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Abstract

Surrogate modelling and optimization techniques are intended for engineering
design in the case where an expensive physical model is involved.

This thesis provides a literature overview of the �eld of surrogate modelling
and optimization. The space mapping technique is one such method for con-
structing and optimizing a surrogate model based on a cheap physical model.
The space mapping surrogate is the cheap model composed with a parame-
ter mapping, the so-called space mapping, connecting similar responses of the
cheap and the expensive model.

The thesis presents a theoretical study of the space mapping technique. The-
oretical results are derived which characterize the space mapping under some
ideal conditions. If these conditions are met, the solutions provided by the orig-
inal space mapping technique are minimizers of the expensive model. However,
in practice we cannot expect that these ideal conditions are satis�ed. So hybrid
methods, combining the space mapping technique with classical optimization
methods, should be used if convergence to high accuracy is wanted.

Approximation abilities of the space mapping surrogate are compared with
those of a Taylor model of the expensive model. The space mapping surrogate
has a lower approximation error for long steps. For short steps, however, the
Taylor model of the expensive model is best, due to exact interpolation at the
model origin.

Five algorithms for space mapping optimization are presented and the numer-
ical performance is evaluated. Three of the algorithms are hybrid algorithms.
Convergence of a class of hybrid space mapping algorithms is proved.
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Resumé

Surrogat modellerings- og optimeringsteknikker er rettet mod �ingeniør de-
sign� i det tilfælde hvor en meget dyr fysisk model er involveret.

Afhandling indeholder et litteraturstudie omhandlende surrogat modellerings-
og optimeringsteknikker. Space mapping teknikken er en sådan metode til
optimering af en surrogat model, som er baseret på en billig fysisk model. Space
mapping surrogatet består af den billige model sammensat med en parameter
afbildning, den såkaldte space mapping, der forbinder samme respons fra den
billige med den dyre model.

Afhandlingen beskriver teoretiske undersøgelser af space mapping teknikken.
Der udledes teoretiske resultater, som karakteriserer space mappingen under
nogle ideelle betingelser. Såfremt disse betingelser er opfyldt, vil de løsninger
som space mapping teknikken �nder, være løsninger til minimeringsproblemet
for den dyre model. Det kan dog ikke forventes, at disse ideelle betingelser er
opfyldt i praksis. Derfor bør hybrid metoder, som kombinerer space mapping
teknikken med klassiske optimeringsmetoder, anvendes hvis konvergens til høj
nøjagtighed ønskes.

Approksimationsegenskaberne af space mapping surrogatet sammenlignes med
en Taylor model af den dyre model. Space mapping surrogatet har en lavere ap-
proksimationsfejl for store skridt. For korte skridt derimod, er Taylor modellen
af den dyre model bedst, hvilket skyldes eksakt interpolation i udviklingspunk-
tet.

Fem algoritmer for space mapping optimering præsenteres og deres numeriske
egenskaber er afprøvet. Tre af algoritmerne er hybrid algoritmer. Konvergens
af en klasse af space mapping hybrid algoritmer bevises.
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Chapter 1

Introduction

In engineering design it is often encountered that traditional optimization is
not feasible because the model under investigation is too expensive to compute.
Surrogate modelling techniques have been developed to address this important
issue. Surrogate models are intended to take the place of the expensive model
for the purpose of modelling or optimization of the latter. In optimization
using surrogate models, a sequence of subproblems is solved in the search for
the optimizer of the expensive model. In the optimization process, most of
the model evaluations are performed with the surrogate model. The expensive
model is only scarcely evaluated in order to re-calibrate the surrogate model.

The space mapping technique is one such method for constructing and opti-
mizing a surrogate model. The technique relies on the existence of a cheaper
model, modelling the same system as the expensive model under investiga-
tion. A space mapping surrogate model is the cheaper model composed with
a parameter mapping, the so-called space mapping. The space mapping con-
nects similar responses of the cheaper model and the expensive model. Here,
responses are the output returned from a model provided a given set of param-
eters and state variables, which e.g. is a set of sample points in the frequency
or time domain.

The basic formulation of the space mapping technique is not convergent, in
the sense that in general it does not converge to an optimizer of the expensive
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model. Therefore, provably convergent hybrid methods have been developed,
combining the space mapping method with a classical optimization method.

This thesis concerns optimization of expensive functions using surrogate mod-
els. The focal point of the study is the space mapping technique. The thesis
address �ve main areas: First, the thesis presents a literature overview of sur-
rogate modelling and optimization. Second, the thesis provides a motivation
and introduction to the space mapping technique. Third, the thesis provides a
theoretical study of the space mapping technique. Fourth, the thesis presents
space mapping optimization algorithms and numerical tests of these algo-
rithms. Fifth, the thesis presents a convergence proof for a class of hybrid
space mapping algorithms.

The �ve areas mentioned are covered in separate chapters of the thesis, as
described in the following outline.

1.1 Outline of the Thesis

This thesis is divided into six chapters. Each chapter is intended to be self-
contained, though the Chapters 4, 5 and 6 are easier conceivable, if the reader
is familiar with Chapter 3.

Chapter 2 contains a literature overview of surrogate modelling and op-
timization. For a review speci�cally of space mapping methods, refer
to [1, 3], two papers co-authored by this author.

Chapter 3 is an included paper [2], introducing and motivating space map-
ping methodology to the engineering and mathematical communities.

Chapter 4 treats theoretical aspects of space mapping.

Chapter 5 considers formulation of space mapping optimization algorithms
and the numerical performance of these.

Chapter 6 is an included paper [4], formulating and proving convergence of
hybrid space mapping algorithms.

Chapter 7 is a summary of the conclusions of the study.

Appendix A serves as a manual for a Matlab toolbox with space mapping
optimization routines and test problems, developed as a part of the
study.
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Each chapter contains a separate list of references, a complete list of references
is provided before the appendix. We remark that the notation is not uniform
throughout the thesis, lists of symbols are provided for the Chapters 2, 4 and 5
right before the list of references in these chapters.
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Chapter 2

Surrogate Modelling &

Optimization

This chapter provides an overview of literature concerned with surrogate mod-
elling and optimization. The chapter is divided into four sections. Section 2.1
is an introduction to the terminology and the general aspects of the �eld.
Section 2.2 concerns the so-called functional models which are generic, and
non-speci�c to a given problem. Section 2.3 concerns the so-called physical
models which are speci�c to a given problem. The last section, Section 2.4, is
a presentation of algorithms for optimization using surrogate models.

2.1 Introduction to Surrogate Models

In the context of engineering modelling and optimization, a surrogate model
is a mathematical or physical model which can take the place of an expensive
model for the purpose of modelling or optimization of the latter. The expensive
model may arise from numerical solution of large systems of e.g. integral or
di�erential equations describing a physical system, or it could be an actual
physical system. The surrogate model may be a simpli�cation physically or
numerically of the expensive model; or it could be a purely empirical construct,
based on information obtained from sparse sampling of the expensive model.
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In other words, surrogates are cheap approximations which are especially well
suited for acting in place of expensive models in connection with modelling and
optimization. A surrogate model is often so cheap that many repeated runs
of the model may be conducted within the expense of running the expensive
model once. In some cases the surrogate even provides a mathematically more
tractable formulation, e.g. in the context of optimization, than that of the
expensive model. Often a surrogate model is less accurate than the expensive
model, as there tends to be a duality between expensive and cheaper models.
Expensive models being of higher �delity and cheaper model being of lower
�delity.

Surrogates are widely used for modelling and optimization in many engineering
�elds. In surrogate modelling the engineer can use the surrogate in extensive
analysis of di�erent con�gurations of the model parameters, and thereby gain
insight into the workings of the physical system at low expense.

Similar to classical Taylor based optimization, the search for an optimizer in
surrogate based optimization is most often conducted by an iterative method
relying on sequentially generated surrogate models. In each iteration, the it-
erative method performs a search on a surrogate model only occasionally ref-
erencing the expensive model for validation and correction of the surrogate.
A classical Taylor based method requires frequent validation and correction,
and thus is too expensive for the problems that surrogate based optimization
is intended for.

In the following we survey methods for generating surrogate models and meth-
ods for optimization using surrogates. We start by examining the terminology
of surrogate modelling and optimization, thereafter we de�ne a set of terms
and a problem formulation, from which we will develop the presentation of
the methods.

2.1.1 Surrogate Models in the Literature

Surrogate models and optimization methods using surrogate models are an
active area of research. For example, in the combined �eld of mathematicians
and engineers several conferences, schools and journal issues have been devoted
to the subject in the last years, see e.g. [2, 9, 21, 43, 58, 59].

Unfortunately the wide adoption of surrogate based methods in the engineer-
ing community has lead to an ambiguous terminology in the literature. For
example a frequently used term related to surrogate modelling is metamodel,
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in fact metamodel is often considered a synonym for a surrogate model, see
e.g. [32].

In case of surrogates for expensive computer models, i.e. numerical models,
Myers and Montgomery [42] uses the term metamodel about �a somewhat sim-
pli�ed mathematical approximation of the function calculated by design anal-
ysis�. In other words, the expensive computer model is replaced by a cheaper,
possibly simpler, �model of the model�, hence a metamodel.

Metamodels are characterized by the algebraic or empirical formulation, con-
structed independently of the underlying physics of the system, thus some
form of calibration is needed in order to use them as surrogates.

Metamodels are commonly used as synonym for the popular response surface
models. A response surface model is a result of a linear or nonlinear regression
of (usually simple) algebraic functions with data. For this reason, they belong
to a broader class of models called regression models. Response surface models
are based on sampling in a chosen set of experimental design points, a process
called design of experiments is used for choosing these points.

For the purpose of optimization, surrogates are often managed in a model

management framework, see e.g. [1, 12, 24, 27, 33, 42, 55, 63]. A model man-
agement framework enforce conditions on the models such as adaption to the
expensive model in a local region or in a more global sense. The most widely
adopted of these frameworks is the Response Surface Methodology (RSM), see
e.g. [42], which is a framework for optimization using sequentially generated
response surface models.

Only few of the frameworks referenced above have a proven convergence prop-
erty, and according to [1], some of these frameworks actually focus on conver-
gence to the problem de�ned by the surrogate model, rather than the original
problem.

Another term used in context of surrogate models is variable-complexity mod-

elling, see e.g. [15]. This term covers cases where both the inexpensive model
and the expensive model are based on the underlying physics of the system
under consideration. The terms variable physics and multi-�delity physics are
then used to denote that within this system there exist a range of possible
physical models.

The mathematical �eld of constructing approximations to expensive functions
has been actively researched for several decades. So, other authors have pre-
sented reviews and other retrospective contributions, in which they have par-
titioned the �eld in di�erent ways.
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The review paper on �approximation concepts for optimum structural design�
by Barthelemy and Haftka [10] groups approximations to expensive models
into three categories: local, medium-range and global approximations, each of
these subdivided again into functional and problem approximation methods.

Barthelemy and Haftka use the term functional approximation in cases where
an alternative, explicit expression is sought for the objective function and/or
the constraints of the problem. Further, they use the term problem approxi-

mation in cases where the focus is on replacing the original statement of the
problem by one which is approximately equivalent but which is easier to solve.

In his thesis Sera�ni [50] suggested to divide engineering models into two
classes: physical and functional models. Where physical models are based on
numerical solution of governing equations of physical systems and embodies
knowledge of the physical system at all points; and where the functional mod-
els are algebraic approximations of the solutions of the equations constructed
without resort to knowledge of the physical systems. Hence, functional mod-
els are purely mathematical constructs and they embody knowledge of the
behaviour of the function it is approximating, only at the points for which
function values are given.

Sera�ni points out that his distinction between physical and functional models
is not absolute. Speci�cally he uses Taylor models, i.e. truncated Taylor series,
as example of hybrids between physical and functional models, since they are
purely a mathematical construct, but at the same time they describe the same
physical system as the governing equations.

In our presentation we will adopt Sera�ni's classi�cation into physical and
functional models. However, we suggest to interpret the terms a bit di�erently.
In contrast to Sera�ni, we have no qualms in classifying Taylor models as
�pure� functional models, as they may be constructed without knowledge of the
actual governing equations, e.g. by �nite di�erence approximations. Even in
cases where the user supplies gradient or higher derivative information, Taylor
models are still considered functional models, as the models themselves can
be constructed independently of the underlying physics. Thereby we discern
between the act of deriving a model and that of assigning parameter values
to a model.

On a side note, other references, see e.g. [13, 42], refer to physical models as
mechanistic models.

Torczon and Trosset [53] distinguish between surrogate models and surrogate

approximations. Where a surrogate model is an auxiliary simulation that is less
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physically faithful, but also less computationally expensive, than the expensive
model it takes the place of. Further, a surrogate model exists independently of
the expensive simulation, and can provide new information about the physical
system of interest without requiring additional runs of the expensive model. On
the other hand, surrogate approximations are algebraic summaries obtained
from previous runs of the expensive model. These approximations are typically
inexpensive to evaluate; they could e.g. use radial basis functions, kriging,
neural networks, (low-order) polynomials, wavelets and splines. We will review
the mentioned approximation methods later on in this presentation.

We will not adopt Torczon and Trosset's distinction between models and ap-
proximations, as these terms to a great extent are used as synonyms in most
other references. In fact, we will interchangeably use both terms for the same
meaning.

Recalling the variable-complexity concept presented above, we observe how
physical models may be available in varying �delity. In cases where several
physical models, one being more expensive than another, are used in an opti-
mization process the term multi-�delity models is sometimes used.

Below we de�ne the classi�cation and the problem description we will use in
this presentation of methods for surrogate modelling and optimization.

2.1.2 Our Approach

In our presentation we will distinguish between methods that are used to
generate surrogate models, and methods (sometimes called model management
frameworks) that search for the optimum using surrogate models.

We classify surrogate models in the two categories: functional models and
physical models, de�ned as follows.

Functional models are models constructed without any particular knowl-
edge of the physical system or governing equations. They are based on alge-
braic expressions and empirical data; in optimization context this data arise
from the current iterate and possibly some points either visited before in the
process or found by sampling the parameter space. Hence, functional models
exist only in the context of sampled data obtained from a physical model.

Functional models are generic, and therefore applicable to a wide class of
problems. Some functional models are also interpolating approximations, with
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regard to that they � under certain conditions, and given enough data points
� eventually will interpolate the underlying model of the data points in some
sense. In practice functional models are often very cheap to evaluate.

The methods we consider, which can generate surrogates based on functional
models are: radial basis functions, kriging, neural networks, (low-order) poly-
nomials, wavelets and splines.

The surrogate optimization methods we consider, which can employ functional
models as surrogates, are: response surface methodology, trust region approach
and pattern search.

Physical models are models based on knowledge about the particular phys-
ical system in question. Determining a response from a physical model may
e.g. involve numerical solution of di�erential or integral equations. But in the
extreme case, a physical model could be actual measurements of the physical
system. Ranges of physical models may exist for the same system, as in the
concept of variable- or multi-�delity physics. Physical models are not generic,
as each of them is related to a speci�c physical system. Hence, reuse of physical
models across di�erent problems is rare. In practice physical models are often
expensive to evaluate, except in cases where they are based on a signi�cant
simpli�cation of the physical system.

The methods we consider, which can generate surrogates based on physical
models, are: response correction, multipoint method and space mapping.

The surrogate optimization methods we consider, which can employ physically
based surrogates, are: response surface methodology, trust region approach,
pattern search and space mapping.

The physical and functional models present extremes. Physical models in the
one extreme, where a great deal is known about the system, and functional
models in the other extreme, where the only assumption is that the response
is locally smooth.

In reality a physical system is not completely determined by governing equa-
tions, so the practical physical model may contain some empirical elements
e.g. as parameters determined by regression to experimental data. Since such
a model is strongly coupled to the underlying physics we would still call it a
physical model.
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Problem De�nition

The optimization problem we consider, in surrogate optimization, involves a
real valued function f : IRn 7! IR, which represents an expensive model. We
call f a response function of the expensive model, it is the objective function
to be minimized. We will focus on the case where f stems from a physical
model, though most of the optimization methods we consider can deal with
the case where f stems from a functional model.

We seek a point x 2 IRn which is a solution to the problem

min
x
f(x) : (2.1)

We will denote an optimizer of this problem by x�. We assume that f is
bounded below and uniform continuously di�erentiable.

In surrogate optimization f is to be replaced by s : IRn 7! IR, a surrogate
model, in the search for an optimizer of f . The search for x� is conducted by
a method combining sequentially generated surrogates sk, k = 1; 2; :::, and an
iterative scheme that performs a search on sk to obtain the next iterate. We
will denote the iterates by xk, k = 1; 2; : : :. When we say that a method is
convergent we imply that the sequence fxkg converges to x

�, hence xk ! x�

for k !1.

The methods for generating functional models rely on pre-sampled data, in
order to construct the model. We will assume that p sample points ti 2 IR

n, i =
1; : : : ; p, have been chosen and that f has been evaluated at these points. So, we
have a pre-sampled data set (ti; yi), i = 1; : : : ; p, where yi = f(ti). We brie�y
discuss statistical strategies for placing these sample points in Section 2.2.1.

The methods for generating physically based surrogates rely on the existence
of one or more user provided cheap (lower-�delity) physical models represented
by the response functions ci : IR

n 7! IR, i = 1; : : : ; q. A cheap physical model
may sometimes by itself act as a surrogate for the expensive model.

In the parts of this presentation about space mapping, namely Section 2.3.3
and 2.4.4, we consider vector valued response functions, e.g. f : IRn 7! IRm,
m > n. For this purpose we introduce a convex merit function H : IRm 7! IR,
usually a norm. So (2.1) becomes

min
x
H(f(x)) : (2.2)

Such vector valued response functions arise e.g. in electrical engineering where
signals are measured on a discrete frequency or time axis. Here, often the



12 Surrogate Modelling & Optimization

design problem is de�ned as minimizing the residual between the signals and
given design speci�cations in some norm, so that the residues constitute the
response functions.

In the following we present some of the most popular approaches to surrogate
modelling and optimization, and show how they relate. We aim to keep the
exposition clear by using a simple consistent notation throughout. However,
by committing to a simple notation we must accept that we at the same time
cannot capture the details of the more specialized approaches presented in the
literature.

2.2 Surrogates Based on Functional Models

There is a large number of methods for generating surrogates in the category
of functional models. So, we have limited this presentation to an overview of
the most commonly used approximations for expensive models, namely the
regression models, radial functions and single point approximations.

The regression models cover the broadest and most widely used class of ap-
proximations. They are based on algebraic expressions, the so-called basis
functions, that are �tted to the pre-sampled data. We will in particular deal
with polynomials, response surface models (including methods for design of
experiments) and wavelets.

The radial functions cover a class of approximations which are based on combi-
nations of basis functions localized around the pre-sampled points. We will in
particular deal with kriging (including DACE), radial basis functions, neural
networks and a special class of splines.

The single point approximations is a special class of local models, that includes
Taylor models (i.e. truncated Taylor series). These approximations are usu-
ally not very attractive for approximating expensive functions, due to their
local nature. But certain types of approximations in this class have found
use in the structural engineering community. We will in particular consider
the reciprocal approximations, conservative approximations and posynomial
approximations.

2.2.1 Regression Models

Regression is the process of �tting some regression model, represented by the
function s(x; �), to the pre-sampled data (ti; yi), i = 1; : : : ; p of the response
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function f from the expensive model. The parameters � solve the regression
or data �tting problem

min
�̂

X
(yi � s(ti; �̂))

2 : (2.3)

Here the Euclidean norm is used, but other norms or merits may be used
as well. Another widely used formulation, augmenting problem (2.3), is the
weighted least-squares problem. For simplicity, we will only consider the un-
weighted problem.

A number of statistical methods have been developed to help determine if a
regression model yields a good �t to the data. These methods include residual
analysis, testing for lack of �t, analysis of variance (ANOVA). To overcome
problems with lack of �t, statisticians rely on methods like transformation of
the variables. See [13, 42] for a thorough treatment of these statistical methods.
Further, in [11, 19, 33] practical usage of these ideas are illustrated.

The regression model may take many forms. We start by discussing the linear
regression models, that is, the regression models where s(x; �) is linear in �.
We write s(x; �) = �T v(x), where v : IRn 7! IRu, is a vector with u basis
functions vj(x), j = 1; : : : ; u.

Response Surface Models

The most frequently used basis functions in linear least-squares regression are
low order polynomial regression models. Hence, basis functions of the form

v(x) =

8<
:

1

x(i)

x(i)x(j)
i; j 2 f1; : : : ; ng

yielding approximations like

s(x) =

8>>>>>>><
>>>>>>>:

�0 + �T1 x (i)

�0 + �T1 x+

nX
i=1

nX
j=1
j 6=i

�
(i;j)
2 x(i)x(j) (ii)

�0 + �T1 x+ xT�2x (iii)

(2.4)
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where �k � �, k = 0; 1; 2, The models are called (i) �rst-order model, (ii)
�rst-order model with interaction terms and (iii) second-order, or quadratic,
model.

It is obvious that the models in (2.4) are so simple that they generally will not
interpolate the data, especially as it usually required that the regression prob-
lem is over-determined. In fact we may only expect these models to describe
a global trend in the functional behaviour.

Exceptions, where the simple models may be adequate, are for instance in
cases where the sampled response is very noisy, see [26] for an example with
a noisy aircraft wing design problem, and in cases where the response is so
smooth that even a linear model is a valid approximation for a large region of
the design space.

More sophisticated regression models are often used, but choosing a well suited
regression model for a particular problem requires speci�c knowledge about
the expected behaviour of the system from which the data originate, or at
least extensive analysis of the sampled data. We note that more sophisticated
models may enlarge the region of acceptable approximation compared to the
simple models presented above. However, a drawback of introducing more so-
phisticated regression models is that even though such a model may interpolate
the given data, it is not necessarily good at describing the behaviour between
known data points, or in extrapolating outside the region spanned by the data
points. This fact shows, e.g. for higher order polynomial approximations.

In the statistics literature regression models as those in (2.4), in particular the
quadratic model (iii), are associated with the term response surface models. A
very popular optimization framework, employing response surface models, is
the response surface methodology, which we present in Section 2.4.1.

First we will discuss some statistical strategies on how to choose the pre-
sampled points.

Design of Experiments

The functional models we have considered so far are constructed on basis of
pre-samples data (ti; yi), i = 1; : : : ; p, where ti 2 IR

n are called data points or
design sites, and yi = f(ti) are the responses from the expensive model at the
design sites. The process of determining where to place the design sites in the
parameter space is in the statistical literature called Design of Experiments

(DOE).
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In design of experiments the e�ort is on laying out experiments, i.e. the ac-
tual placement of the ti's, in certain optimal ways. D-optimality is a popular
measure related to the determinant of the covariance matrix in question, but
other measures exist. Frequently used experimental designs are factorial, cen-
tral composite and Box-Behnken designs (see references below). Traditionally
much of the focus in DOE has been on reducing noise in the experiment, by re-
peated runs with �blocking of factors�. However, more and more experiments
are conducted using computer models, and DOE for computer experiments
need special attention since the computer models

� are deterministic, i.e. always return the same result when evaluated for
the same parameters (the numerical noise is assumed to be negligible),
so repeated runs are not needed,

� are una�ected in response by the ordering of the experiment, hence �ex-
perimental blocking� is not needed,

� often are de�ned over wide parameter ranges, and often in many param-
eters.

Regarding the last point, computer experimenters often seek to �nd a complex
approximation extending over a wide range of the design variables, hence large
regions need to be covered by the experimental design.

These characteristics call for a special type of experimental design called space-
�lling designs, which aim to exercise all the parameters over their entire ranges.
McKay et al. [41] presented an intuitive approach, which has become very pop-
ular, called Latin hypercube sampling from which stochastic space-�lling de-
signs are easily obtained, even when a large number of design sites are required.
There also exist deterministic experimental designs with space-�lling proper-
ties. Experimental designs are covered thoroughly in [13, 30, 42], where [13, 42]
have special focus on response surface methodology, the topic of Section 2.4.1.
A review of methods for design of �optimal experiments� are given in [28].

Wavelets

Wavelets provide a large number of orthonormal basis functions that can be
used in linear least-squares regression. The wavelet basis functions are avail-
able at di�erent scales, and each of these basis functions has a localized re-
sponse in the parameter space. Popular families of wavelet basis functions are
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Haar, Daubechies and symmlet. We present here the discrete wavelet formu-
lation in one dimension, x 2 IR, and the particular simple Haar family of basis
functions; our presentation is based on [29] and [61].

First consider the piecewise constant function (called the father wavelet or
scaling function)

v̂(x) =

�
1 for x 2 [0; 1]

0 otherwise;

and the functions

vj;k(x) = 2j=2v̂(2jx� k) ; k; j 2 Z+ :

The functions v0;k form an orthonormal1 basis for functions with jumps at
the integers. Let the space spanned by this basis be denoted V0. Similarly
the functions v1;k form an orthonormal basis for a space V1 � V0 of functions
piecewise constant on intervals of length 1

2
. More generally we have � � � � V2 �

V1 � V0, where Vj is spanned by the 2j functions vj;k, k = 0; 1; : : : ; 2j .

We might represent a function in Vj+1 by a component in Vj plus the compo-
nent in the orthogonal complement Wj of Vj to Vj+1, written Vj+1 = Vj�Wj.

From the mother wavelet

ŵ(x) = v̂(2x)� v̂(2x� 1)

we can generate the functions

wj;k(x) = 2j=2ŵ(2jx� k) ; k; j 2 Z+ :

Then it can be shown [61] that the functions wj;k form an orthonormal basis
for Wj.

Notice that since these spaces are orthogonal, all the basis functions vj;k and
wj;k are orthonormal. Now Vj+1 = Vj �Wj = Vj�1�Wj�1�Wj = � � � , so we
can make a representation of the form Vj = V0�W0�W1 � � ��Wj�1. Assume
that we were to construct an interpolation at 2j data points, so at most 2j

basis functions are needed for interpolation. We could use the 2j functions in
Vj, or alternatively the 2

j � 1 functions inW0�W1 � � � �Wj�1 and one in V0.

If a non-interpolating approximation is needed, one can chose to use only a
subset of the basis functions, e.g. approximation at level j starting at level i,
i < j, gives the 2j � 2i basis functions in Vi �Wi �Wi+1 � � � �Wj�1.

1Orthogonality is determined by the usual inner product.
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If we assume that the parameters x of our problem (2.1) is scaled to the
interval [0; 1], the resulting wavelet approximation can be written as

s(x) = �T

0
BBBBBBBBBBBBBBBBBB@

vi;0(x)
...

vi;2i(x)

wi;0(x)
...

wi;2i(x)
...

wj�1;0(x)
...

wj�1;2j�1(x)

1
CCCCCCCCCCCCCCCCCCA

;

for the level j approximation starting at level i. The regression coe�cients �
are usually found by least-squares.

A common procedure is to apply a threshold to discard or �lter out the smaller
coe�cients, and thereby reduce the number of basis functions in the �nal
approximation. Choosing a good level of approximation is di�cult in general,
and out of the scope of this presentation.

We should note that in the context of engineering design, the Haar family
of basis functions may not be the best suited, due to their non-di�erentiable
form, hence one of the other more smooth families of wavelets should be chosen
instead. The concept of wavelets is thoroughly dealt with in [61], a classical
reference on wavelets is [20].

2.2.2 Radial Functions

A particular successful class of interpolation methods are based on a model of
the form

s(x) = v(x)T� + b(x)T 
 ; (2.5)

where v is a vector with basis functions (as above) and � is the solution to
a generalized linear least-squares regression problem, which we will introduce
later. The second part is a radial model, which consists of the function b :

IRn 7! IRp that is a vector of radial functions

bj(x) = �(kx� tjk) ; j = 1; : : : ; p ; (2.6)
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and the coe�cients 
 2 IRp.

A radial function � depends only on the radial distance from the origin, or in
our case distance to design points. We will use the notation �j(x) = �(kx�tjk),
j = 1; : : : ; p. Various distance measures are used in practice, but the most
popular is the Euclidean norm. The nature of � and 
 will be more clear to
the reader as we present some radial function approximation methods in the
following.

Kriging

The method of kriging [40] is very popular in the geo-statistical community.
The general approximation is s(x) = �(x)T y, where the function � is derived
in the following, and y is the vector with pre-sampled values of f .

Kriging models decompose the function f into two parts. The �rst part is a
linear regression model related to a global trend in the data, as the response
surface models in Section 2.2.1. The second part is a function z(x), being
the deviation between f and the regression model. Hence the interpolation
conditions for the kriging model are

f(ti) = yi

= s(ti)

= �(ti)
T y

= v(ti)
T� + z(ti) ;

for i = 1; : : : ; p.

In statistical terms, see [49], z is a stochastic function, with mean E[z(x)] = 0

and variance E[z(x)2] = 1, sampled along a suitable path. We consider z to
be a residual function, which we will approximate using a radial model, i.e.
the last term in (2.5).

Let V be the matrix where the ith column is the ith basis function vi evaluated
at the design sites, vi(tj), i = 1; : : : ; u, j = 1; : : : ; p. Let Z be the vector
containing the residuals at the sample points, z(tj), j = 1; : : : ; p.

For any x, we have

s(x)� f(x) = �(x)T y � f(x)

= �(x)T (V � + Z)� (v(x)T � + z(x))

= �(x)TZ � z(x) + (V T�(x)� v(x))T� :
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We can now determine the mean squared error, which is the expected approx-
imation variance,

E[(s(x)� f(x))2] = E[(�(x)TZ � z(x))2]

= E[z(x)2 + �(x)TZZT�(x)� 2�(x)TZz(x)]

= �2
�
1 + �(x)TC�(x)� 2�(x)T b(x)

�
: (2.7)

Where �2 is the process variance, C 2 Rp�p is a symmetric matrix where the
(i; j)th element is �(kti� tjk), i; j = 1; : : : ; p. In statistical terms the elements
of C describe the covariance between design sites.

Now we determine the function �(x), for �xed x, by the quadratic program-
ming problem, minimizing the expected approximation variance (2.7),

min
�(x)

1
2
�(x)TC�(x)� �(x)T b(x)

s:t: V T�(x) = v(x) :
(2.8)

Using this formulation to derive �(x), the approximation is called kriging with

a trend. When the problem (2.8) is unconstrained, the approximation is called
simple kriging and the solution is �(x) = C�1b(x). When v(x) = 1 for all x,
the approximation is called ordinary kriging.

The Lagrangian function corresponding to (2.8) is

L(�(x); �) =
1

2
�(x)TC�(x)� �(x)T b(x) + �T (V T�(x) � v(x))

where � are the Lagrange multipliers. The necessary conditions for an optimal
solution are

r�(x)L(�(x); �) = C�(x)� b(x) + �TV T = 0

r�L(�(x); �) = V T�(x)� v(x) = 0 :

From these equations we may �nd the solution by solving a linear system,

�
C V

V T 0

� �
�(x)

�

�
=

�
b(x)

v(x)

�
(2.9)

)

�
�(x)

�

�
=

�
C�1(1� V UV TC�1) C�1V U

UV TC�1 �U

� �
b(x)

v(x)

�
;
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where U = (V TC�1V )�1, and assuming that C is symmetric positive de�nite.
Hence we can write�

�(x)

�

�
=

�
R W

W T �U

� �
b(x)

v(x)

�
;

where R and W are de�ned by the solution above.

The kriging approximation then is

s(x) = �(x)T y

= b(x)TRy + v(x)TW T y

= b(x)T
 + v(x)T� ;

(2.10)

where

� = (V TC�TV )�1V TC�T y


 = C�T (y � V �)

are independent of x. Note that � is the generalized least-squares solution to
the linear regression problem. Having this formulation, we need only calculate
v(x) and b(x) and the sum of two dot products for every evaluation of s(x).

