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Abstract. A method for building statistical point distribution models
is proposed. The novelty in this paper is the adaption of Markov random
field regularization of the correspondence field over the set of shapes. The
new approach leads to a generative model that produces highly homoge-
neous polygonized shapes and improves the capability of reconstruction
of the training data. Furthermore, the method leads to an overall reduc-
tion in the total variance of the point distribution model. Thus, it finds
correspondence between semi-landmarks that are highly correlated in the
shape tangent space. The method is demonstrated on a set of human ear
canals extracted from 3D-laser scans.

1 Introduction

Point distribution models (PDMs) are widely used in modeling biological shape
variability over a set of annotated training data [1, 2]. The generative models
are highly dependent on the initial labeling of corresponding point sets which is
typically a tedious task. Moreover, the labeling is often erroneous and sparse. A
good representation of the training data is particularly hard to obtain in three
dimensions. Finding a basis of homologous points is thus a fundamental issue
that comes before generalized Procrustes alignment [3] and decomposition [4] in
the shape tangent space.

A method for building a statistical shape model of the human ear canal is
presented in [5]. An extension to this method is proposed in this paper using
Markov Random Field (MRF) regularization for improving the initial set of point
correspondences. The new approach leads to a more compact representation and
improves the generative model by better reconstruction capabilities of the 3D
training data. Related work include the application of Geometry Constrained
Diffusion (GCD) [6, 7] and Brownian Warps [8] for non-rigid registration. A
more compact model is obtained, since the shape tangent space residuals of the
new representation have increased correlation. It thus indicates that a better
correspondence field is obtained between the 3D semi-landmarks. Related work



Fig. 1. Left: An example of a surface representation of an ear canal with the anatom-
ical landmarks and the separating planes that defines the region of interest. The thin
tubular structure in the top is the actual canal. The larger lower section is the concha,
of which only the upper part is of interest. A cutoff plane through the concha is there-
fore defined. Right: The model mesh, shown by a wireframe, fitted to a target shape
using Thin Plate Spline warping.

on obtaining a minimum description length of PDMs is proposed in [9, 10] based
on information theoretic criteria.

The data consists of 29 3D ear canal surfaces extracted from laser scans
of ear impressions. The local surface geometry of the ear canals varies much
from one individual to another. Therefore, only very few ridges and extremal
points are stable when comparing groups of ear canals. A set of 18 anatomical
landmarks of varying confidence are placed on each ear canal, and constitute a
sparse correspondence between the surfaces of the ear canals in the training set.
The surfaces of the ear canals are not closed due to the opening of the ear canal
and because the ear impressions are terminated in front of the ear drum. It is
therefore necessary to identify the region of interest of each ear canal. Hence,
planes are defined, which separates the valid parts of the surface from the invalid
parts. In Fig. 1, left, an ear canal with the anatomical landmarks and separating
planes is shown.

The remaining paper is organized in three additional sections. Section 2 de-
scribes the proposed statistical method for improving the point correspondences.
Section 3 presents the results of applying the extended algorithm. In Section 4
we summarize and give some concluding remarks.

2 Methods

2.1 Surface Correspondence Using Thin Plate Spline Warping

The anatomical landmarks do not constitute an exhaustive description of the
surface of the ear canal. It is therefore necessary to generate a more dense set of
landmarks describing the shape. For that purpose a model mesh is constructed
and fitted to all shapes in the training set. The model mesh is chosen as a dec-
imated version of a natural well-formed ear canal labeled with the anatomical
landmarks. The model mesh is fitted to each of the shapes in the training set



using a Thin Plate Spline (TPS) warp based on the corresponding anatomi-
cal landmarks. TPS is a warp function that minimizes the bending energy [11].
Since the TPS transform is exact only for the anatomical landmark locations,
the vertices of the model mesh will not lie on the surface of the target shape,
see Fig. 1, right. Projecting each vertex in the warped model mesh to the closest
point on the target surface produces a non-rigid deformation field and generates
a dense correspondence. However, using the Point to Surface Projection (PSP)
introduces a critical risk of inversions, where the vertices of the model mesh
shift place and cause folds in the mesh. Another secondary artifact is the non-
uniformity of the correspondence vector field shown in Fig. 2a,b giving rise to
poor reconstruction of the target shape. In order to improve the correspondence
vector field and avoid the problems inherent in applying point to surface projec-
tion a regularization must be included. Lorenz and Krahnstöver [12] propose a
method for relaxing a polygonization into a more homogeneous representation,
however, such methods are not suited when the polygonization is constrained to
an underlying correspondence field. We propose to relax the problem by using a
stochastic approach described in the following.

