.

In the following experiment the on-line heuristic could consider 20 items at
a time and only place them on one pallet. The packings in the on-line solution
was the starting point of the Branch & Price algorithm. Note that the Branch
& Price is allowed to consider all packings, i.e. there are no restrictions on the
packing order of the items. In case of an on-line problem, we can only use the
Branch & Price for comparing the performance of the on-line algorithm. The
lower bound of the Branch & Price algorithm is still valid, but the upper bound
might not be achievable for the on-line problem.

A significant saving in packing costs by using Branch & Price instead of the
on-line heuristic might however allow for a change in the packing procedure of
the company, such that the items can be packed in any arbitrary order. For
these instances a limit of 3600 seconds of computation time was available.

Table 1 on the next page gives the results of the on-line heuristic followed
by the Branch & Price. “LLB” and “UB” are lower and upper bounds. “Cols”
and “Cuts” are generated columns and infeasibility cuts, “Nodes” are Branch &
Bound nodes and finally “Time” is the computation time in seconds for finding
the best upper bound. The initial gap between the lower and upper bounds is
35%, which is reduced to 28%. It is still a quite large gap, but the instances
seem to be quite difficult to solve. In one case, over 16.000 cuts are added.
This indicates that certain combinations of items are attractive to put together
because of volume and dimensions, but the exact shapes of the items make them
impossible to pack. These combinations of items takes a very long time to prove
infeasible. In fact, 99% of the time is spend in the one bin packing algorithm.
The saving by using Branch & Price for these test cases was only 10%. With
more computation time it could possibly be increased.

As mentioned earlier, we use a lazy Branch & Bound approach. All the
nodes considered for the results in table 1 are in the “left” side of the tree, which
means that no improvement of the lower bound was possible.

The branching strategy in the runs reported in table 1 was to branch on
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On-Line Branch & Price
Items | LB UB | UB Cols Cuts Nodes Time
19 3 5 4 665 2842 11 241
29 4 6 5 1164 5310 13 71
32 5 7 6 591 16056 11 48
33 4 7 6 782 8548 1 49
46 5 8 7 938 5877 11 96
45 7 10 9 728 9972 8 49
46 6 9 9 976 9935 13 0
54 6 9 9 814 8280 7 0
58 7 11| 10 454 9209 13 226
Total | 47 72| 65 7112 76029 88 780

Table 1: B&O instances with “half” branching.

fractional sums close 0.5 as discussed in section 4 on page 10 in order for the
duals in the pricing problem to be as large as possible. The results in table 2
are on the other hand with the strategy of branching on fractions close to 1 to
quickly reach integral solutions. The quality of the solutions are exactly the
same, but slightly more nodes and time are used in table 2.

On-Line Branch & Price
Items | LB UB | UB Cols Cuts Nodes Time
19 3 5 4 610 3598 15 342
29 4 6 5 925 8455 12 51
32 5 7 6 675 14114 12 1137
33 4 7 6 822 4517 11 49
46 5 8 7 710 4808 13 332
45 7 10 9 848 7595 12 73
46 6 9 9 687 8130 14 0
54 6 9 9 873 4950 12 0
58 7 11| 10 938 6046 13 130
Total | 47 72 65 7088 62213 114 2114

Table 2: B&O instances with “one” branching.

Now we turn our attention to the on-line algorithm. We have made several
experiments investigating the impact of stability and load bearing requirements
as well as how many items are available for packing and finally how many open
pallets that can be packed.

The results are compiled in table 3 on the following page. The columns are
divided into three groups: All the items are visible or packable, the first item is
visible and the first 20 items are visible. Each of the groups are again divided
into packing on 1 or 2 open pallets at a time. The results are sums over the 9
instances.

In the first row we have no stability constraints (0% support) and no load
bearing constraints. In the next row we introduce load bearing constraints.
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Comparing to the 90% support case, the load bearing constraints accounts for
almost half the increase in number of necessary pallets. Going from 90 to 100%
support does not introduce a significant increase in pallets.

Two open pallets seem to have a slightly negative effect, which is a bit
surprising. More short-sighted decisions must be made in the two pallet case or
perhaps the strategy of replacing both pallets leads to lost packing opportunities.
The two cases of all or 20 visible items seem to have an insignificant impact.
Clearly, the case of only one visible item is much worse.

All items visible 1 item visible 20 items visible
Support | 1 Pallet | 2 Pallets | 1 Pallet | 2 Pallets | 1 Pallet | 2 Pallets
no load, 0% 60 61 88 89 60 61
0% 67 69 102 97 68 71
90% 74 74 131 129 72 75
100% 72 73 138 129 73 77

Table 3: On-Line results for B&O instances.

To test the robustness of the on-line algorithm we, for the 58 item case with
two pallets, did several runs shuffling the order of item arrivals. The results are
shown in table 4. Not that surprisingly the arrival order gets more important
when fewer items are visible. The difference between 10 and 20 visible items is
insignificant.

