
Fast Fluid Registration of Medical Images

Morten Bro-Nielsen1;2 and Claus Gramkow1

1 Dept. of Mathematical Modelling
Technical University of Denmark, Bldg. 321

DK-2800 Lyngby, Denmark
2 3D-Lab, School of Dentistry, Univ. of Copenhagen,
N�rre Alle 20, DK-2200 Copenhagen N, Denmark

e-mail: bro@imm.dtu.dk WWW http://www.imm.dtu.dk/~bro

Abstract. This paper o�ers a new fast algorithm for non-rigid Viscous
Fluid Registration of medical images that is at least an order of mag-
nitude faster than the previous method by Christensen et al. [4]. The
core algorithm in the 
uid registration method is based on a linear elas-
tic deformation of the velocity �eld of the 
uid. Using the linearity of
this deformation we derive a convolution �lter which we use in a scale-
space framework. We also demonstrate that the 'demon'-based registra-
tion method of Thirion [13] can be seen as an approximation to the 
uid
registration method and point to possible problems.

1 Introduction

Non-rigid registration of two medical images is performed by applying global
and/or local transformations to one of the images (which we will call the template
T ) in such a way that it matches the other image (the study S). It is important to
understand that the aim of the transformation is to map the template completely

onto the study in such a way that information from the template can be applied
to the study as well. A very important application of non-rigid registration is
using an electronic atlas to segment a study image. Only if the transformation
maps the template completely onto the study can the atlas be used to infer
conclusions about the contents of the study. In practice this means that the
transformation must accommodate both very complex and large deformations.

Bajcsy et al. [1, 10] were the �rst to demonstrate volumetric non-rigid regis-
tration of medical images. Building on initial work by Broit [2], they modelled
the template image as a linear elastic solid and deformed it using forces derived
from an approximation of the local gradient of a correlation based similarity
measure. Multi-resolution were used to increase the speed.

Evans et al. [8] used anatomical landmarks to drive the deformation, and
deformed the solid using a globally elastic model. Miller, Christensen et al. [3,
4] also used a globally elastic model, but derived the driving force from the
derivative of a Gaussian sensor model.

These previous approaches to non-rigid registration have all su�ered from
the use of either global transformations or small deformation assumptions (as
used in linear elasticity).



In [5] Christensen et al. extended their work and described a registration
approach in which they use a viscous 
uid model to control the deformation.
The template image is modelled as a thick 
uid that 
ows out to match the
study under the control of the same derivative of a Gaussian sensor model they
used in [4]. In [5] Christensen argue that this gaussian sensor model theoretically
is better than the correlation based similarity measure used by Bajcsy et al. [1].

Elastic models constrain the possible deformation because the deformation is
a compromise between internal and external forces. Elastic displacements do not
reach the desired deformation because of internal strain in the elastic continuum.
In a viscous 
uid model, internal forces disappear over time and the desired
deformation can be fully achieved.

Consequently, the 
uid registration method satis�es the general requirements
of both complex and large deformations and we therefore regard this method as
the most advanced registration method available.

Unfortunately, the algorithm proposed by Christensen et al. is rather slow.
They originally implemented the algorithm using a massively parallel DECmpp
128x64 MasPar computer on which the algorithm used on the order of 5-10
minutes for 2D and 2-6 hours for 3D registrations. In a recent paper [6] they
show estimates of the execution time on a MIPS R4400 processor on the order
of 2 hours for 2D and 7 days for 3D. In practice this means that the algorithm
is not feasible unless a massively parallel computer is available.

The contribution of this paper is a new fast algorithm based entirely on
convolution with �lters which gives a speed-up of at least an order of magnitude.

2 Theory

In this section we describe our new algorithm for solving the viscous 
uid reg-
istration problem. Without loss of generality the theory is described in the 2D
case, but it is readily extendable to the 3D case.

In the �rst section we describe the original viscous 
uid algorithm by Chris-
tensen et al. [5]. We de�ne the template and study images and their relation-
ship. The viscous 
uid model is introduced along with the driving force and
the numerical solution method. In the second section we discuss the core part
of Christensen's numerical solution and introduce the general idea behind the
convolution approach that we propose to increase the speed of the method. In
the third section, the basic �lter for the convolution approach is �nally derived.