We could have derived 
 and � in another way, namely by considering the
problem

min



1
2

TC
 � 
T y

s:t: V T
 = 0 ;
(2.11)

We should note that we have not been able to motivate the quadratic prob-
lem (2.11) in the same way as (2.8), which minimizes the expected approxi-
mation variance. The corresponding Lagrangian function to (2.11) is

L(
; �) =
1

2

TC
 � 
T y + �TV T 


where � are the Lagrange multipliers. The necessary conditions for an optimal
solution are

r
L(
; �) = C
 � y + �TV T = 0

r�L(
; �) = V T
 = 0 :
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From these equations we may �nd the solution by solving a linear system,

�
C V

V T 0

� �



�

�
=

�
y

0

�
(2.12)

)

�



�

�
=

�
R W

W T �U

� �
y

0

�

again assuming that C is symmetric positive de�nite; R, W and U de�ned as
above. Deriving the formulation in this way is by some called dual kriging, the
simple case with V = 0 is e.g. described in [48].

When vi is at most �rst order polynomials, the constraint V
T
 = 0 in (2.11)

corresponds to the requirement that js(x)j = O(jxj) [46].

For certain choice of C, the kriging approach relates to approximation using
natural cubic splines, [62] shows this relation in one dimension. The relation
between the thin-plate spline formulation and kriging is shown in [25], and
presented in Section 2.2.2 below.

First we will discuss how statisticians have used the kriging approach in ap-
proximation of computer based models.

DACE Design and Analysis of Computer Experiments (DACE), named af-
ter a seminal paper by Sacks et al. [49] in 1989, is a statistical framework
for dealing with kriging approximations to (complex or expensive) computer
models. Kriging, in particular the DACE framework, has gained wide accep-
tance in many engineering communities, e.g. in mechanical, aerospace and
electrical engineering, as a method for approximating expensive functions, see
e.g. [32, 33, 49, 50, 57].

In the DACE framework the kriging correlation model is often presented as a
radial function of the form

�j(x) =

nY
i=1

 (�; jx(i) � t
(i)
j j) : (2.13)

Hence a product of radial functions or, in statistical terms, correlation func-
tions, one for each coordinate direction.
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Examples of frequently used kriging correlation functions are [49]

 (�; jx(i)� t
(i)
j j) =

8>>>>>><
>>>>>>:

exp(��(i)(x(i) � t
(i)
j )2) (i)

maxf0; 1� �(i)jx(i) � t
(i)
j jg (ii)

maxf0; 1� �(i)(x(i) � t
(i)
j )2

+�(i+n)jx(i) � t
(i)
j j

3g (iii) :

(2.14)

Each of these are also available in an isotropic version, i.e. where � is constant
for all coordinate directions.

The DACE framework is implemented in a Matlab toolbox, see [36, 37]. This
particular implementation takes great care in solving the system (2.9) in a
safe numerical way. In many other implementations the matrix C is often
naively inverted, and since it is often ill-conditioned, numerical errors are likely
to dominate the results. Further, the implementation includes a method for
�tting the radial functions to data, i.e. �nding � minimizing a certain merit,
namely maximum likelihood estimation, i.e. least-squares when assuming a
Gaussian process.

Often, when using maximum likelihood estimation, a Gaussian process is as-
sumed, then it is vital for the approximation to determine basis functions v
such that the residuals yi�V � follows the normal distribution, [49, 18, 36, 37]
elaborate further on this subject.

From the viewpoint of Bayesian statistics the choice of correlation function
corresponds to a Bayesian prior on the �shape� or �smoothness� of the function.
In this view Kriging, and thereby DACE, is a Bayesian method, see e.g. [49, 18].

Radial Basis Function Approximations

The radial basis function approximation is as in (2.5), and is thus identical to
kriging. However, in the literature there is a di�erence in the way the functions
v and b are chosen. In radial basis function approximations v is a vector of
polynomials of at most order n, and b is a vector of radial (basis) functions,
using the Euclidean norm as distance measure. The coe�cients � and 
 are
determined by the system (2.12) above.
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Examples of commonly used radial basis functions

�j(x) =

8>>>>>>>>><
>>>>>>>>>:

kx� tjk2 (i)

kx� tjk
3
2 (ii)

kx� tjk
2
2 log kx� tjk2 (iii)p

kx� tjk22 + �2 (iv)

exp(��kx� tjk
2
2) (v)

(2.15)

where � is a �xed constant, provided by the user. As in the DACE framework
mentioned in the previous section, � may be �tted to the data, provided a suit-
able merit function. The set of radial functions in (2.15) include both functions
which grow with distance and functions which vanish with distance. Unlike
the kriging correlation functions in (2.14) which all vanish with distance.

Some of these radial functions are related to certain Green's functions for
partial di�erential equations. Speci�cally, the partial di�erential equations
L�j(x) = Æ(x � tj) for the operators L = r2 and L = r4. In Table 2.1
the Green's functions are presented for the one to three dimensional cases.
The association with the radial functions in (2.15) is evident. For example the

L = r2 L = r4

1D jx� tj j jx� tjj(x� tj)
2

2D log kx� tjk2 kx� tjk
2
2 log kx� tjk2

3D kx� tjk
�1
2 kx� tjk2

Table 2.1: Green's functions �j(x), solutions to L�j(x) = Æ(x� tj)

Green's function �j(x) = kx� tjk
2
2 log kx� tjk2 is that spline which solves the

minimal surface problem for a thin plate, with a point load at tj, hence its
name thin-plate spline. Roach [47] provides a thorough treatment of Green's
functions.

Guttmann [27] presents a method for global optimization using radial ba-
sis function approximations. Guttmann states that the two main advantages
of radial basis function approximations are an available measure of so-called
�bumpiness�, and that uniqueness of an interpolant is achieved under very
mild conditions on the location of the interpolation points. The measure of
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bumpiness may be used in a merit function for determining the placement of
succeeding design sites.

Note that, choosing the function (v) in (2.15) makes the radial basis func-
tion approximation the same as the DACE kriging approximation, with the
isotropic version of the correlation function (i) in (2.14). However, the constant
� is provided by the user in the radial basis function case, and often found by
maximum likelihood estimation in the DACE case, as described previously.

Powell [46] provides a thorough treatment of radial basis function approxima-
tions, and contains many references to other works.

Multivariate Adaptive Regression Splines

Another form of radial basis function approximations is the multivariate adap-
tive regression splines, see e.g. [29]. We will present the approximation here
for the one dimensional case, x 2 IR.

The approximation is almost as in (2.5). However, v is always the zero order
polynomial and b is a vector function b : IR 7! IRq, and 
 2 IRq. Usually
q < p, hence the approximation is not necessarily interpolating the data. The
elements of b, bi =  i(x), i = 1; : : : ; q, are radial functions,

 i(x) =
Y
j2Mi

�j(x) ; Mi � f1; : : : ; pg

with

�j(x) 2 fjx� tj j+; jtj � xj+g ; j = 1; : : : ; p ;

where j � j+ = maxf � ; 0g. So, each  i is a linear radial function or a product
of two or more such functions.

The reader should note the structural similarity with the DACE kriging ap-
proximations, using the radial function (ii) in (2.14). The tricky part is, as for
other approximation methods, in constructing the functions  i, i = 1; : : : ; q,
one strategy is suggested in [29, p. 284].

Neural Networks

Neural networks are nonlinear regression models [29]. The most widely used
class of neural network is known by the names feed-forward network, single
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hidden layer back-propagation network and single layer perceptron. The ap-
proximation is

s(x) = �(�0 + �1x)
T�2 + �3

where the vector function � : IRn 7! IRu contains the so-called activation
functions. The large number of constants �0 2 IRn, �1 2 IRn�n, �2 2 IRu

and �3 2 IR are determined by nonlinear least-squares regression, as in (2.3),
assuming that the data set is su�ciently large.

A popular choice of activation function is the sigmoid function

�(z) =
1

1 + e�z
:

Other popular choices of activation functions include the radial basis func-
tions (2.15). The latter case is called a radial basis function neural network,
and is exactly the same approximation as the formulation in (2.5), with v

being the zero order polynomial. However, instead of the procedure derived
in 2.2.2 for determining the model parameters, the model parameters of the
radial basis function neural networks are determined by least-squares regres-
sion [31].

For the purpose of determining the �'s by regression, i.e. solving (2.3), several
well-known optimization algorithms has been reinvented in the neural net-
work community. One of the �rst methods to re-appear, and probably still
the most widely used, is the steepest-descent algorithm, which neural network
advocates have named back-propagation learning. Of course, a range of stan-
dard optimization algorithms, see [23], can be used to solve the regression
problem (2.3), and steepest-descent is not the most obvious in that respect.

There is no reason to believe that neural networks should be able to pro-
vide better approximations than other methods mentioned in this work. In
fact, we should stress that the frequently used viewpoint of neural networks
as convenient, magic, black-box approximations, may mislead the user into
overlooking the possibility of posing ill-conditioned problems � where the
number of parameters to be determined by regression (the �'s) is larger than
the provided data set � not to mention a related problem namely serious risk
of over-�tting.

2.2.3 Single Point Models

We will now discuss a class of models that is based on information obtained
from a single point, usually the current iterate xk in an optimization proce-
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dure. Taylor models, i.e. truncated or approximate Taylor series, are prominent
members of this class. However, the low-order Taylor models, that are feasible
to construct in practice, are only valid as approximations in a small region
around xk.

In the following we consider some alternative models, also based on informa-
tion from the current iterate only. Under certain conditions they have a larger
region of validity, than Taylor based models, which make them tractable as
surrogates for expensive models.

Reciprocal and conservative approximations

Consider the approximation

sk(x) = f(xk) +

nX
i=1

rx(i)f(xk)(x
(i) � x

(i)

k )�i(x
(i); x

(i)

k )

where x = (x(1); : : : ; x(n))T . We see that enforcing the �rst order requirement

s0k(xk) = f 0(xk) it follows that �i(x
(i)
k ; x

(i)
k ) = 1. The choice �i(x

(i); x
(i)
k ) = 1

yields the (linear) �rst order Taylor series approximation.

In structural optimization the alternative form �(x(i); x
(i)

k ) = x
(i)

k =x
(i) is of-

ten used, the approximation is then called a reciprocal approximation [10]. A
signi�cant class of constraints in structural engineering can in this way be
transformed from nonlinear to linear equations (at the expense of introducing
nonlinearity into the objective function). As the reciprocal approximation may
become unbounded if any of the variables approach zero. An alternative is the

modi�ed reciprocal approximation, �(x(i); x
(i)
k ) = (x

(i)
k +c(i))=(x(i)+c(i)), where

the values of c(i)'s are typically small compared to representative values of the
corresponding x(i)'s. Another alternative is the conservative approximation,
having

�(x(i); x
(i)
k ) =

(
1 if x

(i)

k rx(i)f(xk) > 0

x
(i)
k =x

(i) otherwise:
(2.16)

Following [1] the conservative approximation has the attractive feature of lead-
ing to a convex programming problem and thus is amenable to solution by
nonlinear programming techniques that take advantage of the dual problem,
in [10] there are further references on this subject.
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We note that the reciprocal and conservative approximations destroy the lin-
earity of the approximation, and thus the possibility of directly use it with a
sequential linear programming algorithm.

Posynomial approximation

The posynomial approximation of the form

sk(x) = f(xk)

nY
i=1

 
x(i)

x
(i)
k

!�(i)

;

where

� =
f 0(xk)

f(xk)
;

can be treated using geometric programming techniques, which actually re-
quires this form. According to [1], geometric programming techniques will,
under appropriate conditions and when applied to a posynomial approxima-
tion of the original problem, converge to a stationary point of the original
problem (2.1).

2.2.4 Summary

In the last sections we have reviewed methods for generating functional models
that can be used as surrogate models for expensive functions. We have pre-
sented the most commonly used of these methods, namely regression models,
radial functions and single point models.

The regression models consist of regression functions and parameters. The
parameters are found by �tting the regression functions to pre-sampled data
using least-squares. The particular methods we have discussed are the response
surface models, wavelets and neural networks. The problem of positioning
the pre-sampled data has only brie�y been covered in this presentation. In
fact, it is a discipline in itself, often referred to in the literature as design of
experiments.

The radial functions are used in a class of models called kriging models or
radial basis function approximations. Here, a regression model is combined
with a radial model, which often only has a localized e�ect. The radial model
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consists of radial functions and parameters. In the presentation we derived how
to simultaneously determine the parameters of the regression model and the
radial model. We also brie�y discussed a related method, namely the method
of multivariate adaptive regression splines.

The single point models are a class of models valid only in a local region around
a single point. We have presented the reciprocal approximation, the conserva-
tive approximation and the posynomial approximation. In the literature the
valid area of these approximations are claimed to be wider compared to that
of a corresponding Taylor model. Models of this type have gained popularity
in the mechanical engineering community.

2.3 Surrogates Based on Physical Models

We will now turn the attention to surrogate models which are speci�c for
the particular physical system in question. We will assume that besides the
response function f from the expensive model, a user provided, cheap (lower-
�delity), physical model with the response function c : IRn 7! IR is available.

For some problems, the cheap model may itself act as a surrogate for the
expensive model. However, we cannot in general expect that any given cheap
model approximates the expensive model well. Often, the deviations between
two physical models can be referred to problems with incorrect alignment of
the responses or the parameter spaces.

In the case of incorrectly aligned response functions, we could apply a response
correction g on c and obtain the surrogate g(c(x)). The response correction
could e.g. be a simple scaling function. By imposing conditions on the form and
behaviour of the response correction g, we can make the surrogate interpolate
f and its gradients at given points. Two methods of this type is presented in
the next section.

One method for performing response scaling, called the multipoint method,
is presented in Section 2.3.2. Here, a number of cheap models, related to
subsystems of the original physical system, are used as regression functions in
a data �tting problem. The resulting regression parameters can be viewed as
scaling parameters of the cheap models.

In the case of incorrectly aligned parameter spaces, we could apply a transfor-
mation of the cheap model parameter space, say a mapping P , and obtain the
surrogate c(P (x)). By imposing conditions on this so-called space mapping P ,
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we can make the surrogate approximate f and its gradients at given points.
Space mapping techniques are discussed in Section 2.3.3.

2.3.1 Response Correction

Scaling of response functions is a mean of correcting physical models which
lack approximation abilities like interpolation. Consider the surrogate s which
is a response correction g : IR 7! IR of the response function c from the physical
model, hence

s(x) = g(c(x)) : (2.17)

Such a response correction g could be identi�ed by imposing conditions on
s, e.g. at a given point xk the function values and the gradients match, i.e.
s(xk) = f(xk) and s

0(xk) = f 0(xk). Two methods of this type are considered
below, the �rst method, the �-correlation method, performs a simple scaling
of c, the second method is more general and seek to approximate an assumed
function g for which s(x) = f(x).

The �-correlation Method

We now consider the case of response correction (2.17) where g is a simple
scaling of c. Hence g(c(x)) = a(x)c(x), where a(x) is the scaling function. Such
a response scaling method, called the �-correlation method, is presented in [16]
as a generic approach to correcting a lower-�delity model response by scaling.
The method assumes the existence of a smooth function a(x) for which

a(x)c(x) = f(x) and r (a(x)c(x)) = f 0(x) :

Taylor's theorem provides the following approximation,

g(c(x + h)) '
�
a(x) + a0(x)T h

�
c(x+ h) : (2.18)

Using (2.18), at a given point xk, we obtain the approximation,

sk(x) =
�
a(xk) + a0(xk)

T (x� xk)
�
c(x)

=

 
f(xk)

c(xk)
+

�
f 0(xk)c(xk)� c0(xk)f(xk)

(c(xk))2

�T

(x� xk)

!
c(x) ;
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which performs a scaling of c such that sk and s0k interpolate f and f 0 at
xk. If f

0 is too expensive to calculate, an approximation can be used [1], e.g.
obtained using a secant method. Alternatively, the derivatives a0(xk) could be
approximated directly by a secant method.

A shortcoming of the �-correlation method is that if c vanishes at a point
xk the scaling is unde�ned at this point. The more general method presented
next mends this shortcoming.

General Response Correction

A more general approach to response correction (2.17) is to assume existence
of a smooth function g for which

f(x) = g(c(x)) ; (2.19)

and then approximate this function. We will show how to make a �rst order
approximation to g assuming knowledge of the �rst derivatives of f , thereafter
we show how a secant method can be used instead, not requiring knowledge
of f 0.

Taylor's theorem provides the following approximation

g(c(x + h)) ' g(c(x)) + g0(c(x))[c(x + h)� c(x)] : (2.20)

At a point xk, applying the interpolation conditions s(xk) = f(xk) and
s0(xk) = f 0(xk) on (2.20), we obtain the surrogate

sk(x) = f(xk) + g0(c(xk))[c(x) � c(xk)] ; (2.21)

with g0(c(xk))c
0(xk) = f 0(xk). In practice we only expect (2.19) to hold approx-

imately, we can then choose g0(c(xk)) as the solution of the linear least-squares
problem

min
a2IR

ka � c0(xk)� f 0(xk)k2 :

Similar to the �-correlation method described above, if f 0(xk) is too expensive
to calculate, an approximation, e.g. obtained using a secant method, can be
used.

An alternative approach is to sequentially approximate the gradient g0(c(x))
by scalars ak 2 IR, k = 0; 1; : : :, which, for a given sequence of points fxkg,
obey the secant condition

f(xk+1)� f(xk) = ak+1[c(xk+1)� c(xk)] ; (2.22)
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where a0 2 IR is a user provided initial approximation to g0(c(x0)).

The surrogate becomes

sk(x) = f(xk) + ak[c(x) � c(xk)] ; (2.23)

where ak is found using (2.22). The user has to provide an initial approxima-
tion a0, the most obvious choice is to assume no scaling, hence let a0 = 1.

The advantage of the surrogate in (2.23) over (2.21) is obvious, since for most
practical problems we cannot rely on the expensive response derivatives f 0(xk)
being available.

2.3.2 The Multipoint Method

The multipoint method proposed by Toropov in [55], and further described
in [54, 56], is a method for creating physics based regression functions, for
systems that can be partitioned into individual subsystems.

The multipoint method constructs an approximation based on partitioning the
physical system into, say q, individual subsystems, which again are described
by empirical expressions or known analytical solutions ci, i = 1; : : : ; q. The
approximation in its simplest form is

s(x) = �(0) + �(1)c1(x) + : : :+ �(q)cq(x) +
X
j>1

�(j+q+1)x(j)s (2.24)

where ci is based on the physics of the ith subsystem. The parameters � are
model parameters, which are determined by least-squares regression using pre-
sampled data, as in (2.3). The vector xs, is a subset of the design variables,
xs � x, that has a global in�uence on the physical system. The idea is that
each subsystem may depend only on a subset of the design variables, and that
only a few (global) variables are related with the system behaviour as a whole.

Instead of using a simple linear combination (2.24), which we can write as

s(x) = �(0) +
X
j>1

�(j)vj(x) ;

Toropov suggested three possible nonlinear formulations: multiplication,

s(x) = �(0)
qY

j=1

vj(x)
�(j) ;
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the exponential of the linear combination,

s(x) = exp

0
@�(0) + qX

j=1

�(j)vj(x)

1
A ;

and a power function of the linear combination,

s(x) =

0
@�(0) + qX

j=1

�(j)vj(x)

1
A

�

;

for some �. Further, Toropov suggested to use a logarithmic transformation
on the above formulations to make them linear, for easier calculation of the
�'s. In his work Toropov not only approximated the objective function, but
also nonlinear constraint functions using his multipoint method.

2.3.3 The Space Mapping Method

The space mapping method is a method for aligning the parameter spaces of
physical models. Here, the space mapping is a parameter transformation that
makes the cheaper model c exhibit same behaviour as the expensive model f .
The concept of space mapping was introduced in [7], and it is reviewed in [6]
and [8].

Let the function P : IRn 7! IRn be the space mapping, which transforms the
parameter space of c in such a way that the composite function c Æ P , the so-
called space mapped model, can act as a surrogate for f . Conditions imposed
on P determine the nature of the alignment.

Theoretically, see Chapter 4, ideal conditions ensuring that the minimizer of
c Æ P is x�, the minimizer of f , are that the space mapping relate x� and the
minimizer of c, and that P is a one-to-one mapping.

In practice there has not yet been proposed a formulation of the space mapping
for which these theoretical conditions are always meet. So, most often the
formulation of the space mapping is based on the approximation condition

f(x) ' c(P (x)) ;

which characterizes a formulation of the space mapping connecting similar
responses,

P (x) = argmin
~x
kc(~x)� f(x)k2 : (2.25)
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The problem from which P (x) is calculated, as e.g. (2.25), is referred to as the
parameter extraction problem.

In the literature, see [6], the space mapping method is most commonly used for
problems involving vector response functions f : IRn 7! IRm and c : IRn 7! IRm,
with m � n, rather than scalar response functions, m = 1. The objective
function is then measured using a convex merit function H, usually a norm,
see (2.2). Assuming the problem is de�ned by such vector functions, then the
formulation in (2.25) is expected to have a unique solution, since it is over-
determined following the assumption m� n.

Note that for the space mapping formulation in (2.25), we cannot expect that
c ÆP interpolates f , and we cannot be sure that the minimizers are the same.
But, if the norm of the residual in (2.25) is small we can expect that the
minimizer of c Æ P is close to x�, the minimizer of f , refer to Chapter 4.

Other formulations of P have been proposed mainly in an e�ort to ensure
uniqueness in the parameter extraction problem, again we refer to Chapter 4.

Since the space mapping P is at least as expensive to evaluate as f , for all
practical purposes P must be approximated by a model. In context of opti-
mization, a linear approximation is often used. Nonlinear approximations of
P have been introduced in cases where c Æ P is used for modelling.

2.3.4 Summary

In the last sections we have reviewed three methods for generating surrogates
for expensive functions based on physical models. The methods are based
on manipulating a cheaper model (or several cheaper models), such that the
manipulated response of the cheap model approximates the response of the
expensive model. We summarize the three methods in the following.

The response correction methods try to either multiply the cheap model re-
sponse with a correction function (the �-correlation method), or make a com-
posed model of a correction function and the cheap model (general response
correction).

The multipoint method uses a (often linear) combination of response func-
tions from several cheap models. The parameters of this combined model are
determined by least-squares regression using known, pre-sampled expensive
model responses.
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The space mapping method tries to align the parameter space of the cheap
model with that of the expensive model. This is done by connecting similar
responses. Most often, the space mapping method is used for problems where
the response functions are vector valued, which enhance uniqueness when es-
tablishing the space mapping.

2.4 Optimization Using Surrogate Models

We now present algorithms for solving the problem in (2.1) using surrogate
models. The purpose of the surrogate sk is to take the place of the expen-
sive response function f in sequential subproblems solved by the algorithms.
The hope is that by allowing extensive use of the surrogates, the number of
evaluations of f , needed in order to locate the optimizer x�, can be vastly
reduced.

First we present a non rigorous approach using response surface models, then
we introduce two provably convergent algorithms, namely a trust region algo-
rithm and a pattern search based algorithm. At last we present some methods
based on the space mapping idea, one of them is provably convergent.

2.4.1 Response Surface Methodology

Response surface Methodology (RSM) is a procedure of sequential experimen-
tation in an e�ort of optimizing a response function, which typically comes
from a physical model. The origin of RSM is the seminal paper by Box and
Wilson [14].

RSM covers the process of identifying and �tting from experimental data a
response surface model. This process requires knowledge of design of experi-
ments (DOE), regression modelling techniques (how to choose a good model)
and optimization techniques.

It involves a sequence of experiments each of which determines a direction of
better response value until a local optimum is reached. A response surface can
be generated for a wide range of regression models, although the term response

surface design is commonly used to refer to quadratic regression models, as
(iii) in (2.4).

The statistical foundation used in many applications involving response sur-
face methods makes it possible to determine con�dence intervals on the ap-
proximations obtained by the regression. Further, several statistical methods
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exist for doing analysis on the residuals, outliers and lack of �t. Tools such as
variable transformation are frequently used, to enhance the �t, see e.g. [13, 42].

With special focus on computer experiments [49] suggested the simple one-shot
approach: �rst sample the design space su�ciently dense and then construct
a surrogate using kriging, �nally apply an optimization method to obtain the
solution. This approach is not very likely to yield a satisfactory result, except
if the design space is sampled so dense that the approximation becomes very
close to the true objective. However, the expensive true objective prohibits
such an approach. Hence a sequential strategy, regularly re�ning the surro-
gate model, is more likely to be successful. Fortunately, most applications of
response surface methods are actually sequential in nature.

In Algorithm 1 we summarize an optimization procedure suggested in [42].
We have the following comments about the algorithm:

Algorithm 1 Response Surface Methodology

Phase 0:

Select the important variables by a screening experiment and by analysis of
variance

Phase 1:

Require: k = 0

while xk is not near x
� do

Construct a �rst order model sk, based on using data from an experiment
on f using an experimental design in a small region of interest around xk
Determine the direction of steepest descent, hsd = �s0(xk)
Find an � > 0 which approximately solves min� f(xk + �hsd)

Set k = k + 1

end while

Phase 2:

Require: xk near x
�

Construct a second order model sk covering the optimal region
Determine the solution by solving the quadratic problem minx sk(x)

Phase 0 of the algorithm suggests initial screening experiments on the system
in order to identify important variables by analysis of variance (ANOVA) The
ANOVA decompose the system behaviour into main e�ects (contribution of
individual variables to variation in the response) and interaction e�ects (con-
tributions of combinations of variables to variation in the response). Variables
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with little contribution to the variation in the response can (in a �rst run of
the algorithm) be left out. Using this technique may be a good idea especially
in cases where there is a large number of variables.

Reducing the number of parameters in this initial stage can be crucial to
the performance of the optimization procedure to come, see e.g. [11] for a 31
variable problem that by a screening experiment identi�ed 11 key variables
that accounts for the most of the variation in the response; the optimization
procedure was then applied to the reduced problem. Another example is in [15]
where a screening experiment was used to reduce a 28 variable problem, from
aerospace vehicle design, before an optimization procedure was applied.

In phase 1 of the algorithm, [42] suggests using methods to test for curvature
and possible lack-of-�t, in order to determine if a near optimal point has been
reached.

In phase 2 the iterate is assumed so close to the optimizer that a single step
using a quadratic model will give us the optimizer.

In [63] a so-called Bayesian-validated statistical framework for optimization
using surrogates is presented. The ideas are very similar to what we have just
presented in Algorithm 1.

Clearly, Algorithm 1 is not rigorous, and it is most likely not meant to be.
Considering the origin of response surface methodology, in statistics, the al-
gorithm is more like a practical guide for people trying to optimize very noisy
systems as e.g. parameters of a machine running in a production environment.
So, for problems with deterministic response functions, the main focus of this
work, the algorithm is not well-suited. Anyhow, the algorithm is close in spirit,
apart for the screening experiment, to the rigorous trust region algorithm we
present below.

2.4.2 Trust Region Approach

An algorithm with a model management framework based on trust region
methodology is presented in [1]. This trust region algorithm solves (2.1), re-
quiring that the surrogate interpolate and that the �rst order information
match, hence

sk(xk) = f(xk)

s0k(xk) = f 0(xk) :
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The requirement can be extended to include second order information as well,
s00k(xk) = f 00(xk), or even higher derivatives, but it is not used, as higher order
information is generally not available in most practical problems. We should
note that the proposed algorithm can be modi�ed to use approximate gradient
information, as e.g. secant approximations [17, 1]. A trust region method is
presented in [24] for the case where only zero order interpolation is required.

An outline of the algorithm is presented here as Algorithm 2. The trust region
size � is controlled using conventional updating strategies, see [17], based on
the computed gain factor �k.

Algorithm 2 Trust region algorithm

Require: k = 0, x0 2 IR
n, �0 > 0

while not converged do
Select model sk(xk) = f(xk) and s

0
k(xk) = f 0(xk)

Solve approximately for h = x� xk:
minimize

h
sk(xk + h)

subject to khk 6 �k

Compute �k �
f(xk + h)� f(xk)

sk(xk + h)� sk(xk)
if f(xk) > f(xk + h) then

accept the step, xk+1 = xk + hk
else

reject the step, xk+1 = xk
end if

Update �k

Set k = k + 1

end while

The part of the algorithm (approximately) solving the trust region problem

min
h
sk(xk + h)

s:t: khk 6 �k ;

in the case where sk is general nonlinear function, can be implemented using
a standard nonlinear programming method, see e.g. [17, 44]. If sk is simple,
e.g. linear or quadratic, the problem is solved by standard linear or quadratic
programming methods, assuming that the trust region is measured in the `1-
norm. When measuring the trust region in the the `2-norm an approach due
to Moré and Sorensen can be used, see e.g. [44].
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It is not required that the trust region problem is solved to high accuracy,
a solution providing a decrease in s(x) that is some positive fraction of that
provided by the so-called Cauchy point is su�cient to guarantee convergence,
see [17] for a thorough discussion.

The global convergence of the algorithm can be proven by imposing mild condi-
tions on f , [1] states that a sequence of iterates fxkg generated by Algorithm 2
is convergent and that a result similar to

lim inf
k!1

kf 0(xk)k = 0

can be proven.

2.4.3 Pattern Search Approach

The trust region algorithm presented above was in [12, 50, 53, 57] developed
under names as a rigorous framework for optimization using surrogates and
model assisted grid search into a pattern search method enforcing only very
mild conditions on the surrogate � the actual implemented algorithm used
interpolating DACE surrogates (see page 21), but the framework can handle
non-interpolating surrogates. Global convergence to a stationary point for a
bound-constrained version of (2.1) is proven in [12].

The algorithm is based on two phases in each iteration.

The �rst phase is a user speci�ed method, that is allowed to perform an
exhaustive search on the surrogate at design points limited to a particular
grid in the design space. If one or more promising points � including at
least one point for which f(x) is unknown � were found in the search, the
objective f is evaluated at these points. That point, if any, which provides
the most decrease, compared to the current iterate, is accepted as the next
iterate. If such a point of descent is found, the surrogate is re-calibrated, if
necessary, and the �rst phase is repeated.

If the �rst phase fails to provide decrease in the objective function, the al-
gorithm enters the second phase. Here is sought a point on the grid, among
neighbors to the current iterate, which provides a decrease in the objective.
If one such point is found, it is accepted as the next iterate; the surrogate is
re-calibrated, if necessary, and the algorithm jumps to the start of the �rst
phase. If none of the neighboring points are better than the current iterate, the
grid is re�ned (e.g. the distance between points is halved), and the algorithm
jumps to the start of the �rst phase.
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The algorithm, for the unconstrained problem with an interpolating surrogate,
is summarized in Algorithm 3. Here � is a measure of the grid density, halving
� is equivalent to halving the distance between grid points. We remark that
it is the second phase of the algorithm, which ensures convergence, that is, if
the grid is de�ned from a set of basis vectors which forms a so-called positive

basis, see [52] for convergence proof and discussion of the algorithm.

Algorithm 3 Model Assisted Grid Search

Require: k = 0, x0 2 IR
n, �0 > 0, initial surrogate s0

while not converged do
Phase 1:

Search for points T = f~xjg, j = 1; 2; : : :, on the grid, for which sk(~xj) <
f(xk). If T 6= ;, assure that T contains at least one point where f(x) is
unknown
if T 6= ; and f(x̂) < f(xk) for some x̂ 2 T then

Accept x̂ as new iterate, set xk+1 = x̂

Re-calibrate surrogate if necessary
else

Phase 2:

Find a neighboring point (on the grid) x̂ to xk for which f(x̂) < f(xk)

if 9x̂ : f(x̂) < f(xk) then

Accept x̂ as new iterate, set xk+1 = x̂

Re-calibrate surrogate if necessary
else

Keep the current iterate, set xk+1 = xk
Re�ne the mesh, set �k+1 = �k=2

end if

end if

Set k = k + 1

end while

As an extension to the algorithm Torczon and Trosset [53] introduced the use
of a merit function in phase 1, that balance the goals of providing decrease in
the objective function and improving the overall approximation model. Essen-
tially the proposed merit function ŝk(x) balance the local predictive capability
and global accuracy of the approximation;

ŝk(x) = sk(x)� �kdk(x) ; (2.26)

where �k > 0 and dk(x) = mini kx� x̂ik is the distance from x to the nearest
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site where f previously has been evaluated. The last term is introduced to
inhibit clustering and thereby to ensure that the next point is placed where
information from f will improve the current approximation. The parameter
�k should eventually vanish to ensure global convergence of the modi�ed al-
gorithm.

We should note that the proposed merit function is not di�erentiable, which
restricts the algorithm to a much smaller class of optimization methods for
optimizing the merit function in the �rst phase of the algorithm.