2.2 Markov Random Field Regularization

To obtain better reconstruction and correspondences we cast the problem of find-
ing the deformation vector field into a Bayesian framework of MRF restoration.
We thus follow the four successive stages of the Bayesian paradigm.

1: Construction of a prior probability distribution p(d) for the deformation field
D matching the source shape Ss onto the target shape St.

2: Formulation of an observation model p(y|d) that describes the distribution
of the observed shapes Y given any particular realization of the prior distri-
bution.

3: Combination of the prior and the observation model into the posterior dis-
tribution by Bayes theorem

p(d|y) = p(y|d)p(d)/p(y). (1)

4: Drawing inference based on the posterior distribution.

We start by some useful definitions from graph theory in order to describe a
probability distribution on a spatial arrangement of points.

Given a graph of n connected sites S = {si}n
i=1

. A neighborhood system
N = {Ns, s ∈ S} is any collection of subsets of S for which i) s /∈ Ns, and ii)
r ∈ Ns ⇔ s ∈ Nr, then Ns are the neighbors of s. A clique C is a subset of sites
S for which every pair of sites are neighbors. We use i ∼ j to denote that i and
j are neighbors. Given a neighborhood system N on the set of sites S we now
consider the probability distribution of any family of random variables indexed
by S, i.e. D = {Ds|s ∈ S}. For simplicity we first consider a finite state space
Λ = 1, · · · , L of D but later generalize to continuous distributions. Let Ω denote
the set of all possible configurations Ω = {d = {di}n

i=1
| di ∈ Λ}. A random field



(a) (b)

(c) (d)

Fig. 2. a) The correspondence vector field derived using point to surface projection
for moving the vertices of the source to the target shape. b) The resulting dense mesh
representation of the target shape. c) The correspondence vector field derived using
using the Markov random field restoration of the deformation field for moving the
vertices of the source to the target shape. d) The improved dense mesh representation
of the target shape.

D is a Markov Random Field (MRF) with respect to N iif i) p(d) > 0 ∀ d ∈ Ω,
and ii) p(ds|dr, r 6= s) = p(ds|dr, r ∈ Ns) ∀ s ∈ S, d ∈ Ω. The first constraint
is the positivety condition and can be satisfied by specifying a neighborhood
large enough to encompass the Markovianity condition in the second constraint.
Although the second condition is on the state of neighboring sites only, it does
not exclude long range correlations in the probability distribution over the entire
graph. Given a neighborhood system N = {Ns} let all cliques be denoted by C.
For all C ∈ C we assume that we have a family of potential functions VC . We
may now define an energy function of any given configuration of d i.e. U(d) =
∑

C∈C Vc. This leads to the definition of the Gibbs measure. The Gibbs measure
induced by the energy function U(d) is p(d) = 1

Z exp(−U(d)/T ), where Z is
the partition function and T is a parameter referred to as temperature. The



Gibbs measure maximizes entropy (uncertainty) among all distributions with the
same expected energy. The temperature controls the “peaking” of the density
function. The normalizing constant may be impossible to obtain due to the curse
of dimensionality but often we need only ratios of probabilities and the constant
cancels out. The Hammersley-Clifford theorem gives the relation between MRF
and Gibbs random fields and states that D is a Markov random field with respect
to N iif p(d) is a Gibbs distribution with respect to N [13, 14]. Thus the task
is to specify potentials that induce the Gibbs measure in order encompass MRF
properties of D on the graph.