2.1 Fluid registration

We de�ne the template image as T (x) and the study image as S(x) where
x 2 [0; 1]2. The purpose of the registration is to determine a warping of T (x)
onto S(x).

Eulerian reference frame In elastic deformation, particles are usually tracked
by their initial coordinates, ie. the parametrization of the object. This sort of



reference frame is called Lagrangian. But in 
uid deformation the Lagrangian
reference frame is ine�cient and an Eulerian reference frame is used instead. In
the Eulerian reference frame the particles are tracked based on their current/�nal
position. Consequently, a particle at position x = [x1; x2]

T in the template image
at time t originated at position t(x; t) = x�u(x; t) at time t0 (t > t0), where u is
the displacement. Notice that in the Eulerian reference frame, u(x; t) describes
the displacement of the particles as they move through x. The Eulerian velocity
�eld is determined by:

v(x; t) = �u(x; t)=�t+ru(x; t)v(x; t) (1)

where r is the gradient operator. The term ru(x; t)v(x; t) results from the
chain rule of di�erentiation and accounts for the kinematic non-linearities of the
particles.

Viscous 
uid model In the Eulerian framework we can write the partial dif-
ferential equation (PDE) for the viscous 
uid deformation of the template as [5]:

��v(x) + (�+ �)r(r � v(x)) = f (x;u(x)) (2)

where � = rTr is the Laplacian operator and r(r � v) is the divergence
operator. The force �eld f(x;u(x)) is used to drive the 
ow. Those familiar
with elasticity theory will recognize that for constant force f this is actually the
PDE for linear elasticity working on the velocity �eld v. The equation, therefore,
works by elasticly smoothing the instantaneous velocity �eld of the 
uid.

The term �v is also called the viscous term because it constrains the velocity
�eld spatially. The r(r�v) term allows for contraction or expansion of the 
uid.

The force �eld is de�ned as the derivative of a cost function C. For MRI
images a Gaussian sensor model appears to be an appropriate model of the
variation between the template and study image [5, 11]. The cost function and
its derivative are:

C(T (x); S(x);u) =
1

2
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j T (x � u(x; t))� S(x) j2 dx (3)

f(x;u(x; t)) = �[T (x � u(x; t))� S(x)]rT jx�u(x;t) (4)

Numerical solution Solution of the viscous 
uid registration problem requires
solving the PDE [5]:

��v(x; t) + (� + �)r(r � v(x; t)) = f(x;u(x; t)) (5)

�u(x; t)

�t
= v(x; t)�ru(x; t)v(x; t) (6)

f(x;u(x; t)) = �[T (x� u(x; t))� S(x)]rT jx�u(x;t) (7)

which includes non-linearities in both the force and the material derivative. To
solve this problem we apply Euler integration over time using a forward �nite



di�erence estimate of the time derivative in equation 6:

u(x; ti+1) = u(x; ti) + (ti+1 � ti)(I �ru(x; ti))v(x; ti)

= u(x; ti) + (ti+1 � ti)rt(x; ti)v(x; ti) (8)

Reliable Euler integration requires a well-conditioned transformation gradient
rt(x; ti). Since the Jacobian J =j rt(x; ti) j provides a measure of the condition
of rt(x; ti) we require J > 0.

The transformation becomes singular for large curved transformations be-
cause of the discretization. To evade this problem we apply the same regrid-
ding method as Christensen [5]. Every time the Jacobian J drops below 0:5 we
generate a new template by applying the current deformation. In addition the
displacement �eld is set to zero, whereas the current velocities remain constant.
The total deformation becomes the concatenation of the displacement �elds as-
sociated with the sequence of propagated templates.

The complete algorithm for solving the viscous 
uid registration problem
consequently becomes [5]:

1. Let i = 0 and u(x; 0) = 0
2. Calculate the body force f(x;u(x; ti)) using equation 7.
3. If f (x;u(x; ti)) is below a threshold for all x, then STOP.
4. Solve the linear PDE equation 5 for instantaneous velocity v(x; ti) and force

f(x;u(x; ti)).
5. Choose a timestep (ti+1�ti) so thatrt(x; ti)v(x; ti) < dumax, where dumax

is the maximal 
ow allowed in one iteration (0.7 in this work).
6. Perform Euler integration using equation 8.
7. If the Jacobian J =j rt(x; ti) j is less than 0.5 then regrid the template.
8. i = i+ 1, goto 1

The only remaining question is how to solve the PDE equation in step 4. We
discuss this in the following section.

