Statistical shape analysis using Non-Euclidean
Metrics

Rasmus Larsen ®* Klaus Baggesen Hilger ?

& Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark

Abstract

The contribution of this paper is the adaptation of data driven methods for non-
Euclidean metric decomposition of tangent space shape coordinates. The basic idea
is to extend principal component analysis (PCA) to take into account the noise vari-
ance at different landmarks and at different shapes. We show examples where these
non-Euclidean metric methods allow for easier interpretation by decomposition into
meaningful modes of variation. The extensions to PCA are based on adaptation
of maximum autocorrelation factors and the minimum noise fraction transform to
shape decomposition. A common basis of the methods applied is the assessment of
the annotation noise variance at individual landmarks. These assessments are based
on local models or repeated annotations by independent operators. We show that
the Molgedey-Schuster independent component analysis is equivalent to the maxi-
mum autocorrelation factors. Finally, the different subspace methods are compared
using a probabilistic formulation based on their ability to represent the data.
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1 Introduction

For the analysis and interpretation of multivariate observations a standard
method has been the application of principal component analysis (PCA) to
extract latent variables. Cootes et al. applied PCA to the analysis of tangent
space shape coordinates (1). For various purposes different procedures for PCA
using non-Euclidean metrics have been proposed. The maximum autocorrela-
tion factor (MAF) transform proposed by Switzer (2) defines maximum spatial
autocorrelation as the optimality criterion for extracting linear combinations
of multispectral images. Contrary to this, PCA seeks linear combinations that
exhibit maximum variance. Because imaged phenomena often exhibit some
sort of spatial coherence, spatial autocorrelation is often a better optimality
criterion than variance. We have previously adapted the MAF transform for
analysis of tangent space shape coordinates (3). Green et al. (4) introduced
the noise adjusted PCA or the minimum noise fraction (MNF) transformations
to decompose multispectral satellite images. The MNF transform is a PCA
in a metric space defined by a noise covariance matrix estimated from the
data. For image data the noise process covariance is conveniently estimated
using spatial filtering. Hilger et al (5) applies the MNF transform to texture
modelling in active appearance models (6). Bookstein proposed using bending
energy and inverse bending energy as metrics in the tangent space (7). Using
the bending energy puts emphasis on the large scale variation, using inverse
bending energy puts emphasis on small scale variation.

In this paper we will apply a series of non-Euclidean metric tangent space 2D
shape decompositions and compare them in terms of their ability to represent
the data using a probabilistic formulation.

2 Methods

In the following two sections we will describe how to use two methods, MAF (2)
and MNF (4), for decomposing the tangent space coordinates of a set of
shapes into a low-dimensional subspace. The tangent space coordinates are
obtained by a generalized Procrustes alignment (8; 9) followed by a projec-
tion of the full Procrustes coordinates into the tangent space to the shape
space at the full Procrustes mean (e.g. (10)). Let the tangent space coordi-
nates, X; = (Ti11, .., Titns - -, Tidl - - - s Tian)©, for shapes i = 1,...,p with
j = 1,...,n landmarks in d € {2,3} dimensions be organised in a p x dn
data matrix X = [x;X3...x,]7. Let the Procrustes (sample) mean shape be
denoted x and let it be centered on (0,0) in 2D and (0,0,0) in 3D. Further,
let the origin of the tangent space coordinate system be the mean shape, then
X is doubly centered, i.e. columns as well as rows sum to 0. Additionally, it
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Fig. 1. (a) Landmarks in 2D, landmarks number 2 and 4 and first order neighbours

of landmark number 3. (b) Landmarks in 3D, landmarks number {1,2,4,7,8,9} are
the first order neighbours of landmark number 6.

is assumed that the landmarks are sampled on curves (in 2D) and surfaces
(in 3D) allowing for definition of neighbouring landmarks, i.e. in terms of the

order along a curve or through a triangulation of landmarks on a surface (cf.
Fig. 1).