So far the description only encompasses a one-dimensional finite state space.
However, it generalizes to multivariate distributions since any high dimensional
process may be recast into a single state space with

∏

i Li states, where Li is the
cardinality of the ith variable. Furthermore, the description generalizes to the
case of continuous distributions in which case exp(−U(d)/T ) must be integrable.
Since we wish to model correspondence between Ss and St the displacements
are bound to the surfaces, in effect only posing constraints on the length of the
three dimensional displacements at the individual sites. In practice the constraint
may be enforced by projection of the displacements onto the closest point of the
target surface in every site update of the MRF relaxation.

2.3 Prior Distributions

Similar to pixel priors [15] we construct energy functions based on differences
between neighboring sites. Extending to the multivariate case we get the general
expression of the energy governing the site-priors

Usite(d) =
∑

i∼j

||di − dj ||
p
p (2)

where || · ||p is the p-norm, 1 ≤ p ≤ 2, and di represents the multivariate dis-
placement in the ith site.

With p = 2 the energy function induces a Gaussian prior on the deformation
field. Neglecting regions with strong surface dynamics the local optimization
becomes convex and the maximum likelihood (ML) estimate of the displacement
at the ith site is taken as the mean of the neighboring displacements. By applying
a weighted average

d̂i =
∑

j∈Ni

widj/
∑

j∈Ni

wj (3)

and using Gaussian weights, derived from a fixed kernel size, the maximum a-
posteriori (MAP) state-estimate of the MRF is similar to the steady state of the
algorithm for geometry constrained diffusion (GCD). GCD of D : IR3 → IR3

mapping the surface Ss onto the surface St is given in [6] by

∂tD =
{

∆D − nSt

nT

St
∆D

||nSt
||2 if x ∈ Ss

∆D if x /∈ Ss

(4)



where nSt
is the unit surface normal of St(D(x) + x). Thus, GCD is numerical

scheme for solving a space and time discretized version of the heat equation on
the deformation field with certain boundary conditions. Notice that in the MRF
formulation we explicitly constrain the correspondence problem on the source
and target surfaces, whereas the GCD implementation works on volume-voxel
diffusion.

Abandoning homogenity and isotropy of the MRF non-global kernels may be
introduced. Thus, adaptive Gaussian smoothing may be applied, e.g. by setting
the standard deviation of the kernel to the square-root of the edge length of the
closest neighbor of site i on the graph. Moreover, using the p = 1 norm induces
a median prior, with the ML estimate being the median of the displacements
at the weighted neighboring sites. This property makes the MRF attractive for
correspondence fields with discontinuities, thus avoiding the smearing of edges
attained by the Gaussian prior.

2.4 Observation Models

Given a realization of the prior distribution, the observation model p(y|d) de-
scribes the conditional distribution of the observed data Y . By specifying an
observation model we may favor a mapping that establish correspondences be-
tween regions of similar surface properties. The similarity measures may include
derived features of the observed data such as curvature, orientation of the surface
normals, or even texture.

The simple dot product between the normals may form the basis for specify-
ing a governing energy function that favors correspondence between regions of
similar orientation by

Unorm(y|d) =
∑

i

||nT
Ss,inSt,i − 1||q , (5)

where nSs,i is the surface normal at location xi on the source Ss, and nSt,i is
the normal of the target surface St at the coordinate xi + di. The parameter
q > 0 controls the sensitivity of the energy function.

2.5 Maximum a Posteriori Estimates

Normalization of the energy terms from the different prior and observation mod-
els is typically chosen such that they operate on the same domain. However, the
data analyst may choose to favor some terms over others, e.g. by relaxing the
smoothness conditions in favor of correspondences between regions of similar
curvature orientation of the surface normals.

The posteriori conditional probability distribution is given by

p(d|y) ∝ exp(−Utotal/T ), (6)

where we use Utotal = (1 − α)Unorm + αUsite, in which α ∈ [0 : 1] weighs the
influence of the model terms. In searching for the MAP estimate

d̂ = argmaxd p(d|y) (7)



The Iterative Conditional Modes (ICM) method is a typical choice of optimiza-
tion if the objective functional is convex. However, this is often only the case
for simple MRFs and ML estimates are not always available. More advanced
optimization can be done e.g. by simulated annealing using Gibbs sampling or
the Metropolis-Hastings (MH) algorithm, followed by averaging or application
of ICM in search of the most optimal state of the random field.

