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Abstract. Assume that only partial knowledge about a non-rigid regi-
stration is given so that certain points, curves, or surfaces in one 3D
image map to certain certain points, curves, or surfaces in another 3D
image. We are facing the aperture problem because along the curves
and surfaces, point correspondences are not given. We will advocate the
viewpoint that the aperture and the 3D interpolation problem may be
solved simultaneously by finding the simplest displacement field. This is
obtained by a geometry-constrained diffusion which yields the simplest
displacement field in a precise sense. The point registration obtained may
be used for growth modelling, shape statistics, or kinematic interpolation.
The algorithm applies to geometrical objects of any dimensionality. We
may thus keep any number of fiducial points, curves, and/or surfaces
fixed while finding the simplest registration. Examples of inferred point
correspondences in a longitudinal growth study of the mandible are given.

Keywords: Aperture-problem, automatic landmark detection, diffusion, kD-
tree, non-rigid registration, simplest displacement field, homology.

1 Introduction

In a registration, we wish to establish the spatial correspondence of points in two
images. Correspondence is defined through the concept of homology except in
pathological cases. In general, homologous points will, dependent on the medical
task, reflect similar anatomy, functionality, or geometry, etc. In this paper, we
assume that homologous objects have been defined a priori. Therefore, we seek
an automatic method for establishing point correspondences based on object
correspondences. Pursuing this, we presume that: 1) The optimal registration is
a mapping between homologous points, 2) The underlying biological process is
smooth and homologous points do not “change place” i.e., the ordering of the
anatomical structures is preserved. Formally: the registration field must not fold
or be torn apart. It is then a homeomorphism.



Fig. 1. The images show schematically how the diffusion algorithm works on the de-
formation field. The Cartesian components of the initial deformation field (arrows in
the left image) are Gaussian smoothed. Some of the links have now diverged from the
surface (middle image) and must be projected back on to the surface (right image). The
fold (the two crossing arrows) is removed by repeating the steps until the field does not
change.

In other words, within the objects, a solution to the generalized aperture
problem must be chosen. In this paper, we introduce the concept of geometry-
constrained diffusion for solving the interpolation and aperture problems simul-
taneously.

When performing shape statistics or analyzing (longitudinal) shape develop-
ment, the tools from shape statistics (see e.g., [4]) require point matches. That
is, to perform a statistical analysis of the variation of shapes we must identify
homologous points on the shape samples. When having only a few landmarks the
registration may be performed manually, but for thousands of points it becomes
tedious and practically impossible. In many cases punctual landmarks are hard
to establish in images, and the process requires considerable prior anatomical
knowledge.

Automated methods using geometrical features such as crest-lines [9] are
powerful, but do not provide a dense field, and may give problems in regions
where shape features change topology so that correct matching is not possible.
We propose using geometry-constrained diffusion for inferring the locally simplest
non-rigid object registration.

The result of geometry-constrained diffusion is a dense, continuous, invertible
displacement field (a homeomorphism). Many fields may fulfill the geometrical
constraints given by the objects. The diffusion process gradually simplifies an
initial registration field. In general, diffusion is a gradient ascent in entropy. That
is, locally it changes the registration field so as to remove its structure as fast as
possible. An unconstrained diffusion in this way leads to an affine registration.
The geometry-constrained diffusion also simplifies the registration field as fast as
possible, but is limited locally so as to preserve the object mappings (see Fig. 1).

In section 3, the theory of geometry-constrained diffusion is summarized.
Section 4 describes the implementation. Examples of the simplification of an
initial crest-line-based non-rigid registration are shown in section 5.



2 Related Work

In the literature, many algorithms for non-rigid registration exist. In this pa-
per, we address the equally important problem of measuring the complexity of
the geometrical deformation in a non-rigid registration. This measure may be
introduced either by having only a finite number of semi-local low parameter reg-
istrations, or a viscous fluid or elasticity constraint, or a deformation energy of
which the thin-plate spline energy is the canonical example (see [6] for a survey).
Feldmar and Ayache’s approach[5] resembles ours the most.

Feldmar and Ayache[5] perform a surface registration based on a distance
measure including local geometrical properties of the surfaces. The surface reg-
istration is a collection of local affine registrations. The parameters of these
registrations are spatially blurred so as to construct a smoothly varying regis-
tration. A difference to our approach is that we do not make a collection of local
affine frames, but a global registration field. Secondly, and most importantly,
we do not exploit any metric properties of the surfaces, but look for a globally
simple registration field. This also creates a tendency to match points of similar
geometry since the field otherwise must be more complex.

