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Abstract. The majority of the available rigid registration measures are
based on a 2-dimensional histogram of corresponding grey-values in the
registered images. This paper shows that these features are similar to a
family of texture measures based on Grey Level Cooccurrence Matrices
(GLCM). Features from the GLCM literature are compared to the cur-
rent range of measures using images from the visible human data set.
The voxel-based rigid registration of Cryosection and CT images have
not been reported before. The tests show that mutual information is the
best general measure, but some GLCM features are better for speci�c
modality combinations.

This paper discusses existing and some new voxel similarity measures for
image registration. Elaborate tests are used to evaluate the di�erent measures
and compare them. Finally, a registration algorithm based on voxel similarity
measures is described and some results are presented.

1 Image data

The algorithms developed in this paper have been applied to registration of
images from the Visible Human data set [20]. From this data set, images of the
head from the following modalitites have been used:

{ MR, T1 weighted (T1)
{ CT, windowed for bone (CT)
{ Red channel of the cryosection colour image (R)

These images were taken from the Research Systems' Visible Human CD.
Using a combination of manual and automatic tools the images were regis-

tered to each other to get an initial ground truth. This registration was performed
carefully using visual inspection for validation of the results. Unfortunately, dur-
ing this registration process, the voxel size of the MR images turned out to be
inconsistent with the size of the other images. By measuring the distance be-
tween anatomical landmarks the voxel size were estimated to 1.05 x 1.05 x 5
mm instead of 1.016 x 1.016 x 5 mm as given in the documentation for the MR



images. The following combinations of modalities are explored in this paper:
CT/T1, and CT/R. Voxel-based registration of CT and cryosection images has
not been documented before.

2 Voxel similarity measures

For registration of uni-modal images, correlation has been used extensively in
both remote sensing, medical imaging and other application areas. Simple corre-
lation of grey-values assumes that a linear relationship between the grey-values
exists [2]. This is seldom the case, and grey-level correlation has, therefore, not
provided convincing results for multi-modality registration of images.

In recent years, though, renewed interest in voxel-based multi-modality reg-
istration has been revived by the successful work on PET/PET and PET/MR
registration by Woods et al. [23, 24]. The basic assumption of this work is the
same as for correlation, ie. that a linear mapping exists between grey-values g1
and g2 of the two images. As mentioned above, this assumption is seldom valid
for multi-modality images. But Woods et al. circumvent this problem by looking
instead at the variance of the coe�cient R = g1=g2, where g1 is the PET im-
age grey-value. They argue that this coe�cient of variation is minimized when
the images are in register, and have achieved good results for PET/PET regis-
tration [23] using this measure. For PET/MR registration they have proposed
a modi�ed version of the initial measure [24], where the variance is calculated
independently for each MR grey-value and subsequent summed weighted by the
probability estimate of the MR grey-values. To achieve successful registration,
only the intracranial structures are used in the registration process, and this algo-
rithm, therefore, needs some manual segmentation to work. But, the coe�cient
of variation is today probably the best measure for registration of PET/PET
and PET/MR [22].

Inspired by this work, Hill et al. proposed a modi�ed algorithm for regis-
tration of CT/MR in [12, 13]. In this algorithm CT is used as the denominator
g2, and only certain ranges of CT intensities are used in the calculation of the
resulting coe�cient.

In [12] Hill also proposed an alternative measure based on the third order

moment of the 2D histogram created from the images. This was inspired by
intensive studies of the development of the 2D histograms for changing registra-
tion parameters. A general observation was that intensity concentrations in the
histograms seemed to disperse when the registration deviated from an optimal
registration.

Van den Elsen has proposed a modi�ed correlation approach for CT/MR reg-
istration [7, 8, 9], where the images are pre-processed to extract similar structures
in both modalities, typically bones. In [7, 9] these structures were extracted using
complex di�erential operators in scale-space. Similar results were later obtained
using simple ramp intensity remapping in [8].

At this point all the measures proposed for multi-modality registration had
been based on heuristics. Several groups independently realized that the intrinsic



problem of registering two independent image modalities, could be cast in an
information theoretic framework. Collignon et al. [3] and Studholme et al. [17]
both suggested using the joint entropy of the combined images as a registration
potential, and Collignon et al. [4], and Wells and Viola [21] �nally suggested
the relative entropy or mutual information as a registration measure. Mutual
information is more robust to truncation of images than joint entropy, and has
been applied to other registration tasks than medical imaging. It is a very general
measure of correspondence between two images, and in a recent evaluation of a
range of di�erent multi-modality registration methods [22], mutual information
was quite succesful.