When applying simulated annealing the a-posteriori probability distribution
is linked to the prior and the observation model by

p(d|y) ∝ (p(y|d)p(d))1/T , (8)

where T is the temperature governing the process. At high temperatures all
states are equally likely, however, decreasing the temperature increases the in-
fluence of the model terms. If the temperature is decreased slowly enough the
algorithm will converge to the MAP estimate [16]. See [17, 18] for decreasing
temperature schemes.

3 Results

Markov random field restoration using the Gaussian site-prior is applied to the
training data after the TPS deformation of the model mesh using the PSP for
initialization. In Fig. 2c,d we show a correspondence field after the MRF relax-
ation and the resulting reconstruction of the target shape. The figure is to be
compared to Fig. 2a,b using the point to surface projection.

Problems in the registration field using PSP are removed by applying the
MRF restoration. This is the case in respect to both the regularity of the poly-
gonization, and the reconstruction error in representing the target shape by the
deformed model surface. To obtain a measure of the uniformity of the polygo-
nization of the target shape we examine the regularity of its triangular structure.
By measuring the coefficient of variance of the edge lengths we obtain a stan-
dardized measure of the width of the underlying distribution. Results are shown
in Fig. 3 for all subjects. The left plot shows the coefficients before and af-
ter MRF restoration of the correspondence field, and the right figure shows a
histogram of the reductions in the coefficients of variance. A rank test shows
the significance of the MRF regularization since a reduction in the coefficient is
obtained for all subjects. The improvement in shape reconstruction is show in
Table 1. Applying the observation model is performed with α = 0.5. This pa-
rameter should be chosen using cross-validation in a more exhaustive search for
an optimal deformation field. However, since the shapes are relatively smooth
and regular the results shows no significant improvement in the reconstruction
error by introducing the observational term. In Fig. 4 the reconstruction error
of the target shape of subject 1 is shown using PSP and MRF restoration based
on the Gaussian site-prior. Notice the improved reconstruction using MRF.

When the model mesh is warped to another shape, it occurs that some corre-
spondences are placed outside the region of interest on the target shape. There-
fore, the model mesh is pruned to contain only the points that are warped to
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Fig. 3. Left: Comparison between the point to surface projection (upper curve) and
the MRF regularization (lower curve) by evaluating the coefficient of variance of the
edge lengths of the polygonization of the target surface. Right: A histogram of the
reduction in coefficient of variance over the training data.

valid areas for all shapes in the training set. The model mesh contains approx-
imately 3000 vertices after pruning. Having established a dense correspondence
field it is now possible to dispose of the anatomical landmarks as well as the
original meshes of the training set. The set of meshes with dense correspondence
is applied in the following statistical shape analysis. The shapes are aligned by
a generalized Procrustes analysis [19]. The pure shape model is built using a
similarity transformation in the Procrustes alignment while a rigid-body trans-
formation is used to build the size-and-shape model [20]. An Active Shape Model
(ASM) [2] is constructed based on a Principal Component Analysis (PCA) of
the Procrustes aligned shapes. Let each aligned shape be represented as a vec-

Fig. 4. The reconstruction error [mm] for subject one using the point to surface pro-
jection (left) and the MRF correspondence restoration (right).