In the following we will consider Q-mode analyses of the matrix X. In the
case of principal component analysis this is an eigenvalue decomposition of
the covariance matrix estimated from observations z;; = (zy, ..., zp;)", for
j=1,...,n, 1 =1,...,d. These z; are vectors of a landmark coordinate
observed over the set of shapes. The maximum likelihood estimator of the
covariance matrix is 1
3= ]—?XXT = VAV

here A? is a diagonal matrix containing the eigenvalues of f], and V' contains
the corresponding conjugate eigenvectors. A point distribution model then
consists of retaining the ¢ < min(nd, p) first principal components. Deviations
from the Procrustes mean (in tangent space) can then be modelled by

x=X"V'b (1)

where V' is a matrix consisting of the first ¢ columns of V', and b defines a
set of t parameters of the deformable model.

2.1 Maximum autocorrelation factors

Let the spatial covariance function of a multivariate stochastic variable, Zj,
where k denotes spatial position and A a spatial shift, be I'(A) = Cov{Zy, Zra}
Evidently T7(A) = T'(=A). Then by letting the covariance matrix of Zj be

3. and defining the covariance matrix 3x = D{Z; — Zya}, we find

YA =25 - T(A) - T(-A) 2)

YA is the covariance matrix of the difference process in lag A. We are now
able to compute the covariance between a linear combination of the original
variables and the shifted variables



Cov{w? Z, w' Zia} =w ' T(A)w = w'TT (A)w
= S (D(A) + T(~A))w
—w'(S - Sa)w, 3)

Thus the autocorrelation in shift A of a linear combination of Zj, is
Cort{w’ Zy,w' Z; A} =1— -—F—=1— -R(w). (4)

In order to maximize this correlation we must minimize the Rayleigh coeffi-
cient, R(w). This is obtained by choosing as w the conjugate eigenvector corre-
sponding to the least generalized eigenvalue of ¥ A wrt. 3. The MAF transform
is given by the set of conjugate eigenvectors of X o wrt. X, W = [wy, ..., w,,],
corresponding to the eigenvalues k; < --- < K, (2). The resulting new vari-
ables are ordered so that the first MAF is the linear combination that exhibits
maximum autocorrelation. The ith MAF is the linear combination that ex-
hibits the highest autocorrelation subject to it being uncorrelated to the pre-
vious MAFs. The autocorrelation of the 7th component is 1 — %lii. We assume
first and second order stationarity of the data.

One problem now arises, namely, how should we choose A. Switzer suggests
that we estimate XA for a shift in lag 1. Blind source separation by independent
component analysis using the Molgedey-Schuster (MS-ICA) algorithm (11) is
equivalent to MAF, as is shown in the Appendix. The purpose of this algo-
rithm is to separate independent signals from linear mixings. MS-ICA does
this by exploiting differences in autocorrelation structure between the inde-
pendent signals. Kolenda et al. (12) use an iterative procedure for identifying
the optimal lags based on the sum of pairwise absolute differences between
the autocorrelations of the estimated independent components. In this study
we use Switzers original suggestion. This is based on the assumption that the
noise is separated from the interesting latent variables in terms of autocorre-
lation already in lag 1.

For shape analysis decomposition of the datamatrix X using MAF is carried
out in Q-mode. In 2D the difference process covariance matrix XA is estimated
from the lag 1 difference process of landmark coordinates along the contours
of the object as sketched in Fig. 1(a). In 3D we estimate the difference process
covariance matrix from the differences between the landmark coordinates and
a plane fitted to the landmarks in a k**-order neighbourhood.



2.2 Minimum noise fractions

As before we consider a multivariate stochastic variable, Z;. We assume an
additive noise structure Z, = S) + N}, where S, and N, are uncorrelated
signal and noise components, with covariance matrices g and Xy, respec-
tively. Thus Cov{Z;} = ¥ = 3¢ + Xy. By defining the signal-to-noise ratio
(SNR) as the ratio of the signal variance and the noise variance we find for a
linear combination of Z;

Viw"S,}  w'¥gw  w'Sw

SNR = = =
V{wTNy} w'3yw w!Eyw

-1 ()

So the minimum noise fractions are given by the set of conjugate eigenvectors
of ¥ wrt. X, W = |[wy, ..., w,], corresponding to the eigenvalues k1 > - -+ >
Km (4). The resulting new variables are ordered so that the first MNF is the
linear combination that exhibits maximum SNR. The ¢th MNF is the linear
combination that exhibits the highest SNR subject to it being uncorrelated
to the previous MNFs. The SNR of the ¢th component is x; — 1.