2.1 GLCM matrices

Except for the work of Van den Elsen [7, 8, 9] all the voxel similarity measures
introduced above can be formulated based on the 2D histogram or joint proba-
bility distribution of the two images.

A similar family of measures is found in the texture analysis literature on
Grey Level Cooccurrence Matrices (GLCM) [5, 6, 10, 11]. The GLCM is deter-
mined as the 2D plot of grey-values of voxels in an image with a �xed displace-
ment between them.

Let g(x) be the grey-value of the pixel at position x = [x1; x2; x3]
T in the

image, and let u = [u1; u2; u3]
T be the displacement vector between corre-

sponding voxels. The GLCM is generated by accumulating the grey-value pairs
[g(x); g(x + u)] in a 2D histogram for all image positions x. The normalized
GLCM can be seen as an estimate of the joint probability distribution of voxels
g(x) and g(x+ u).

By changing the de�nition of the displacement vector u to be, not between
di�erent voxels in one image, but between the same voxels in di�erent images,
the GLCM turns out to be the 2D histogram of voxel intensities used by Hill
et al. [12, 13, 15], and the normalized GLCM becomes an estimate of the joint
probability distribution of voxels in the two images.

In the GLCM texture analysis literature a range of di�erent measures exists.
On the following pages we evaluate these measures as voxel similarity measures
for multi-modality image registration, and compare them to the existing voxel
similarity measures.

2.2 GLCM features

Most of the GLCM features are derived by weighting the entries of the GLCM
with a weighting function and summing the result. The features fall in three
classes based on the character of the weighting function.

Using the notation P (i; j) for elements of the normalized GLCM, the general
form of the GLCM features is:

F =
X
i;j

w(i; j)P (i; j) (1)



where the weighting function w depends either on the normalized GLCM value
(P (i; j)), the spatial position in the GLCM ((i; j)), or both.

Notation As above P (i; j) is the value of the normalized (ni; nj) GLCM at
position (i; j).

N = ninj Pi(i) =
X
j

P (i; j) Pj(j) =
X
i

P (i; j)

�i =
X
i

iPi(i) �j =
X
j

jPj(j)

�2i =
X
i

(i� �i)
2Pi(i) �2j =

X
j

(j � �j)
2Pj(j)

Features: Weighting dependent on P (i; j)

Energy =
X
i;j

P (i; j)2

V ariance =
X
i;j

(P (i; j)�
1

N
)2

Entropy = �
X
i;j

P (i; j)logP (i; j)

MI = �
X
i;j

P (i; j)log

�
P (i; j)

Pi(i)Pj(j)

�

IDM =
X
i;j

1

1 + (i+ j)2
P (i; j)

Inertia =
X
i;j

(i� j)2P (i; j)

Dmoment =
X
i;j

ji� jj(i+ j � �i � �j)P (i; j)

Correlation =
X
i;j

(i� �i)(j � �j)

�i�j
P (i; j)

Cshade =
X
i;j

(i+ j � �i � �j)
3P (i; j)

Cprominence =
X
i;j

(i+ j � �i � �j)
4P (i; j)

Woods =
X
i>0;j

si
ai
P (i; j)

ai =
1

Pi(i)

X
j

P (i; j)j si =
1

Pi(i)

X
j

P (i; j)(j � ai)
2



Note, that the Woods MR/PET registration measure is not symmetric.
Some of these features have been used before for multi-modality image regis-

tration (entropy, mutual information, correlation coe�cient, andWoods MR/PET)
whereas the rest are new for medical image registration. Both groups are included
for comparison.

2.3 Implementation

A sample size or sample frequency must be decided upon when the GLCM is
calculated. The sample has to be large enough to incorporate enough information
about the registration, but at the same time small enough to allow e�cient
computation. We use a scheme similar to that of Collignon et al. [4]. The tests
described in this section have all been performed using super-sampling with a
factor of 2.