Registration Method
Subject PSP MRFp=2 MRFp=1 MRFp=2,q=1

1 0.048 ± 0.013 0.044 ± 0.013 0.049 ± 0.014 0.043 ± 0.013
2 0.046 ± 0.013 0.042 ± 0.013 0.043 ± 0.012 0.040 ± 0.012
3 0.048 ± 0.014 0.042 ± 0.013 0.043 ± 0.013 0.040 ± 0.012
4 0.044 ± 0.012 0.038 ± 0.011 0.040 ± 0.011 0.038 ± 0.012
5 0.045 ± 0.013 0.042 ± 0.012 0.043 ± 0.012 0.040 ± 0.012
6 0.045 ± 0.014 0.046 ± 0.015 0.045 ± 0.015 0.043 ± 0.014
7 0.047 ± 0.014 0.046 ± 0.014 0.046 ± 0.014 0.046 ± 0.015
8 0.040 ± 0.011 0.038 ± 0.011 0.039 ± 0.011 0.050 ± 0.013
9 0.041 ± 0.011 0.039 ± 0.011 0.039 ± 0.011 0.038 ± 0.011
10 0.049 ± 0.015 0.044 ± 0.013 0.045 ± 0.013 0.043 ± 0.013
11 0.046 ± 0.013 0.046 ± 0.014 0.045 ± 0.013 0.055 ± 0.014
12 0.050 ± 0.014 0.043 ± 0.013 0.044 ± 0.013 0.041 ± 0.012
13 0.042 ± 0.010 0.037 ± 0.009 0.039 ± 0.009 0.041 ± 0.009
14 0.048 ± 0.013 0.040 ± 0.011 0.042 ± 0.012 0.040 ± 0.011
15 0.043 ± 0.012 0.041 ± 0.012 0.040 ± 0.012 0.038 ± 0.011
16 0.049 ± 0.013 0.043 ± 0.012 0.044 ± 0.012 0.052 ± 0.013
17 0.064 ± 0.019 0.049 ± 0.014 0.059 ± 0.018 0.064 ± 0.016
18 0.051 ± 0.015 0.042 ± 0.012 0.048 ± 0.013 0.053 ± 0.013
19 0.064 ± 0.020 0.052 ± 0.015 0.058 ± 0.017 0.049 ± 0.015
20 0.053 ± 0.015 0.049 ± 0.015 0.050 ± 0.015 0.050 ± 0.013
21 0.049 ± 0.013 0.041 ± 0.011 0.045 ± 0.012 0.039 ± 0.010
22 0.048 ± 0.014 0.042 ± 0.012 0.044 ± 0.013 0.048 ± 0.014
23 0.040 ± 0.011 0.037 ± 0.011 0.038 ± 0.011 0.042 ± 0.011
24 0.043 ± 0.013 0.041 ± 0.013 0.042 ± 0.013 0.048 ± 0.014
25 0.044 ± 0.013 0.037 ± 0.011 0.039 ± 0.011 0.046 ± 0.012
26 0.056 ± 0.014 0.046 ± 0.011 0.052 ± 0.012 0.058 ± 0.013
27 0.042 ± 0.011 0.039 ± 0.011 0.040 ± 0.011 0.039 ± 0.012
28 0.049 ± 0.013 0.041 ± 0.011 0.045 ± 0.013 0.047 ± 0.013
29 0.048 ± 0.014 0.045 ± 0.014 0.045 ± 0.013 0.047 ± 0.013

Average 0.048 ± 0.013 0.042 ± 0.012 0.045 ± 0.013 0.045 ± 0.013
Table 1. Reconstruction errors [mm] using PSP and MRF regularization. The mean
± one std. is shown for each method. The site-prior is governed by the p-norm and
q controls the sensitivity of the observational energy term dependent on the surface
normals.

tor of concatenated x, y and z coordinates xi = [xi1, yi1, zi1, . . . , xin, yin, zin]T ,
i = 1, . . . , s, where n is the number of vertices and s is the number of shapes. The
PCA is performed on the shape matrix D = [(x1 − x)| . . . |(xs − x)], where x is
the average shape. A new shape exhibiting the variance observed in the training
set is constructed by adding a linear combination of eigenvectors to the average
shape xnew = x + Φb, where b is a vector of weights controlling the modes of
shape variation and Φ = [φ1|φ2| . . . |φt] is the matrix of the first t eigenvectors of
DDT . The three first modes of variation of the size-and-shape shape model de-
rived using Gaussian MRF regularization are shown in Fig. 5. All the generated
shapes look like natural ear canals with no deformations or folds in the mesh.
Mode 1 consists of a bending of the canal and a flattening of the concha part.
Mode 2 explains some of the shape variation observed in the inner part of the