2.2 Solving the linear PDE

In the algorithm shown above, the core problem is solving the linear PDE:

Lv = ��v+ (�+ �)r(r � v) = f (9)

for constant force and time. In practice, solving this PDE is the time consuming
part of the 
uid registration. The contribution of the rest of the paper is a fast
way of doing this.

As we saw previously, for constant force f and time t this PDE is linear and
the linear operator L is the linear elasticity operator working on v. Linear elastic
problems are normally solved using implicit �nite element or �nite di�erence
methods. But in the case of images, we assign nodes in the elastic model to
each pixel or voxel. The size of the problem, therefore, is huge and in practice
unsolvable with these methods. Instead explicit methods must be used.



Christensen et al. [5] use successive overrelaxation (SOR) with checker board
update to solve the linear elastic problem.

We suggest solving the the linear PDE using scale-space convolution. Using
the linearity of the PDE and the superposition principle, we create a �lter as
the impulse response of the linear operator L and subsequently apply this �lter
to the force �eld f .

This work has been inspired by the work of Nielsen et al. [12], who show
that Tikhonov regularization can be implemented using Gaussian scale-space,
and Thirion [13], who propose a 'demon'-based registration algorithm which we
will show later, is an approximation to the viscous 
uid registration problem.

2.3 Convolution �lter for linear elasticity

In this section we develop the convolution �lter used to solve the linear PDE.
First the displacement �eld v is decomposed using the eigen-function basis of the
linear operator L. Then the impulse response of the linear operator is determined
in this basis. We note that the impulse response of a linear operator is a �lter
that implements the operator. Finally, we discretize the impulse response to get
a discrete �lter.

Eigen-functions of the linear operator L The eigen-functions of the linear
operator L using sliding boundary conditions are given by Miller, Christensen
et al. in [3, 5] as:

�ij1(x) = �1

�
ip(x)
jq(x)

�
�ij2(x) = �2

�
�jp(x)
iq(x)

�
(10)

with the eigen-values:

�ij1 = ��2(2�+ �)(i2 + j2) �ij2 = ��2�(i2 + j2) (11)

where

p(x) = sin i�x1 cos j�x2 q(x) = cos i�x1 sin j�x2 (12)

�1 = �2 =

s
4

�ij(i2 + j2)
(13)

where

�ij =

�
1 if none of i; j are zero
2 if one of i; j is zero

(14)

Using the new orthonormal basis, the velocity v can be decomposed into:

vN (x) =
NX

ij=0

2X
r=1

aijr�ijr(x) (15)

where aijr are the coe�cients of the decomposition. N determines the number of
basis functions included in the decomposition. Note that v(x) = limN!1 vN (x).



Determining the impulse response of L We will now determine the impulse
response of the linear operator L for an impulse force f̂ in the x1 direction at
c = [0:5; 0:5]T. First the linear operator is applied to the decompostion of v:

f̂ = Lv(x) = L
X
ijr

aijr�ijr(x) =
X
ijr

aijrL�ijr(x)

=
X
ijr

aijr�ijr�ijr(x) (16)

We then take the inner product < a; b >=
R


aTbdx of the equation with

�lms(x): X
ijr

aijr�ijr < �ijr(x);�lms(x) >= < f̂ ;�lms(x) >

m

alms�lms =< f̂ ;�lms(x) >

m

alms =
1

�lms

< f̂ ;�lms(x) > =
1

�lms

�x1
lms

(c) (17)

where �x1
lms

is the x1-coordinate of �lms. In the step from line 1 to line 2, we
used the fact that < �ijr;�lms > is zero for (i; j; r) 6= (l;m; s).

We can now write the decomposition of v(x) for the case of an impulse force
applied in c as:

v(x) =
1X
ij

2X
r=1

aijr�ijr(x) =
1X
ij

2X
r=1

1

�lms

�x1
lms

(c)�ijr(x)

=
4

�2�(2�+ �)

1X
ij

p(c)

(i2 + j2)2�ij

�
�(i2�+ (2�+ �)j2)p(x)

(�+ �)ijq(x)

�
(18)

This gives us the impulse response of the linear operator L for an impulse force
in the x1 direction applied in c. The impulse response for the x2 direction is
determined by simple rotation of the response for the x1 direction. In the next
section we will see how this impulse response can be used to determine a discrete
�lter implementing the linear operator L.