The parameter �k resembles in a sense the �temperature� parameter in simu-

lated annealing algorithms, see e.g. [34], as increasing the parameter tends to
make the search more global and reducing the parameter tends to make the
search more local. However, in simulated annealing algorithms the iterates are
not found in a deterministic way.

2.4.4 Space Mapping Optimization

The original formulation of the space mapping optimization problem, see [3, 7],
is to solve the n nonlinear equations

P (x) = z� ; (2.27)

for x. Here P is the space mapping described in Section 2.3.3 and z� is an
optimizer of c, the cheap model. The nonlinear equations (2.27) may be solved
using any standard method for solving nonlinear equations, e.g. the Dog-Leg
method described in [23].

Under certain conditions, as shown in Chapter 4, the space mapping prob-
lem (2.27) has the alternative formulation

min
x
s(x) � c(P (x)) : (2.28)

In fact, the latter formulation is preferable in the case where the two formu-
lations do not have the same solution.

A trust region based surrogate optimization algorithm for solving the alterna-
tive problem formulation (2.28) is presented as Algorithm 4.

In the algorithm the space mapping is iteratively approximated by a linear
Taylor model. So, at a given point xk, the surrogate is

sk(x) = c(Pk(x))
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Algorithm 4 Space mapping optimization algorithm

Require: k = 0, x0 = z�, �0 > 0, B0 = I(n)

Find P (x0)

while not converged do
Solve approximately for h = x� xk:

minimize
h

sk(xk + h)

subject to khk 6 �k

Find P (xk + h)

Compute �k �
s(xk + h)� s(xk)

sk(xk + h)� sk(xk)
if s(xk) > s(xk + h) then

accept the step
else

reject the step
end if

Update �k, Bk

Set k = k + 1

end while

where Pk is a linear model

Pk(x) = Bk(x� xk) + P (xk) ;

and Bk is an approximation to P 0(xk) obtained by a secant method. Choosing
the identity matrix as initial approximation, B0 = I(n), corresponds to the
(initial) assumption that the response functions are identical, c(x) = f(x), see
Chapter 3 (the paper [5]).

Note that the starting point x0 is chosen as the optimizer z� of the cheap
model, following the initial assumption that the models are identical. As for
the case with the trust region algorithm, Algorithm 2, the sub-problem of
minimizing sk(x) within the trust region can be solved using standard non-
linear programming methods, see e.g. [17, 44]. In the case of vector response
functions, described in Section 2.3.3, the sub-problem can be solved using one
of the methods described in [38].

If the conditions mentioned in Section 2.3.3 are satis�ed the algorithm is
convergent, see also Chapter 4. However, if the conditions are not satis�ed, as
often is the case, the algorithm may not converge to x�.
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In [51] the so-called combined model

sk(x) = wk c(Pk(x)) + (1� wk) lk(x)

was introduced. Here lk is a �rst order Taylor model, with a secant approx-
imation to the derivatives, of f . The scalar wk, 0 6 wk 6 1, is a weighting
factor, controlling the actual combination of the surrogate at iteration k in the
optimization process. A trust region based algorithm, similar to Algorithm 2,
using this combined model was proposed in [51]. In the algorithm, the pa-
rameter w is reduced monotonically from 1 to 0 during iterations. Hence, the
surrogate gradually is transformed from a mapped model approximation into
a linear approximation of f . Convergence to x�, the solution of (2.1), has been
proved for algorithms of this type, the so-called hybrid space mapping algo-

rithms, see [60] and Chapter 6 (the paper [39]). Other strategies for controlling
wk have been proposed, see [4, 45, 51].

Using such a hybrid algorithm, the space mapping method serves as a pre-
conditioner for solving (2.1). That is, by using the solution provided by the
space mapping method as a starting point for a Taylor based method, we may
reduce the number of evaluations of f needed to determine x�.

An alternative approach [22] is to combine a response correction, see Sec-
tion 2.3.1, and space mapped model, ensuring that the interpolation condi-
tions are satis�ed for use of the trust region algorithm (Algorithm 2). Such a
strategy is investigated in Chapter 5.

In [35] a space mapping approach for constrained problems where introduced,
designating an individual space mapping to each constraint function.

2.4.5 Summary

In the last sections we have reviewed four methods for optimization using
surrogate models. We summarize these methods in the following.

The response surface methodology is a loosely de�ned framework for using
regression models, in particular response surface models, for optimization.
Response surface methodology employs several techniques developed in the
statistical community, among these the sensible technique of screening a given
problem in order to identify the most important variables.

The trust region approach is a rigorously de�ned framework for optimization
using interpolating models. The fundamental technique is well-studied, and
convergence of this method can be proved.
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The pattern search approach enforces only very mild conditions on the surro-
gate model. The concept of the method is very simple, and convergence can
be proved.

The space mapping optimization method employs the response from a cheap
physical model composed of an approximation to the space mapping. The
space mapping connects similar responses of the cheap and the expensive mod-
els. Usually, in the context of optimization, a local linear Taylor model is used
for the space mapping. The method is not convergent in general. Modi�cations
have been suggested in order to ensure convergence.
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2.5 Conclusion

This chapter presented a literature overview of surrogate modelling and opti-
mization. We have aimed at presenting the essential parts of the many aspects
presented in the literature in a consistent simple notation.

We started the chapter by reviewing the most frequently used terminology of
the literature. From that, we decided to divide the study into two parts, namely
methods for generating surrogate models and methods for optimization using
surrogate models. Further we divided the surrogate models into two categories:
Functional models and physical models. We �rst summarize the functional
models, then the physical models and �nally we summarize the methods for
optimization using surrogate models.

The functional models can be constructed without any knowledge of the under-
lying physical system. They are generic models, based on algebraic expressions
and sampled data. We presented three types of functional models, namely re-
gression models, models based on radial functions and single point models.

The physical models incorporate knowledge from the particular physical sys-
tem in question. This is usually done by manipulating a cheaper model of
the same physical system, so that it better approximates the behaviour of the
expensive model of the system. We presented three types of methods for gener-
ating physical models, namely the response correction method, the multipoint
method and the space mapping method.

Finally, we considered methods for optimization using surrogate models. We
presented four methods, namely response surface methodology, the trust re-
gion approach, the pattern search approach and the space mapping method.
Convergence can be proved for the trust region and pattern search approaches.
The space mapping method can be made convergent if it is combined with clas-
sical optimization methods. Convergence for such a hybrid method is proven
in Chapter 6.

The space mapping method is the topic of the remaining part of this thesis.
The next chapter, Chapter 3, introduces and motivates the space mapping
method.
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Symbols

k � k unspeci�ed norm

k � k2 Euclidean norm, kxk2 = (xTx)
1
2

b vector with the radial functions at t, see (2.6)
c response from cheap physical model, c : IRn 7! IRm

f response from expensive physical model, f : IRn 7! IRm

H convex merit function, usually a norm, H : IRm 7! IR

k iteration counter in optimization procedure, k = 1; 2; : : :

m number of response functions, m = 1 except otherwise noted
n dimensionality of the design parameter space, x 2 IRn

p number of data points (tj ; yj), j = 1; : : : ; p

P space mapping, relating parameters of f and c, P : IRn 7! IRn

q number of cheap physical models, ci, i = 1; : : : ; q

x optimizeable model parameters of f and c
x� minimizer of f , see (2.1)
xk kth iterate in an optimization procedure
s surrogate model, to take the place of f
sk surrogate in the kth iteration of an optimization procedure
t design sites, used to generate functional models, t = (t1; : : : ; tp)

T ,
where tj 2 IR

n, j = 1; : : : ; p

u number of basis functions in a regression model
v vector with basis functions (for regression), v : IRn 7! IRu

y expensive model evaluated at the design sites, y = (y1; : : : ; yp)
T ,

yj = f(tj), j = 1; : : : ; p

z residual function, see section 2.2.2
� regression constants, � 2 IRu


 radial model constants, 
 2 IRq

� radial function, �j(x) = �(x� tj), j = 1; : : : ; p
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Abstract. The space mapping technique is intended for optimization of engineering models which involve very
expensive function evaluations. It is assumed that two different models of the same physical system are available:
Besides the expensive model of primary interest (denoted the fine model), access to a cheaper (coarse) model is
assumed which may be less accurate.

The main idea of the space mapping technique is to use the coarse model to gain information about the fine
model, and to apply this in the search for an optimal solution of the latter. Thus the technique iteratively establishes
a mapping between the parameters of the two models which relate similar model responses. Having this mapping,
most of the model evaluations can be directed to the fast coarse model.

In many cases this technique quickly provides an approximate optimal solution to the fine model that is suffi-
ciently accurate for engineering purposes. Thus the space mapping technique may be considered a preprocessing
technique that perhaps must be succeeded by use of classical optimization techniques. We present an automatic
scheme which integrates the space mapping and classical techniques.

Keywords: non-linear optimization, space mapping, surrogate modelling

1. Introduction

When engineers encounter a mathematical problem which they cannot solve, it is common
practice to consider another formulation which is solvable and intends to contribute to the
original problem solution.

The space mapping technique, which was introduced by Bandler et al. (1994), is based
on this principle. It is an optimization technique for engineering design in the following
situation: Assume the performance of some physical object depends on a number of param-
eters. We search for an optimal parameter setting and during the search procedure we need
to find model responses corresponding to some intermediate sets of parameters. This may
for instance be based on function evaluations requested by a mathematical optimization
algorithm. These evaluations are assumed to be so expensive that traditional optimization
becomes unrealistic in practice. Even cases where function evaluations involve physical
experiments may occur. Therefore, the aim is to make a shortcut using a cheaper, but pre-
sumably less accurate, model of the same physical system, in order to gain information
about the optimal parameter setting of the original model.
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Thus we assume two different models are available:

1. An accurate but expensive model, represented by a residual functionf : �( f ) → R
m ,

which must be minimized as indicated below. Here�( f ) ⊆ R
n, andm ≥ n. This model

is denoted thefine model. Gradients off are assumed not to be available.
2. A cheap (i.e., fast) model, represented by a residual functionc : �(c) → R

m , which
must be minimizable in the same sense asf . Here�(c) ⊆ R

n, andm ≥ n. This model
is denoted thecoarse model. Gradients ofc are assumed to be available.

In this context a residual function is the difference between a response function, orig-
inating from a model, and some predefined specifications. A response function may for
instance be model responses at a specific set of sample pointst ( j), j = 1, . . . , m, hence
f (x), c(z) are vector functions with elementsf ( j)(x) = ϕ(t ( j); x), c( j)(z) = σ(t ( j); z)
being the difference between the model response and the specification at a given sample
point t ( j). We wish tofind an optimal set of parametersx∗ ∈ �( f ) which makes thefine
model response meet the specifications as well as possible, hence minimizing thefine model
residual functionf

x∗ ∈ arg min
x∈�( f )

H( f (x)) (1)

with respect to some merit functionH , e.g., a norm inRm . Since thefine model is considered
too expensive for direct optimization, we want to use the coarse model to gain information
about thefine model.

The general idea of how this is achieved can be illustrated by the following simple
example:

Consider an archery contest, and assume for simplicity that the archer has a steady hand:
he always shoots in exactly that direction he has planned. The goal of course is to hit the
bull’s-eye y∗, hence y∗ represents the given set of specifications. The shooting situation is
simulated with a coarse model which hits the spot the archer is pointing at, not taking forces
like wind and gravity into account.

We represent the points y in the target plane as vectors in R
2. The coarse objective function

is a vector function c : �(c) → R
2, where �(c) ⊆ R

2 is the set of possible directions from
the archer to the target. Let z ∈ �(c) be a direction pointing to the spot y(c) at the target.
Then the objective c(z) is the difference between y(c) and the target, i.e., c(z) = y(c) − y∗.
The fine model is a representation of the actual shot towards the target, i.e., in this case the
fine model represents physical experiments. The fine objective function is a vector function
f : �( f ) → R

2, �( f ) ⊆ R
2. For a direction x ∈ �( f ) the objective f (x) is the difference

between the spot y( f ) at the target which is hit and the target, i.e., f (x) = y( f ) − y∗. We
wish to find a direction x∗ ∈ �( f ) such that ‖ f (x∗)‖ = 0.

At first the archer aims at y∗, i.e., he optimizes the coarse model by finding the direction
z∗ ∈ �(c) which points at y∗. This can be formulated as follows,

z∗ = arg min
z∈�(c)

H(c(z)) (2)

for some norm H. In this case ‖c(z∗)‖ = 0.
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Figure 1. “Calculation” of thefirst shotf (x0), x0 = z∗. In the next shot the archer will aim at(y∗ − f (x0)) + y∗.

After taking aim the archerfires the shot in the direction chosen, hence we“calculate”
f (x0) for x0 = z∗, as illustrated infigure 1.

Since the coarse model does not take the influence of wind and gravity into account, the
arrow may fail to hit y∗, which in mathematical terms means that x∗ 
= z∗.

After failing a shot any good archer would adjust the sight in order to obtain a better
result with the next shot. The natural adjustment would be to“mirror the error”. If, for
instance, thefirst shot has hit too low on the right side of y∗, then the next aim should be
directly opposite: upwards on the left side of y∗. In our notation the second shot would
aim at (y∗ − f (x0)) + y∗. Thus, if we let z0 be the direction which points at f(x0) (i.e.,
c(z0) = f (x0)), then c(z∗) = y∗ implies that the direction of the second shot becomes
x1 = (z∗ − z0) + z∗. Since x0 = z∗ this is the same as the tentative iteratex̃1 suggested by
thefirst space mapping iteration (see(7) and(8) below where B0 = I ).

Essentially this way of a coarse model interacting with afine model (or as here: the
physical reality) has been used in engineering practice for decades.

The idea of the space mapping technique is to establish a connection between the coarse
and thefine models, through a parameter mapping, and to utilize this mapping forfinding an
optimal set of parameters for thefine model. In other words we are interested in establishing
a parameter mappingp : �( f ) → �(c) which yields an approximation of the form

f (x) � c(p(x)), (3)

where the mapping functionp relates similar responses in the following sense: Forx ∈ �( f )

we obtainz = p(x) ∈ �(c) as a solution to the subproblem

z ∈ arg min
ẑ∈�(c)

‖ f (x) − c(ẑ)‖, (4)
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Figure 2. The mapping function relating thefine and the coarse model spaces, shown here for the two-dimensional
case, [z(1) z(2)]T = p([x(1) x(2)]T ).

for some specific norm. In the present paper we assume that this optimal solution is unique.
For the problem of multiple solutions we refer to Bakr et al. (2000b). The concept of the
mapping function is illustrated infigure 2 for the two-dimensional case.

If the approximation (3) is close then the composite functionc ◦ p is applicable as a
surrogate forf . Hence the optimal solution ofc ◦ p can be expected to be close to the
optimal solution of f . In other words we might optimizec ◦ p rather thanf which is
expected to be easier under the condition thatc and f have similar structures: Then we
expectp to be a well behaved function, and sincec is cheap to calculate, the composite
functionc ◦ p may be easier to optimize thanf . This way of replacingf by c ◦ p is the
basis of the space mapping technique.

Note for the subproblem (4) that for a givenx, a calculation ofp(x) involves one evalua-
tion of f succeeded by an optimization in the coarse model space�(c). Hence an evaluation
of the mapping function is at least as expensive as an evaluation of thefine model.

The space mapping technique assumes the two models are related in such a way that (3)
is a close approximation. Hencec ◦ p is optimized in the effort offinding a solution to (1)
and for this we apply classical optimization techniques. The problem formulation is

x̄ ∈ arg min
x∈�( f )

H(c(p(x))), (5)

wherex̄ may be close tox∗ if c ◦ p is close tof . Observe that if the optimal solutionz∗ of
H ◦ c is unique then the solution of (5) is equivalent of solving the system ofn non-linear
equations

p(x) = z∗ (6)

for x. In other words̄x = p−1(z∗).
In thefirst space mapping paper Bandler et al. (1994) estimate the mappingp on the basis

of some predefined weighted fundamental functions and evaluations off at a selected set of
base points in�( f ). Bandler et al. (1995) formulated the problem as solving (6) forx using
Broyden’s method for non-linear equations (Broyden, 1965). Bakr et al. (1998) introduced
a trust-region methodology to enhance the global convergence properties. The details of
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these different approaches are described in the review paper by Bakr et al. (2000b). Recent
results of combining space mapping and direct optimization in thefield of microwave circuit
design are described in Bakr et al. (2000a)

2. Space mapping details

In our formulation the space mapping intends to solve (5) by iteration. At thekth iteration
the mapping functionp as defined in (4) is replaced by a local estimatepk, and then the
optimal solution ofH ◦ c ◦ pk is the next iterate. The question is how tofind a good
approximationpk. In this presentation we choose to iteratively approximatep by a first
order approximation, with the Jacobian matrix approximated using Broyden’s rank one
update formula.

Let thekth iterate bexk and assumezk = p(xk) has been found by (4). Letting thekth
Jacobian approximation beBk, the corresponding linearization is

pk(x) = Bk(x − xk) + zk. (7)

The (k + 1)th tentative iterate is:

x̃k+1 ∈ arg min
x∈�( f )

H(c(pk(x)). (8)

In case of multiple optimal solutions we choose the one having the shortest distance to the
previous iteratexk. If H( f (x̃k+1)) < H( f (xk)) then the next iteratexk+1 is chosen as̃xk+1,
otherwisexk+1 = xk.

Now z̃k+1 = p(x̃k+1) is found by (4) andfinally the Jacobian approximation is updated
by Broyden’s formula:

Bk+1 = Bk + z̃k+1 − zk − Bkhk

hT
k hk

hT
k , (9)

wherehk = x̃k+1 − xk. Notice that the update is always performed, independently of the
acceptance of the tentative pointx̃k+1.

Initially the optimal solutionz∗ of H ◦ c is found and used as thefirst iterate:x0 = z∗.
This can be interpreted as an assumption thatp is close to the identity mapping:

f (x) � c(p(x)) � c(Ix) (10)

whereI = I (n). It corresponds to the initial aim at the bull’s eye in the archery example of
the previous section.

The motivation for the initial choice of the Jacobian approximation is another intuition
used in the archery example: To mirror the error. This intuition is based on the assumption
that the difference between the two model functions is close to a parameter translation:

f (x) � c(p(x)) � c(Ix + C0) (11)
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whereC0 is a constant, i.e.,p1(x) = Ix + C0. Sincep(x0) = z0 we obtainC0 = z0 − Ix0,
and thus (11) suggests thatp0(x) is given by (7) withk = 0 andB0 = I (n). Hence the
traditional choice ofB0 in Broyden’s method is motivated by the archer’s simplification
(11).

The validity of the mapping approximationpk is confined to a trust region of sizeδk,
hence the feasible set at iterationk is

x ∈ �(pk) ≡ {x̃ | ‖x̃ − xk‖ ≤ δk} ∩ �( f ), (12)

for some specific norm, thus (8) is replaced by

x̃k+1 ∈ arg min
x∈�(pk)

H(c(pk(x)). (13)

The update of the trust region sizeδk follows the classical scheme: Significant improve-
ment in the objective compared to the predicted improvement by the approximation is
rewarded by enlarging the trust region, whereas insufficient improvement leads to decreas-
ing the trust region size, see Moré (1982) for a thorough treatment of this subject.

For many engineering purposes this formulation yields sufficiently accurate results. How-
ever, the convergence of the approach depends on the similarity between the two models.
Now, assume the sequence{xk} generated using (13) converges to the solutionx̄ of (6), then
z∗ = p(x̄). If x̄ = x∗ thenz∗ = p(x∗); if, however, the response of the coarse model is less
accurate than that of thefine model then we cannot expectz∗ andx∗ to correspond. Hence
in general we must expectx̄ 
= x∗.

In case of convergence the typical performance we have noticed is a decrease of‖xk−x∗‖
as long as this distance is of a larger order of magnitude than‖x̄ − x∗‖. Finally, asxk

approaches̄x, ‖xk − x∗‖ starts to increase.
This observation indicates that the space mapping technique may be considered a good

preprocessing process, but not a method for obtaining an accurate solution. If the latter is
required then another (i.e., locally convergent) method of optimization will be necessary in
thefinal stages. A switch of method should ideally take place when the distance‖xk − x∗‖
has reached the same order of magnitude as‖x̄−x∗‖. The combined strategy of the following
section represents some early attempts to reach this ideal goal.

3. Combining with classical methods

This section demonstrates how the space mapping technique can be combined with classical
methods of optimization, based on local Taylor type approximations.

Assume the space mapping technique has been used for a number of iterations. Hence
a number offine model evaluationsf (xk) have been calculated. On the basis of these we
build an approximation of the Jacobian off using, for instance, Broyden’s formula:

Dk+1 = Dk + f (xk+1) − f (xk) − Dkhk

hT
k hk

hT
k , (14)
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wherehk = xk+1 − xk. The initial Jacobian approximation is related to the Jacobian of the
mapped coarse model atx0:

D0 = ∇x=x0[c(p(x))] = ∇z=z0[c(z)] · ∇x=x0 p(x)
(15)

≈ ∇z=z0[c(z)] · ∇x=x0 p1(x) = ∇z=z0[c(z)]

where the“≈” is probably not very precise but in accordance with the intuition (11) used
when we start the space mapping. This yields a local linearization of thefine model

lk(x) = Dk(x − xk) + f (xk). (16)

Traditionally we would minimizeH ◦ f iteratively using (16) as a basis forfinding the
(k + 1)th tentative iterate:

x̃k+1 ∈ arg min
x∈�(lk)

H(lk(x)), (17)

where�(lk) is some trust region to be updated during the iteration. The next iterate isxk+1 =
x̃k+1 if the objectiveH ◦ f is improved, otherwisexk+1 = xk. Under mild conditions this
iteration yields convergence to a stationary pointx∗ (see (1)) off , see e.g., Madsen (1986).

In the present context we use a combination of (16) and the space mapping modelc◦ pk

of f : At thekth iteration the combined surrogate forf is

sk(x) = ωk · c(pk(x)) + (1 − ωk) · lk(x), (18)

whereωk ∈ [0; 1]. Thus the(k + 1)th tentative iterate is:

x̃k+1 ∈ arg min
x∈�(sk)

H(sk(x)). (19)

where�(sk) is a trust region to be updated during the iteration. In case of multiple solutions
we choose the one closest toxk. The next iterate isxk+1 = x̃k+1 if the objectiveH ◦ f is
improved, otherwisexk+1 = xk.

The intention is to use the space mapping surrogate initially (i.e.,ωk = 1) and the local
approximation (i.e.,ωk = 0) in thefinal stages of the iteration. Hence the weighting factorωk

can be used in a transition from the space mapping surrogatec◦ pk to a local linearizationlk.
We expect the usefulness of the linear model to increase as the iteration approaches the

optimal solution off . On the other hand, we expectc◦ pk to be insubstantial in describingf
accurately in the vicinity of the optimal solution. Hence we would like to use the information
given in the coarse model at the initial stages of the iterations, and as we approach the optimal
solution we would like to do a direct optimization, by having the linear modellk dominatesk.

In general, we do not wish to change the value ofω if the steps produced by the space
mapping algorithm yield a sufficient reduction in the objective functionH ◦ f .

A very simple method of updatingωk which fulfills these conditions is to defineωk+1 =
ωk if the objective has been improved, andωk+1 = ωk/2 otherwise. More sophisticated
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updating strategies are currently being investigated. Some suggestions are found in Bakr
(2000), Bakr et al. (2000a), and Søndergaard (1999). The challenge is tofind a good
combination of the trust region radius update and theωk update.

4. Examples

Example 1a. To illustrate the space mapping method we consider the design of a two-
section capacitively-loaded 10 : 1 impedance transformer. The coarse and thefine models
are shown infigure 3. Assume that thefine model is very expensive and is not recommended
for direct optimization. The values of thefine model capacitances are given in Table 1. The
characteristic impedances are keptfixed at the optimal values given in Table 1. The physical
lengthsL1 andL2 of the two transmission lines are selected as designable parameters. Eleven
frequency points are simulated per sweep. We consider the input reflection coefficient
responsef ( j )(x) = |S11(t ( j ); x)| (notice thatS11(t ( j ); x) > 0 for all x) of both models
which is a function of the real frequencyt and the designable parametersx = [L1 L2]T .

The design specifications are|S11(t ( j ); x)| ≤ 0.50 for the frequency intervalt ∈ [0.5; 1.5]
GHz. Hence we wish tofind a designx = x∗ of thefine model yielding

H( f (x)) ≡ max
j

{
f ( j )(x)

} ≤ 0.50. (20)

In the following we review some results of applying the combined method (18) on this
problem.

Table 1. Thefine model capacitances, and the characteristic impedances for the two-section capacitively-loaded
impedance transformer.

Capacitance Value (pF) Impedance Value (ohm)

C1 10 Z1 4.47214

C2 10 Z2 2.23607

C3 10

Figure 3. Fine and coarse model, two-section capacitively-loaded impedance transformer.
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Table 2. The optimal coarse andfine model parametersz∗ andx∗ (physical lengths of the transmission lines) for
the two-section capacitively-loaded impedance transformer.

z∗ (m) x∗ (m)

0.01724138 0.06186103

0.01724138 0.06605482

Given the optimal coarse model parametersz∗ (in Table 2), initially we letx0 = z∗,
figure 4 shows thefine model responsef (x0). The figure illustrates how the initialfine
model design atx0 violates the specifications (20). Solving the subproblem (4) wefind
z0 = p(x0), such thatc(z0) (also shown infigure 4) is close tof (x0).

After the first iterationx1 is found using (19) and fromfigure 5 we note how thefine
model responsef (x1) meets the specifications. For the engineering purpose offinding a
design satisfying the specifications (20) a result like this is sufficient. Until this stage the
algorithm has used twofine model evaluations.

Figure 4. Two-section capacitively-loaded impedance transformer: Thefine model responsef (x0) (◦) at the
coarse model optimal solutionx0 = z∗ and the coarse model responsec(z0) (—•—), z0 = p(x0). The dashed curve
is the optimal coarse model responsec(z∗) which the mapped coarse modelc ◦ p is aiming for, see (5).
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Figure 5. Two-section capacitively-loaded impedance transformer: Thefine model responsef (x1) (◦) and the
coarse model responsec(z1) (—•—), z1 = p(x1).

The visual difference from thefine model design atx1 to the optimal designx∗ (given
in Table 2) is rather small:figures 5 and 6 show that from thefirst iteration to the solution
the objective is decreased only fromH( f (x1)) = 0.481 toH( f (x∗)) = 0.455. It turns out
that the distance betweenx1 and the solutionx∗ is so small that the coarse model is unable
to provide sufficient improvements afterx1 (in accordance with the argument at the end of
Section 2). Hence the algorithm switches rapidly to the local linear model which—in the
near neighbourhood of an iteratexk—is more accurate than the mapped coarse model. The
fact that the local linear model is preferable when only small steps are needed is illustrated
in Example 1b.

Example 1b. Using the same problem, we here give a graphical illustration of how the
mapped coarse model approximationc◦ pk is a valid approximation tof in a larger region
than a linearizationlk of f . The following point is to be made: When large steps are needed
then the mapped coarse model approximation is the better, and when small steps are needed
(e.g., when we are close tox∗) then the linearizationlk is the better. In order to make the
argument more clear we insert accurate Jacobian approximations,Bk to p′(xk) in (7), and
Dk to f ′(xk) in (16) (these approximations being found usingfinite differences).
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Figure 6. Two-section capacitively-loaded impedance transformer: Thefine model responsef (x∗) (◦) and the
coarse model responsec(p(x∗)) (—•—).

In figure 7 the mapped coarse model approximation error‖c(pk(x)) − f (x)‖2 is plotted
for points on a mesh in a square region centered atxk. The linearizedfine model approxi-
mation error‖lk(x) − f (x)‖2 is plotted for points at the same mesh. Thefigure illustrates,
as expected, how the approximation error of the linear approximationlk (which is zero at
xk) grows with the square of the distance fromxk. The approximation error of the mapped
coarse modelc ◦ pk, however, does not grow systematically with the distance fromxk, in
fact it is almost constant in the region considered. Furthermore we note thatc◦ pk does not
interpolatef , i.e.,‖c(pk(x)) − f (x)‖2 is non-zero atx = xk.

From these observations we conclude that close toxk the better approximation tof is lk,
whereasc◦ pk is the better away fromxk. In factc◦ pk is a valid approximation tof in the
whole region shown infigure 7.

Example 2. In this example we consider the design of a seven-section capacitively-loaded
impedance transformer. The load impedance is 100� and the line impedance is 50�. The
coarse and thefine models are shown infigure 8. The values of thefine model capacitances
are given in Table 3. The characteristic impedances are synthesized using an equi-ripple
approximate design procedure (Pozar, 1998) and are keptfixed at these values given in
Table 3. The physical lengthsLi , i = 1, . . . ,7, of the seven transmission lines are selected
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Figure 7. Two-section capacitively-loaded impedance transformer: Mapped coarse model approximation error
‖c(Bk(x−xk)+ p(xk))− f (x)‖2 (white mesh), linearizedfine model approximation error‖Dk(x−xk)+ f (xk)−
f (x)‖2 (gray scale mesh). For both meshes:xk the point of linearization is in the center of the plot.

Figure 8. Fine and coarse model, seven-section capacitively-loaded impedance transformer.
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Table 3. Thefine model capacitances, and the characteristic impedances for the seven-section capacitively-loaded
impedance transformer.

Capacitance Value (pF) Impedance Value (ohm)

C1 0.025 Z1 91.9445

C2 0.025 Z2 85.5239

C3 0.025 Z3 78.1526

C4 0.025 Z4 70.7107

C5 0.025 Z5 63.9774

C6 0.025 Z6 58.4632

C7 0.025 Z7 54.3806

C8 0.025

Figure 9. Seven-section capacitively-loaded impedance transformer: Thefine model responsef (x0) (◦) at the
coarse model optimal solutionx0 = z∗ and the coarse model responsec(z0) (—•—), z0 = p(x0). The dashed curve
is the optimal coarse model responsec(z∗) which the mapped coarse modelc ◦ p is aiming for, see (5).
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as designable parameters. We consider the input reflection coefficient responsef ( j )(x) =
|S11(t ( j ); x)|, and the design specifications are|S11(t ( j ); x)| ≤ 0.07 for the frequency interval
t ∈ [1; 7.7] GHz.

In figure 9 thefine model response is plotted at the optimal design of the coarse model,
x0 = z∗. The coarse model response at the designz0 (being the design at which the coarse
model response is closest to thefine model responsef (x0)) is also plotted infigure 9. It
is seen that this coarse model response is not very accurate in describing thefine model
response indicating that the correspondence between the two models is less obvious in this
case.

In figure 10 the optimalfine model response is plotted together with the closest coarse
model response. We see how the coarse model poorly describes thefine model at this design,
in this case the space mapping algorithm is depending heavily on the classical method to be
able to converge to the optimal solution (not another local minimum). The optimal coarse
andfine model parameters are given in Table 4.

A feasible solution is found after 18fine model evaluations. At this stage the combination
parameterωk of (18) has been downdated to 0.016, so the space mapping is almost abandoned

Figure 10. Seven-section capacitively-loaded impedance transformer: Thefine model responsef (x∗) (◦) and
the coarse model responsec(p(x∗)) (—•—).
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Table 4. The optimal coarse andfine model parametersz∗ andx∗ (physical lengths of the transmission lines) for
the seven-section capacitively-loaded impedance transformer.

z∗ (m) x∗ (m)

0.01724138 0.01564205

0.01724138 0.01638347

0.01724138 0.01677145

0.01724138 0.01697807

0.01724138 0.01709879

0.01724138 0.01723238

0.01724138 0.01625988

from this stage, i.e., the rest of the iterations are practically speaking based on the local
linear modellk.

For comparison we have solved this problem directly using an implementation of the
minimax optimization method of Hald and Madsen (1981) withfinite differences to ap-
proximate thefine model Jacobians. As initial iterate we use the coarse model optimal
solution, i.e.,x0 = z∗. This way wefind a feasible solution after 25fine model evaluations.

5. Conclusions

The basic principles of the space mapping technique have been presented. It is shown how
the space mapping technique can be combined with classical optimization strategies. The
combined method is illustrated by a simple two-dimesional example and a more complicated
seven-dimensional example. The space mapping surrogate is shown by example to be a
valid approximation to thefine model in a larger region than a correspondingfine model
linearization using the same number offine model evaluations.