In principle, the geometry-constrained diffusion could also have been for-
mulated as a geometry-constrained gradient descent in displacement energy [3].
Hence, we here present a general technique for handling under-determined ge-
ometrical constraints in conjunction with variational approaches for non-rigid
registration.

3 Geometry-constrained Diffusion

A registration field may be diffused simply by diffusing the Cartesian components
independently. The geometry-constrained diffusion is constructed such that it
preserves certain fiducial mappings during the diffusion. Assume that the iden-
tification of some fiducial points, curves and/or surfaces is given a priori. In
order to handle this partial geometrical knowledge in the general non-rigid regi-
stration problem, we propose geometry-constrained diffusion which in a precise
sense simplifies the displacement field while preserving fiducial points, curves,
and/or surfaces.

Given two images I1 : IR3 7→ IR and I2 : IR3 7→ IR, we define the registration
field R : IR3 7→ IR3. Along the same line we define the displacement field D :
IR3 7→ IR3 such that R(x) = x + D(x). We may then define:

Definition 1 (Displacement diffusion). The diffusion of a displacement field
D : IR3 7→ IR3 is an independent diffusion in each of its Cartesian components:

∂tD = 4D

where the Laplacian, 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , is applied independently in the x-,
y-, and z-component of D.



The only difference between the registration and displacement field is the
addition of a linear term. This term does not influence the diffusion so that
registration diffusion is identical to the displacement diffusion.

This vector-valued diffusion has some obvious and important symmetries:

Proposition 1. The displacement diffusion is invariant with respect to similar-
ity transforms of any of the source or target images.

Proof. The translational part of the similarity transform only adds a constant
to the displacement field, and the diffusion is invariant to this. The displacement
y = D(x)+x is (up to a translation) similarly transformed such that x′ = s1R1x
and y′ = s2R2y where R1 and R2 are 3 × 3 rotation matrices. Under s1R1 the
displacement is mapped to D1(x′) = D(s−1

1 R−1
1 x′) − x′ + s−1

1 R−1
1 x′. Applying

s2R2 also we find

D′(x′) = s2R2[D(s−1
1 R−1

1 x′) − x′ + s−1
1 R−1

1 x′]

The latter terms leave the diffusion unaltered since they only add terms of first
order, and the diffusion depends only on terms of second order. Since the diffusion
is linear, it is invariant to s2R2. By re-mapping t the diffusion is known to be
independent of similarity transforms of the base manifold. •

Applying the displacement diffusion without further constraints, it reaches a
steady state which is an affine registration. This is easily seen since only linear
functions are in the null-space of the diffusion equation.

In the case where the same geometrical structures have been identified in
both images we wish to make certain that the diffusion of the displacement field
reflects these structures. Assume that a surface S1 : IR2 7→ IR3 in the source
image is known to map on to the surface S2 : IR2 7→ IR3 in the target image. We
thus define

Definition 2 (Surface-constrained diffusion). The surface constrained dif-
fusion of D : IR3 7→ IR3 mapping S1 : IR2 7→ IR3 onto S2 : IR2 7→ IR3 is given
by

∂tD =

{
4D − nS2

nS2 ·4D

‖nS2‖2 if x ∈ S1

4D if x 6∈ S1

where nS2 is the unit surface normal of S2(D(x) + x).

This corresponds to solving the heat flow equation with certain boundary
conditions. In this case, however, we do not keep the solution fixed at the surface,
but allow points to travel along the surface. This is a dual approach to the
geometry-driven curve and surface diffusion by Olver, Sapiro, and Tannenbaum
[8] and others. We keep only the tangential part of the diffusion along the surface
whereas they diffuse the geometry of the surface maintaining only the normal
flow. The surface normal nS2 may simply be obtained as a length normalization
of nS1 + JnS1 where J is the Jacobean of D. In this way the formulation is
no longer explicitly dependent on S2. That is, given an initial (guess of the)
displacement field and a surface in this source image to be preserved under



diffusion, we may still apply the above equation without explicitly referencing
to S2.

Curve constraints and point constraints can be handled in a similar manner.
For the curve problem, we project onto a curve by only taking the part of the
diffusion which is along the curve tangent. Point constraints simply disregard the
diffusion at these points. The three types of geometry-constrained diffusions may
be combined in any fashion as long as the boundary conditions (the matches)
do not contradict one another.