Visible items | (no. of runs, bins) Av. bins
20 (11, 12) 12.0
10 (1, 11), (7, 12), (3, 13) 12.2
1 (1, 19), (6, 21), (2, 22), (2,23) | 214

Table 4: Results when repeating runs for B&O instances.

By re-running the algorithm shuffling the input order, we have created a ran-
domized algorithm. For instance with 10 visible items, repeating the algorithm
the result improves from 13 to 11 bins.

9.2 Martello et. al. [11] instances

In the instances constructed by Martello et. al. [11], we have only one item of
each type and the items cannot be rotated. 9 different classes with 10 instances
each are given. Class 4 for example has a significant number of very large items
making the instances relatively easy to solve. Class 5 on the other hand has
mainly small items. Finally we will mention class 9. Here the items are cut
out of 3 boxes, which means that the optimal solution is always 3 bins with no
waste.

In table 5 on the following page is given the number of instances solved
to proven optimality within 1200 seconds for the different classes and instance
sizes. A total of 344 instances was solved to proven optimum out of 810 possible.

Clearly, the algorithm does not scale very well for these problem instances.
Class 9 seems to be particularly difficult to solve. Class 4 is the exception, since

18



Class
Ttems| 1 2 3 4 5| 6 7 8| 9| Total
10 10 10 10 10 10|10 10 10|10 90
15 9 10 10 10 10 9 9 10|10 90
20 6 8 8 10 9|10 5 9 65
25 3 2 4 10 8| 4 1 32
30 4 1 1 10 2 1 1 20
35 1 1 10 4 1 17
40 1 10 11
45 1 10 1 12
50 10 10
Total | 33 34 33 90 43|33 33 31120 344

Table 5: Instances solved to proven optimality.

all instances are solved to optimality. Looking at the computational effort,
instances with 10 items are solved in 0.8 seconds on average, while for 15 items
109.5 seconds are needed.

This is not particularly impressive compared to the results of Martello et.
al. [11]. They solve 698 to proven optimality only leaving 112. There are several
reasons for that. They use tricks and heuristics for the single bin packing that
we do not. Their algorithm is implemented in C, which is faster than ECL!PS®
— their hardware on the other hand is slower. Finally there is the issue of
optimization approach: They use a direct Branch & Bound while we use a
Branch & Price approach. The exact reasons are of course difficult to establish.

9.3 Ivancic et. al. [10] instances

Ivancic et. al. [10] constructed 17 instances with multiple container types and
later Bischoff and Ratcliff [2] made 47 modified versions available electronically.
The 47 instances are basically the 17 instances with only one container type per
instance.

The instances have relatively few item types, i.e. 2 to 5, but many items
are to be packed; in one instance a total of 180 items of 4 different types. The
items can be packed in all 6 different orientations. 90% of the bottom face of
the items are to be supported, but no load bearing is considered. 1800 seconds
was available for each of the 47 instances.

Table 6 on the next page shows the results achieved on the 47 instances.
The first column refers to the numbering scheme in [2] while the second column
refers to the one in [10]. The following column gives the number of different
item types per instance. The following two columns are the results reported in
[10] and [2|. Note that the results of the latter actually is the best over two
different methods. The next two columns are lower and upper bounds for our
approach without stability constraint and the last two columns are the results
with 90% support required. In [2] the items are 100% supported due to the
design of their algorithm and in [10] no support is required though a packing
routine similar to ours is applied.
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Ref. Ref. Box Method | Method Stability
[2] [10] | types | of [10] of [2] LB UB | LB UB
1 la 2 26 27 25 25 25 25
2 1b 2 11 11 9 9 10 10
3 2a 4 20 21 19 19 19 19
4 2b 4 27 27 26 26 26 26
5 2c 4 65 61 51 51 51 51
6 3a 3 10 10 10 10 10 10
7 3b 3 16 16 16 16 16 16
8 3c 3 5 4 4 4 4 5
9 4a 2 19 19 19 19 19 19
10 4b 2 55 55 55 55 55 55
11 4c 2 18 19 16 16 16 16
12 5a 3 55 55 53 53 53 53
13 5b 3 27 25 25 25 25 25
14 5¢ 3 28 27 27 27 27 27
15 6a 3 11 11 11 11 11 11
16 6b 3 34 28 26 26 26 26
17 6¢c 3 8 8 8 8 10 10
18 7a 3 3 2 2 2 3 3
19 7b 3 3 3 3 3 4 4
20 Tc 3 5 5 5 5 6 6
21 8a 5 24 24 20 20 20 20
22 8b 5 10 11 8 9 8 12
23 8¢ 5 21 22 19 19 20 20
24 9a 4 6 6 5 6 5 6
25 9b 4 6 5 4 6 4 6
26 9¢c 4 3 3 3 4 3 5
27 10a 3 5 5 4 5 4 7
28 10b 3 10 11 10 10 10 10
29 11a 4 18 17 17 17 17 17
30 11b 4 24 24 22 22 22 22
31 11c 4 13 13 11 13 13 13
32 12a 3 5 4 4 5 4 5
33 12b 3 5 5 4 5 4 5
34 12¢ 3 9 9 9 9 9 9
35 13a 2 3 3 3 3 3 3
36 13b 2 18 14 14 14 14 14
37 14a 3 26 23 23 23 23 23
38 14b 3 50 45 45 45 45 45
39 14c 3 16 16 15 15 17 17
40 15a 4 9 10 7 9 7 11
41 15b 4 16 16 15 15 16 16
42 16a 3 4 5 4 5 5 5
43 16b 3 3 3 3 4 3 4
44 16¢ 3 4 4 3 5 3 6
45 17a 4 3 3 2 4 2 4
46 17b 4 2 2 2 3 2 5
47 17c 4 4 3 3 5 3 4