The space mapping has proved to be an efficient preprocessing technique in many difficult
engineering optimization problems. The solution accuracy is often sufficient for practical
purposes. Otherwise the technique can be combined with other methods of optimization.
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Chapter 4

Space Mapping Theory

and Practice

The space mapping technique was introduced by Bandler et al. in 1994 [6].
The technique relies on a parameter mapping, the so-called space mapping,
between the parameter spaces of two independent models, denoted the �ne
model and the coarse model. This space mapping aligns the parameter spaces
of the �ne and the coarse model, such that a combination of the coarse model
and the space mapping can serve as a surrogate for the �ne model.

One should discern between space mapping for modelling and space mapping
for optimization. In the �rst case the purpose is to obtain a surrogate which
is close, i.e. a small residual measured in some norm, to the �ne model over a
large part of the parameter space. With space mapping for optimization the
purpose is to use the surrogate to obtain the optimizer of the �ne model, only
scarcely evaluating the latter. The focus of this presentation is space mapping
for optimization.

In order to make a successful surrogate the space mapping must meet certain
conditions. We propose a set of conditions for which the minimizer of the �ne
model can be found using the space mapping surrogate.

The actual de�nition of the space mapping is not uniquely determined by
theoretical conditions. In fact, there is a great deal of freedom in choosing
how to de�ne the space mapping. However, meeting the theoretical conditions



72 Space Mapping Theory and Practice

in a practical de�nition is not trivial. There has yet to be proposed a de�nition
of the space mapping which is robust in most practical situations.

There has been established consensus about a certain way of de�ning of the
space mapping, mapping similar model responses, which we denote the usual
space mapping de�nition. We illustrate some situations where this usual de�-
nition of the space mapping fails, and show how other de�nitions of the space
mapping may have more tractable properties.

We start this chapter by Section 4.1 which presents some theory about space
mapping. First in the section, the mathematical notation is de�ned and a
motivating example is introduced. Thereafter, some theoretical results are
derived about the space mapping under certain ideal conditions. As a special
case the usual de�nition of the space mapping is considered. In Section 4.2
follows a discussion about four alternative space mapping de�nitions, related
to the theory and observations from numerical test problems. In Section 4.3
the approximation error of the coarse model composed with the space mapping
is treated both theoretically and for a speci�c numerical test problem. We end
this chapter by summarizing the conclusions in Section 4.4.

4.1 Space Mapping Theory

4.1.1 Theoretical Introduction

Throughout the chapter we apply the following general assumptions: Two
models are available, namely the �ne model and the coarse model. The �ne
model is represented by the response function f : IRn 7! IRm, with f =

(f1; : : : ; fm)T . The coarse model is represented by the response function c :

IRn 7! IRm with c = (c1; : : : ; cm)T . The functions f and c are assumed to
be continuously di�erentiable. The response functions are measured using the
merit function H : IRm 7! IR which is a convex function, e.g. a norm.

We assume the existence of a function p : IRn 7! IRn, the space mapping,
which by its usual de�nition aims to relate similar responses of f and c. We
will consider several di�erent de�nitions of p throughout this chapter.

We now introduce four important sets of minimizers, X�, Z�, X�
p and X�

cÆp.

The main problem we intend to solve using space mapping optimization is
�nding a �ne model minimizer. The set of all �ne model minimizers is de�ned
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by

X� � arg min
x2IRn

H(f(x)) :

For the similar problem with the coarse model, we de�ne the set of all coarse
model minimizers

Z� � arg min
z2IRn

H(c(z)) :

The �rst application of space mapping uses what we call the original space

mapping technique, see [6, 7], which is the problem of solving the n nonlinear
equations

p(x) = z� (4.1)

for x 2 IRn, with z� 2 Z�. Often (4.1) is solved using the least-squares formu-
lation,

min
x2IRn

kp(x)� z�k2 : (4.2)

The problem (4.2) can be stated in a more general setting, as �nding those
points, denoted X�

p , in the space mapping image fp(IRn)g which are closest to
the set of all coarse model minimizers,

X�
p � arg min

x2IRn
d(p(x); Z�) ; (4.3)

where d(u; V ) is the Euclidean distance from the point u to the set V ,

d(u; V ) = inf
v2V

ku� vk2 :

The set X�
p is denoted as the set of all space mapping solutions.

Recently, in [11], a new formulation of the problem in (4.1) was proposed,
namely to minimize the so-called space mapped coarse model c(p(x)). We de�ne
the space mapped coarse model minimizers

X�
cÆp � arg min

x2IRn
H(c(p(x))) ; (4.4)

We show later that the space mapping solutions (4.3) and the space mapped
coarse model minimizers (4.4) are the same if the Conditions C1 and C3,
de�ned below, are satis�ed.
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We now de�ne four conditions for the space mapping. The conditions can not
always be expected to be satis�ed in practice, however they are essential for
the theoretical understanding of the space mapping technique. We are not at
this point assuming that these conditions are satis�ed.

C1 Z� � p(IRn)

C2 Z� � p(X�)

C3 p is one-to-one

C4 X� and Z� are singletons

The following is our interpretation of these conditions.

The Condition C1 states that the set of all coarse model optimizers Z� is
the image of the space mapping. Hence all coarse model minimizers can be
reached through the space mapping.

Condition C1 is implied by the more strict Condition C2, which requires Z�

to be in the space mapping image p(X�). Condition C2 is a generalization of
the perfect mapping assumption, introduced in [11], namely that

p(x�) = z� ; (4.5)

when C4 holds, which states that the minimizers of H(f(x)) and H(c(z)) are
unique, i.e. X� = fx�g and Z� = fz�g.

A two-dimensional conceptual illustration of the above conditions is provided
by Figure 4.1. The �gure shows the case where C1 and C4 hold, so the unique
minimizer z� is in the image of the space mapping of the �ne model parameter
space. If further C2 and C3 hold, then x� and z� are directly related through
the space mapping as in (4.5).

To supplement this abstract interpretation we now consider an example which
illustrate the above conditions on practical test problems. The example will
also motivate the theory, which is presented right after the example.

4.1.2 Example: Space Mapping Images

We now introduce an example to illustrate the Conditions C1�C4 introduced
above and to motivate the theory we develop next. The example consists of
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coarse model space fine model space

z�

p
x�

Figure 4.1: Conceptual illustration of the space mapping image of a two-dimensional

�ne model space into a coarse model space. Here the unique coarse model optimizer

z� is in the mapping image, i.e. z� 2 p(x) for x 2 IRn, corresponding to a case where

C1 and C4 hold.

plots showing images of the space mapping p, i.e. plots of the set fp(x) : x 2
IR2g, for three two-dimensional test problems. For practical reasons though,
we only show the space mapping images for a subset of IR2.

The three two-dimensional test problems are TLT2, PISTON and ROSEN,
which are described in Appendix A. The space mapping images of these prob-
lems are in the Figures 4.2, 4.4 and 4.5. Table 4.1 contains the description of
the markers shown in the �gures.

Marker Fine space Coarse space

N x�p 2 X
�
p p(x�p)

H x�cÆp 2 X
�
cÆp p(x�cÆp)

� x� 2 X� z� 2 Z�

� - p(x�)

Table 4.1: Description of markers in Figures 4.2, 4.4 and 4.5.

We note here that Condition C4 is satis�ed for all three test problems, hence
the �ne and coarse model minimizers are unique in the considered subset of
IR2. Whereas Condition C3, requiring a one-to-one mapping, is not completely
satis�ed. This, even though we are using a space mapping de�nition that
attempts to establish uniqueness by regularization. The actual de�nition used
is the gradient regularization de�nition of the space mapping, see (4.13) below.
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We discuss this and other de�nitions of the space mapping later in this chapter.
For reference, the regularization parameter used in the example is � = 10�4.

The TLT2 Space Mapping Image In Figure 4.2 the space mapping image
for the TLT2 test problem is shown. We see how the �ne model space is
sampled densely in a rectangular area and that the image of the space mapping
in the coarse model space does not have the same rectangular form. In fact,
the space mapping is nonlinear, particularly around the solutions.

Further we see how the �ne model minimizer x� does not map into the coarse
model minimizer z�, hence the mapping is not perfect, as de�ned in (4.5), and
therefore Condition C2 is not satis�ed.

Figure 4.2 also shows that the solutions x�p and x
�
cÆp do not coincide. So solv-

ing (4.1) and (4.4) do not provide the same solution. We now examine the
responses at these di�erent solutions.

In Figure 4.3 is plotted the response functions of the TLT2 problem for the
�ne and the coarse model evaluated at the points marked in Figure 4.2.

The objective is a minimax problem. i.e. H(�) = maxf�g, and the objective
function values for the plotted response functions are listed in Table 4.2. The
design speci�cations are maxjffjg 6 0:5, j = 1; : : : ; 11.

Marker Point H(f(�)) H(c(p(�)))

N x�p 0.5538 0.5217

H x�cÆp 0.4673 0.4399

�, � x� 0.4553 0.4507

Table 4.2: Description of markers in Figure 4.3. The merit function is minimax,

H(�) = maxf�g. Numbers are rounded to four decimals.

We see from the �gure and the table that the �ne model response at the point
x�p does not satisfy the speci�cations. Whereas the model responses for the
two other points, x� and x�cÆp, satis�es the design speci�cations. In addition
we see that the �ne model minimizer, x�, is better than x�cÆp only by a small
margin in the objective function value.

These observations suggest that the formulation in (4.4) should be preferred
over the original space mapping formulation (4.1). We will motivate this fur-
ther in the discussion of the example below.



4.1 Space Mapping Theory 77

Fine model space

Coarse model space

Figure 4.2: Fine model space (upper plot) and space mapping image in the coarse

model space (lower plot) for the TLT2 problem. Refer to Table 4.1 for a description

of the markers.
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Figure 4.3: Fine model (upper) and coarse model (lower) responses at the points

marked in Figure 4.2. The objective function values for the response curves are listed

in Table 4.2. The hatched line indicate the response speci�cations.
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The PISTON Space Mapping Image In Figure 4.4 the image of the
space mapping is shown for the PISTON test problem. From the �gure we see
how z� is in the space mapping image, z� 2 p(x), corresponding to Condition
C1 being satis�ed. Further, the points x�p and x

�
cÆp coincide and their image is

the coarse model minimizer z�. But, we also see from the �gure that x� does
not map into z�, hence the mapping is not perfect, p(x�) 6= z�, and therefore
Condition C2 is not satis�ed for this problem.

The ROSEN Space Mapping Image In Figure 4.5 the image of the space
mapping is shown for the ROSEN test problem. From the �gure it is seen that
for this problem the mapping is perfect, i.e. p(x�) = z�, hence Condition C2
is satis�ed. Because of this property the three points x�, x�p and x

�
cÆp coincide.

Therefore we can use the c Æ p as a surrogate for f and obtain the minimizer
of the latter by solving (4.4).

Discussion of the Example

As stated in the beginning of this example, all the sets of minimizers de�ned
in Section 4.1.1 are singletons for these test problems.

The observation for the PISTON and ROSEN test problems that x�p and x
�
cÆp

coincide in the �ne model point mapping to the coarse model minimizer z� is
in fact a general property when Condition C1 (or C2) is satis�ed. This can
be veri�ed theoretically, which is done by Lemma 4.2 in the next section.

In the case where x�p and x
�
cÆp do not coincide, the TLT2 test problem indicated

that the solution x�cÆp was preferable. We now argue that this may generally
be the case.

The solution x�p maps into p(x
�
p) the closest point to z

� in the space mapping
image, hence

p(x�p) = argminz2p(IRn) kz � z�k2 :

Whereas the solution x�cÆp maps into that point in the space mapping image
with lowest objective function value of the mapped coarse model, hence

p(x�cÆp) = argminz2p(IRn)H(c(z)) : (4.6)

Assume for the moment that the merit function H is a norm, H = k�k. Assume
also that the deviation between c Æ p and f at the points x 2 fx�p; x

�
cÆpg are
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Fine model space

Coarse model space

Figure 4.4: Fine model space (upper plot) and space mapping image (lower plot)

for the PISTON problem. Refer to Table 4.1 for a description of the markers. Here

x�p = x�cÆp and their image is z�. The mapping is not perfect, p(x�) 6= z�.
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Fine model space

Coarse model space

Figure 4.5: Fine model space (upper plot) and space mapping image (lower plot)

for the ROSEN problem. Refer to Table 4.1 for a description of the markers. Here

x�p = x�cÆp and their image is z�. Also, the mapping is perfect, p(x�) = z�.
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bounded by a constant " > 0, i.e.

kc(p(x)) � f(x)k 6 " ;

where k � k is the same norm as H. From (4.6) we can de�ne a Æ > 0 such that

kc(p(x�cÆp))k = kc(p(x�p))k � Æ :

Then it follows that

kf(x�cÆp)k 6 kc(p(x�cÆp))k+ "

= kc(p(x�p))k � Æ + "

6 kf(x�p)k+ "� Æ + "

6 kf(x�p)k ; if 2" 6 Æ :

Hence x�cÆp is a better approximation to x� than x�p is. In other words, because
of the arguments the problem formulation in (4.4) should be preferred over
the original space mapping formulation (4.1).

The numbers for the TLT2 test problem using the L1-norm are:

Æ = 0:0818 (from Table 4.2)

" = 0:04 (

�
kc(p(x�p))� f(x�p)k1 = 0:0395

kc(p(x�cÆp))� f(x�cÆp)k1 = 0:0274

Hence the condition 2" < Æ is met for this problem, and from Table 4.2 we
verify that x�cÆp is a better than x

�
p, since kf(x

�
p)k1 � kf(x�cÆp)k1 = 0:0864.

With this example in mind, it would be bene�cial to have a more general
understanding of what conditions determine whether the space mapping tech-
nique can solve a given problem or not. The theoretical results we derive in
the next sections provide a clearer understanding of this issue.

4.1.3 Theoretical Results

In this section we derive some theoretical results that characterize the space
mapping technique under certain conditions.

Assuming that the Conditions C1 and C3 hold, we prove two lemmas about
the relation between the sets of optimizers de�ned in Section 4.1.1.
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The �rst lemma states that the space mapping image of X�
cÆp, the minimizers

of the space mapped coarse model H(c(p(x)), is contained in the set of all
coarse model minimizers Z�.

Lemma 4.1 If C1 holds then

p(X�
cÆp) = Z� :

Proof. If z 2 p(X�
cÆp) then z minimizes H Æ c since C1 holds, i.e. z 2 Z�.

Reversely, if z 2 Z�, and sinceC1 implies that 9x : p(x) = z, then xminimizes
H Æ c Æ p, i.e. x 2 X�

cÆp, hence p(x) = z 2 p(X�
cÆp). �

The second lemma states that the sets X�
cÆp and X

�
p are identical.

Lemma 4.2 Assume that C1 holds then

X�
cÆp = X�

p :

Proof. From C1 and the de�nition of X�
p it follows that

x 2 X�
p () p(x) 2 Z� : (4.7)

If x 2 X�
cÆp then from Lemma 4.1 we have p(x) 2 Z�, and then from (4.7) it

follows that x 2 X�
p . Reversely, if x 2 X

�
p then from (4.7) we have p(x) 2 Z�,

and then from the de�nition of X�
cÆp it follows that x 2 X

�
cÆp. �

The properties proved in the lemmas were observed in the PISTON and
ROSEN test problems presented in the last section. But, in the case where C1
does not hold we cannot be certain that the minimizers of the space mapped
coarse model and the solutions to the nonlinear equations (4.1) are the same.
This was the observation for the TLT2 test problem.

Next we prove a theorem which states that when C2 and C3 hold, minimizers
of the space mapped coarse model are also minimizers of the �ne model. In
other words, if x 2 X�

cÆp then x is a minimizer of H(f(x)), hence x 2 X�.

Theorem 4.1 If C2 and C3 hold then

x 2 X�
cÆp ) x 2 X�
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Proof. Let x 2 X�
cÆp then, since C2 implies C1, from lemma 4.1 we have that

p(x) 2 Z� and from C2 it follows that Z� � p(X�), hence from C3 x 2 X�.
Formally,

x 2 X�
cÆp

+

p(x) 2 Z� � p(X�)

+

x 2 X� ;

which proves the theorem. �

A special case of the theorem is when the minimizers of H(f(x)) and H(c(z))

are unique (Condition C4), then the minimizer of H(c(p(x))) is the minimizer
of H(f(x)), as it is stated in the following corollary.

Corollary 4.1 If C2, C3 and C4 hold then

X�
cÆp = fx�g

Proof. The result is a consequence of theorem 4.1. �

The result of Corollary 4.1 was observed in the example in the last section
for the ROSEN test problem. The ROSEN problem seems more ideal for the
space mapping approach, than the two other problems that were presented.
But we should keep in mind that the observations in the example were based
on a particular way of de�ning the space mapping. So other choices may lead
to di�erent results for these test problems.

Neither theorem 4.1 nor corollary 4.1 depend on the actual form of the space
mapping p. The results only de�ne a set of conditions, for the space mapping,
that are su�cient to state that the minimizers of H Æ c Æ p are also minimizers
of H Æ f . So there is actually a great deal of freedom in choosing a de�nition
that align the models, such that the assumptions of Theorem 4.1 are met.
However, we consider it to be uncommon that the assumptions of the theorem
hold in practice, but the theorem is helpful as a guide to what we should aim
for when de�ning the space mapping. The next section introduce the usual
de�nition of the space mapping, and show some theory concerning the scalar
function case of this de�nition.
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4.1.4 The Usual Space Mapping De�nition

There has been consensus in the literature, see the review papers [4, 9], to
de�ne the space mapping as a mapping relating similar responses, namely

p(x) 2 arg min
z2IRn

kc(z) � f(x)k22 : (4.8)

Sometimes the Huber-norm or the L1-norm are used instead of the L2-norm.
Also a weighted least-squares de�nition has been used. It depends on the
application. We denote (4.8) the usual space mapping de�nition.

In more general terms, a problem of calculating the space mapping p, as e.g.
the usual space mapping de�nition above, is often referred to as a parameter

extraction problem. We de�ne the set P(x) to be a point-to-set mapping con-
taining all solutions of a given parameter extraction problem. Hence, in the
case of the usual space mapping, P(x) is for given x the point-to-set mapping
containing all solutions of (4.8),

P(x) = arg min
z2IRn

kc(z) � f(x)k22 : (4.9)

Next we present two theoretical results that characterize the usual space map-
ping under certain conditions in the case where f and c are scalar functions.
One of the results is that the usual space mapping may be nonunique, a prop-
erty also observed in the vector function case, as we will see later. Hence, the
parameter extraction problem may have many local solutions, i.e. C3 does not
hold and P(x) may not be a singleton. Then for a given point x, p(x) must be
chosen among the points in P(x). Several strategies for doing this have been
proposed in the literature, we review these in Section 4.2. Now we consider
some theory for the scalar case, and illustrate some properties of the usual
space mapping in a numerical example.

Theory in the Scalar Case

We now treat the special case where f and c are scalar functions, i.e. m = 1.
Two propositions are presented concerning the usual de�nition of the space
mapping. So for now, for any given x let the space mapping p(x) be an arbi-
trary point in P(x), the set of all solutions to the parameter extraction problem
for the usual space mapping de�nition, as de�ned in (4.9). The propositions
below are una�ected by which solution from P(x) that is chosen.



86 Space Mapping Theory and Practice

The �rst proposition describes the situation where f in a region around x� is
below all possible values of c.

Proposition 4.1 Assume that C4 holds and f(x�) < c(z�) then there ex-

ists an open neighbourhood N (x�) around x� such that for x 2 N (x�) the

following holds

1. f(x) < c(z), 8z 2 IRn,

2. p(x) = z�.

Proof. The �rst part follows directly from the smoothness assumption on f :
For all su�ciently small " 2 IRn we have

f(x� + ") < c(z�) 6 c(z) ;

for all x 2 IRn. From this, it follows that for x 2 N (x�)

arg min
z2IRn

(c(z) � f(x))2 = arg min
z2IRn

c(z)

and since z = z� is a unique minimizer of c(z) it follows from (4.9) that
P(x) = fz�g ) p(x) = z�, which concludes the proof. �

The proposition states that the space mapping is constant in a neighbourhood
around x�. Due to this, an attempt to minimize the mapped coarse model
c(p(x)) will fail or stop when the iterates enter the neighbourhood. We note
that the mapping is perfect, as de�ned by (4.5), hence C2 is satis�ed. So, the
reason that corollary 4.1 does not apply here is that the mapping in (4.9) is
not one-to-one as assumed by C3. In fact, the proposition shows that there
exists a set of points, in the neighbourhood of x�, which all map to the point
z�.

The next proposition describes the situation where c in a region around z� is
below all possible values of f .

Proposition 4.2 Assume that C4 holds, f(x�) > c(z�) and that 9�z 2 IRn

for which f(x�) = c(�z), then there exists an open neighbourhood N (z�) around

z� such that for z 2 N (z�) the following holds

1. f(x) > c(z), 8x 2 IRn,
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2. x� 2 arg min
x2IRn

c(p(x)),

3. P(x) \N (z�) = ;, 8x 2 IRn.

Proof. The �rst part follows directly from the smoothness assumption on c:
For all su�ciently small " 2 IRn we have

c(z� + ") < f(x�) 6 f(x) ;

for all x 2 IRn.

From the assumptions about �z and (4.9) it follows that �z 2 P(x�). Then
second part follows from the fact that c(p(x�)) = c(�z) is the lowest possible
value of c(p(x)), which we prove now.
To prove that c(p(x)) > c(p(x�)) for all x, we assume for a moment that the
reverse is true: There exists an x, x 6= x�, for which c(p(x)) < c(p(x�)). Then
f(x) > f(x�) = c(p(x�)) > c(p(x)), hence

jc(p(x)) � f(x)j = f(x)� c(p(x))

> f(x)� c(p(x�))

= f(x)� c(�z)

> 0

which contradicts that z = p(x) minimizes jc(z)�f(x)j. Hence the assumption
is wrong and it follows that c(p(x�)) is the minimum value of c(p(x)).

Regarding the third part: From part two we have c(p(x)) > c(�z). Then, since
c(z) < c(�z) for all z 2 N (z�), it follows that p(x) =2 N (z�), hence P(x) \
N (z�) = ;, which concludes the proof. �

The proposition states that it is not possible to choose any x for which p(x)
is in the neighbourhood around z�. Hence p is always outside of this neigh-
bourhood, therefore the mapping cannot be perfect, i.e. p(x�) 6= z�. Further,
the proposition states that x� minimizes c(p(x)).

In the cases described by the propositions above the usual mapping de�nition
(independent of how p is chosen from P) fails to satisfy the assumptions of
corollary 4.1. The above results are illustrated in the numerical example next.
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4.1.5 Example With Scalar Functions

In order to visualize the propositions presented above, we now introduce a
simple one-dimensional example with quadratic functions. The example is
considered again later, when alternative de�nitions of the space mapping are
introduced.

The problem is de�ned by a �ne model and two di�erent coarse models. The
�ne model response is the quadratic

f(x) =
1

2
x2 � x+ 2 ; x 2 [�2; 5] ;

with the unique minimizer x� = 1.

The �rst coarse model is the �ne model scaled by a factor two and with a
simple shift of the parameters, the response function is

c1(z) = 2 � f(z � 1)

= (z � 1)2 � 2(z � 1) + 4 ; z 2 [�2; 5] ;

with the unique minimizer z� = 2. Note that this coarse model is above f for
all parameter values, hence 8x; z = x : c1(z) > f(x). So the assumptions of
proposition 4.1 are satis�ed for the pair (f; c1).

The second coarse model is like the �rst one, only shifted downwards,

c2(z) = 2 � f(z � 1)� 3

= (z � 1)2 � 2(z � 1)� 1 ; z 2 [�2; 5] :

The minimizer is the same, z� = 2. Note that c2 has a region around z� where
it is below all possible values of f . So the assumptions of proposition 4.2 are
satis�ed for the pair (f; c2).

The functions are shown in the plots in the top of Figure 4.6. The usual
mapping objective function kc(z) � f(x)k2 is shown for x = 3 in the plots in
the bottom of the �gure. We see that the parameter extraction problem (4.8)
has two solutions for all x where f(x) > c(z�). Further, the reader can imagine
that for all x where f(x) < c(z�) (this only applies to the plots on the left)
the parameter extraction problem has a unique solution, namely z�.

From the �gure, it should be clear that for the considered point x = 4, the right
one of the two solutions is the wanted solution to the parameter extraction
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The scalar problem and the parameter extraction objective function

Figure 4.6: The top plots show f ( ) and c ( ), the point (3; f(3)) is marked (Æ).
The lower plots show the parameter extraction objective function (4.8) for x = 3,

kc(z)� f(3)k2, ( ). In the left plots c = c1, in the right plots c = c2.

problem. However, in the case where f is expensive, we would not be able to
plot the function to assist in choosing the correct solution of the parameter
extraction problem. The same goes in general for problems in more than two
dimension. So in these cases we cannot in general tell which one of the multiple
solutions to the parameter extraction problem that is preferable.

The problem of having nonunique or local solutions in the parameter extrac-
tion problem was �rst described in [7]. A very similar observation, to that
of our simple example, was for a two dimensional vector function problem
presented in [5]. In this reference it was suggested to enhance uniqueness by
including more than one point in the parameter extraction problem, the so-



90 Space Mapping Theory and Practice

called multipoint parameter extraction technique. We will return to this and
other approaches to enhance the uniqueness of the parameter extraction later
in this chapter.

For the purpose of illustrating the mapped coarse model c(p(x)) for this simple
problem, choosing an arbitrary solution of the parameter extraction is ade-
quate. So, the usual space mapping de�nition (4.8) provides the space mapped
coarse models c1(p(x)) and c2(p(x)) shown in Figure 4.7. For the �ne and

−2 5
0

8

−2 5
0

8

(f; c1) (f; c2)

Usual mapping of similar responses

Figure 4.7: The plots show f ( ), c ( ) and c(p(x)) ( ). In the left plot c = c1,

in the right plot c = c2. In both plots, p maps similar responses.

coarse model pair (f; c1), we see how c1(p(x)) is constant valued, at the value
c1(z

�), in that range of x for which f(x) < c1(z
�). So minimizing c1(p(x))

has a range of solutions where p(x) = z�, including the point x�. Hence the
mapping is perfect, p(x�) = z�, as we would expect from Proposition 4.1. But
as there are an in�nity of solutions we cannot determine the right one, namely
x�, based on this technique.

For the �ne and coarse model pair (f; c2), we see how c2(p(x)) is equal to f
for all parameter values, so x� minimizes c2(p(x)), as we would expect from
Proposition 4.2. We also see that the mapping is not perfect, as there is a
region around z� that cannot be reached by p(x), x 2 IRn. So the original
space mapping technique, solving the nonlinear equations (4.1), does not have
a solution. But the least-squares formulation (4.2) of the same problem has
x� as solution.
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Although we will not generalize from this simple one-dimensional scalar test
example, clearly the usual space mapping de�nition is unsatisfactory for the
problem de�ned by (f; c1), since there is a set of minimizers of c Æ p, not just
the desired point x�.

Some of the observations in the one-dimensional scalar case, in fact, also ap-
pear in the multidimensional vector case, as we will show in the following.
We now return to the case of general vector functions, to introduce another
example.

4.1.6 Example With Vector Functions

We now consider the parameter extraction problem for the two-dimensional
TLT2 problem, described in appendix A. The problem was also used in the
example in Section 4.1.2 above. The problem is a minimax problem with 11
response functions. We choose to map the point ~x = (90; 90)T , which is the
coarse model minimizer z�. This point is used for illustration here, as it is
the starting point of any space mapping optimization algorithm, as this cor-
responds to the initial assumption that f and c are identical [4].

The minimax contours of the �ne and the coarse model are shown in Figure 4.8.
We see the location of the coarse model minimizer z� and the �ne model
minimizer x�. In the �gure, also three additional points are marked, these are
introduced next.

A contour plot of the parameter extraction problem for the usual space map-
ping de�nition (4.8) is as shown in Figure 4.9. We see that, similar to the scalar
function example above, this problem has multiple solutions to the parameter
extraction problem, namely the two solutions marked in the �gure. We denote
these local solutions by z1 and z2. We denote the saddlepoint between the
local solutions by ~z.

In Figure 4.10 the actual values of the response functions are shown for the
�ne model at ~x, the coarse model at ~z and the mapped coarse model at z1 and
z2. From the �gure we see that the response c(~z) is below or equal to f(~x) for
almost every response function, except for one. Whereas the identical responses
c(z1) and c(z2), at the local solutions of the parameter extraction problem,
behaves like we would expect from a L2-norm data �tting solution. That is
the c(z1) is not completely above or below f(~x), the residuals c(z1) � f(~x)

have alternating signs.
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Figure 4.8: Minimax contours of coarse model (left) and �ne model (right). Left plot:

The coarse model minimizer z� (�), two local solutions z1 and z2 (�) of the parameter

extraction problem and the saddlepoint ~z between them (�) are shown. Right plot:

The �ne model minimizer x� (�) and the point to map ~x (Æ) are shown.

The local solutions provide a better �t, in terms of lower L2-norm of the
residual, than the saddlepoint. However, since we cannot determine (from the
information available here) which of the solutions z1 and z2 that is preferable,
the saddlepoint ~z between them may be the best choice. As by choosing the
saddlepoint as the solution, we minimize the error of choosing the wrong so-
lution. Further it is seen that ~z is the closest point to z� of the three points
considered.

We note that ~z also seems preferable in the context of aligning the parameter
spaces, since it has the best visual conformance with the relative distance to
the minimizer and contours in Figure 4.8.

In Figure 4.2, showing the mapping image for this problem, it was visualized



4.1 Space Mapping Theory 93

80 85 90 95 100 105 110 115
80

85

90

95

100

105

110

115

z
(2
)

z(1)

Contours for the usual space mapping de�nition

Figure 4.9: L2-norm contours of the parameter extraction problem for the usual space

mapping de�nition (4.8). The coarse model minimizer z� (�), two local solutions z1
and z2 (�) and the saddlepoint ~z (�) are shown.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

jS
1
1
j

GHz
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z2 ( ) of the parameter extraction problem for the TLT2 (minimax) problem. The

hatched line indicate the response speci�cations of the problem.
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that the usual space mapping de�nition does not satisfy condition C1 for this
problem. Hence the coarse model minimizer is not in the image of the usual
space mapping. Further, the minimizer of H Æ c Æ p is not x�.

So to summarize, the Conditions C1 and C3 are not met by the usual space
mapping de�nition on neither the scalar nor the vector example. It is displeas-
ing that there exist several solutions to the parameter extraction problem, and
that the minimizer of H ÆcÆp is not the unique point x�, in the scalar example.
Now we turn the attention to alternative space mapping de�nitions, that have
been proposed to improve on the imperfections mentioned here.

4.2 Alternative Space Mapping De�nitions

The most focus, in improving the usual mapping de�nition (4.8), has been on
avoiding non-uniqueness, i.e. to assure thatC3 holds. Some attention have also
been given to the problem of assuring that the space mapping problem (4.1)
actually has a solution, i.e. that C1 holds.

In both the mentioned cases the usual approach is to constrain the parameter
extraction problem to a smaller subset of points, in practice by regularizing
the problem, and thereby introduce a bias toward a certain subset of points.

Other techniques have been considered. In [7] it was proposed to perform
a change in the (physical) state variables (in their case frequency) of the
coarse model. By doing this, local minima could be avoided in the parameter
extraction problem. A similar strategy has been investigated in [3].

In the following we consider four de�nitions of the regularized parameter ex-
traction problem, intended for the case where C3 does not hold, i.e. P(x) may
be multi-valued for a given x. The de�nitions are general for vector valued re-
sponse functions, we illustrate some of their properties on the two examples
introduced in Section 4.1.5 and Section 4.1.6 above.