Discretizing the impulse response In general the impulse response of the
linear operator is the linear �lter implementing the operator. But in the contin-
uous case a force applied to a single point yields an in�nitely large displacement
of this particular point. However, in the discrete case we sample the �lter on
a discrete grid and apply a lowpass �ltering with a cut-o� at the Nyquist fre-
quency to eliminate aliasing from higher order frequency components. The force
is thereby smoothed over a small area or volume.

We note that the decomposition of the impulse response based on the eigen-
function basis is a frequency based decomposition. Big i and j correspond to



high frequencies and small to low frequencies. We can therefore perform an ideal
lowpass �ltering of the impulse response by truncating the sequence at N instead
of summing to in�nity.

The sampled �lter is de�ned with dimensions D �D, D odd, in the domain
[0; 1]2. The sampling interval is consequently � = 1=(D�1) which Shannons sam-
pling theorem relates to the cut-o� frequency f by � � 1=2f . From equation 18
the frequencies corresponding to the summation variables are determined:

fi =
1

2
i fj =

1

2
j (19)

and the common truncation point becomes i = j = N = D � 1. We can now
collect everything in:

Theorem. Consider a linear �lter of size D �D, and let the lattice be ad-

dressed by y = [y1; y2]T , where yr 2 [�D�1
2

; D�1
2

] \ N , r = 1; 2. The �lter

implementing the linear elastic operator L for the x1 direction is then:

v(x) =
4

�2�(2� + �)

D�1X
ij=0

p(c)

(i2 + j2)2� )ij

�
�(i2�+ (2�+ �)j2)p(x)

(� + �)ijq(x)

�
(20)

where

x =
1

D � 1
y +

�
1=2
1=2

�
(21)

2

We leave it to the reader to �nd the �lter component for the x2 direction.

To show that the �lter actually works, we have made some experiments using
the �lter as the linear elasticity operator and comparing the results with a Finite
Element (FEM) implementation of linear elasticity. The results have shown quite
similar deformations.

2.4 Summary

In the previous sections we have described the original theory of the viscous 
uid
registration method and developed a convolution �lter for the linear operator
used in the core routine of the 
uid registration.

Because of the limited span of the �lter, we have implemented the viscous

uid registration algorithm using the �lter in scale-space. The 
uid registration
is �rst performed on a rough scale. The result of this scale is then propagated to
a �ner scale and the 
uid registration restarted here. This process is continued
down to the �nest scale of the scale-space, yielding the �nal registration result.



Fig. 1. Circle deforming into a 'C' using viscous 
uid registration. From left
to right: 1. Template. 2. Study. 3. Deformed template. 4. Grid showing the
deformation applied to template.

Fig. 2. Development of deformation of grid for viscous 
uid registration of circle
into 'C'.

3 Results

Figure 1 shows our results of registering a circle to a 'C' using viscous 
uid
deformation. The grid shows the curved and very large deformations that are
applied to the template. Although the deformation is very large, the topology
of the template is maintained. This is very important because it ensures that
topology is maintained. Figure 2 shows the developing deformation as the 
uid
circle deforms into the 'C'. These results are very similar to �gures 10.20-23
in [5]. Figure 3 show the result for two adjacent CT slices.

In general, our results are very good and similar to those of Christensen et al.
But our timings are quite di�erent. We have achieved stable timings on a single

processor workstation similar to those stated by Christensen et al. for computa-
tions on a 128x64 DECmpp 12000 Sx/Model 200 massively parallel computer.
When compared to estimates of timings for a MIPS R4400 processor [6] we can
conclude that we achieve a speed-up of at least an order of magnitude. We hope
to be able to share the data used by Christensen et al. for more elaborate com-
parison.

3.1 Comparison with 'demon'-based registration

In [13] Thirion proposed a 'demon'-based registration method. This is an iter-
ative algorithm, where forces are determined in the template image based on



Fig. 3. CT slice registered to another slice using viscous 
uid model. From left
to right: 1. Template. 2. Study. 3. Deformed template. 4. Grid showing the
deformation applied to template.

equations that are very similar to the body force used in this work. His equation
4:

f =
�(T � S)rT

rT 2 + (T � S)2
(22)

is in fact just a normalized version of the body force used here (equation 7).
When Thirion deforms an image to match another, he performs an iterative

process where body forces are determined using equation 22, the force �eld is
lowpass �ltered using a Gaussian �lter and �nally integrated over time.