(a) Mode 1 (b) Mode 2 (c) Mode 3

Fig. 5. Size-and-shape shape model. The first three modes of variation shown at +3
(top) and −3 (bottom) standard deviations from the mean shape.

ear canal. Mode 3 is a combination of a flattening and twisting of the inner part
of the ear canal and a general shape change of the concha. The distribution of
the modes against each other is examined using pairwise plots and no obvious
abnormalities were found (results not shown). In comparing the effect of the
MRF regularization over the PSP method in the shape tangent space we find
a reduction of more than 4% of the total variance of the resulting point distri-
bution model. In Fig. 6 the variance contained in each principal component is
shown together with the pct. reduction of the variance in each subspace. The
average reduction of variance in each subspace is approximately 8% and the pct.
reduction generally increases for higher dimensions.

4 Summary and Conclusions

A method is proposed for building statistical shape models based on a train-
ing set with an initial sparse annotation of corresponding landmarks of varying
confidence. A model mesh is aligned to all shapes in the training data using
the Thin Plate Spline transformation based on the anatomical landmarks. From
the deformed model mesh and a target shape we derive a dense registration
field of point correspondences. Applying the Markov Random Field restoration
we obtain a dense, continuous, invertible registration field (i.e. a homeomor-
phism). The stochastic restoration acts as a relaxation on the TPS constrained
model mesh with respect to the biological landmarks. The landmarks are iden-
tified with varying confidence and the MRF relaxation allows for a data driven
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Fig. 6. Left: the variance contained in each principal component, the dotted line using
point to surface projection and the solid line applying the MRF regularization step.
Right: the reduction in the variance as a function of dimensionally of the model. The
average reduction in each subspace is approximately 7% and the reduction of the total
variance in the shape tangent space more than 4%.

enhancement of the object correspondences. Using the site-prior, the algorithm
converges to the most simple deformation field which creates a tendency to match
points of similar geometry since the field otherwise must be more complex. More-
over, inclusion of observational models could compensate further where the prior
fails in more complex regions. In the present case study of smooth and regular
shapes no significant benefit of applying more complex MRF were obtained. In
comparison to applying point to surface projection the MRF regularization pro-
vides i) improved homogeneity of the target shape polygonization free of surface
folds, ii) better reconstruction capabilities, and iii) a more compact Active Shape
Model description of all the training data. The point to surface projection per-
forms reasonably well in representing the target shape over most regions of the
ear canals. However, it fails in regions with strong surface dynamics and when
the source and target surfaces are too far apart. The fact that the MRF regu-
larization produces a reduction of more than 4% of the total variance contained
in shape tangent space is noteworthy. The reduction is explained by increased
collinearity between semi-landmarks distributed over the entire shape. It indi-
cates an improvement in the shape representation in terms of homologous point
correlation and thus constitutes a better basis for generative modeling.
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12. Lorenz, C., Krahnstöver, N.: Generation of point-based 3D statistical shape models
for anatomical objects. Comp. Vision and Image Understanding 77 (2000) 175–191

13. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society, Series B 36 (1974) 192–236

14. Geman, D.: Random fields and inverse problems in imaging. In: Saint-Flour
lectures 1988. Lecture Notes in Mathematics. Springer-Verlag (1990) 113–193

15. Besag, J.: Towards Bayesian image analysis. Journal of Applied Statistics 16

(1989) 395–407
16. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 6 (1984) 721–741

17. Vidal, R.V.V.: Applied simulated annealing. In: Lect. Notes in Econom. and
Math.Syst. Volume 396. Springer Verlag, Berlin (1993)

18. Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature
schedule. SIAM Journal of Optimization 9 (1999) 779–802

19. Hilger, K.B.: Exploratory Analysis of Multivariate Data. PhD thesis, Informatics
and Mathematical Modelling, Technical University of Denmark, DTU, Richard
Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2001)

20. Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, Chichester (1997)