We make the following proposition:

Proposition 2 (Similarity Invariance (II)). The geometry-constrained dif-
fusion is invariant to similarity transforms of the source or target image.

Proof. We have already shown that the unconstrained diffusion is similarity
invariant. Both the surface normal and the curve tangent are also invariant
under the similarity transform. •

We will conjecture that the geometry-constrained diffusion removes any fold
in the initial displacement. This means that, the steady state solution to the
geometry-constrained displacement diffusion creates an invertible mapping.

Conjecture 1 (Invertibility). A geometry-constrained diffused displacement field
induces a one-to-one mapping of IR3.

The steady state displacement field will be a homeomorphism assuming the
above invertibility-conjecture is valid since the constrained diffused displace-
ments are continuous. It will also be smooth except on the constrained objects
where it will generally not be differentiable across object boundaries, but will be
differentiable along smooth objects.

It is evident that the scheme is not symmetric in the images. This is due to
the change in local metric by the non-linear displacement field. This makes the
ordering of the two images important. It is, however, not obvious (to us) that
the steady states will differ.

The geometry-constrained diffusion can be implemented simply by apply-
ing an numerical scheme for solving a space and time discretized version of the
diffusion. It is well known that the diffusion equation is solved by Gaussian con-
volution. That is, an unconstrained diffusion can be updated an arbitrarily long
time-step, by applying a Gaussian of appropriate size. The geometry-constrained
diffusion cannot be solved directly in this manner due to the constrains. In gen-
eral, the finite time step diffusion (Gaussian convolution) makes the displaced
source surface diverge from the target surface, so that it must be back-projected
to the target surface. The back-projection may be performed to the closest point
on the target surface (see Fig. 1). In this way, the algorithm resembles the iter-
ative closest point algorithm [2, 10] for rigid registrations.



Fig. 2. Flow diagram for the diffusion algorithm. See section 4 for details.

4 Implementation

A time and space discretized solution the the geometry-constrained diffusion
may be obtained by iterative Gaussian convolution and back-projecting the con-
strained surfaces.

The crux of the algorithm then becomes (see Fig. 2 for a flow chart):

1. Initial displacement. Construct an initial guess of the displacement field.
2. Diffusion step. Convolve the displacement field with a Gaussian kernel.
3. Deform source. Deform the source surface with respect to the displacement

field.
4. Matching (Projection onto the target surface). For all points on the

deformed surface: Find the closest point on the target surface.
5. Update displacement field. For all points on the deformed surface: Change

the displacements according to the match.
6. Convergence. Is the displacement field stable? If not, go to 2.

Some of the steps are explained in greater detail below.

4.1 Diffusion step

We use the normalized Gaussian convolution [7]. For each of the Cartesian com-
ponents of the displacement field, a Gaussian weighted average is constructed
and divided with the sum of the weights. The standard deviation of the Gaussian
σ is the only parameter in the numerical scheme (see section 4.4).

4.2 Matching

As in [10] we use a 3D-tree for finding the closest point on the target surface.
As reference points on the triangulated target surface we use the center of mass
(CM point) for each triangle. The three corners of the triangles are used for
calculating a plane. Using also the surface normals, we construct the following



Fig. 3. Iso-surface and crest-lines for a 3 (left) and 56 (right) month old mandible.
The mandibles are Gaussian smoothed (σ = 3mm) in order to capture the higher scale
features. The dimensions of the left and right mandibles are (H×W×L) 18×57×53mm
and 31×79×79mm, respectively. Surfaces are translucent.

algorithm for finding the closest point: First, find the closest CM point using the
Kd-tree. Secondly, calculate the closest point on the surface as the intersection
of the corresponding triangle-plane and the line given by the deformed point and
the normal at the CM point.

4.3 Convergence

The diffusion is stopped when

∑
pi

‖Dn(pi) − Dn−1(pi)‖2 < ε, (1)

where pi is the points on the source surface, Dn is the displacement in the nth-
iteration, and ε is a user-chosen parameter. Alternatively, a fixed number of
iterations could be chosen. 5-10 iterations is normally enough.