4.2.1 Regularization Using z
�

In the case where there are several local solutions to the parameter extraction
problem, probably the simplest strategy to help convergence of the classical
space mapping problem (4.2) is to let p(x) be the solution, among all solutions
P(x) of the usual space mapping de�nition (4.9), closest to a coarse model
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minimizer,

p(x) 2 argminz2P(x) d(z; Z
�) : (4.10)

In cases where Condition C1 is not met, there is no solution to the non-
linear equations of the classical space mapping problem (4.1) � a situation
encountered in practice, as demonstrated by the test examples above. A way
to circumvent this di�culty is to drive P closer to z� 2 Z� by regularizing the
usual space mapping with distance to z�. Bandler et al. [8] proposed a space
mapping de�nition with such a property,

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kz � z�k22

	
; (4.11)

for some value of 0 6 � < 1.

This de�nition performs rather poorly on the one-dimensional scalar example
from Section 4.1.5 as we show now. In Figure 4.11 the mapped coarse model
c(p�(x)) is shown for the space mapping de�nition in (4.11), for two di�erent
values of �. We see from the �gure how increasing the value of �, as one would
expect, draws more points toward z� and thereby the function value c(z�).
But the de�nition does not help solving the problem of an in�nite solutions
when minimizing H Æ c Æ p. Actually this space mapping de�nition behaves
worse than the original space mapping de�nition, as for the case with (f; c2)

the function H ÆcÆp attains its minimum value at an in�nite number of points
for large values of �.

So for the scalar function example, the ill-posed problem (f; c1), regularization
only increase the set of points which map to z�, and thereby makes the problem
even more ill-posed. For the well-posed problem (f; c2) regularization risks
making the problem ill-posed by introducing a set of points which map to z�.

For the vector function example, introduced in Section 4.1.6, the contours of
the regularized parameter extraction problem (4.10) are shown in Figure 4.12
for � = 1:4 � 10�4. Compared to Figure 4.9 we see how the two local solutions
to the parameter extraction problem are drawn to a unique solution near ~z,
the desired parameter extraction solution. While for larger values of � the
parameter extraction solution is drawn close to z� as expected.

In Figure 4.13 the regularized parameter extraction solution is shown for a
number of � values.

So even though the de�nition (4.10) seems impractical in the scalar function
example, it is de�nitely useful in the vector function example, provided that
suitable value of � can be estimated.
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Figure 4.11: The plots show f ( ), c ( ) and c(p�(x)) ( ). In the left plots

c = c1, in the right plots c = c2. In all plots p�, as de�ned in (4.11), is a mapping

of similar responses using regularization with distance from z�, the coarse model

optimizer. In the top plots � = 2

3
, in the bottom plots � = :99.

4.2.2 Regularization Using x

Another strategy is to penalize large distances to x, the current point to space
map, i.e. de�ne the space mapping as

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kz � xk22

	
; (4.12)

for some value of 0 6 � < 1. Vicente [12] introduced a similar approach, but
instead of a penalization strategy, he proposed the following space mapping



4.2 Alternative Space Mapping Definitions 97

80 85 90 95 100 105 110 115
80

85

90

95

100

105

110

115

z
(2
)

z(1)

Regularization with distance to z�

Figure 4.12: Contour plot of the regularized parameter extraction and the solution

(O) is shown for � = 1:4 � 10�4. The regularization term is kz � z�k2
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the parameter extraction problem with the usual space mapping de�nition (4.8).
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de�nition

p(x) = arg min
z2IRn

kz � xk22

s:t: c(z) = f(x)

Vicente [12] showed regularity of his space mapping de�nition, in the case
where f and c are scalar functions, and thus existence of directional derivatives.
Considering (1 � �)=� as a Lagrange multiplier for the constraint, the two
de�nitions are equivalent for � > 0.

Intuitively the mapped coarse model c(p(x)) will approach the coarse model
c(x) as the regularization parameter is approaching one. So if the coarse model
is a good approximation to the �ne model, using this space mapping de�ni-
tion is a way of favoring the behaviour of the coarse model in the case of
nonuniqueness in the parameter extraction.

In Figure 4.14 c(p�(x)) is shown for the space mapping de�nition in (4.12), for
two di�erent values of �. From the �gure it is seen that for su�ciently large
values of �, this de�nition provides a mapped coarse model with a unique
minimizer. This unique minimizer is z�, so for �nding x� the usefulness of this
de�nition is limited though.

Solutions of the regularized parameter extraction problem of the vector func-
tion example, see Section 4.1.6, are the same as shown in Figure 4.13, as in
this example the point mapped ~x is chosen as z�. So as discussed above, for
values of � & 10�4 the regularized parameter extraction problem has a unique
solution.

From the two examples, we see that regularizing with the distance to x pro-
vides a unique minimizer of the mapped coarse model, provided � is chosen
large enough. In that way, this de�nition is preferable to the de�nition regu-
larizing with distance to z�, which had a set of solutions in the scalar case.

4.2.3 Regularization Using Gradients

A third strategy, suggested in [10], is to penalize deviation between the gra-
dients, i.e. de�ne the mapping as

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kc0(z)� f 0(x)k2F

	
; (4.13)

for some value of 0 6 � < 1 and k � kF being the Frobenius norm. If f 0 is
not explicitly available an approximation can be used, e.g. a secant or �nite
di�erence approximation.
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Figure 4.14: The plots show f ( ), c ( ) and c(p�(x)) ( ). In the left plots

c = c1, in the right plots c = c2. In all plots p�, as de�ned in (4.12), is a mapping of

similar responses using regularization with distance from x. In the top plots � = 2

3
,

in the bottom plots � = :99.

The idea of matching gradient information is intuitively appealing in the con-
text of optimization. This is because we are looking for stationary points,
preferably minimizers though, in an optimization problem, and these points
are characterized by the gradients of the objective function vanishing. So if
we can make the gradients of c Æ p match those of f the hope is that c Æ p can
serve as a surrogate for f in the search for x�.

For the scalar function example, the mapped coarse model c(p�(x)) is shown
in Figure 4.15 for the space mapping de�nition in (4.13), for two di�erent
values of �. For su�ciently large values of � (as the ones shown in the �gure)
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Figure 4.15: The plots show f ( ), c ( ) and c(p�(x)) ( ). In the left plots

c = c1, in the right plots c = c2. In all plots p�, as de�ned in (4.13), is a mapping of
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3
,

in the bottom plots � = :99.

this mapped coarse model has a unique minimizer at x�. Using only gradient
information to de�ne the space mapping, i.e. for large values of �, this desired
property is retained.

For the vector function example the parameter extraction solutions are shown
in Figure 4.16 for di�erent values of �. We see that for value of � . :97 two
local solutions exists. For larger values of � there is a unique solution near
the lower of the local solutions. When � approach one, the solution moves to
the best least-squares �t of the gradients. For this simple example we have
available a �nite di�erence approximation to both the coarse and the �ne
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Figure 4.16: Regularized parameter extraction solutions (O) are shown for di�erent

values of �. The regularization term is kc0(z)�f 0(x)kF , see (4.13). The contours are

from the parameter extraction problem with the usual space mapping de�nition (4.8).

model gradients. In Table 4.3 we see the angles between the gradients at the
solution of the parameter extraction problem with � = 1. Even though the
table illustrates the angles from the best �t, the gradients are apparently not
very well aligned. The advantage of using this space mapping de�nition is not
obvious from this example.

Using gradients for regularization seems advantageous in the scalar case. In
fact, it is much better than the other de�nitions presented so far, as the
mapped coarse model is smooth with a unique minimizer at x�. Though the
vector function example does not encourage this de�nition in the same way.
Another aspect that should be considered is of course the extra expense of this
de�nition. The gradients of f rarely are explicitly available, and f usually is so
expensive that a di�erence approximation is infeasible, only inexact approx-
imations, like secant approximations, can be assumed available in practice.
From the scalar example above we cannot claim that the same good results
are preserved if using approximate gradient information.
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Response function no. Angle in degrees

1 0.83
2 28.02
3 3.24
4 3.94
5 11.36
6 1.77
7 1.15
8 10.53
9 4.03
10 3.08
11 3.11

Table 4.3: Angle between the gradients of the �ne and coarse model response functions

at the gradient parameter extraction solution for � = 1. Numbers are rounded to two

decimals.

4.2.4 Multiple Points

The idea of using �ne model information from more than a single point in
the parameter extraction process to enhance uniqueness was introduced in [5].
This reference did not specify where to position the auxiliary points, at which
the �ne model should be evaluated, for the multi point parameter extraction.
In [1] an automated technique was presented, it was suggested to use the
points previously visited by the algorithm, where f is known, in the multipoint
parameter extraction.

In [2] a re�ned technique was suggested, aiming at minimizing the number of
auxiliary points to be evaluated. The strategy was referred to as an aggressive

approach to parameter extraction. In the aggressive approach the auxiliary
points are positioned by the algorithm in certain distances hi 2 IRn, i =

1; : : : ; k from x. The positions fx+ h1; : : : ; x+ hkg are derived such that the
rank of the coarse model Jacobian is maximized at x. In practice the distances
are found by solving a number of eigenvalue problems, related to the coarse
model response functions derivatives and Hessians.

In our examples we consider a simpler strategy, where the auxiliary points are
positioned in �xed distances h1; : : : ; hk from x. Let the steps from x to the
auxiliary points be denoted h1; : : : ; hk, then the multipoint space mapping can
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be de�ned as

p�(x) = arg min
z2IRn

�
(1� �)kc(z) � f(x)k22

+ � kc(z + h1)� f(x+ h1)k
2
2 + : : :

+� kc(z + hk)� f(x+ hk)k
2
2

	
;

(4.14)

for some value of 0 6 � < 1. Separate weights, �1; : : : ; �k, for each regulariza-
tion term could also be used. We only consider the simple case with one �.

For small steps the multipoint de�nition in some sense resembles the gradient
de�nition, particularly in the case where the gradient de�nition relies on an
inexact gradient approximation. For large steps, provided that c and f have
great similarity in their global behaviour, the idea of using multiple points is
like averaging the error between the two functions over a large interval. In that
way the local deviations are smeared out, but the global trend is retained.

The scalar example: When placing the auxiliary points in the small distances,
e.g. h1 = 0:1 and h2 = �0:1, the de�nition has no e�ect on the shape of the
mapped coarse model. So the functions look as for the usual space mapping
de�nition in Figure 4.6. But, compared to the de�nition regularizing with
distance to z�, this de�nition does not destroy the good property of having a
unique minimizer at x� for the pair (f; c2).

If the auxiliary points instead are placed in larger distances from x, e.g. h1 = 1

and h2 = �1, the resulting mapped coarse model is quite di�erent. This is
seen in Figure 4.17, where the mapped coarse model attains its minimum at
a unique point, namely at x�. Hence, for this simple problem, enlarging the
distance to the auxiliary points makes the mapped coarse model attain the
same tractable properties as when using gradient information (4.13) in the
scalar case. On the other hand the number of points used is also the same
as would be required to establish a central di�erence approximation to f 0.
We remark that, contrary to what would be expected, the usefulness of the
de�nition improved when increasing the distance to the auxiliary points. A
similar property is observed in the vector function example presented next.

Figure 4.18 shows a contour plot for the vector function example. In the �gure
the steps are relatively long, because if small steps, khk . 5, are used the con-
tours are nearly identical with those presented in Figure 4.9, for the parameter
extraction problem of the usual space mapping. Apparently the direction or
the number of auxiliary steps have no in�uence on the shape of the contours
for small steps.
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Figure 4.17: The plots show f ( ), c ( ) and c(p�(x)) ( ). In the left plots

c = c1, in the right plots c = c2. In all plots p�, as de�ned in (4.14), is a mapping

of similar responses using two auxiliary points, placed in the distances h1 = 1 and

h2 = �1. In the top plots � = 2

3
, in the bottom plots � = :99.

Enlarging the distance between x and the auxiliary points improves on the
uniqueness problem, though the results vary much with the actual position of
the auxiliary points. In Figure 4.18 a contour plot of the multipoint parameter
extraction problem is shown for h1 = (�10; 0)T and h2 = (0;�10)T . The
solution to the parameter extraction problem is close to one of the two local
solutions of the usual space mapping de�nition (i.e. similar to what we found
by parameter extraction using gradient information), and relative far from ~z,
the saddlepoint. However as the solution is quite sensitive to changes in h1
and h2, we cannot from this vector example recommend this de�nition of the
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Figure 4.18: Contour plot of the multipoint parameter extraction (4.14) for � = :5.

The unique minimizer (O) is close to a local solution (�) of the usual space mapping

de�nition. Two auxiliary points (�) are placed in h1 = (�10; 0)T and h2 = (0;�10)T .

space mapping.

For both the scalar and the vector case examples there is a signi�cant e�ect
of regularization of the parameter extraction problem if the steps are chosen
long enough. Here the value of � does not play as signi�cant role as for the
other problems, provided that it is not chosen very small. There is a need for
further exploration of this de�nition, maybe a strategy involving second order
information as in [2] is the best way, though we cannot tell from this exam-
ple. Compared to the de�nition using gradient information, this multipoint
de�nition seems more appealing, as it is easier to control how much and what
information should be sampled from f .

4.2.5 Summary

In the preceding sections we have presented four alternatives to the usual space
mapping de�nition (4.8). We have illustrated some characteristics of the four
alternative space mapping de�nitions by two recurring test examples. None of
the alternatives turned out exceptionally better than the other, so we cannot
conclude that a particular de�nition is superior.
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The gradient and multipoint space mapping de�nitions have both very nice
properties in the one-dimensional scalar function case, provided that the regu-
larization parameter is chosen properly. But, in the vector example the picture
was not as clear. Here the de�nitions regularizing with distance to z� and x
were preferable, as they have unique solutions near ~z, the desired solution, for
a properly chosen value of the regularization parameter �.

The idea of including gradient information is intuitively appealing, as we in
an optimization problem are looking for points where the derivatives vanish
(stationary points). So being able to replicate the behaviour of the gradient of
f using the mapped coarse model c(p(x)) would probably be su�cient to show
that the conditions of theorem 4.1 are met. However, the de�nition used in this
presentation could not present the desired properties in the vector example.

The de�nitive space mapping de�nition, which has the properties required
by Theorem 4.1, has not yet been proposed. Further studies in this area are
needed.

4.3 Approximation Error

We now turn the attention to the approximation ability of the space mapped
coarse model c(p(x)) to the �ne model. This subject is important both in
context of modelling and optimization. In the former because one wants to
accurately explore the behaviour of a system without the expense of many
�ne model evaluations. In the latter because in the search for an optimizer
one needs to know in how large a region the mapped coarse model is a valid
approximation of the �ne model, e.g. for determining a good trust region size.

In practical space mapping optimization algorithms, as discussed in Chapter 5,
the space mapping is approximated e.g. by a linear model. In the following
we compare the theoretical approximation error of the mapped coarse model
using a linear space mapping approximation with that of a classical Taylor
based linear approximation of the �ne model.

Consider the Taylor models

f(x+ h) = f(x) + f 0(x)Th+ rf (h)

c(p(x+ h)) = c(p(x) + p0(x)Th+ rp(h))

where rf and rp are residual functions. We note that the cost of approxima-
tion p0(x), e.g. by �nite di�erence approximation, is around the same cost
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as approximating f 0(x), assuming that the coarse model is cheap to evaluate
compared to the �ne model. So in the sense of approximation cost the two
Taylor models are comparable.

Following Taylors theorem the residual functions are bounded in the following
way

krf (h)k 6 Kfkhk
2

krp(h)k 6 Kpkhk
2 ;

where Kf ;Kp 2 IR
n are problem speci�c constants. So we can write

kf(x+ h)� (f(x) + f 0(x)Th)k = krf (h)k 6 Kfkhk
2 (4.15)

and

kc(p(x + h))� c(p(x) + p0(x)Th)k ' kc0(p(x))k krp(h)k

6 Kp kc
0(p(x))k khk2 :

Now assume that the deviation between any given �ne model response and
the corresponding response of the mapped coarse model approximation is
bounded,

8x 2 IRn : kc(p(x)) � f(x)k 6 " ;

with " being a constant independent of x, then it follows that

kf(x+ h)� c(p(x) + p0(x)Th)k . "+Kp kc
0(p(x))k khk2 : (4.16)

Comparing (4.15) and (4.16), we see that the space mapped model (with a
linear Taylor model of the mapping) may provide a better approximation than
the linear Taylor model of the �ne model response if Kp < Kf and if h is so
large that " < Kfkhk

2.

We now illustrate this conclusion by a numerical example. Consider again the
TLT2 test problem described in Appendix A. We approximate the gradient
of the space mapping by a �nite di�erence approximation. To avoid wrong
solutions in the parameter extraction problem, as discussed in Section 4.1.6
for this test problem, we employ the space mapping de�nition using gradient
information in (4.13). For reference, the regularization parameter used in the
example is � = 10�4.
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In Figure 4.19 the approximation error of the Taylor model of the �ne model
response function (gray mesh), kf(x+h)� (f(x)+f 0(x)Th)k from (4.15), and
the approximation error of the mapped coarse model approximation (white
mesh), kf(x + h) � c(p(x) + p0(x)Th)k from (4.16), are plotted for x = z�,
z� = (90; 90)T (the coarse model minimizer). From the �gure it is apparent
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Figure 4.19: Approximation error plots for the TLT2 test problem at the coarse model

optimizer x = z�, z� = (90; 90)T . Centered at h = 0, the light grid shows kc(p(x) +
p0(x)Th)�f(x+h)k2. This represents the deviation of the space mapped coarse model

(using the linear Taylor approximation to the mapping) from the �ne model. The dark

grid shows k(f(x)+f 0(x)T h)�f(x+h)k2. This is the deviation of the �ne model from

its classical linear Taylor approximation. It is seen that the Taylor approximation is

most accurate close to z� whereas the mapped coarse model approximation is best

over a large region.

that the approximation error of the linear Taylor model of the �ne model
response grows quadratically with the length of the step khk from the model
origin. The approximation of the mapped coarse model approximation does
not exhibit the same systematic growth with distance from the model origin.
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This is partly due to the response values of c and f being bounded in the
interval from zero to one, and partly due to the small area of parameter values
considered in Figure 4.19.

In Figure 4.20 we again consider the approximation error of the mapped coarse
model approximation, kf(x+h)�c(p(x)+p0(x)Th)k, but here on a much larger
region of the parameter space. From this plot it is clear that the approximation
error does in fact grow with distance from the origin of the Taylor model, as
it is stated in (4.16).
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Figure 4.20: Approximation error plot for the TLT2 test problem at the coarse model

optimizer x = z�, z� = (90; 90)T . Centered at h = 0, the grid shows kc(p(x) +
p0(x)T h) � f(x + h)k2. This represents the deviation of the space mapped coarse

model (using the linear Taylor approximation to the mapping) from the �ne model.

It is seen that the error grows with the distance khk2 from the Taylor model origin.

It is evident from these �gures that the mapped coarse model approximation is
preferable for large steps, whereas the Taylor model of the �ne model response
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is preferable for small steps, due to the interpolation property of this model.

To further justify the mapped coarse model approximation, we compare the
results with the coarse model without the space mapping. In Figure 4.21 we
show the approximation error of the mapped coarse model approximation,
kf(x+h)�c(p(x)+p0(x)Th)k, and the approximation error of the coarse model
(without the space mapping) kf(x + h) � c(x + h)k. The �gure veri�es two
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Figure 4.21: Approximation error plots for the TLT2 test problem at the coarse model

optimizer x = z�, z� = (90; 90)T . Centered at h = 0, the light grid shows kc(p(x) +
p0(x)Th)�f(x+h)k2. This represents the deviation of the space mapped coarse model

(using the linear Taylor approximation to the mapping) from the �ne model. The dark

grid shows kc(x + h) � f(x + h)k2. This is the deviation of the �ne model from the

coarse model. It is seen that the mapped coarse model approximation is most accurate

close to the origin of the Taylor model, whereas the coarse model is best very far from

the origin of the Taylor model.

things. First, the �gure shows that the mapped coarse model approximation
indeed is better than the coarse model around the origin of the Taylor model
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of the mapping. We expected this, as the space mapping at the origin of
the model minimizes the deviation between the �ne and the coarse model
responses. Second, the �gure shows that the linear approximation to the space
mapping is valid for a large region, so the good agreement around the origin of
the model is retained also at large distances. Hence the mapped coarse model
approximation is not signi�cantly worse for approximation at large distances
than the (unmapped) coarse model. Further, these observations show that the
constant Kp, from (4.16), is smaller than the constant Kf , from (4.15), so in
that sense the space mapping is closer to linear than the �ne model response,
for the considered problem. This particular condition, that Kp is less than
Kf and thereby p is closer to linear than f , very likely determines if we may
bene�t from the space mapping method on a particular problem. However,
for practical, expensive functions we are not able to resolve if this condition
is ful�lled or not.

At last we consider the method of response correction, presented in Chapter 2
(Section 2.3.1), applied to the mapped coarse model approximation. By using
this method we may develop a model which has the interpolation property
of the Taylor model of the �ne model, but at the same time retains the nice
properties of the mapped coarse model approximation for large steps.

The mapped coarse model approximation with corrected responses is

g :� [c(p(x+ h)) � c(p(x))] + f(x) ;

where g 2 IRm are the correction factors and :� is element-wise multiplication.
The correction factors are found by the secant update

gj =
fj(x+ ~h)� fj(x)

cj(p(x+ ~h))� cj(p(x))
; j = 1; : : : ;m ;

where ~h is a step to an auxiliary point, which has to be chosen somehow.
We de�ne that the update should only be applied to those responses where a
signi�cant change occurs from x to x+~h. For those responses where there are
not a signi�cant change the correction factors are set to one.

As an example, consider the TLT2 test problem with x� = (74:2332; 79:2658)T

(rounded) as the auxiliary point, i.e. ~h = x��x, then we obtain the correction
factors given in Table 4.4. From the table we see that the correction factors
only deviate little from one. So the response correction should not substantially
change the properties of the mapped coarse model approximation, as we verify
below.
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Response no. Correction factor

1 0.9674
2 1.2075
3 1.0700
4 1.0317
5 1.1224
6 0.8455
7 0.9493
8 1.1041
9 1.0326
10 1.1095
11 1.0254

Table 4.4: Response correction factors using responses from the points (90; 90)T and

(74:2332; 79:2658)T . Numbers are rounded to four decimals.

Figure 4.22 shows the two-norm of the error residual of the mapped coarse
model approximation to the �ne model (white mesh) and the corrected mapped
coarse model approximation to the �ne model (gray mesh). As the corrected
model response interpolates the �ne model response at h = 0, the approxi-
mation error of the corrected model is smaller than the uncorrected mapped
model in a region around h = 0. Further, we see that there is not introduced
a signi�cantly higher level of error further away from the interpolation point.

4.3.1 Summary

In this section we have presented a comparison of the theoretical approxi-
mation error between a linear Taylor models of the �ne model and a mapped
coarse model with a linear Taylor model of the space mapping. The theoretical
results were illustrated on a numerical test problem.

The theory and the example showed how the mapped coarse model approxi-
mation in general does not interpolate the �ne model. But on the other hand,
the approximation error of the mapped coarse model approximation is con-
siderably smaller than the corresponding Taylor model of the �ne model for
large steps from the model origin.

Further we illustrated the e�ect of applying a response correction method
on the mapped coarse model approximation. For the numerical text example
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Figure 4.22: Approximation error plots for the TLT2 test problem at the coarse model

optimizer x = z�, z� = (90; 90)T . Centered at h = 0, the light grid shows kc(p(x) +
p0(x)T h) � f(x + h)k2. This represents the deviation of the space mapped coarse

model (using the linear Taylor approximation to the mapping) from the �ne model.

The dark grid shows kg :�
�
c(p(x) + p0(x)T h)� c(p(x))

�
+ f(x)� f(x+h)k2. This is

the deviation of the corrected mapped model from the �ne model. It is seen that the

corrected mapped coarse model approximation is most accurate close to z�. Whereas

the (uncorrected) mapped coarse model approximation is best further away from z�.

it was found that the corrected model interpolates at the model origin and
at the same time retains the good properties of the mapped coarse model
approximation for long steps.
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4.4 Conclusion

This chapter presented theoretical results which characterize the space map-
ping under some ideal conditions. We have shown that if these conditions
are met, the solutions provided by the original space mapping technique are
minimizers of the �ne model response. The theoretical results were motivated
and illustrated by three numerical examples displaying the image of the space
mapping.

De�ciencies of the usual space mapping de�nition were discussed and four al-
ternative de�nitions were reviewed. Some of the characteristics of the space
mapping alternative de�nitions were illustrated by two numerical examples.
From this presentation, the two space mapping de�nitions relying on respec-
tively gradient information and multiple points were the most promising. But
further theoretical investigations are needed in order to arrive at a more �rm
conclusion.

As the last part of the chapter we discussed approximation abilities of the
coarse model composed with the space mapping. The theoretical approxima-
tion error was illustrated by a numerical example. The example con�rmed the
theoretical results, that the mapped coarse model, with a Taylor approxima-
tion to the space mapping, has a lower approximation error for long steps,
compared to a Taylor model of the �ne model. For short steps however, the
Taylor model of the �ne model is best, due to exact interpolation at the model
origin. It was also shown how a response correction may enhance the mapped
coarse model approximation, without compromising the small approximation
error on long steps. With the response correction, the mapped coarse model
approximation has the same interpolation property as the Taylor model of the
�ne model.
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Symbols

k � k unspeci�ed norm

k � k2 Euclidean norm, kxk2 = (xTx)
1
2

k � kF Frobenious norm
c response from the coarse model, c : IRn 7! IRm

d Euclidean distance from point to set, d(u; V ) = infv2V ku� vk2
f response from the �ne model, f : IRn 7! IRm

g response correction factors
H convex function, used as merit function
m number of response functions
n dimensionality of the design parameter space
p space mapping
p� regularized space mapping
x optimizeable model parameters of f and c
x� minimizer of H(f(x))

X� all minimizers of H(f(x))

x�cÆp minimizer of H(c(p(x)))

X�
cÆp all minimizers of H(c(p(x)))

x�p minimizer of d(p(x); Z�)

X�
p all minimizers of d(p(x); Z�)

z� minimizer of H(c(z))

Z� all minimizers of H(c(z))

� regularization parameter in space mapping de�nitions
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Chapter 5

Space Mapping Optimization

Algorithms

This chapter concerns space mapping optimization algorithms. Some of the
algorithms proposed here are implemented in a Matlab toolbox described in
Appendix A. The toolbox also contains a number of test problems, which
are used in this chapter for reporting on the numerical performance of the
algorithms.

The chapter is divided into four sections. First the notation is introduced.
Thereafter, Section 5.2 is concerned with formulations of space mapping op-
timization algorithms. Section 5.3 describes numerical tests of the algorithms
implemented in the toolbox on the test problems, also in the toolbox. The last
section contains a summary and conclusions of the chapter.

5.1 Introduction

The main problem addressed by the optimization algorithms presented in this
chapter is �nding a solution to

min
x2IRn

H(f(x)) : (5.1)
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Where H : IRm 7! IR is a convex function, usually a norm, and f : IRn 7! IRm

is a vector function, being a response function representing some model. We
assume that f is bounded below and uniform continuously di�erentiable. A
minimizer of (5.1) is denoted x�.

The classical methods for solving problems of the type (5.1) are based on �rst
or second order Taylor models. General theory and algorithms for this type of
problem are presented in [12], with special emphasis on the minimax and L1

cases. The special case where H is the `2-norm has been studied extensively
and is e.g. treated in [10].

The focus of this work is the case where f is so expensive to evaluate that
direct optimization with a classical method is not feasible. To indicate the
expensive nature we denote the model from which f originates the �ne model.
Hence x� is a �ne model minimizer.

In this setting alternative methods for solving (5.1) must be considered. This
work deals with space mapping optimization techniques which solve a sequence
of subproblems in which f is replaced by a cheaper surrogate function s.
The surrogate is re-calibrated during iterations by scarce evaluation of f . The
space mapping technique was introduced in [4]; the technique is reviewed in [3]
and [6].

The space mapping technique assumes the existence of a so-called coarse model
related to the �ne model in some way. The coarse model is represented by the
response function c : IRn 7! IRm. The function c is assumed bounded below
and uniform continuously di�erentiable. It is assumed that c is cheaper to
evaluate than f , and therefore it is most likely less accurate than f . We will
denote a solution to the problem

min
z2IRn

H(c(z)) ; (5.2)

by z� and use the term a coarse model minimizer. We assume that c is so
cheap to evaluate that the gradient is readily available, e.g. by �nite di�erence
approximation.

The space mapping technique employs the coarse model in the search for a
minimizer of the �ne model. This is done through a parameter mapping, the
so-called space mapping p : IRn 7! IRn, which de�nes a mathematical link
between the �ne model and the coarse model parameter spaces.

The usual de�nition of the space mapping is,

p(x) 2 arg min
z2IRn

kc(z) � f(x)k2 ; (5.3)
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hence connecting similar model responses. The problem de�ning the space
mapping is often referred to as the parameter extraction problem.

Other de�nitions of the space mapping have been proposed, mainly to avoid
problems with nonunique solutions in (5.3). Without further motivation, we
state here the space mapping de�nitions which are implemented in the toolbox,
refer to Chapter 4 for a more in-depth treatment of this subject.

Regularization with regard to the distance to z�,

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kz � z�k22

	
; (5.4)

for some value of 0 6 � < 1.

Regularization with regard to the distance to x,

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kz � xk22

	
; (5.5)

for some value of 0 6 � < 1.

Regularization using gradient information,

p�(x) = arg min
z2IRn

�
(1� �) kc(z) � f(x)k22 + � kc0(z)� f 0(x)k2F

	
; (5.6)

for some value of 0 6 � < 1. In the optimization algorithms the Jacobian
matrix f 0(x)T is approximated by a secant approximation D 2 IRm�n during
iterations, so DT is used instead of the gradient in (5.6).

In the implementation the above regularized problems are solved as normal
nonlinear least-squares problems, exempli�ed here by (5.4),

p�(x) = arg min
z2IRn






p

(1� �) (c(z) � f(x))p
� (z � z�)






2

2

; (5.7)

for some value of 0 6 � < 1. As the Jacobian of c is assumed available, the
gradient for this least-squares objective function is available, at least for (5.4)
and (5.5). In the case of (5.6) though, the gradient of the least-squares ob-
jective function depends on the second derivatives of c. So, as second order
information usually is not explicitly available, the gradient of the least-squares
objective function may be found by �nite di�erence approximation.

With this introduction we are now prepared to discuss details of the space
mapping optimization algorithms, which we present in the following.
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5.2 Space Mapping Optimization Algorithms

We now introduce �ve optimization algorithms which are based on the space
mapping technique. We assume that the reader is familiar with trust region
terminology, at least on the level of the presentation in Chapter 2. A thorough
introduction to trust region methodology is found in [8].

All algorithms we present are trust region algorithms employing a linear Taylor
model of the space mapping obtained from a secant approximation. Some of
the algorithms, the hybrid algorithms, also rely on a linear Taylor model of
the �ne model obtained from a secant approximation.

We start with two algorithms that are related to the original space mapping
technique. Thereafter we present three hybrid algorithms which combine the
original space mapping technique with classical optimization methods.

5.2.1 Original Space Mapping Algorithms

In the following we present two algorithms related to the original formulation
of the space mapping.

The space mapping method was introduced in [4, 5] as the problem of solving
the nonlinear equations

p(x) = z� (5.8)

for x 2 IRn. De�ne the residual function

r(x) = p(x)� z� ;

then solutions of (5.8) are contained in the solutions of the least-squares for-
mulation of the problem

min
x2IRn

kr(x)k2 : (5.9)

Since the gradient p0 of the space mapping is not explicitly available, we solve
the problem using a secant method. See e.g. [10] for a thorough treatment of
secant methods.

We now present an algorithm based on a secant method for solving (5.9).
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The secant method involves approximating the space mapping p by a linear
Taylor model. Assume we are at the kth iterate xk 2 IRn in the iteration
process, then for a given step h 2 IRn, the Taylor model is

p(xk + h) ' pk(h) � Bkh+ p(xk) ; (5.10)

where the matrix Bk 2 IR
n�n is an approximation to p0(xk)

T , obtained from
a secant formula. In practice we use Broyden's rank one update

Bk+1 = Bk +
p(xk + h)� p(xk)�Bkh

hTh
hT :

We de�ne the initial approximation B0 to be the identity matrix, B0 = I(n),
corresponding to the (initial) assumption that the coarse model is identical to
the �ne model, see Chapter 3.