The central problem in the calculation of the MNF transformation is the
estimation of the noise with the purpose of generating a covariance matrix that
approximates X y. Usually the spatial nature of the data is utilized and the
noise is approximated by the difference between the original measurement and
a spatially filtered version or a local parametric function (e.g. plane, quadratic
function). If repeated measurements are available the noise covariance matrix
is readily estimated from these.

If the matrices in Equations (4) and (5) are singular the solution must be
found in the affine support of the matrix in the denominator, e.g. by means
of a generalized singular value decomposition.

2.8  Relative Warps

Relative warps is a method proposed by Bookstein (7) that utilizes a non-
Euclidean metric. The covariance of the data matrix is analysed with respect
to the bending matrix of the estimated mean shape. Bookstein proposes to
use the bending matrix as a matrix for analysis of large scale variations, and
the inverse bending matrtix for analysis of small scale variation. The bending
matrix is solely determined from the mean shape and thus holds no information
of variation across the dataset.



2.4 Fvaluation of point distribution models by Probabilistic Reconstruction

Following Minka (13) we use a probabilistic principal component analysis
model for choice of dimensionality. Let a multivariate response X of p di-
mensions be modelled by a linear combinations of a set of basis vectors w;,
1 =1,...,1 plus noise

t
X=) wbh+pt+te=Wb+pu+e €ecN(0Iy) (6)

i=1

where b has dimension ¢ < p. The vector pu defines the mean of x, while
W and Xy defines its variance. For PCA the noise variance is spherical, i.e.
Yn = vI,. Furthermore, we assume a spherical Gaussian prior density for b,
b € N(0,I;). For this model the maximum likelihood estimators for the model

parameters given observations x;, ¢ = 1,...,n are
1 5 J R
p=-Yxi W=U(A —9I)"’R o=—— > )
ni4 p—= 3 j=t+1

Where U, contains the eigenvectors corresponding to the top ¢ eigenvalues of
the maximum likelihood estimate of the dispersion matrix of the observations
=137 (xi—f)(xi— )T, \j is the j™ eigenvalue of 3, the diagonal matrix
A, contains the corresponding eigenvalues, and R is an arbitrary orthogonal
matrix. The likelihood of the data, D, then becomes

p(D|W, s ’U) =
(2m) " WWT 4 vI|”/QeXp(—;tr((WWT + oD 'n$)), (7)

Let us instead assume a general unrestricted covariance structure of the noise,
which may contain intercorrelated effects. Then it is fairly easily shown that by
an initial linear transformation that diagonalises Xy, using the result above,
that the maximum likelihood estimate of W consists of the first £ minimum
noise fraction factors (cf. Eq. (5)).

For a given model the log-likelihood (LL) of the data can be estimated. How-
ever, with ever increasing model complexity, better reconstruction of the data
is obtained, and thus a corresponding increase in LL is observed. The LL es-
timates must therefore be penalized by e.g. using the Bayesian information
criterion (BIC) or Akaike’s “An information criterion” (AIC). BIC and AIC
are straightforward to compute, given the probability of the data and the
degrees of freedom in the model. In general BIC is more conservative and
penalizes harder on model complexity in comparison to AIC. BIC is thus ex-
pected to perform better, when the true underlying model is not a member of



the imposed family of models. Let n represent the size of the training data,
and let d specify the number of parameters in the imposed model, then BIC
and AIC reduces to

AIC = —21log(p(D|W, p, n)) + 2d/n
BIC = —2log(p(D|W, pu, X)) + dlog(n).

where d = (t + 1)p.