4.4 Choice of Time Step σ

The Gaussian kernel size, σ, is the only parameter in the diffusion algorithm. It
determines the time discretization step. A too large value of σ, may tear apart
the surface since we diffuse too far before back-projecting. This problem occurs
in regions of high surface curvature. A too small value of σ also gives problems
since we have chosen a fast but imprecise back-projection algorithm. The error in
the back-projection introduces some artificial “bumps” in the path along which
we diffuse. This may be overcome by a more precise back-projection algorithm
or in practice by choosing σ sufficiently large (see Fig. 4-6). Identical solution
are obtained for an interval of σ’s.

In practice, we choose a small σ and increase it on the fly if folds persist.



Fig. 4. Result of running the diffusion algorithm (σ = 2mm) on the displacement field.
Deformation of the 56 month old mandible to the 3 month old mandible (see Fig. 3).
The surface and wire-frame of the deformed surface are shown to the left and right
respectively. The initial displacement, one iteration with the diffusion algorithm, and
the last iteration are shown from top to bottom, respectively. The foldings are a result
of the imperfect initial registration (extremal-mesh registration extended to the whole
surface by Gaussian regularization as in [1]). The final result is almost perfect, but
some folds still exist, owing to the discretization of the surface and displacement field.

5 Results

The method has been applied for registration of 31 mandibles from 6 different
patient in a longitudinal growth study of the mandible. One mandible is chosen
as the reference mandible. In order to propagate the landmarks, all mandibles
are registered with the reference mandible and geometry-constrained diffusion
is applied. The reference mandible is shown in Fig. 3-right. Fig. 3-left displays
the target surface for all the subsequent figures, except for Fig. 6, which shows
an example where the diffusion algorithm gives an erroneous result. The prior
estimate of the displacement field is obtained by crest-line matching [1]. See
Fig 7 for match between two sets of crest-lines.

As seen in Fig. 4 (top images) the initial deformation contains folds. Apply-
ing the diffusion algorithm removes almost all the folds, but some persist. By
increasing σ (see section 4.4), these are removed (Fig. 5). As seen in Fig. 6, too
large a value of σ will eventually tear apart the surface.



Fig. 5. Converged diffusion algorithm with a high value of σ (σ = 10mm). The surface
and wire-frame of the deformed surface are shown to the left and right respectively. We
have forced the displacement field to be more smooth, by increasing σ.

Fig. 6. The deformation vectors are moved too far away from the surface (The value
of σ is too high) resulting in a wrong projection back onto the surface.

Very convincingly, Fig. 8 shows that the crest-lines are useful anatomical
landmarks but only in areas where their topology stays fixed. Teeth eruption
changes the crest-line topology of the mandible. We see two lines before teeth
eruption on top of the mandible (Fig. 3 - left image) but only one after teeth
eruption (Fig. 3 - right image). A pure (crest-) line matching algorithm is not
able to handle such changes. Introducing the diffusion algorithm, the single crest-
line (the green line on top of the mandible in Fig. 8) is able to perform correctly
- i.e., be registered in between the two other lines (the two red lines on top of
the mandible in the same figure) as seen in Fig. 8-right.

The same phenomenon is seen on the bottom of the mandible. A single line
on the young mandible is split in two on the older mandible.

6 Conclusion

In the present paper we have proposed an algorithm for finding the simplest
displacement field, which is conjectured to be a homeomorphism (1-1 continuous
mapping).



Fig. 7. Match (lines in black) between the two sets of crest-lines (before applying the
diffusion algorithm). The crest-lines in red and green are from the mandibles shown in
Fig. 3. Only every 11th link is shown for visual clarity. We see that the matches to a
very good extent connect homologous points.

The geometry-constrained diffusion in this paper serves to simplify the non-
rigid registration of surface models. The result is a much smoother displacement
field. Volume registration is achieved by having more than one surface. It turns
out that the algorithm itself is also very simple.

In theory, the method is parameter free, but implementations include param-
eters of space- and time-discretization and convergence threshold.

Fig. 8. Left and right images show the deformed (in green) and the original (in red)
crest-lines before and after applying the diffusion algorithm (σ = 2mm), respectively. In
the initial registration crest-lines are registered with crest-lines. Where the topology does
not change and away from umbilic points we see (almost) no movement of the green
crest-lines. Teeth eruption changes the topology on “top of the surface” (see Fig. 3)
therefore the green crest-lines move.



We are currently using the method for registering a longitudinal growth study
of the mandible in order to extract more than 14000 homologous points which
again are used for inference of the growth. In that study, applying the geometry-
constrained diffusion results in a very significant increase in the explained vari-
ance by the growth model.
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