When the GLCM is calculated for two images, which overlap in such a way
that voxels of one image maps to inter-voxel positions in the other image, it is
necessary to estimate the grey-values using interpolation. In this work tri-linear
interpolation is used.

The joint probability P (i; j) is estimated from the GLCM. For 12-bit images
the raw GLCM contains 4096� 4096 bins which is bigger than some images. A
reduction of the number of bins is therefore necessary to allow e�cient compu-
tation. We use simple binning witg 256 bins, implemented with binary shifts.

2.4 Plotting GLCM features

In [14, 15] Hill et al. used socalled similarity measure plots to determine the qual-
ity of voxel similarity measures. These plots show curves for displacements in the
di�erent directions, and rotations around the three axes under the assumption
that the other parameters are zero.

Obviously this kind of plot does not provide any information about the qual-
ity of the measures for deviations where several parameters are non-zero. In
addition, these plots do not allow quantitative evaluation of the measures and
objective comparison is not easy. On the other hand they do tend to give a good
impression of the behaviour of the measures in terms of local minima and precise
localization.

In the following the measures are evaluated using two types of plots:

The similarity measure plot that Hill et al. have used. The similarity mea-
sure is determined for a sequence of deviations with a single parameter at a
time. This gives a curve for each parameter and these curves are combined
in a single plot.

Distance/Feature plots. For a large number of random displacements, the
length of the parameter vector is plotted against the feature. It turns out that
these plots are reasonably linear for good similarity measures. We therefore
choose the linearity as an objective measure of the feature quality. Linear
regression is used to determine the best approximating line (using the Splus
software package) and the R2 is used as a quality measure.



Correcting for wrong scaling of rotation When the length of the parameter
vector is determined, an implicit choice of scaling for the rotation parameters,
compared to the translation parameters, has to be made. The obvious choice is
using millimeters for translations and degrees for rotations. In the medical image
registration literature this has been used widely (if not exclusively), eg. [4, 9, 15].
There is no theoretical basis for this choice and any other could just as well have
been used. Work in this paper indicates that it is often poor choice.

For algorithms that use a brute-force approach to determine the minimum of
the similarity function [9, 15] this has little in
uence. But where more advanced
methods such as Newton-Raphson [23, 24] or Powell's method [4] are used, dif-
ferent scaling of the rotation and translation axes can in
uence the direction
of steps or stop-requirements. For calculation of the distance/feature plots the
scaling also has an e�ect. It is therefore necessary to estimate the correct scaling.

Two distance/feature plots are created, where one uses only rotation and the
other only translation in the parameter vector. Using linear regression, approxi-
mating lines are determined for these two plots. Assuming that the estimates of
the slopes of the lines are �rot and �tr for rotation and translation, respectively,
a correction factor is determined as 
rot2tr = �rot=�rtr This correction factor is
pre-multiplied all rotation parameters before the length of the parameter vector
is determined. Using corrected rotation parameters, a �nal distance/feature plot
is calculated where all parameters take random values.

2.5 Results

The actual set of plots is not shown here for space reasons (Refer to [1]). Instead
derived information from the plots is described.

The similarity measure plots call for a subjective evaluation and we have
performed this evaluation using the following scale:

1. Useless,
2. Poor localization with serious local minima,
3. Reasonable localization of optimum, some small local minima,
4. Reasonable localization of optimum, smooth curve without local minima,
5. Perfect localization of optimum, smooth curve without local minima.

The results of the classi�cation and corrected linear regression are shown in
tables 1, 2 and 3. They show that the information theoretic measures entropy
and mutual information perform consistently well. This is in line with the image
registration literature [3, 4, 17, 18, 19] which also indicates that mutual infor-
mation is better than entropy for truncated images [18], ie. where parts of one
image is not present in the other.

The results of the other measures are mixed, but it is interesting to note
that the measures with weights based on the position (i; j) (and P (i; j)) in the
normalized GLCM do quite well in the CT/R experiments. Indeed the Diagonal
Moment perform better than the entropy and mutual information measures.
Without jumping to any conclusions, this could indicate that position weighted
measures can do well if the weighting matches the problem.



Table 1. Pd-T1: Similarity measure plot of quality result and R2 compared with un-
corrected R2. 500 samples are used.