3 Materials

We demonstrate the properties of the techniques that we propose on a dataset
consisting of 2D annotations of the outline of the right and left lung from
115 standard PA chest radiographs. The chest radiographs were randomly
selected from a tuberculosis screening program and contained normal as well
as abnormal cases. The annotation process was conducted by identification
of three anatomical landmarks on each lung outline followed by equidistant
distribution of pseudo landmarks along the 3 resulting segments of the outline.
In Fig. 2(b) the landmarks used for annotation are shown. Each lung field is
annotated independently by two observers - Dr. Bram van Ginneken and Dr.
Bart M. ter Haar Romeny. The dataset was supplied to us by Dr. Bram van
Ginneken. For further information the reader is refered to the Ph.D. thesis of
van Ginneken (14).

4 Results

We intend to use the annotation by two independent observers to estimate
the annotation uncertainty. Initially the lung annotations are aligned to a
common reference frame by concatenating the annotations of the two observers
and performing a generalized Procrustes analysis (GPA) (8; 9). Now we can
compute the differences between the two sets of annotations and estimate an
inter-observer covariance matrix of the landmark coordinates.

These intercorrelations of landmark coordinates may be visualized by showing
the correlation matrix of the coordinates of all landmarks across the dataset.
However, this representation is not invariant with respect to rotation of the
frame of reference. Such a rotation will shift the correlations between the x
and y coordinates. Also, it is convenient to study the correlations in terms of
landmarks. In order to express the correlation between a univariate quantity
and a set of covariates we use the multiple correlation coefficient, and to
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Fig. 2. Landmarks of the left and right lung. Landmark numbers are shown in the
middle. The right lung is annotated by 40 landmarks, and the left lung by 36. The
anatomical landmarks on the right field are points 1, 17, and 26, on the left field
the anatomical landmarks are points 1, 17, and 22. (a),(c) Inter-observer difference
canonical correlations between landmarks for the right and left lungs. (d),(e) In-
ter-neighbour landmark difference canonical correlations between landmark for the
right and left lung.

express the correlation between two sets of multivariate quantities (i.e. point
coordinates) we may use the canonical correlation. The canonical correlation
is determined by use of a canonical correlation analysis (15). This procedure
rotates the scattering of two sets of variables (in casu landmarks ¢ and j across
the dataset) individually, such that maximum correlation is obtained along a
projection axis. This correlation is the canonical correlation.

In Fig. 2 we see these correlations for the right and left lung. The inter lung
correlations are neglible. For both set of lungs we see a high degree of corre-
lation along the landmarks of the curved top outline of the lungs. For both
lungs landmark 1 is the top point. Again for both lungs there is no or lit-
tle correlation across the two anatomical landmarks that delimit the bottom
segment of the outlines.

The inter-observer covariance matrix defines one sensible metric to use when
decomposing the shape variability. This would put less emphasis of landmarks
with high annotation variance and more emphasis on landmarks with low
annotation variance, and result in a MNF transform. As an alternative to
assessing the interobserver differences we may consider the covariance of the
difference of neighbouring landmarks. The correlation structure of these are



Fig. 3. The 6 most important principal components (PC), principal components on
a standardized dataset (PCC), minimum noise fractions (MNF), maximum auto-
correlation factors (MAF), and relative warps (REL). The blue curve is the mean
shape, and the green and red curves represent +5 standard deviations as observed
in the training set.

also shown in Fig. 2. Here the partitioning of landmarks in three segments for
each lung is more pronounced. Using this covariance as metric corresponds to

the MAF transform.

In Fig. 3 the 6 most important PCs, PC’s on a standardized dataset (PCC)
MNFs, MAFs, and relative warps (REL) are shown. The relative warps use
the bending matrix of the estimated mean shape as metric and should thus
emphasize large scale variations. The noise covariance for the MNF transform
is based on the differences between the annotations by the independent op-
erators. The PCs and PCCs are fairly similar, but the MNFs, MAFs, and
RELs are different. The latter three all represent uses of metrics that are sig-
nificantly different from the Euclidean one. The first MNF is an aspect ratio
variation, and the following 5 MNF’s seems to be a mix of the first PCs. The
first MAF is also an aspect ratio variation, and the following MAF’s also have
evident large scale interpretations. In particular, MAF4 is the relative size of
the lungs. The relative warps also give various large scale variations but they



are not as easily interpretable as the MAFs.