From (5.10) we obtain the Taylor model of r,

r(xk + h) ' rk(h) � Bkh+ r(xk) ; (5.11)

where Bk is as above and r(xk) = p(xk)� z�.

The next tentative step hk 2 IR
n of the algorithm solves

hk 2 argmin
h
krk(h)k2 ; (5.12)

subject to a trust region, khkk 6 �k, where �k > 0 is current size of the trust
region and k � k is a suitable norm in IRn.

The acceptance criteria and control of the trust region size is determined in
the conventional way for trust region methods, see [14]:

The predicted decrease by the norm of the Taylor model is

predicted decrease = kr(xk)k2 � krk(hk)k2 :

The actual decrease measured in the norm of the residual is

actual decrease = kr(xk)k2 � kr(xk + hk)k2 :

The acceptance criteria of the tentative step hk are

predicted decrease > 0 ; (5.13)

actual decrease

predicted decrease
> Æ1 ; (5.14)
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for 0 < Æ1 < 1. The criterion (5.13) is always satis�ed when hk is a solution
to solving (5.12) except if hk = 0, in which case the step is rejected. The
criterion (5.14) accepts the tentative step if there is a su�cient actual decrease
relative to the predicted decrease. Usually Æ1 is chosen quite small e.g. Æ1 =

10�4.

The trust region size � is adjusted as follows: If the ratio of the actual decrease
to the predicted decrease is less than or equal to a constant Æ2, Æ1 < Æ2 < 1,

actual decrease

predicted decrease
6 Æ2 ; (5.15)

the trust region size is reduced by a factor K1, 0 < K1 < 1,

�k+1 = K1�k :

If the ratio is greater than or equal to a constant Æ3, Æ2 < Æ3 < 1,

actual decrease

predicted decrease
> Æ3 ; (5.16)

the trust region size is enlarged by a factor K2, K2 > 1,

�k+1 = K2�k :

If neither (5.15) nor (5.16) are satis�ed, the trust region size stays unchanged,
�k+1 = �k.

The complete algorithm is summarized in Algorithm 5. This algorithm is im-

Algorithm 5 Original Space Mapping Optimization

Given �0, B0 = I; k = 0

0. Find x0 as solution to minx2IRn H(c(x))

1. Evaluate f(x0)
2. Find p(x0)
3. Find hk by solving (5.12)
4. Evaluate f(xk + hk)

5. Find p(xk + hk) by solving (5.3)
6. Let xk+1 = xk + hk if (5.13) and (5.14) both are true; otherwise xk+1 = xk
7. Update �, B
8. Let k = k + 1

9. If not converged, goto 3
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plemented by the name smo in the toolbox, refer to Appendix A. If the trust re-
gion is measured using the L1-norm, then the subproblem (5.12) is a quadratic
programming problem, which can be solved using a standard QP-solver. This
is the strategy used in the toolbox. When measuring the trust region in the
the L2-norm, an approach due to Moré and Sorensen can be used, see e.g. [16].

Notice that we use the coarse model minimizer z� as the starting point x0,
x0 = z�. This is in accordance with the initial assumption that the coarse and
the �ne model are identical.

The choice of starting point is characteristic for all space mapping algorithms,
and it often shows in practice that having a good starting point is the key
advantage of the space mapping methods. We will return to this issue in
Section 5.3 discussing the numerical tests.

The convergence criteria referred to in step 9 of the algorithm are implemented
in the toolbox as follows:

The algorithm should stop if the length of the tentative step found in step
three is less than a threshold,

khkk 6 "(1 + kxkk) ; (5.17)

where " > 0 is user de�ned. We use a threshold value scaled with the norm of
the current iterate in order to avoid problems with bad scaling of the param-
eters.

The algorithm should stop if the number of �ne model function evaluations
exceeds a threshold,

k > kmax ; (5.18)

where kmax > 0 is user de�ned.

There are other possible stopping criteria that could have been implemented,
for example: Stopping if the objective function gets below a user de�ned
threshold value. Stopping if the norm of the gradients of the objective func-
tion value gets below a user de�ned threshold value. We do not use any of
these criteria for two reasons. First, a user cannot in general be expected to
de�ne suitable threshold values, which will be very problem dependent. Sec-
ond, the gradient information obtained by the algorithms originates from a
secant method, thus the gradient information may be very inaccurate, and it
is therefore not reliable for use in a stopping criterion.
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New Space Mapping Formulation

In [20] and also in the paper included as Chapter 3 a new formulation of the
original space mapping formulation (5.8) was suggested, namely to minimize
the so-called mapped coarse model c Æ p. In Chapter 4 it is shown that under
certain conditions, solving

min
x2IRn

H(c(p(x))) (5.19)

is equivalent to solving (5.8). Further, in Chapter 4 it was argued that (5.19)
was to be preferred over (5.8) in situations where the solutions of the two
formulations do not coincide.

We now describe a trust region algorithm for solving (5.19).

The algorithm relies on the linear Taylor model of the space mapping (5.10).
So the algorithm �nds the next tentative step hk 2 IR

n as a solution to

hk 2 argmin
h
H(c(pk(h))) ; (5.20)

subject to a trust region, khkk 6 �k.

Since c is assumed to be cheap, the nonlinear trust region subproblem (5.20)
can be solved by a classical Taylor based trust region algorithm as one of those
described in [12].

The predicted decrease by the coarse model with the space mapping approxi-
mation is

predicted decrease = H(c(p(xk)))�H(c(pk(hk))) :

The actual decrease measured in the mapped coarse model response is

actual decrease = H(c(p(xk)))�H(c(p(xk + hk))) :

The acceptance criteria of a tentative step hk and the control of the trust
region size follows the same general strategy as presented for the trust region
algorithm above. The same goes for the stopping criteria.

The algorithm is identical with Algorithm 5 presented above, except for the
following: the tentative step is found by solving the trust region subprob-
lem (5.20), and the de�nitions of the predicted and actual decrease are the
ones above. This algorithm is implemented by the name smon in the toolbox,
refer to Appendix A.
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5.2.2 Hybrid Space Mapping Algorithms

We now turn the attention to a class of hybrid space mapping algorithms
which rely on the space mapping technique as means of obtaining a good
starting point for a classical Taylor based optimization technique. Hence, the
algorithms use the space mapping technique as a pre-conditioner for the op-
timization problem. Before we state the hybrid algorithms, we brie�y go over
the classical technique for solving (5.1).

In the classical Taylor based optimization a Taylor model is developed at the
current iterate xk. We consider the linear Taylor model

fk(h) = Dkh+ f(xk) ; (5.21)

where Dk is the Jacobian matrix f 0(xk)
T or an approximation to it. The

algorithm �nds hk 2 IR
n as a solution to

hk 2 argmin
h
H(fk(h)) ;

subject to a trust region, khkk 6 �k.

Basically the algorithm of the classic method is as Algorithm 5 above, though
measuring decrease in H Æ fk and H Æ f rather than H Æ c Æ pk and H Æ c.

Now returning to the hybrid space mapping algorithms. The �rst ideas of
actual hybrid algorithms, combining elements of space mapping and Taylor
based classical techniques, were presented in [1, 20].

In [1] the main focus is on �nding an x which makes the �ne model response
f(x)match the optimal coarse model response c(z�), the target response. Thus
the algorithm does not in general provide a solution of (5.1), except if certain
special conditions are satis�ed, see Chapter 4.

In [20] an algorithm is presented that explicitly addresses the problem in (5.1).
The same algorithm is motivated and discussed in Chapter 3 (the included
paper [2]). This algorithm relies on a so-called combined model sk, which is a
convex combination of c(pk(h)) and fk(h),

sk(h) = wk c(pk(h)) + (1� wk) fk(h) (5.22)

where 0 6 wk 6 1 is a transition parameter. The idea is to gradually switch
during iterations from the mapped coarse model to the Taylor model of the
�ne model. In Chapter 3 this is done by letting wk vanish during iterations,



128 Space Mapping Optimization Algorithms

wk = o(1), where o(1)! 0 for k !1. The actual updating formula suggested
in Chapter 3 is to halve the value of w in every tentative step that is not
accepted.

The formulation (5.22) is a special case of the more general formulation of the
combined model,

sk(h) = wk e(x) + (1� wk) fk(h) ; (5.23)

where e : IRn 7! IRm is a vector function that is intended to have a pre-
conditioning e�ect on the problem (5.1) and at the same time is cheaper to
evaluate than f . In our context e of course is related to the space mapping in
some way.

In Chapter 6 convergence is proved for a class of algorithms based on the
model (5.23) where Dk of fk, see (5.21), is equal to the exact Jacobian matrix
f 0(xk)

T or a �nite di�erence approximation to it. The main assumption of the
proof is on how the transition parameter is controlled, the assumption is

wk = minf�k; 1g � o(1) : (5.24)

Hence the transition parameter should vanish at least as fast as the trust
region size. This is a strengthened requirement compared to that suggested in
Chapter 3.

We now present a hybrid space mapping algorithm for solving (5.1) using the
combined model (5.22).

The next tentative step hk 2 IR
n is found as solution to

hk 2 arg min
h
H(sk(h)) (5.25)

subject to a trust region, khkk 6 �k. The nonlinear trust region subprob-
lem (5.25) can be solved by a classical Taylor based trust region algorithm as
one of those described in [12].

The predicted decrease by the combined model with the space mapping ap-
proximation is

predicted decrease = H(f(xk))�H(sk(hk)) :

Notice here that we measure the predicted decrease according to the �ne model
response at the current iterate. This is because we want convergence to the
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�ne model optimizer x�, refer to Chapter 6. The model sk(xk) does not in
general interpolate f(xk), except if wk = 0.

The actual decrease measured in the �ne model response is

actual decrease = H(f((xk))�H(f(xk + hk)) :

We assume that wk, k = 0; 1; : : :, is determined such that the condition (5.24)
is met. Further, the acceptance criteria of a tentative step hk and the control
of the trust region size follow the same general strategy as presented for the
trust region algorithms above. The same is true for the stopping criteria.

The complete hybrid space mapping algorithm is summarized in Algorithm 6.
Notice how we can obtain an initial approximation D to f 0(x0)

T using the

Algorithm 6 Hybrid Space Mapping Algorithm

Given �0, B0 = I; w0 = 0, k = 0

0. Find x0 as solution to minx2IRn H(c(x))

1. Evaluate f(x0)
2. Find p(x0)
3. Set D = c0(p(x0))

4. Find hk by solving (5.25)
5. Evaluate f(xk + hk)

6. Find p(xk + hk) by solving (5.3)
7. Let xk+1 = xk + hk if (5.13) and (5.14) both are true; otherwise xk+1 = xk
8. Update �, B, D, w
9. Let k = k + 1

10. If not converged, goto 4

coarse model, by letting D = c0(p(xk))
TBk the �rst time D is to be used, i.e.

the �rst iteration where wk < 1. Thus we avoid the need for a �nite di�erence
approximation to the gradient of f . In the toolbox, the default is to initialize
D as quickly as possible, hence as in step 3 of Algorithm 6. In the subsequent
iterations D is updated using Broyden's rank one update

Dk+1 = Dk +
f(xk + hk)� f(xk)�Dkhk

hTk hk
hTk :

A necessary remark about the algorithm: We use the inexact gradient approx-
imation D, even though convergence of this algorithm has only been proven
for the case where D is the exact gradient f 0 (refer to Chapter 6 for the con-
vergence proof). Vicente [21] proves convergence for a similar algorithm using
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inexact gradient information in the case where H is a quadratic function, e.g.
the L2 norm.

In the following we present the three versions of this algorithm which are im-
plemented in the toolbox. Thereafter we brie�y discuss other related strategies
for combining the space mapping method and classical optimization methods.

Linear Transition

The algorithm presented in Chapter 3, based on the combined model in (5.22),
can easily be modi�ed to �t the hybrid algorithm framework suggested above.

This is done by changing the update of the transition parameter wk to the
update formula suggested in Chapter 6,

wk+1 = K3wk minf�k+1; 1g

where 0 6 K3 < 1. This update formula is to be used each time a tentative step
has been rejected, or if there have been n accepted steps (where the update
formula has not been used). If the updated wk+1 is less than a threshold K4,
where 0 < K4 < 1, then wk+1 is set to zero.

So the modi�ed algorithm of Chapter 3 is Algorithm 6 with the update strategy
described above, e.g. with K3 = 0:5. This algorithm is implemented by the
name smh in the toolbox, refer to Appendix A.

Orthogonal Updating

A di�erent algorithm with the hybrid structure was suggested by Pedersen
in [17]. His algorithm uses the new formulation of the original space mapping
method (see page 126) in at least the n �rst iterations, corresponding to wk =

1, k = 1; : : : ; n. In these �rst n iterations: If the original space mapping method
fails, i.e. an uphill step (in terms of H Æf) is suggested, a random step of �xed
length is taken, orthogonal to the previous step directions, in an e�ort to
enhance the secant approximation of the gradient of the space mapping. After
each orthogonal step a new step is taken using the original space mapping
method. After n iterations the algorithm of [17] switches to a classical method
right after the �rst step in which the original space mapping method fails.
This is done by setting wk = 0 at the next uphill step.



5.2 Space Mapping Optimization Algorithms 131

The algorithm we suggest is modi�ed from the one in [17] on the following
points:

� Orthogonal steps are constructed from coordinate directions, not random
directions.

� Trust region is not updated when taking the orthogonal steps.

� For a given orthogonal direction d and �xed step length �, the step taken
is h = ��d, whichever has the best predicted objective function value
by H Æ c Æ pk.

� A maximum of 2 �n steps with original space mapping method is allowed
before setting wk = 0.

With the special control of wk and the possible use of orthogonal steps within
the �rst n iterations, the algorithm is as Algorithm 6 above. The algorithm is
implemented by the name smho in the toolbox, refer to Appendix A.

An alternative method for choosing the orthogonal steps has been suggested
by Pedersen [18]: Let the orthogonal step h 2 IRn be the solution of the
constrained problem

h = argmin
d
H(c(pk(d)))

s:t: kdk 6 ~�

QTd = 0

where Q is an orthonormal basis for the previous steps and the maximum step
length ~� > 0 may be chosen independently of �k. In practice a lower bound
on the step length may be needed as well, ~�2 6 kdk, ~�2 > 0, to assure that
h = 0 is not suggested.

The implementation in the toolbox provides the user with the choice of using
the �xed length orthogonal steps (the default) or �nding the orthogonal steps
solving the constrained problem above.

Response Correction

The �rst order response correction technique described in Chapter 2 (Sec-
tion 2.3.1) may be applied to the mapped coarse model c Æ p. By using this
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method we may develop a model which has the interpolation property of the
Taylor model fk of the �ne model response, but at the same time retains
the nice properties of the mapped coarse model for large steps. This e�ect is
illustrated by a numerical test problem in Chapter 4, Section 4.3.

The mapped coarse model with corrected responses is

g :� [c(p(x+ h))� c(p(x))] + f(x) ; (5.26)

where g 2 IRm are the correction factors and :� is element-wise multiplication.
For a given tentative step hk, the correction factors are found by the secant
update

[gk]j =
fj(xk + hk)� fj(xk)

cj(p(xk + hk))� cj(p(xk))
; j = 1; : : : ;m ;

where only the correction factors for those responses with a signi�cant change
in value from xk to xk + hk are updated. For those responses where there is
not a signi�cant change the correction factors can either be retained at their
previous value (if such exist) or set to one.

In the context of the hybrid space mapping algorithm, the combined model
with the corrected mapped coarse model is

sk(h) = wk (g :� (c(pk(h)) � c(p(xk)) + f(xk)) + (1� wk) fk(h) : (5.27)

This combined model distinguishes itself from (5.22) by interpolating f at xk,
sk(0) = f(xk). In that sense the model is closer to the original concept of trust
region methodology.

The transition parameter wk is updated using linear transition strategy pre-
sented above. So except for the modi�ed combined model (5.27) and the need
for updating g, the hybrid algorithm is otherwise as Algorithm 6 above. The al-
gorithm is implemented by the name smhc in the toolbox, refer to Appendix A.

Another approach to the response correction technique [9] is to extend (5.26)
to the form

A(c(p(x + h))� c(p(x))) + f(x) ;

where A 2 IRm�m is a matrix containing the correction coe�cients. The matrix
of correction coe�cients may be found by a secant approximation, e.g. using
Broyden's rank one update

Ak+1 = Ak +
f(xk + hk)� f(xk)�Akdk

dTk dk
dTk ;
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where dk = c(p(xk+1)) � c(p(xk)). For the problems we consider m tends to
be a rather large number, so it may not be feasible to store the full matrix A.
However the limited memory techniques suggested in [7] may be applied, and
thus reduce the need for storage to only a few vectors of length m.

It is not obvious how to justify the need for the o�-diagonal elements of A,
as these represent interaction between response functions. For this reason we
have chosen not to include this extended response correction technique in the
implementation in the toolbox.

Related Strategies

We brie�y discuss two strategies related to the idea of combining space map-
ping methods and classical optimization methods.

Transition With Distance In the hybrid algorithms discussed so far, the
transition parameter wk vanishes as k increases. Another strategy is to let wk

be a function of distance khk from the current iterate xk. For example by using
a smooth transition function as sketched in Figure 5.1. In the example of the

wk(khk)

khk

�k

1

0

Figure 5.1: Sketch of a smooth transition function wk depending on the length of the

step khk. The parameter �k determines at which distance to the transition function

takes the value 0:5. Other parameters could be included to describe the shape of the

curve.

�gure, �k should be adjusted in order to meet the convergence condition (5.24).
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Using such a strategy we have wk = 0 for khk = 0, hence the combined model
interpolates f at xk, sk(0) = f(xk). For large enough steps we have wk = 1,
hence the combined model is the approximation of the new space mapping
formulation, sk(h) = c(pk(h)). In this way we exploit the local Taylor model
of the �ne model response for small steps, and the space mapped coarse model
for large steps.

Linear Correction Instead of the combined model, we may add a correction
term to the mapped coarse model [9]. The correction term should model the
residual f(x) � c(p(x)), i.e. the deviation between the �ne model response
and the mapped coarse model response. Let l denote the Taylor model of the
correction term,

f(x+ h)� c(p(x+ h)) ' l(h) � ~Dh+ f(x)� c(p(x)) ;

where ~D is a secant approximation to f 0(x)T�c0(p(x))T p0(x)T . In fact, if we use
the approximations from the combined model, we have ~D = D � c0(p(x))TB.

So, the model to minimize in each trust region subproblem is

sk(h) = c(pk(h)) + lk(h) :

The advantage of this formulation is that the model is interpolating at xk.
The main two disadvantages are: First, the mapped coarse model may not be
continuously di�erentiable as the space mapping p in general is not continuous.
Thus we risk that the correction term �uctuate even for small steps, and the
algorithm may never converge. Second, the correction term may spoil the good
properties of the mapped coarse model for the long steps. A modi�cation to
overcome the last disadvantage is to make the e�ect of the correction term
local [19], e.g. by multiplying lk with a weighting parameter that vanish with
the length of the step, i.e. the opposite weighting function as that sketched in
Figure 5.1.

5.3 Numerical Tests

This section reports numerical tests of the implementation of the algorithms
described above. The implemented algorithms and the test problems are pro-
vided in the Matlab toolbox described in Appendix A.
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We will only show results for the 7 test problems of the toolbox numbered
1�3, 5�8.

The test problems 4, 9 and 10 in the toolbox are not used, because they are
so simple that it is not possible to compare the performance of the algorithms
from these problems. These three problems were originally conceived in order
to illustrate the de�ciencies of the original space mapping method in a simple
way.

The test problems numbered 11�13 in the toolbox, the electromagnetic simu-
lator problems, are not used, because it has not been possible to demonstrate
de�nite results for these problems. The two main di�culties with these prob-
lems are that the parameters are de�ned on a discrete grid, and that the
response functions are highly sensitive for even the smallest possible change
in parameter values.

Next we report on the numerical performance of the space mapping algorithms
and compare to that of a classical optimization algorithm. Thereafter we il-
lustrate the e�ects of using alternative space mapping de�nitions on one of
the test problems. Finally, we examine the trajectory of the original space
mapping methods and compare to that of a hybrid method.

5.3.1 Test Runs

We now consider the numerical performance of the space mapping algorithms
and a classical optimization algorithm. All algorithms are implemented in the
Matlab toolbox described in Appendix A.

Prerequisites

We will refer to the algorithms by the names and numbers listed in Table 5.1,
see also the description of the algorithms in Section 5.2 above and in the
toolbox documentation in Appendix A. For the convenience of the reader, we
brie�y restate some information about the algorithms here:

smo : original space mapping method, described at page 124.

smon : new formulation of the original space mapping method, described at
page 126.
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smh : hybrid space mapping algorithm with linear transition, described at
page 130.

smho : hybrid space mapping algorithm with orthogonal updating, described
at page 130.

smhc : hybrid space mapping algorithm with response correction, described
at page 131.

direct : direct, classical Taylor based optimization. The algorithm is equiv-
alent to the hybrid space mapping algorithms having wk = 0 for all k,
except that the initial approximation to the Jacobian of the �ne model
is found by �nite di�erence approximation.

Algorithm no. Name in toolbox Marker in Figure 5.2

1 smo Æ
2 smon �
3 smh

4 smho

5 smhc

6 direct M

Table 5.1: Numbers and markers assigned to the algorithms.

All algorithms are provided with the same starting point x0 = z�, the coarse
model minimizer. We note that this provides an unfair advantage for the direct,
classical method compared to usual application of such a method, which is to
start the direct method in a quasi-random starting point.

All algorithms are run using the default options of the toolbox. Hence param-
eters like the initial trust region size and other parameters common to the
algorithms are the same for all runs. The usual space mapping de�nition (5.3)
is used for all space mapping algorithms. In Section 5.3.2 we report on the
e�ects of using other space mapping de�nitions.

When reporting on the performance of the algorithms we compare the level
of accuracy after the kth iteration,

Level of accuracy =
H(f(xk))�H(f(x�))

H(f(x0))
: (5.28)

We also lists the condition that causes a given algorithm to stop iterating on
a given problem. The following abbreviations are used:
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SL : The algorithm stopped because the length of the last tentative step was
too small, i.e. the condition (5.17) evaluated true. In these test runs we
use " ' 2:22 � 10�14, more precisely: a factor 100 above the calculating
accuracy level. If an algorithm stops because of this condition, it is either
because the tentative step from the trust region subproblem is shorter
than the threshold, or because the trust region has been reduced to a
size less than the threshold.

FE : The algorithm stopped because the number of �ne model evaluations
reached the threshold kmax, i.e. the condition (5.18) evaluated true. In
these test runs we use kmax = 200.

ND : The algorithm stopped because the last tentative step provided no de-
crease in the trust region model of that iteration, i.e. the condition (5.13)
evaluated false. For the hybrid algorithms, this condition can only stop
the algorithms in the last stage where the transition parameter is zero
(because the predicted decrease is measured relative to the �ne model
objective at the previous iterate, and the surrogate model is not in gen-
eral interpolating the �ne model, only when w = 0). If an algorithm stops
because of this condition it is often due to rounding errors dominating
the calculations.

The subproblems of the algorithms are solved using the following optimization
methods:

nonlinear minimax : An implementation of the method of Hald and Mad-
sen [11], is used for solving the subproblems (5.20) and (5.25), and the
problem (5.2).

linear minimax : The linear programming method 'linprog' of the Matlab
Optimization Toolbox [13], is used for solving the subproblem (5.25)
when w = 0. The option 'Largescale' of the method is set to 'o�'.

quadratic programming : The quadratic programming method 'quadprog' of
the Matlab Optimization Toolbox [13], is used for solving the subprob-
lem (5.12). The option 'Largescale' of the method is set to 'o�'.

nonlinear least-squares : An implementation by Hans Bruun Nielsen, IMM,
Technical University of Denmark, of the Levenberg-Marquardt method
for nonlinear least-squares [15], is used for solving the parameter extrac-
tion problem (5.3), or the regularized formulation of the problem (5.7).
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Results

The Tables 5.2, 5.3, 5.4 and 5.5 list the results from the test runs. The tables
show the number of �ne model evaluations a given algorithm needs to reach
a given level accuracy. For the space mapping algorithms it is indicated to
which level of accuracy the space mapping method is active, i.e. for a hybrid
method it is indicated if the transition parameter is greater than zero after
the iteration where a given accuracy has been reached.

Original Space Mapping Algorithms Consider �rst the space mapping
methods concerned with the original space mapping formulation (algorithm 1

and 2). We see from the tables that neither of the algorithms converge to the
minimizer of the �ne model. This is because the mapping is not perfect for any
of the test problems, i.e. p(x�) 6= z�. As discussed in Chapter 4, the condition
of a perfect mapping is crucial for the convergence properties of original space
mapping algorithms, here algorithm 1 and 2.

The results from the test problems no. 2, 5, 6, 7 and 8 show that algorithm
2 should be preferred over algorithm 1, since it ultimately achieves a better
accuracy for these test problems. However, for test problem 1, Table 5.2 indi-
cates that algorithm 1 reaches the �nal level of accuracy more rapidly. But, we
should recall the results from the examination of this test problem in Chap-
ter 4, Section 4.1.2 (see also Section 5.3.3 below): namely that algorithm 2

�nds a solution that is feasible with regard to the design speci�cations of the
problem, which algorithm 1 does not. So even though algorithm 1 seems to
converge faster to the same level of accuracy, algorithm 2 is preferable also for
this test problem.

Comparing only the initial convergence of algorithm 1 and 2 with that of the
other space mapping algorithms. We see that when algorithms 1 and 2 perform
their best they are only as good as the performance of the other space mapping
algorithms. So from these results there are no reasons to prefer algorithm 1

and 2 over any of the other space mapping algorithms.

Comparing algorithm 1 and 2 to the direct, classic algorithm, we see that
algorithm 2 performs better than the direct algorithm in the initial stage, but
for most test problems the direct algorithm obtains an ultimately higher �nal
accuracy. Algorithm 1 only performs better than the direct algorithm in the
�rst few steps. When the direct algorithm have attained a �nite di�erence
approximation of the Jacobian of the �ne model, the direct algorithm faster
obtains a higher level of accuracy than algorithm 1.
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Test problem no. 1

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 3
10�1 2� 2� 2� 2� 2� 4
10�2 4� 9� 4� 5 9� 10
10�3 - - 13 19 22 15
10�4 - - 17 22 27 19
10�5 - - 20 27 32 22
10�6 - - 25 33 34 22
10�8 - - 34 43 41 31
10�10 - - 35 53 52 35
10�12 - - 45 59 56 43
10�14 - - 54 67 65 50

Stop: SL SL ND ND ND SL

Problem no. 2

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 8
10�1 - 8� 8� 7� 7� 19
10�2 - - 14� 85 21 -
10�3 - - 23 116 25 -
10�4 - - 53 123 33 -
10�5 - - 65 151 36 -
10�6 - - 70 167 42 -
10�8 - - 82 186 48 -
10�10 - - 104 - 52 -
10�12 - - 122 - 53 -
10�14 - - - - 54 -

Stop: ND SL SL FE SL FE

Table 5.2: Convergence results for test problems no. 1 (two variables) and no. 2 (seven

variables). Each column of the table bodies lists the number of �ne model evaluations

used by the algorithm of that column to obtain the level of accuracy listed in the

leftmost column, see (5.28). The marker (�) indicates that the space mapping method

was active at that level of accuracy. The bottom row lists the reasons for stopping the

algorithms.
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Test problem no. 3

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 3
10�1 - - 5� 5 4� 6
10�2 - - 7� 7 7� 9
10�3 - - 9 8 8� 10
10�4 - - 11 9 10 11
10�5 - - 11 10 11 11
10�6 - - 11 10 11 12
10�8 - - 12 - - 13
10�10 - - 13 - - 14
10�12 - - 14 - - 14
10�14 - - 14 - - -

Stop: SL SL SL SL SL SL

Table 5.3: Convergence results for test problem no. 3, with two variables. Each column

of the table body lists the number of �ne model evaluations used by the algorithm of

that column to obtain the level of accuracy listed in the leftmost column, see (5.28).
The marker (�) indicates that the space mapping method was active at that level of

accuracy. The bottom row lists the reasons for stopping the algorithms.

The only situations where algorithms 1 and 2 may be preferable are: If the
mapping is perfect, p(x�) = z�, such that both algorithms converge to the
�ne model minimizer (refer to Chapter 4), or if the user is satis�ed with the
rather limited accuracy. The latter is in fact often the case in engineering
design, and for such an application we recommend algorithm 2 over algorithm
1, because of the results discussed above and because of the more theoretical
considerations of Chapter 4.

Hybrid Space Mapping Algorithms We now compare the hybrid space
mapping algorithms with the direct, classical algorithm. From the tables we
see that the algorithms 3, 4 and 5 converge to the correct solutions for most of
the test problems. However, for some of the test problems the algorithms stops
prematurely. First we analyze the cases where convergence were not achieved,
then we consider the performance of the algorithms.

Algorithms 3 and 5 on test problem 7: The algorithms stopped because the
step lengths were too short. By closer examination we have found that the
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Test problem no. 5

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 4
10�1 - 3� 3� 3� 3� 18
10�2 - - 77 58 70 -
10�3 - - 82 62 73 -
10�4 - - 99 65 80 -
10�5 - - 112 71 117 -
10�6 - - 132 76 121 -
10�8 - - 153 84 132 -
10�10 - - 163 92 144 -
10�12 - - 172 100 157 -
10�14 - - 180 104 166 -

Stop: SL FE SL SL SL SL

Test problem no. 6

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 4
10�1 65� 2� 2� 2� 2� 7
10�2 - 13� 24 23 24 36
10�3 - - 59 67 58 59
10�4 - - 83 - 84 86
10�5 - - 93 - 112 91
10�6 - - 123 - 124 101
10�8 - - 139 - 140 125
10�10 - - 148 - 146 149
10�12 - - 152 - 152 163
10�14 - - 154 - 152 163

Stop: SL SL SL FE SL FE

Table 5.4: Convergence results for the test problems no. 5 and 6, both with three

variables. Each column of the table body lists the number of �ne model evaluations

used by the algorithm of that column to obtain the level of accuracy listed in the

leftmost column, see (5.28). The marker (�) indicates that the space mapping method

was active at that level of accuracy. The bottom row lists the reasons for stopping the

algorithms.
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Test problem no. 7

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 4
10�1 - 13� 11 6 11 7
10�2 - - 43 47 43 42
10�3 - - 78 66 78 49
10�4 - - 81 70 81 143
10�5 - - 87 90 87 163
10�6 - - 93 94 93 166
10�8 - - - 100 - -
10�10 - - - 109 - -
10�12 - - - 121 - -
10�14 - - - 126 - -

Stop: SL FE SL SL SL FE

Test problem no. 8

Level of Algorithm no.
accuracy 1 2 3 4 5 6

100 1� 1� 1� 1� 1� 4
10�1 4� 2� 2� 2� 2� 5
10�2 - 7� 5� 45 4� 8
10�3 - - 11 - 14 18
10�4 - - 13 - 20 24
10�5 - - 18 - 26 24
10�6 - - 22 - 45 42
10�8 - - 31 - 72 63
10�10 - - 38 - 77 72
10�12 - - 44 - 81 80
10�14 - - 46 - 84 82

Stop: SL SL SL SL SL SL

Table 5.5: Convergence results for the test problem no. 7 and 8, both with three

variables. Each column of the table body lists the number of �ne model evaluations

used by the algorithm of that column to obtain the level of accuracy listed in the

leftmost column, see (5.28). The marker (�) indicates that the space mapping method

was active at that level of accuracy. The bottom row lists the reasons for stopping the

algorithms.
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algorithms converged to a local minimizer of the �ne model.

Algorithm 4 and 5 on test problem 3: The algorithms stopped because the step
lengths were too short. By closer examination we have found that the approx-
imate gradient information was so inaccurate that the algorithms converged
to a point that judging from the inexact gradient information is a stationary
point of the �ne model.