Total 763 740 689 713 | 730 759

Table 6: Results for the Ivancic et. al. [10] instances.
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The gap between the total lower and upper bounds without stability con-
siderations is only 3.4% and the solutions are 6.6% better than [10] and 3.6%
better than [2]. The instances 25, 26, 32 and 42 to 47 indicate that our approach
has difficulties on instances resulting in solutions with relatively few bins. Our
method, on the hand, is superior on instances resulting in solutions with more
bins: Instances 1 to 5, 11, 12, 16, 21 to 23 and 30.

The picture is the same with stability constraints. The gap is 3.8%, but now
comparing to [2] the difference in quality is 2.5% in favour of [2]. Their results
are however the minimum over two different methods with totals 763 and 777.
Compared to those numbers our method is still competitive.

These instances are clearly much easier to solve than the B&O and Martello
et. al. instances. Fewer packing patterns and cuts are necessary to reach
the optimum and prove it. Even though the instances are quite large when
considering the total number of items, the algorithm takes advantage of the few
types of items when packing. In each corner point only one item for each type
is tried, but there is still many corner points to consider.

10 Conclusion

In this paper we have described both the off- and on-line versions of the non-
oriented 3DBPP with additional constraints concerning the stability of the pack-
ing and load bearing of the items.

We have proposed a Branch & Price approach for solving the off-line prob-
lem combined with a Branch & Cut procedure for solving the 3D Knapsack
Problem. Design and implementation issues have been discussed specially re-
garding stability and load bearing constraints. For the on-line problem a greedy
on-line heuristic was developed and described. In conclusion, our method can
solve general problem classes and at the same time take real-life considerations
into account.

Experiments were conducted on instances generated from real-life item data.
The instances were found to be quite difficult to solve with the proposed ap-
proach, but relatively good results were achieved with the on-line heuristic.
More work is required for optimally solving the instances and hence exactly
evaluate the performance of the on-line heuristic. Our implementation of the
Branch & Price approach were not competitive compared to the approach in
Martello et. al. designed specifically for the 3DBPP. On the Ivancic et. al.
instances however the results were quite promising with a gap between lower
and upper bounds on less than 4%.

A Construction of Bang & Olufsen instances

In the following are the item data and constructed instances listed. Note that
the dimensions of the items are measured in mm, weight in kg and load bearing
in g/mm?. The size of the bin is (L, W, H) = (1200, 800, 2700) with unlimited
weight capacity (In reality the bins are pallets). The 21 item types are listed
in table 7 on the following page. I;, w; and h; are the length, width and height

21



of item ¢, Ry is the set of possible orientations, e; is the weight of item ¢ and oy
is the load bearing capacity per square mm of item ¢. 9 random instances were

t lt W ht Rt € Ot

1 | 1200 800 1370 {1,3} 80 | 0.16
2 | 1100 800 1470 {1,3} 80 | 0.17
3 800 800 1260 {1,3} 80 | 0.23
4 800 600 1020 {1,3} 80 | 0.31
5 | 1100 800 1090 {1,3} 80 | 0.17
6 965 590 820 {1,3} 80 | 0.26
7 765 595 795 {1,3} 40 | 0.00
8 620 495 680 {1,3} 35 | 0.00
9 | 800 600 1175 | {1,2,3,4,5,6} | 7 | 2.08
10 | 2020 290 320 | {1,2,3,4,5,6} | 20 | 1.71
11| 490 490 120 | {1,2,3,4,5,6} | 25 | 4.16
12 | 455 396 440 | {1,2,3,4,5,6} | 15 | 5.55
13| 380 360 450 | {1,2,3,4,5,6} | 8 | 7.31
14| 380 360 450 | {1,2,3,4,5,6} | 7 | 7.31
15 | 1216 170 205 | {1,2,3,4,5,6} | 12 | 4.84
16 | 1425 360 220 | {1,2,3,4,5,6} | 18 | 1.95
17 | 1190 280 190 | {1,2,3,4,5,6} | 16 | 3.00
18| 650 460 265 | {1,2,3,4,5,6} | 12 | 3.34
19 | 1060 410 220 | {1,2,3,4,5,6} | 22 | 2.30
20| 690 510 270 | {1,2,3,4,5,6} | 13 | 2.84
21 | 850 435 210 | {1,2,3,4,5,6} | 11 | 2.70

Table 7: Data for the 21 different item types.

generated from these item types as shown in table 8 on the next page. The best
lower and upper bounds found so far are found in the last 2 rows.
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