In order to further investigate and quantitatively compare the 5 different ways
of obtaining a low dimensional shape model we will make an evaluation based
on the probabilistic PCA model (13). For each of the 5 methods the loglikeli-
hood, BIC and AIC are computed for all model sizes. The results are shown
in Fig. 4. As expected the LL increases with increasing model complexity, i.e.
larger models reconstruct the data better. This analysis is therefore incon-
clusive. More information can be derived from the BIC and AIC plots These
regularize the LL by a punishment on the number of free parameters used in
the models. The BIC punishes this harder with increasing number of observa-
tions than AIC. The analyses confirm the wellknown facts that AIC will tend
to choose too complex models if the correct model is not in the model class.
In this case the AIC does not reach a minimum for model sizes below 50.

Using BIC we see from the Fig. 4 that for PC the optimal model size is 30.
MAF and MNF both have optimal model sizes of 21. Furthermore, MAF as
well as MNF perform better at 21 modes than PC at 30 modes in terms
of representing the data. The reason that MAF and MNF perform better
than PC using the PCA likelihood in Eq. (7) is that the noise covariance is
not diagonal as we can see in Fig. 2. MAF and MNF both transform into
spaces where estimates of the noise are diagonal. Relative warps and principal
components on standardized data are both inferior to PC. MAF and MNF
components are not orthogonal in a metric space. However, we have neglected
small off-diagonal correlations between MAFs and MNFs when computing

AIC, BIC and LL.

5 Conclusion

We have demonstrated a series of data driven methods for constructing non-
Euclidean metric linear decompositions of the tangent space shape variability
in 2D and 3D. We have demonstrated ways of constructing such a metric
based on repeated measurements as well as by use of the spatial nature of the
outline and surface models considered. It turns out that the MAF and MNF
transforms are superior in terms of interpretability for decomposing large scale
variation. These methods are tools for determining un-correlated meaningful
modes of variation. Furthermore, we have shown that MAF and MNF models
can represent shape variations better and using fewer modes than principal
components.
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Fig. 4. For all model sizes for the 5 subspace methods applied to the lung dataset:
principal components (PC), standardized principal components (PCC), maximum
autocorrelation factors (MAF), minimum noise fractions (MNF), and relative warps
(REL), the figure shows the loglikelihood, BIC and AIC.
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A Equivalence of ICA and MAF

It turns out that Molgedey-Schusters algorithm for performing ICA (11) is the
same as the MAF analysis (2).

Assuming the linear mixing model of independent component analysis X =

AS, where X is the (P x N) data matrix with each row consituting a signal,
S is a matrix of the same form as X containing independent signals in the

11



rows, and A is a linear mixing matrix. Furthermore, let X A and Sx be X
and S cyclicly shifted A steps rowwise. Then the solution is found by forming

Q:; [XaX"+XXA| (XXT) ' =A ;(SAST+SS£)(SST)‘1 Al

Due to the independence of the source signals the latter bracketed parenthesis
is diagonal. Therefore the mixing matrix can be determined by an eigenvalue
decomposition of the matrix @, and the source signals up to a scale factor are
estimated by S = A7'X. An estimator for the crosscovariance function for a
shift A is + XXX, and an estimator for the covariance matrix, X, is XX
Therefore using Eq. (2)

1 1
Q=522 -%5% " = [I - 22@1]

The unity matrix I has no effect on the eigenvectors, so A simply consists
of the conjugate eigenvectors of XA with respect to X, i.e. the MAF problem
given in Eq. (4).

It is easily shown that the MAF transform is invariant to affine transforma-
tions. Therefore we may execute a prewhitening beforehand, thus obtaining
3 = I. Then Q becomes symmetric yielding A~! = AT and the MAF factors

become ATXpreWhitened7 i.e. the independent components.
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