Algorithm 4 on the test problems 2, 6 and 8, the algorithm stopped prema-
turely. For the test problems 2 and 6 the algorithm stops because too many
�ne model evaluations were used, this indicates that the gradient approxima-
tion in the linear Taylor model is not good enough, but the algorithm may
ultimately converge provided that enough �ne model evaluations are allowed.
By closer examination we have found that the algorithm converges to full ac-
curacy after 250 �ne model evaluations on problem 2, and after 283 �ne model
evaluations on problem 6. For problem 8, the algorithm stops because the step
length was to small. By closer examination we have found that the algorithm
converged to a local minimizer of the �ne model.

The hybrid methods perform nearly identical in the initial stage where the
space mapping method is active, i.e. w > 0. Due to the above mentioned
problems with �nal convergence, we are not able to perform a fair comparison
of the hybrid methods in the last stage of the iteration process where the
direct, classical method is used, i.e. w = 0. Instead we compare the hybrid
methods with the direct, classical method.

In general we see that the hybrid space mapping algorithms converge faster
than the direct algorithm both in the initial phase, where the space mapping
method is used, and in the �nal phase of the iteration process. An exception
to this is test problem 1, where the direct method converges faster in the
last phase of the iteration process. A clear advantage of all the hybrid space
mapping algorithms is that they do not need to perform an initial �nite dif-
ference approximation to obtain the �ne model Jacobian approximation. The
space mapping algorithms obtain this approximation using the mapped coarse
model, see page 129. Hence the hybrid space mapping algorithms are in that
sense pre-conditioned by the mapped coarse model, before switching to direct,
classical optimization.

So in total, the results verify that a combination of the space mapping method
and a direct, classical method is preferable over using either of the methods
separately. With the hybrid algorithms we achieve the features of both meth-
ods: Fast initial convergence from the space mapping, and convergence to a



144 Space Mapping Optimization Algorithms

stationary point of the �ne model from the direct, classical method.

Direct, Classical Algorithm Algorithm 6 also has some di�culties in con-
verging for the test problems 2, 5 and 7: For problem 2 the algorithm stops
because of too many �ne model evaluations. If allowed to continue, the al-
gorithm converges after 434 �ne model evaluations. For test problem 5 the
algorithm stops because the step length was too short. By closer examination
we have found that the approximate gradient information was so inaccurate
that the algorithm converged to a point that judging from the inexact gra-
dient information is a stationary point of the �ne model. For test problem 7
the algorithm stops because of too many �ne model evaluations. If allowed
to continue, the algorithm converges to a point that judging from the inexact
gradient information is a stationary point of the �ne model.

Summary of the Results

The original space mapping algorithms are in general not preferable over any of
the other algorithms we have tested, except in the special (but very important)
case where only very few �ne model evaluations are available and where limited
accuracy can be accepted. It is most likely a better choice to initialize a direct,
classical method with the Jacobian approximation obtained from the mapped
coarse model, than it is to use one of the original space mapping algorithms.

The hybrid space mapping algorithms showed good initial convergence, similar
to that observed for the original space mapping algorithms. But also the �nal
convergence is good, and in fact better or comparable to that of the direct,
classical method started in the coarse model minimizer.

5.3.2 Space Mapping De�nitions

We now examine the e�ects of using alternative space mapping de�nitions.
Figure 5.2 shows results from test runs using four di�erent space mapping def-
initions on test problem 2. The four de�nitions of the space mapping are (5.3),
(5.4), (5.5) and (5.6). We use the regularization parameter � = 10�3, as the
best results were obtained with this choice on this test problem.

Both the de�nitions (5.4) and (5.5), regularizing with regard to the distance
to z� respectively x�, have a positive e�ect on the initial convergence of two
of the hybrid space mapping algorithms, algorithms 3 and 5. Further, the
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Figure 5.2: Results from the �rst 15 steps on problem no. 2, with seven variables,

using four di�erent de�nitions of the space mapping. See Table 5.1 for a description

of the markers. Note that the number of �ne model evaluations after iteration k is

k + 1.
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de�nition (5.4) has a positive e�ect on the original space mapping formulation,
algorithm 1. However, the new formulation of the original space mapping,
algorithm 2, does not reach the same level of accuracy as with the usual space
mapping de�nition.

The de�nition (5.6), regularizing with regard to gradient information, does
not have a signi�cant e�ect on the iteration process compared to the usual
space mapping de�nition (5.3).

So judging from this experiment, the de�nition (5.4), regularizing with re-
gard to the distance to z�, provides the best initial convergence for original
space mapping algorithms and two of the hybrid algorithms. The �nal level
of accuracy was better for the one of the original space mapping algorithms,
but it was worse for the other. Hence it is not clear exactly when to use an
alternative space mapping formulation with regularization. Further research
is needed in order to draw any �rm conclusions.

5.3.3 Optimization Trajectories

We consider the convergence of the two original space mapping methods smo
and smon, and the hybrid space mapping method smh with linear transition,
for the TLT2 test problem (no. 1 in the toolbox).

In the Figures 5.3, 5.4 and 5.5 are shown iteration trajectories in the coarse
model space from optimization using the three methods. The trajectories are
plotted on top of the space mapping image fp(x) : x 2 IRng, which was
introduced in Chapter 4, Section 4.1.2. The solutions referred to in the �gure
captions are:

x� : a solution to (5.1),

z� : a solution to (5.2),

x�p : a solution to (5.9),

x�cÆp : a solution to (5.19).

The TLT2 problem is interesting not only because the mapping is not perfect,
p(x�) 6= z�, but also because the coarse model minimizer z� is not in the image
of the space mapping, z� =2 p(IRn). The latter causes that the solutions x�p and
x�cÆp are not equal, refer to Chapter 4, Section 4.1.3.
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From Figure 5.3 we see how the algorithm of the original space mapping
method converges to the point in the space mapping image p(x�p) with the
least distance to the coarse model minimizer z�. Hence

p(x�p) = argminz2p(IRn) kz � z�k2 : (5.29)

In the iterations the algorithm comes quite close to the minimizer of the
�ne model, however it diverges again toward the solution of the least-squares
problem (5.29).

z
(2
)

z(1)

Figure 5.3: Optimization process trajectory in coarse model space using the original

space mapping formulation, solving p(x) = z� with a least-squares merit function,

implemented in smo. The full line indicates the accepted steps, the broken lines indi-

cate rejected tentative steps. The markers indicate the coarse model minimizer z� (�),
the space mapping image of: the space mapping solution p(x�p) (N), the minimizer of

the mapped coarse model p(x�cÆp) (H) and the �ne model minimizer p(x�) (�).
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From Figure 5.4 we see how the new formulation of the original space mapping
method converges to the point in the mapping image p(x�cÆp) where the coarse
model response has its minimum. Hence

p(x�cÆp) = argminz2p(IRn)H(c(z)) :

Similar to the other original space mapping method, this method comes quite
close to the �ne model minimizer before diverting again toward the minimizer
of the coarse model in the mapping image.

z
(2
)

z(1)

Figure 5.4: Optimization process trajectory in coarse model space using the new space

mapping formulation, minimizing H(c(p(x))), implemented in smon. The full line

indicates the accepted steps, the broken lines indicate rejected tentative steps. The

markers indicate the coarse model minimizer z� (�), the space mapping image of: the

space mapping solution p(x�p) (N), the minimizer of the mapped coarse model p(x�cÆp)

(H) and the �ne model minimizer p(x�) (�).
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From Figure 5.5 we see how the hybrid space mapping method converges
to the image of the �ne model minimizer p(x�). Comparing this �gure with
the two previous �gures, it is clear to see how the space mapping method
serves as a pre-conditioner. This is seen by the switch from the space mapping
method to the direct, classical method that occurs around the point where the
space mapping method otherwise would start to diverge from the �ne model
minimizer. The switch is taking place because the space mapping method fails
to produce downhill steps for the �ne model.

z
(2
)

z(1)

Figure 5.5: Optimization process trajectory in coarse model space using the hybrid

space mapping algorithm with linear transition, implemented in smh. The full line

indicates the accepted steps, the broken lines indicate rejected tentative steps. The

markers indicate the coarse model minimizer z� (�), the space mapping image of: the

space mapping solution p(x�p) (N), the minimizer of the mapped coarse model p(x�cÆp)

(H) and the �ne model minimizer p(x�) (�).
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This example illustrates the importance of combining the original space map-
ping method with classical optimization methods in order to ensure that the
solution found is indeed a solution of the original problem. However, in cases
where the accuracy is less important, the original space mapping methods may
provide a reasonable approximation to the solution, if they are stopped before
diverging toward x�p or x

�
cÆp.
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5.4 Conclusion

This chapter has presented �ve optimization algorithms based on the space
mapping method. Two of the algorithms are concerned with the original space
mapping method. The other three algorithms are hybrid algorithms combining
the space mapping method with a classical Taylor based optimization method.

The key advantage of the hybrid algorithms over the original space mapping
methods is that convergence to a stationary point of the �ne model can be
proved. On the other hand, the original space mapping methods are concep-
tually simpler and also easier to implement.

With the hybrid space mapping framework we have developed a framework
for pre-conditioning optimization problems using a broad class of surrogate
models, not limited to those generated by the space mapping method.

The performance of the Matlab implementation of the algorithms has been
reported for 7 test problems. The e�ects of using alternative space mapping
de�nitions have been demonstrated on one test problem.

The algorithms based on the original space mapping formulation showed good
initial performance but for all the test problems they only reached a moderate
�nal level of accuracy. We only recommend using the original space mapping
algorithms in the special case where only few �ne model evaluations are avail-
able and where limited accuracy can be accepted. Otherwise we suggest to use
either, one of the hybrid space mapping algorithms, or a direct, classical algo-
rithm initialized with derivative information obtained from the space mapped
coarse model in the starting point.

The hybrid space mapping algorithms showed a fast initial convergence, sim-
ilar to that of the original space mapping algorithms, and they also showed
comparable convergence results in the last stage of the iteration process as
to those of a direct, classic method. This was expected in advance, and was
con�rmed by the observations from the runs on the 7 test problems. We prove
the convergence of the hybrid methods in the next chapter, Chapter 6.
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Symbols

k � k unspeci�ed norm

k � k2 Euclidean norm, kxk2 = (xTx)
1
2

k � kF Frobenious norm
c response from the coarse model, c : IRn 7! IRm

f response from the �ne model, f : IRn 7! IRm

g response correction factors
H convex function, used as merit function
m number of response functions
n dimensionality of the design parameter space
p space mapping
p� regularized space mapping
x optimizeable model parameters of f and c
x� minimizer of H(f(x))

x�cÆp minimizer of H(c(p(x)))

x�p minimizer of kp(x)� z�k2
z� minimizer of H(c(z))

� regularization parameter in space mapping de�nitions
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Convergence of Hybrid Space Mapping Algorithms

Kaj Madsen (km@imm.dtu.dk) and Jacob Søndergaard
(js@imm.dtu.dk)
Informatics and Mathematical Modelling, Technical University of Denmark

Abstract. The space mapping technique is intended for optimization of engineering
models which involve very expensive function evaluations. It may be considered
a preprocessing method which often provides a very efficient initial phase of an
optimization procedure. However, the ultimate rate of convergence may be poor, or
the method may even fail to converge to a stationary point.
We consider a convex combination of the space mapping technique with a classical
optimization technique. The function to be optimized has the form H ◦ f where
H : IRm 7→ IR is convex and f : IRn 7→ IRm is smooth. Experience indicates that the
combined method maintains the initial efficiency of the space mapping technique.
We prove that the global convergence property of the classical technique is also
maintained: The combined method provides convergence to the set of stationary
points of H ◦ f .

Keywords: space mapping, global convergence

1. Introduction

The subject of this paper is to prove global convergence of an optimiza-
tion method which is a convex combination of two strategies: One which
is efficient initially in an iteration and another which has guaranteed
global convergence. The first algorithm is the so-called space mapping
technique, described and motivated in (Bakr et al., 2001), the other
one is a classical 1. order Taylor based trust region algorithm.

The problem to be solved is the following:

min
x∈IRn

H(f(x)) (1)

where f : IRn 7→ IRm is a smooth function, often m� n. H : IRm 7→ IR
is a convex function. It may be a norm in IRm, typically the L1, L2 or
the L∞ norm. The following minimax function,

H(y) ≡ max
16i6m

{yi}

where y = (y1, y2, ..., ym)T , is also often used, e.g., in electromagnetic
design, which has been a major application area for the space mapping
technique. Thus it is important to cover the case where H is non-
differentiable.
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In the smooth least squares case, H = ‖.‖22, the 1. order Taylor
based method is the Gauss-Newton method. In this case convergence
of the combined algorithm is proved in (Vicente, 2002). For the non-
differentiable choices of H mentioned above special versions of the
Taylor based method have been published in (Madsen, 1975) and (Hald
& Madsen, 1985). For general convexH convergence of the Taylor based
trust region algorithm was proved in (Madsen, 1985). Related results
may be found in (Fletcher, 1982) and (Womersley & Fletcher, 1986).

The space mapping technique which was introduced in (Bandler
et al., 1994) is intended for problems where f is computationally ex-
pensive. It is an optimization technique for engineering design in the
following situation: f is representing an accurate model of some phys-
ical system. Besides this model of primary interest (denoted the fine
model), access to a cheaper (coarse) model of the same physical system
is assumed. The latter may be less accurate. The main idea of the space
mapping technique is to use the coarse model to gain information about
the fine model, and to apply this in the search for an optimal solution of
the latter. Thus the technique iteratively establishes a mapping between
the parameters of the two models which relate similar model responses.
Having this mapping, most of the model evaluations can be directed to
the fast coarse model.
A review of the Space Mapping approach is given in (Bakr et al., 2000).

We give a description of the combined method in Section 2. The
convergence is proved in Section 3.

2. Description of the Algorithms

The two algorithms which are combined are both iterative. In the
descriptions below the current iterate is xk ∈ IRn. H ◦ f is denoted
by F .

The Space Mapping Algorithm (SMA) assumes two functions avail-
able: The function f to be minimized, and a function c : IRn 7→ IRm

which represents the coarse model that is related to the same physical
model as f . The space mapping p : IRn 7→ IRn is intended to connect
similar values of f and c. In the present description it satisfies the
following for x ∈ IRn:

p(x) ∈ arg min
x̃∈IRn

‖c(x̃)− f(x)‖ (2)

where ‖ · ‖ is a norm in IRn, usually the L2 norm. The tentative step
hk from xk is based on the following approximation to p(xk + h):

pk(h) = Bkh+ p(xk) , (3)
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where the matrix Bk is intended to approximate the gradient p′(xk)T

of p at xk. This approximation may be found using the gradients of
f and c if they are available, otherwise a Broyden update (Broyden,
1965) or a difference approximation to p′(xk)T has been used. It is not
important in the present paper how Bk is found.
The SMA finds hk as a solution to

hk ∈ arg min
h
H(c(pk(h))) ,

where the minimization is usually subject to a trust region.

In the Taylor-based method for minimizing f the tentative step from
xk is based on the following 1. order approximation to f(xk + h),

fk(h) = Dkh+ f(xk) .

In the present paper Dk = f ′(xk)T . Otherwise a Broyden update or a
difference approximation to f ′(xk)T have been used.
The tentative step hk is found as a solution to

hk ∈ arg min
h
H(fk(h)) , (4)

where the minimization is usually subject to a trust region.

In the combined algorithm (SMTA) for minimizing f the tentative
step hk from xk is based on a convex combination of c ◦ pk and fk:

swk (h) = w c(pk(h)) + (1− w) fk(h)

where 0 6 w 6 1 is a transition parameter.
The method finds the tentative step hk as a solution to

hk ∈ arg min
h
H(swkk (h)) ,

where the minimization is usually subject to a trust region.
In the algorithm w0 = 1 and wk is non-increasing function of k. The

principle being that if c ◦ pk is doing badly in approximating f then
wk is decreased, and thereby the algorithm gradually switches to using
the Taylor model fk of f .

2.1. Details of the SMTA

The trust region at xk is the set

Tk = { x ∈ IRn | ‖x− xk‖ 6 Λk } (5)

where ‖ · ‖ is a suitable norm in IRn and Λk > 0.
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At the current iterate xk, the tentative step hk ∈ IRn is a solution
to

hk ∈ arg min
h

H(swkk (h))

s.t. xk + h ∈ Tk
(6)

The quality of a given tentative step hk is measured by

∆Sk(hk) ≡ H(swkk (hk))−H(f(xk)) .

−∆Sk(hk) may be interpreted as a measure of the ability of the model
swk to predict a decrease in F . Notice that ∆Sk(0) is not necessarily 0,
however, i.e., the model does not necessarily interpolate at xk.
If hk is acceptable then we use xk + hk as the next iterate, otherwise
we maintain xk as the best iterate found. The acceptance of the step
is based on the following criteria:
If the predicted decrease is non-positive,

−∆Sk(hk) 6 0 , (7)

then the step is rejected. Otherwise the step is accepted if F decreases
sufficiently:

F (xk)− F (xk + hk) > δ̃1[−∆Sk(hk)] (8)

where 0 < δ̃1 < 1.

In each iteration the local bound Λk and the transition parameter
wk are adjusted as follows:
If (7) is true then Λk+1 = Λk, otherwise Λk+1 depends on the ratio
between actual and the predicted decrease. If

F (xk)− F (xk + hk) 6 δ̃2[−∆Sk(hk)] , (9)

δ̃1 < δ̃2 < 1, is satisfied then Λk+1 = K1Λk with 0 < K1 < 1.
If

F (xk)− F (xk + hk) > δ̃3[−∆Sk(hk)] , (10)

δ̃2 < δ̃3 < 1, is satisfied then Λk+1 = K2Λk with K2 > 1.
If none of the conditions (9) or (10) are satisfied then we let Λk+1 = Λk.
The transition parameter wk is chosen as follows: Initially wk = 1. If
xk+hk is not accepted then we wish to move weight towards the Taylor
model, and therefore we let

wk+1 = K3 wk min{Λk+1, 1} , (11)
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where 0 6 K3 < 1. Otherwise wk+1 = wk.
In order to ensure convergence, however, we need wk → 0 for k → ∞.
Therefore we also apply (11) if it has not been used for the previous n
iterations.

2.2. Summary of the SMTA

Given Λ0, B0 = I, w0 = 1, k = 0
0. Find x0 as a solution to minx̃H(c(x̃))
1. Evaluate f(x0)
2. Find p(x0) by solving (2)
3. Find hk by solving (6)
4. Evaluate f(xk + hk)
5. Find p(xk + hk) by solving (2)
6. If (7) is false and (8) is true then let xk+1 = xk + hk

otherwise xk+1 = xk
7. Update Λ, w, B and D (only if w < 1)
8. Let k = k + 1
9. If not converged then goto 3

The steps 0, 1 and 2 are an initial phase where a (local) opti-
mizer of H(c(x)) is found and the initial translation p(x0) in the linear
approximation to the space mapping (3) is found.

Note that if (7) is true after step 3, then the algorithm can skip
to step 8, letting xk+1, Λk+1, Bk+1 and Dk+1 take the values from
iteration k and updating wk using (11). Hence we avoid the evaluation
of f(xk + hk) and f ′(xk + hk) in this case.

3. Proof of Convergence

We show that the SMTA satisfies the usual convergence condition for
trust region methods. In the proof we do not need the actual updating
scheme of the weights {wk}, (11), we only need property (12) below.
Similarly, we do not need any properties of the SMA, we only need
that c is bounded (Assumption A2 below). Thus, the proof covers a
class of algorithms, including those presented in (Bakr et al., 2001)
and (Pedersen, 2001). Probably also other pre-processing techniques
will suit into this framework.

Throughout this section we use the notations {xk}, {hk}, {Λk} and
{wk} as they are defined in Subsection 2.1. It follows from the definition
of the weights that they satisfy

wk = min{Λk+1, 1} o(1) (12)
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where o(1)→ 0 for k →∞.

We make the following assumptions

A1: For each point z ∈ IRn there exist a neighbourhood N (z) ⊆ IRn

such that

f(x+ h) = f(x) + f ′(x)h + o(‖h‖) , x ∈ N (z) , h ∈ IRn ,

where o is uniform for x ∈ N (z).
f ′ is continuous on IRn.

A2: c is bounded in the region of interest.

A3: H is a convex function on IRm.

A4: {xk} stays in a bounded region in IRn.

3.1. Prerequisites

The convexity of H implies that it satisfies a local Lipschitz condition.
H is not necessarily differentiable. However, we can define a generalized
gradient which is a set of points (rather than always a single point).
Since a function which is Lipschitz on a finite dimensional space is dif-
ferentiable almost everywhere, the generalized gradient can be defined
as follows, see (Clarke, 1975) or (Clarke, 1983), Theorem 2.5.1:

DEFINITION 1. The generalized gradient of H at x, denoted ∂H(x),
is the convex hull of the set of all limits of the form limH ′(x + ei),
where H is differentiable at x+ ei and ei → 0 as i→∞,

∂H(x) ≡ conv{ lim
ei→0

H ′(x+ ei) } .

It is easily seen, (Clarke, 1983), Proposition 2.1.1 and (Madsen,
1985), Proposition 2.1, that ∂H(x) is non-empty and compact.
Since H is convex the generalized gradient coincides with what is called
the subdifferential in convex analysis. The convexity of H also implies
the existence of a directional derivative H ′e(y) for any y, e ∈ IRm, e 6= 0,

H ′e(y) ≡ lim
t↓0

H(y + te)−H(x)
t

.

Now consider the composite function F = H ◦ f . Since f is smooth
∂F is well defined. A stationary point of F is defined as follows,
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DEFINITION 2. x is a stationary point of F if

0 ∈ ∂F (x).

Using the convexity of H and the smoothness of f we can obtain
the following characterization of a stationary point (Madsen, 1985),
Proposition 2.15.

PROPOSITION 1. Let x ∈ IRn. Then

0 ∈ ∂F (x)
m
F ′h(x) > 0 for every direction h ∈ IRn, h 6= 0 .

Below we shall use the following 1. order approximation ∆F to a
change in F :

DEFINITION 3. Let x, h ∈ IRn. Define

∆F (x;h) ≡ H(f(x) + f ′(x)h)−H(f(x)) .

We shall use the following two properties of ∆F :

PROPOSITION 2. For x, h ∈ IRn we have

∆F (x; th) = tF ′h(x) + o(t) , for t > 0 .
Proof. (Madsen, 1985), Proposition 2.9.

PROPOSITION 3. For x, h ∈ IRn and 0 6 t 6 1 we have

∆F (x; th) 6 t∆F (x;h) .
Proof. The result is a simple consequence of assumptions A1 and

A3.

3.2. Proof of convergence

The technicalities of the convergence proof for SMTA are contained in
the following three lemmas.

LEMMA 1. Let x ∈ IRn be a non-stationary point. Then there exist
positive numbers δ1, δ2 and ε1 such that for xk ∈ IRn

‖xk − x‖ 6 δ1 and Λk 6 δ2

⇓

∆Sk(hk) 6 −ε1Λk if k > k̃
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Proof. Since x is a non-stationary point there exist, by Proposition 1,
a direction h such that F ′h(x) < 0. Then it follows from Proposition 2
that there exist a point x+ d, d = th, t > 0, such that ∆F (x; d) < 0.

Define dk by

xk + dk = x+ d .

If xk → x then dk → d. Therefore it follows from the uniform continuity
of f , f ′ and H that there exists a neighbourhood N (x) of x and a
number δ such that

∆F (xk; dk) 6 −δ < 0 (13)

when xk ∈ N (x). Define δ1 > 0 and δ2 > 0 such that if ‖xk − x‖ 6 δ1

then xk ∈ N (x) and ‖dk‖ > δ2.
Let htk ∈ IRn be a solution to (4) subject to the trust region:

htk ∈ arg min
h

H(fk(h))

s.t. xk + h ∈ Tk
(14)

Suppose Λk 6 δ2. Let tk = Λk/‖dk‖ and qk = tkdk. Then xk+qk ∈ Tk
and since H(fk(h)) = ∆F (xk;h) + F (xk) we can use the definition of
htk and Proposition 3 to obtain

∆F (xk;htk) 6 ∆F (xk; qk) 6 tk∆F (xk; dk) . (15)

Since {dk} is bounded away from 0 this implies the existence of ε > 0,
independent of k, such that

∆F (xk;htk) 6 −εΛk (16)

(using (13)). Since H is locally Lipschitz, there exists a constant K
such that

|∆F (xk;htk)| 6 K‖htk‖

and thus (16) implies

‖htk‖ >
ε

K
Λk . (17)

Now let uk = ‖htk‖/‖dk‖. The arguments showing (15) imply

∆F (xk;htk) 6 uk∆F (xk; dk) .

Using (13) and the definition of ∆F , this implies

H(fk(htk)) 6 −ukδ +H(f(xk)) . (18)
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Because of (17), property (12), A2, and the boundedness away from
0 of {‖dk‖}, we have the following inequalities for all sufficiently large
values of k, say k > k̃,

|wkH(f(xk))| 6
δ

4
uk ,

wkH(c(pk(htk))) 6
δ

4
uk ,

wk 6
1
4
.

Therefore, using the convexity of H and (18),

H(swkk (htk)) 6 wkH(c(pk(htk))) + (1− wk)H(fk(htk))

6 δ

4
uk + (1− wk)(−ukδ +H(f(xk)))

=
δ

4
uk − ukδ +H(f(xk)) + wkukδ − wkH(f(xk))

6 −δ
4
uk +H(f(xk)) .

Since hk minimizes H ◦ swkk subject to the trust region, it follows
that

∆Sk(hk) = H(swkk (hk))−H(f(xk))
6 H(swkk (htk))−H(f(xk))

6 −δ
4
‖htk‖/‖dk‖

6 −δ
4
Λk/‖dk‖ ,

which proves Lemma 1. 2

LEMMA 2. Let x ∈ IRn be a non-stationary point. Let δ1 be defined
as in Lemma 1. For every δ3 > 0 there exists ε2 > 0 such that

‖xk − x‖ 6 δ1 and Λk > δ3

⇓

∆Sk(hk) 6 −ε2 if k > k̃
Proof. Let δ4 = min{δ2, δ3}, δ2 being defined as in Lemma 1. Suppose

h̃k is generated by (6) from xk with the trust region bound Λ̃k = δ4.
Then it follows from Lemma 1 that, for k > k̃,

∆Sk(h̃k) 6 −ε1δ4
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Suppose hk is generated from xk by (6) with the local bound Λk > δ3.
Then

∆Sk(hk) 6 ∆Sk(h̃k)
6 −ε1δ4 ,

which proves Lemma 2. 2

LEMMA 3. If {xk} is convergent then the limit point is stationary.
Proof. Suppose xk → x for k →∞ and that x is non-stationary.

From Assumptions A1-A3 and (12) we obtain

F (xk + hk) = H(fk(hk) + o(‖hk‖))
= H(swkk (hk)− wk (c(pk(hk))− fk(hk)) + o(‖hk‖))
= H(swkk (hk)) + Λko(1) + o(‖hk‖)
= H(swkk (hk)) + Λko(1)

Therefore

F (xk)− F (xk + hk) = −∆Sk(hk) + Λko(1) (19)

Let δ2 be defined as in Lemma 1. Using Lemma 1 if Λk 6 δ2 and
Lemma 2 if Λk > δ2 we find from (19)

F (xk)− F (xk + hk) = −∆Sk(hk)(1 + o(1))

Therefore Lemma 1 and the rules (7), (8) and (10) for accepting a new
point and for adjusting Λk imply the existence of δ > 0, with δ 6 δ2

such that for sufficiently large k,

Λk 6 δ ⇒ xk+1 = xk + hk and Λk+1 = K2‖hk‖ (20)

where K2 > 1.
(20) implies that if Λk 6 δ, then Λk+1 > Λk. Hence the sequence of
local bounds must be bounded away from zero,

Λk > δ3 > 0 for k = 0, 1, 2, 3, . . . (21)

Therefore an infinite number of proposals (xk + hk) are accepted by
the algorithm, because otherwise we would have Λk → 0 for k → ∞
(using the fact that the bound is decreased linearly when a point is not
accepted (see (9))). Furthermore, when a proposal (xk+hk) is accepted
and k is sufficiently large, then (8), Lemma 2 and (21) imply

F (xk)− F (xk + hk) > δ̃1[−∆Sk(hk)] > δ̃1ε2 > 0 .

Since the sequence of function values F (xk) is non-increasing we obtain
F (xk) → −∞ for k → ∞. This is a contradiction since xk → x and



166 Convergence of Hybrid Space Mapping Algorithms

Convergence of Hybrid Space Mapping Algorithms 11

F is continuous at x. Thus this assumption is wrong: x is a stationary
point. 2

The following theorem extends the result of Lemma 3.

THEOREM 1. Let S be the set of stationary points of (1), S = { x ∈
IRn | 0 ∈ ∂F (x) }. Let d(xk, S) be the distance between xk and S. Then

d(xk, S)→ 0 for k →∞
Proof. Suppose d(xk, S) 9 0. Then infinitely many points xk must

be bounded away from S, and hence Assumption A4 implies that the
sequence {xk} must have a cluster point x which is not stationary.
According to Lemma 3 {xk} cannot converge to x. Thus, for all small
ε > 0 infinitely many iterates xk must have a distance less than ε
from x and infinitely many must have a distance larger than 2ε from
x. Let ε > 0 be chosen smaller than δ1/2, δ1 being the bound used in
Lemma 1 and Lemma 2. Then we shall prove that if ‖xk − x‖ < ε and
‖xk+p − x‖ > 2ε we have

F (xk)− F (xk+p) > δ > 0 , (22)

δ being independent of k and p. Since (22) holds for infinitely many
values of k, and since the sequence {F (xk)} is non-increasing, we obtain
that F (xk)→ −∞ for k →∞ which contradicts that F is continuous at
x and {xk} converges to x. Therefore the result follows as a consequence
of (22).

Equation (22) is proved by the following argument: Consider

F (xk)− F (xk+p) =
k+p−1∑
j=k

[F (xj)− F (xj+1)] , (23)

for k > k̃, with k̃ as in Lemma 1. The terms of the sum are non-
negative. Suppose that xj+1 6= xj , i.e. the increment hj is accepted.
Suppose further that if ‖xj − x‖ 6 2ε then we can use the Lemmas 1
and 2. We obtain from (8) and these lemmas,

F (xj)− F (xj+1) > δ̃1[−∆Sj(hj)]

>

 δ̃1ε1Λj if Λj 6 δ2

δ̃1ε2 otherwise
(24)

Equation (22) now follows from (23) using (24): Let Ak be the index
set corresponding to the terms in (23) with xj 6= xj+1. If, for all of these
terms, we have Λj 6 δ2 then∑

j∈Ak
[F (xj)− F (xj+1)] > δ̃1ε1

∑
j∈Ak

Λj > δ̃1ε1

∑
j∈Ak

‖hj‖ (25)
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The last sum exceeds ε since hj = xj+1 − xj for j ∈ Ak, xj = xj+1 for
j /∈ Ak, and since ‖xk+p − xk‖ > ε. Thus the sum in (23) exceeds ε
when Λj 6 δ2 for all j ∈ Ak. If the last condition is not fulfilled then
there exists j ∈ Ak with

F (xj)− F (xj+1) > δ̃1ε2

so in that case the sum exceeds a positive number which is independent
of k and t. Thus we have proved (22) with

δ = min{δ̃1ε1ε, δ̃1ε2}

This completes the proof of Theorem 1. 2

4. Conclusion

We have considered the problem of minimizing functions of the type
H ◦ f , where f : IRn 7→ IRm is smooth and H : IRm 7→ IR is convex. It
is proved that the hybrid space mapping algorithm described in (Bakr
et al., 2001) has guaranteed global convergence to the set of stationary
points of H ◦f . The proof covers a class of hybrid algorithms, including
those presented in (Bakr et al., 2001) and (Pedersen, 2001).
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Chapter 7

Conclusion

The aim of this study has been to provide an overview of the �eld of surro-
gate optimization and to examine theoretical properties of the space mapping
technique. This chapter summarizes the conclusions of the study.