Quality R
2 Uncorrected R2

Energy 2 0.9384729 0.9088758
Variance 2 0.9384698 0.9088723
Entropy 5 0.9760593 0.9708134
MI 5 0.9260448 0.9214459

IDM 5 0.9685928 0.9599456
Inertia 4 0.9173130 0.9061781

Dmoment 4 0.9187858 0.9159433
Correlation 4 0.9057705 0.8883932
Cshade 3 0.8380936 0.8114711
Cprominence 3 0.8265533 0.8120783
Woods (X:Pd) 3 0.7361181 0.7412743
Woods (X:T1) 3 0.5480094 0.5482602

Table 2. CT/T1: Similarity measure plot quality results and R2 compared with uncor-
rected R2. 500 samples are used.

Quality R
2 Uncorrected R2

Energy 4 0.9505296 0.9493070
Variance 4 0.9505302 0.9493080
Entropy 5 0.9666757 0.9638251
MI 4 0.8077108 0.7595025

IDM 2 0.9416978 0.9384330
Inertia 1 0.6917992 0.6948765

Dmoment 1 0.2931991 0.2798332
Correlation 1 0.5524907 0.5277128
Cshade 1 0.0773453 0.0773202
Cprominence 1 0.3667449 0.3952463
Woods (X:CT) 4 0.6376055 0.6018653
Woods (X:T1) 4 0.8147630 0.8139735

3 Image registration using voxel similarity measures

A registration algorithm similar to that of Collignon et al. [4] has been im-
plemented. The method optimizes the registration using Powell's algorithm for
optimization without derivatives [16]. Multi-resolution is used to speedup the
algorithm.

A Quasi-Newton algorithm was tested, but problems calculating stable esti-
mates of the �rst derivatives caused the results to be somewhat poor.

All the voxel similarity measures may be used for the registration. But in
practice we have preferred the mutual information most of the time, since it
provides consistent results for di�erent modalities.

The result of the 3D registration of the MR T1 weighted image to the CT
bone windowed image using mutual information, is shown in �gure 1. The 3D



Fig. 1. Left: Result of 3D registration using mutual information of the CT bone win-
dowed image to the MR T1 weighted image. Right: Result of 3D registration using
mutual information of the CT bone windowed image to the Red channel of the cryosec-
tion image. The outline of the thresholded CT image has been overlayed on both images.

registration of the Red channel of the cryosection image to the CT bone win-
dowed image is shown in �gure 1.

Results of the registration could only be validated by visual inspection and
exhaustive test were therefore not performed. But the visual inspection of the
results showed that the registration was quite precise.

Table 3. CT/R: Similarity measure plot quality results and R2 compared with uncor-
rected R2. 500 samples are used.

Quality R
2 Uncorrected R2

Energy 1 0.4335973 0.3803990
Variance 1 0.4335405 0.3803409
Entropy 5 0.9801963 0.9790247
MI 4 0.9016652 0.8648146

IDM 3 0.9476440 0.9375267
Inertia 5 0.9721051 0.9725199

Dmoment 5 0.9896430 0.9720567
Correlation 4 0.9176131 0.8917624
Cshade 4 0.8500580 0.7844821
Cprominence 4 0.8491666 0.7947552
Woods (X:R) 3 0.7792640 0.7764421
Woods (X:CT) 2 0.9013030 0.8753324



4 Summary

In this section voxel similarity measures for registration of the Visible Human
data set have been explored.

The 2D histogram of joint voxel intensities, used in the literature as a basis
for de�nition of many voxel similarity measures, was shown to be similar to the
GLCM matrices used in texture analysis of images.

A range of features from texture analysis were compared to the state-of-the-
art features. This comparison showed that the state-of-the-art features entropy
and mutual information were best for general registration, since they performed
consistently well for both registration of MR-T1 to CT bone, and red cryosection
to CT bone. For each of the other combinations, some of the texture measures
were at least as good as the information theoretic measures. But, these results
were not consistent from one modality combination to the next.

Together with the information from the literature, this leads to the conclusion
that mutual information is the best generally applicable voxel similarity measure.

Since most of the texture measures were dependent on the position in the
GLCM, in contrast to the information theoretic measures, it should be explored
whether position dependent weights adapted to the registration problem (modal-
ity combination) could improve registration results. Preliminar work in this di-
rection did not yield positive results.
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