Chapter 2 concerns a literature overview of the �eld of surrogate modelling
and optimization. The presentation divides the �eld into two parts, the meth-
ods for generating surrogate models and methods for conducting optimization
using surrogate models. The surrogate models are again divided into two cat-
egories, the functional models and the physical models. Where the functional
models are generic mathematical models which can be constructed without any
particular knowledge of the underlying physical system. The physical models
are system speci�c models. Surrogates based on physical models are usually
constructed by manipulating a cheaper model of the same physical system as
the expensive model in question, so that the manipulated cheap model ap-
proximates the behaviour of the expensive model. The chapter also presents
four algorithms for optimization using surrogate models. Two of these can be
proved convergent.

The space mapping technique is one such method for constructing and opti-
mizing a surrogate model based on a cheap physical model. Here we use the
name coarse model to denote the cheap model, and the name �ne model to
denote the expensive model, which is to be optimized. The space mapping sur-
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rogate is the coarse model composed with a parameter mapping, the so-called
space mapping, connecting similar responses of the coarse and the �ne model.
The space mapping technique is the focal point of the succeeding chapters of
the thesis.

Chapter 3 provides an introduction and motivation for the space mapping
technique. The basic principles of the space mapping technique are presented.
It is shown how the space mapping technique can be combined with classical
optimization strategies in a hybrid method. The hybrid method is illustrated
by two test problems, and the space mapping surrogate is shown empirically
to be a valid approximation in a larger area than a corresponding linear Taylor
model. The space mapping technique is by example shown to be an e�cient
pre-processing technique for di�cult engineering optimization problems. If the
solution accuracy is not su�cient, the technique can be combined with other
methods of optimization.

Chapter 4 concerns theoretical aspects of the space mapping technique. The
chapter presents theoretical results which characterize the space mapping un-
der some ideal conditions. It is shown that if these conditions are met, the
solutions provided by the original space mapping technique are minimizers of
the �ne model. However, in practice we cannot expect that the ideal conditions
are met, so the space mapping technique should be combined with classical
optimization methods in order to be convergent. The theoretical results are
motivated and illustrated by numerical examples. De�ciencies of the usual
space mapping de�nition are discussed and four alternative de�nitions are re-
viewed. The two space mapping de�nitions relying on respectively gradient
information and multiple points are identi�ed to be the most promising. But
further theoretical investigations are needed in order to arrive at a more �rm
conclusion.

Chapter 4 also discuses the approximation abilities of the coarse model com-
posed with the space mapping. A numerical example con�rms the theoretical
results, that the mapped coarse model, with a Taylor approximation to the
space mapping, has a lower approximation error for long steps, compared to
a Taylor model of the �ne model. For short steps, however, the Taylor model
of the �ne model is best, due to exact interpolation at the model origin. It is
also shown how a response correction may enhance the mapped coarse model
approximation, without compromising the small approximation error on long
steps. With the response correction, the mapped coarse model approximation
has the same interpolation property as the Taylor model of the �ne model.

Chapter 5 concerns formulation of optimization algorithms based on the space
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mapping technique. Five algorithms are presented. Two of the algorithms are
concerned with the original space mapping method. The other three algo-
rithms are hybrid algorithms combining the space mapping method with a
classical Taylor based optimization method. The key advantage of the hybrid
algorithms over the original space mapping methods is that convergence to
a stationary point of the �ne model can be proved. On the other hand, the
original space mapping methods are conceptually simpler and also easier to
implement.

The performance of a Matlab implementation of the algorithms are reported
for 7 test problems. The e�ects of using alternative space mapping de�nitions is
demonstrated on a test problem. The conclusions from these tests are that we
only recommend using the original space mapping algorithms in the special
case where only few �ne model evaluations are available and where limited
accuracy can be accepted. Otherwise we suggest to use, either one of the
hybrid space mapping algorithms, or a direct, classical algorithm initialized
with derivative information obtained from the space mapped coarse model in
the starting point.

Chapter 6 concerns convergence of hybrid space mapping algorithms. A frame-
work for hybrid space mapping algorithms is presented. The framework covers
algorithms with pre-conditioning of optimization problems using a broad class
of surrogate models, not limited to those generated by the space mapping
method. A proof is presented, guaranteeing global convergence to the set of
stationary points of the �ne model of the hybrid space mapping algorithms.

New Contributions

We list here the main new contributions provided by this study.

Æ A literature overview of surrogate modelling and optimization.

Æ Theoretical conditions under which the original space mapping formu-
lation and the new space mapping formulation are the same.

Æ Ideal conditions under which it is proved that the space mapping method
works.

Æ A framework for hybrid space mapping algorithms.
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Æ Convergence is proved for a class of algorithms using pre-conditioning
surrogate models, not limited to those provided by the space mapping
method.

Æ Comparison of 5 space mapping algorithms and a direct, classical opti-
mization algorithm on 7 test problems.

Æ A Matlab toolbox with 13 space mapping test problems, and 6 optimiza-
tion algorithms.

Unresolved Issues

We list here some of the issues that the present study does not resolve.

Æ An understanding of how to de�ne, if at all possible, a space mapping
that meets the ideal theoretical conditions derived in this study.

Æ How to establish a space mapping for problems where the coarse and
the �ne model parameter spaces are of unequal dimensions.

Æ A theoretical study of frequency space mapping and implicit space map-
ping, where the connection between the coarse and the �ne model is
found by manipulating state variables (e.g. frequency, time or preas-
signed variables) of the coarse model.
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Appendix A

Space Mapping Toolbox

This manual describes a Matlab toolbox with space mapping optimization
algorithms and test problems. Version 1.0 of the toolbox is covered by this
manual.

The problems to be solved by the optimization algorithms in this toolbox have
two models available: One model denoted the �ne model, being the model of
primary interest, and the other denoted the coarse model. The �ne model is
often expensive to evaluate, though this is not always the case with the simple
test problems in this toolbox. It is expected that the coarse model somehow
resembles the behaviour of the �ne model. Further, it is expected that the
coarse model is cheaper to evaluate than the �ne model, and therefore it is
most likely less accurate than the �ne model.

The optimization algorithms employ the coarse model in the search for the
�ne model minimizer. This in done through a parameter mapping, the so-
called space mapping, which in e�ect makes the coarse model behave as the
�ne model. We call this combination of the space mapping and the coarse
model, the mapped coarse model. Hence, in the space mapping technique,
this mapped coarse model is to take the place of the �ne model in search
for a minimizer of the latter. For a more thorough introduction to the space
mapping technique see [1].

This manual is divided into three sections. The �rst section introduces the
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test problems, and the second section introduces the algorithms. Both sections
provide a brief description of the Matlab interface. The last section consists
of two small examples of running the software.

We should note here that the optimization algorithms in this toolbox rely on
the Matlab optimization toolbox [5] in order to run. The test problems do not
require the Matlab optimization toolbox. The toolbox has been developed with
Matlab version 6.5 (R13), though it should work with other recent versions of
Matlab.

A.1 Space Mapping Optimization Test Problems

We �rst describe the common interface to the models, and thereafter we brie�y
introduce the individual test problems.

A.1.1 Interface

The de�nitions of the test problems are stored in the function smprob.

To obtain a structure for a given problem the call is

[prob, opts] = smprob(num, opts)

where the inputs are

num the number of the wanted problem (see below),
opts options for space mapping optimization algorithms (see smopts),

the outputs are

prob structure with the problem de�nition,
opts modi�ed options.

The second input argument is optional, and is meant for the case where the
user want to provide alternative default options, instead of those provided
by smopts. The opts structure returned from smprob contains the problem
speci�c parameters like initial trust region size etc.
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The test problems are:

Tranmission Line Transformer problems

1 - two-section impedance transformer (TLT2)
2 - seven-section impedance transformer (TLT7)

Piston problem

3 - piston simulator (PISTON)

Rosenbrock problem

4 - rosenbrock function, with linear transformation (ROSEN)

Parallel Resonator problems

5 - exact linear mapping (RLCA)
6 - exact non-linear mapping (RLCB)
7 - inexact non-linear mapping (di�erent topology) (RLCC)
8 - inexact non-linear mapping (RLCD)

Quadratic functions

9 - quada (coarse responses shifted up) (QUADA)
10 - quadb (coarse responses shifted down) (QUADB)

EM-Simulator

11 - inductive obstacle example (INDOBS)
12 - single resonator �lter (SRESFIL)
13 - H-plane �lter (HPLANEF)

The test problems are placed in separate directories in the toolbox. In order
to access the problems, the path variable of Matlab is automatically modi�ed
when �rst interfacing the test problems through smprob. This modi�ed path
variable is temporary for the session. If the changes should be permanent use
Matlabs pathtool to perform the changes.
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A.1.2 The Test Problems

We now brie�y introduce the individual test problems. But �rst some general
comments:

Even though the optimization methods in the toolbox are general for all norms,
the test problems presented here are posed as minimax problems.

Unless explicitly noted in the description the space mapping (using the usual
formulation) is not perfect, hence p(x�) 6= z�. As described in [7, Chapter 4],
this condition is critical for the success of the original space mapping algo-
rithms, see also Section A.2 below.

All test examples except INDOBS, SRESFIL and HPLANEF are continu-
ously di�erentiable in their parameters. The parameters of three mentioned
test problems are de�ned on a discrete grid. Conformance with the grid is
important when evaluating the models in the small electromagnetic simulator
(in the directory emsim). So the parameters are automatically snapped to a
nearby grid point before running the simulator. The simulator is provided by
Mohamed Bakr from the Department of Electrical and Computer Engineering
at McMaster University, Ontario, Canada. We will not discuss the details of
the simulator in this manual.

TLT2

The problem TLT2 concerns the design of a twosection capacitively-loaded
10 : 1 impedance transformer. The exact physical origin of the problem is
described in [1].

The designable parameters are the physical lengths of the two transmission
lines. Eleven frequency points are simulated per sweep. The objective is to
minimize the maximum input re�ection coe�cient over all simulated frequen-
cies. The design speci�cations are that all input re�ection coe�cient responses
should be below 50%.

Formally, the �ne model response function is f : IR2 7! IR11 and the speci�-
cations are

H(f(x)) =
11

max
j=1

ffj(x)g 6 0:50 :

The coarse model is as the �ne model, except that coupling e�ects (modelled
by capacitors) are not modelled.
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TLT7

The TLT7 problem concerns the design of a seven-section capacitively-loaded
impedance transformer. The exact physical origin of the problem is described
in [1].

The designable parameters are the physical lengths of the seven transmission
lines. 68 frequency points are simulated per sweep. The objective is to minimize
the maximum input re�ection coe�cient over all simulated frequencies. The
design speci�cations are that all input re�ection coe�cient responses should
be below 7%.

Formally, the �ne model response function is f : IR7 7! IR68 and the speci�-
cations are

H(f(x)) =
68

max
j=1

ffj(x)g 6 0:07 :

The coarse model is as the �ne model, except that coupling e�ects (modelled
by capacitors) are not modelled.

PISTON

The PISTON problem is a data �tting problem, where a piston simulator
should be �tted to a given target response. Here the piston simulator is a model
which calculates the pressure over time at an oil producing one-dimensional
well, relative to a �xed injection pressure. The target response is the �ne model
evaluated for a certain set of parameters, so the match of the model to the
target response is exact at the optimal parameters. Because of this, we have
chosen to formulate the problem as solving the nonlinear equations f(x) = 0

using the L1 merit function.

The �ne model is a piston model with six sections of di�erent reservoir perme-
abilities along the shaft of the well. Two of the six reservoir permeabilities are
chosen as designable parameters. The coarse model is a piston model with two
sections of di�erent reservoir permeabilities along the shaft of the well. Both
permeabilities in the coarse model are considered designable parameters. For
both models, 20 simulation times are simulated per model evaluation.

Let the model response be ~f : IR2 7! IR20 and let the target response be
y 2 IR20. In the implementation we use the minimax merit for the nonlinear
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equations, instead of the L1 merit, by introducing the residuals f = ( ~f �
y; y � ~f)T .

Formally, the deviations of the �ne model response and the speci�cations are
f : IR2 7! IR40, and the optimization problem is

min
x

40
max
j=1

ffj(x)g :

The deviation of the coarse model to the speci�cations is de�ned equivalently.

The PISTON problem is provided by Poul Erik Frandsen from Ticra Engi-
neering Consultants, Copenhagen, Denmark.

ROSEN

The ROSEN problem involve solving the Rosenbrock equations, f(x) = 0,
where ~f : IR2 7! IR2,

f1(x) = 10 � (x2 � x21)

f2(x) = 1� x1

We formulate the problem as a minimax problem, by de�ning the �ne model
response function as f = (f1; f2;�f1;�f2)

T . Hence the problem is
minxmax4j=1ffj(x)g.

We de�ne the coarse model response as a linear transformation of the �ne
model response. Hence, c(z) = f(Az + b), where

A =

�
1 2

5 0

�
; b =

�
�3
1

�
:

We note that the space mapping between the coarse and the �ne model is
exact linear:

p(x) = A�1(x� b) ;

since A is invertable.

It is easy to see that the mapping is perfect, i.e. p(x�) = z�, for this problem
as the responses of both models vanish in their optimum.
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RLC

The RLC problem concerns design of parallel RLC lumped resonators.

The coarse model is a parallel RLC lumped resonator with three designable
parameters. 15 frequency points are simulated per sweep. The objective is to
minimize the maximum deviation between the input re�ection coe�cient and
some design speci�cations over all simulated frequencies. The speci�cations
consists in a passband at the center frequencies and a stopband at all other
frequencies.

The problem has four �ne models that also model a parallel RLC lumped
resonator, but the �ne models also have some parasitic elements. The �ne
models are related to the same design problem (i.e. the same speci�cations)
as the coarse model.

Here are the characteristics of the di�erences between the models:

RLCA : The �ne model has an exact linear mapping to the coarse model.

RLCB : The �ne model has an exact nonlinear mapping to the coarse model.

RLCC : The �ne model has an inexact non-linear mapping (di�erent topology)
to the coarse model.

RLCD : The �ne model has an inexact non-linear mapping to the coarse model.

The deviation of the �ne model response to the speci�cations is f : IR3 7! IR15,
the problem is minmax15j=1ffj(x)g. The deviation of the coarse model to the
speci�cations is de�ned equivalently.

QUAD

The QUAD problems, QUADA and QUADB, involve three quadratic func-
tions. The �ne model response is f : IR2 7! IR3, f = (f1; f2; f3)

T , where

f1(x) = 0:5x21 + :1x22 � 2x2 � 2

f2(x) = 0:2x21 + 0:1x22 + 2x2 � 2

f3(x) = 0:1x21 � 3x1 + 0:2x22 � 2 :

The �ne model is the same for both QUADA and QUADB.

The coarse model for QUADA is c(z) = f(z+0:1)+0:1 and the coarse model
for QUADB is c(z) = f(z � 0:1) + 0:1.
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The simple shift in the response functions causes that for neither problem the
space mapping is perfect, p(x�) 6= z�.

INDOBS

The INDOBS problem concerns the design of an inductive obstacle in a parallel
plate waveguide, the problem is described in [2]. There are two designable
parameters. 11 frequencies are simulated per sweep. The problem consists in
matching a given target response, which originates from the �ne model.

The coarse model is the same as the �ne model, except that the coarse model
is simulated using a coarser discretization of the problem in the simulator.

The parameters of the problem are de�ned on a discrete grid. In the opts

structure returned by smprob, the �eld epsilon contains the suggested mini-
mum step length.

SRESFIL

The SRESFIL problem concerns design of a single resonator �lter described
in [3]. There are two designable parameters. 21 frequencies are simulated per
sweep. The problem consists in matching a given target response, which orig-
inates from the �ne model.

The coarse model is the same as the �ne model, except that the coarse model
is simulated using a coarser discretization of the problem in the simulator.

The parameters of the problem are de�ned on a discrete grid. In the opts

structure returned by smprob, the �eld epsilon contains the suggested mini-
mum step length.

HPLANEF

The HPLANEF problem concerns the design of a H-plane waveguide �lter de-
scribed in [6]. There are seven designable parameters. 11 frequencies are sim-
ulated per sweep. The problem consists in matching a given target response,
which originates from the �ne model.

The coarse model is the same as the �ne model, except that the coarse model
is simulated using a coarser discretization of the problem in the simulator.
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The parameters of the problem are de�ned on a discrete grid. In the opts

structure returned by smprob, the �eld epsilon contains the suggested mini-
mum step length.

A.2 Space Mapping Optimization Algorithms

The toolbox contains �ve algorithms based on space mapping technique. Two
algorithms, namely smo and smon, are related to the original space mapping
formulation. Three algorithms, namely smh, smho and smhc, are so-called hy-
brid space mapping algorithms, combining space mapping technique with clas-
sical Taylor based optimization.

A.2.1 Interface

The algorithms have a common interface:

[xk, fk, Hfk, trace] =

smx(H, fine, coarse, x0, A, b, eq, opts, P1, P2, ...)

where smx is one of the following

smo original space mapping,
smon new space mapping formulation,
smh hybrid space mapping,
smhc hybrid space mapping with response correction,
smho hybrid space mapping with orthogonal steps.

The mandatory arguments of the algorithms are the merit function H, the
�le handles to the fine and the coarse model and a starting point x0. Any
parameters that should be passed directly to the �ne and the coarse model
can be speci�ed in the place of P1, P2, ....

The algorithms return the best iterate xk, the �ne model response fk at xk,
and the merit Hfk of the response. A fourth output option is a trace structure
which contains a trace of important values gathered in the iteration process.

The user may supply the algorithm with linear constraints A �x 6 b, where the
�rst eq rows are equality constraints. If the problem is unconstrained empty
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matrices may be passed. The toolbox provides no check for consistency of the
constraints.

The constraints only apply to �ne model parameters, e.g. in the trust region
subproblems, hence the coarse model may be evaluated at any z 2 IRn. The
only exception is in the initial phase of the algorithms, where the coarse model
parameters are constrained in the search for the coarse model minimizer, z�.
This is needed because the �rst iterate is the coarse model minimizer, x0 = z�,
i.e. the �rst point where the �ne model is evaluated.

Speci�c options determining the behaviour of the optimization algorithms are
passed in the structure opts. The default values for the structure opts are
obtained from the function smopts. The structure contains all options used
to determine the behaviour of the speci�c algorithms. If an empty matrix is
passed instead of a structure, the default values are obtained from smopts.

The function smopts is called as follows

opts = smopts(key1, value1, key2, value2, ...)

opts = smopts(opts, key1, value1, key2, value2, ...)

See the source �le for a more complete description of the options, than is
presented in this manual. An existing structure with options can be passed as
input to override default values. Individual default options can be overwritten
by specifying new key-value pairs as input arguments.

We mentioned some of the more important options here:

Most of the optimization algorithms in this toolbox rely on trust region metho-
dology to enforce convergence. Control of the trust region is determined by
a number of options. The most important is dx, the initial trust region size,
which is problem dependent. Refer to smopts for the other options related to
the trust region handling.

The accuracy of the optimization result is determined by the option epsilon.
The algorithms stop if the relative step length or trust region size becomes
smaller than epsilon. Another option controlling when the algorithms stops
is kmax which determines the maximum allowed number of �ne model eval-
uations. So the algorithms are stopped if one of the following conditions are
satis�ed

k > kmax

khk 6 epsilon(1 + kxkk)

dx 6 epsilon(1 + kxkk)
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where k counts �ne model function evaluations, khkk is the step length, dx is
the size of the trust region and kxkk is the norm of the current iterate. The
last criterion is there to avoid an unnecessary extra iteration, solving a trust
region problem with a trust region size that is less than the minimum allowed
step length.

A quick way to test-run the algorithms is through the smrun function, which
is called by

[p, trace, opts] = smrun(num, algo, opts)

where num is the number of the test problem (see p. 185), and algo is the
number of the algorithm to test:

1 SMO orginal space mapping formulation
2 SMON new space mapping formulation with mapped coarse model
3 SMH space mapping hybrid algorithm
4 SMHO space mapping hybrid algorithm with orthogonal steps
5 SMHC space mapping hybrid algorithm with response correction
6 direct optimization of the �ne model, 1st order method
7 direct optimization of the �ne model, 2nd order method
8 direct optimization of the coarse model, 2nd order method

The variables p and opts are the structures obtained from smprob, and trace

is the trace of the optimization process obtained by calling one of the algo-
rithms. See Section A.3 for examples showing the content of trace and p. For
the choices 7 and 8 of algo there cannot be produced a trace variable.

Before we describe the algorithms we �rst give a brief theoretical overview of
space mapping theory.

A.2.2 Theoretical Overview

The main problem consists in �nding the minimizer x� (assumed unique) of
the �ne model,

x� = argmin
x
H(f(x)) ; (A.1)

where f : IRn 7! IRm is the vector response function representing the �ne
model, and H : IRm 7! IR is a convex merit function, usually a norm. We
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denote x� the �ne model minimizer. We note that f is assumed so expensive
that using a classical Taylor based optimization method is infeasible, so �nding
x�, or an approximation to it, is nontrivial.

A related problem is �nding the minimizer z� (assumed unique) of the coarse
model,

z� = arg min
z2IRn

H(c(z)) ;

with c : IRn 7! IRm being the vector response function representing the coarse
model. We denote z� the coarse model minimizer. Since c is assumed cheap
to evaluate the gradient is available (e.g. by �nite di�erence approximation),
hence �nding z� is a trivial problem for a classical Taylor based optimization
method.

The space mapping p : IRn 7! IRn linking the parameter space of the �ne
and the coarse model is usually de�ned as solving the so-called parameter

extraction problem,

p(x) = arg min
z2IRn

kc(z) � f(x)k2 :

This de�nition of the space mapping may lead to nonuniqueness in the pa-
rameter extraction problem, so several alternative de�nitions are available in
the toolbox:

Regularization with regard to the distance to z�,

p�(x) = argmin
z

�
(1� �) kc(z) � f(x)k22 + � kz � z�k22

	
; (A.2)

for some value of 0 6 � < 1.

Regularization with regard to the distance to x,

p�(x) = argmin
z

�
(1� �) kc(z) � f(x)k22 + � kz � xk22

	
; (A.3)

for some value of 0 6 � < 1.

Regularization using gradient information,

p�(x) = argmin
z

�
(1� �) kc(z) � f(x)k22 + � kc0(z) � f 0(x)k2F

	
; (A.4)

for some value of 0 6 � < 1. In the optimization algorithms f 0(x)T is approx-
imated by a secant approximation D 2 IRm�n during iterations, so this D is
used instead of the true Jacobian matrix in (A.4).
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In the implementation the above regularized problems are solved as normal
nonlinear least-squares problems, exempli�ed here by (A.2),

p�(x) = argmin
z






p

(1� �) (c(z) � f(x))p
� (z � z�)






2

2

;

for some value of 0 6 � < 1. As the Jacobian of c is assumed available, the
gradient for this least-squares objective function is available, at least for (A.2)
and (A.3). In the case of (A.4) though, the gradient of the least-squares ob-
jective function depends on the second derivatives of c. So, as second order
information is not available, the gradient of the least-squares objective func-
tion is found by �nite di�erence approximation.

With this theoretical introduction we are now in a position to introduce the
algorithms.

The Original Space Mapping Formulation

The original space mapping technique involves solving the nonlinear equations

p(x) = z� ;

for x 2 IRn. The algorithm implemented in the toolbox function smo addresses
this problem, by solving the least-squares formulation of the problem,

min
x2IRn

kp(x)� z�k2 : (A.5)

Another space mapping technique, equivalent with the original formulation in
some ways, is to minimize the mapped coarse model,

min
x2IRn

H(c(p(x))) : (A.6)

The algorithm implemented in the toolbox function smon solves this problem.

The solutions of (A.5) and (A.6) are not necessarily the solution x� of the
main problem (A.1). In fact we can only be certain that the solution is x� if
the space mapping is perfect, p(x�) = z�.

In the description of the test problems above it is stated which of the test
problems that have a perfect mapping. Due to this drawback, the results of
the functions smo and smon are not directly comparable with the functions
implementing the hybrid space mapping framework, described next.
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Hybrid Space Mapping Algorithms

The toolbox contains three functions, namely smh, smho and smhc, imple-
menting the hybrid space mapping framework described in [4]. Basically the
algorithms rely on a model of the form

s(x) = w c(p(x)) + (1� w) l(x)

where 0 6 w 6 1 is a transition parameter, c Æ p is a mapped coarse model
and l is linear Taylor model of the �ne model. An exception is the algorithm
in smhc which uses a form of the mapped coarse model where the responses
are corrected to match the �ne model using a secant method.

All the algorithms start with w = 1 and end with w = 0, provided enough
iterations. Thereby a switch from the mapped coarse model to the linear Taylor
model takes place.

With k being the iteration counter, it is proven in [4] that the main condition
for convergence of this class of algorithms is that

wk = dxk � o(1)

where dxk is the size of the trust region and o(1)! 0 for k !1.

Two of the algorithms, namely SMH and SMHC, use a gradual switching strategy,
whereas the third algorithm SMHO switches abruptly from w = 1 to w = 0 at
a certain point in the iteration process.

The algorithms use linear Taylor model with secant approximations to the
derivatives for both the space mapping p and l. So the last stage of the
three algorithms involves sequential linear programming, where the linear
model has inexact derivatives. To help speed up the convergence, the options
dofinitediff and maxuphill (refer to the source of smopts) can force the
algorithms to correct the linear model by a �nite di�erence approximation.
Further we should note that the option initd controls the way that the initial
approximation to the derivatives of the �ne model is obtained.

A.2.3 The Optimization Algorithms

SMO

The function smo implements the original space mapping technique solving
the problem in (A.5) using a trust region secant method. The secant method
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involves a linear Taylor model of the space mapping with a secant approxima-
tion to the Jacobian matrix.

SMON

The function smon implements the alternative space mapping technique solv-
ing the problem (A.6), using a trust region method with sequential linear
approximations to p by a secant method.

SMH

The function smh implements the hybrid space mapping algorithm, with a
gradual switching between the mapped coarse model and the linear Taylor
model of the �ne model.

The control of w is determined by the options w_min, w_reduce and
max_w_not_reduced. If either a proposed step is not accepted or if the number
of iterations where w has not been changed reachesmaxfn; max_not_reducedg
then w is updated. The updating formula is

wk+1 = wk � w_reduce �minfdxk+1; 1g ;

where dx is the size of the trust region. If w by updating gets below w_min

then w is set to zero.

SMHO

The function smho implements a hybrid space mapping algorithm with orthog-
onal updating steps of the space mapping approximation.

If the space mapping fails within the �rst n iterations the algorithm evaluates
the �ne model at a step in a direction orthogonal to previous steps, this is
in order to improve the quality of the space mapping secant approximation.
Which of the orthogonal directions that is chosen and the length of the step in
that direction can be controlled by the options ortho_met, ortho_scale_type
and ortho_scale. If a single orthogonal step is not su�cient, further steps
are taken, until the �ne model has been evaluated at most n times. Thereafter
the algorithm switches to a linear Taylor model of the �ne model.
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If the space mapping steps are successful the algorithm keeps taking space
mapping steps until at most max_w_not_reduced+n steps have been taken.
Thereafter the algorithm is forced to switch to the linear Taylor model of the
�ne model.

SMHC

The function smhc implements a hybrid space mapping algorithm with re-
sponse correction of the mapped coarse model.

The combined model for this algorithm is

sk(x) = wk(gk :� [c(pk(x))� c(p(xk))] + f(xk)) + (1� wk)lk(x)

where g 2 IRm are the correction factors and :� is element-wise multiplication.

The correction factors are found by the secant update

g
(j)
k+1

=
f (j)(xk+1)� f (j)(xk)

c(j)(p(xk+1))� c(j)(p(xk))
; j = 1; : : : ;m ;

where the superscript (j) indicates the jth element of the vector.

The transition parameter w is controlled as in the SMH algorithm described
above.

A.2.4 Auxiliary Functions

Both the main directory and the directory private contains a number of
auxiliary functions. We brie�y introduce the most important ones.

parameter_extraction For a given x the function solves the parameter ex-
traction problem, determining p(x). The user can choose between four di�erent
space mapping de�nitions through the option petype. The starting point for
the parameter extraction problem is speci�ed by the option pestart, four
possibilities exist. Further, for the regularization formulations, the value of �
can be speci�ed by the option lambda.

combined_model For a given x the function calculates the response of the
combined model sk(x) = wc(pk(x)) + (1 � w)lk(x), where c(pk(x)) is the
mapped coarse model (see mapped_model below) and lk(x) = D(x�xk)+f(xk)
is a linear Taylor model of the �ne model.



A.2 Space Mapping Optimization Algorithms 199

combined_corrected_model For a given x the function calculates the re-
sponse of the combined model sk(x) = w(g :� (c(pk(x))� c(p(xk)))+ f(xk))+

(1�w)lk(x), where the �rst part is the response corrected model, with c(pk(x))
being the mapped coarse model (see mapped_model below), and lk(x) = D(x�
xk) + f(xk) is a linear Taylor model of the �ne model.

mapped_model For a given x the function calculates the response of the
mapped coarse model c(pk(x)), where pk(x) = B(x � xk) + p(xk) is a lin-
ear Taylor model of the space mapping.

smtrlinear For a given x the function �nds a minimizer of a given linear
model subject to linear trust region constraints (in�nity norm trust region)
and, if any, user provided linear constraints. Formally the problem solved is

min
x
H(lk(x))

s.t. kx� xkk1 6 dxk
Ax 6 b

where the �rst eq rows of the user constraints are equality constraints.

smdirect Direct, classical Taylor based optimization. Solves the problems of
the general type

min
x
H(s(x))

s.t. Ax 6 b
(A.7)

where s is a nonlinear vector response function. The �rst eq rows of the linear
constraints are equality constraints. Exact gradient information is assumed
available.

direct Direct, classical Taylor based optimization with inexact gradient in-
formation. Solves (A.7) using a trust region algorithm with secant gradient
approximations.
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A.3 Examples

We now give two small examples to show how the toolbox can be used.

A.3.1 Quick Run

Assume that we want to run the TLT2 problem with the hybrid space mapping
algorithm smh. The easiest way to do this is by calling smrun,

[p, trace] = smrun(1, 3);

(the semicolon suppresses the display of the output variables). After the al-
gorithm has �nished the iteration process we now have a trace variable with
the results (the contents of the variable p is shown in the next example). The
trace variable is a Matlab structure. We list the contents from this run:

trace =

k: [1x66 double]

x: [2x66 double]

z: [2x66 double]

f: [11x66 double]

h: [1x66 double]

dx: [1x66 double]

w: [1x66 double]

rho: [1x65 double]

obj: [1x66 double]

We see that there are nine �elds containing the trace of variables in the 66
steps taken by the algorithm. For example the �eld trace.f contains all �ne
model responses evaluated by the algorithm. In the �eld trace.x are the
corresponding �ne model parameters. The �eld trace.z contains the space
mapped parameters, z = p(x).

Now we could for example check how close the best �ne model response found
by the algorithm is to the optimal response of the �ne model. First the best
objective function value found by the algorithm:

>> min(max(trace.f))

ans =

0.455324591088871
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Then the objective function value of the optimal response:

>> max(p.fast)

ans =

0.45532459108887

We see that the solutions only di�er in the 15th decimal. In fact the di�erence
is around full calculating accuracy.

If we want to plot the initial response (i.e. the response in the starting point
x0 = z�) and the best response found by the algorithm, we �rst obtain the
index of the best response:

>> [fmin idx] = min(max(trace.f))

fmin =

0.455324591088871

idx =

63

Then we plot the responses:

>> plot(1:p.m, trace.f(:,idx), '.-', ...

1:p.m, trace.f(:, 1), '.--')
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0.7

0.8

We see that the �rst response violated the speci�cations, since the maximum
value of the response is above 0.5 (refer to the problem description above).
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A.3.2 Examining a Problem

Now let us examine the structure with the problem returned from smprob.

>> p = smprob(1)

p =

xast: [2x1 double]

zast: [2x1 double]

x0: [2x1 double]

fine: @tlt2f

coarse: @tlt2c

n: 2

fopts: [1x1 struct]

m: 11

fast: [11x1 double]

A: [4x2 double]

b: [4x1 double]

eq: 0

H: 'minimax'

We see that the problem is a minimax problem (H = 'minimax'). Further we
see that it is a two-dimensional problem (n = 2 and xast = x� 2 IR2). There
are 11 response functions (m = 11 and fast = f(x�) 2 IR11). The �ne model
handle refers to the function tlt2f.
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