Comparing the 'demon'-based algorithm with the algorithm in this paper,
we see that:

{ The body forces are almost the same.
{ The lowpass �ltering using a Gaussian corresponds to our application of the
linear elastic �lter.

{ The time integration of the lowpass �ltered force �eld corresponds to the
Euler integration performed using equation 6.

We therefore conclude that the approach proposed in [13] is similar to the vis-
cous 
uid registration using convolution which we propose here. It is based on
heuristics. Applying the Gaussian �lter instead of the real linear elastic �lter,
is an approximation of the 
uid model which could give problems in terms of
topology and the stability of the 
uid model.

4 Conclusion

In this paper we have shown that it is possible to speed-up the viscous 
uid
registration algorithm by Christensen et al. [5] by at least an order of magnitude.
We achieve this speed-up by implementing the core process of the registration
method using convolution with a �lter we have developed. Our results are similar
to those of Christensen et al.

The speed-up that we show here is based on a software implementation of
the convolution. Use of specialized convolution hardware, as found in eg. the



RealityEngine II graphics board from SiliconGraphics, should speed-up the reg-
istration even more.

We have also showed that the 'demon'-based registration method by Thirion [13]
is similar to the viscous 
uid registration method developed here. This insight
comes from the implementation of the core routine as a �lter. Using this �lter, the
numerical implementations of the two methods look very similar. Since Thirion's
method is a simpli�cation, we suggest that it might have trouble handling more
complex registration tasks.

Although we have only showed 2D results, the extension of the �lter to the
3D case is straightforward, and we expect to do this in the future.

References

1. R. Bajcsy and S. Kovacic, Multiresolution elastic matching, Computer Vision,
Graphics and Image Processing, 46:1-21, 1989

2. C. Broit, Optimal registration of deformed images, Doctoral dissertation, University
of Pennsylvania, August 1981

3. M.I. Miller, G.E. Christensen, Y. Amit and U. Grenander, Mathematical textbok of

deformable neuroanatomies, Proc. Natl. Acad. Sci. USA, 90:11944-11948, Decem-
ber 1993

4. G.E. Christensen, M.I. Miller and M. Vannier, A 3D deformable magnetic reso-

nance textbook based on elasticity, in AAAI Spring Symposium Series: Applications
of Computer Vision in Medical Image Processing, pp. 153-156, Stanford University,
March 1994

5. G.E. Christensen, Deformable shape models for anatomy, Washington University
Ph.D. thesis, August 1994

6. G.E. Christensen, M.I. Miller, M. Vannier and U. Grenander, Individualizing

neuroanatomical atlases using a massively parallel computer, IEEE Computer,
29(1):32-38, January 1996

7. D.L. Collins, T.M. Peters, W. Dai, A.C. Evans, Model-based segmentation of in-

dividual brain structures from MRI data, Proc. SPIE Visualization in Biomedical
Computing (1808), pp. 10-23, 1992

8. A.C. Evans, W. Dai, L. Collins, P. Neelin, S. Marret, Warping of a computer-

ized 3-D atlas to match brain image volumes for quantitative neuroanatomical and

functional analysis, Proc. SPIE Medical Imaging V (1445), pp. 236-246, 1991
9. K.H. H�ohne, M. Bomans, M. Riemer,R. Schubert, U. Tiede and W. Lierse, A 3D

anatomical atlas based on a volume model, IEEE Computer Graphics Applications,
12(4):72-78, 1992

10. J.C. Gee, M. Reivich and R. Bajcsy, Elastically deforming atlas to match anatomi-
cal brain images, Journal of Computer Assisted Tomography, 17(2):225-236, March
1993

11. E.R. McVeigh, R.M. Henkelman and M.J. Bronskill, Noise and �ltration in mag-

netic resonance imaging, Medical Physics, 12(5):586-591, 1985
12. M. Nielsen, L. Florack and R. Deriche, Regularization and Scale Space, INRIA

Tech. Rep. RR-2352, September 1994
13. J.-P. Thirion, Non-rigid matching using demons, Proc. Int. Conf. Computer Vision

and Pattern Recognition (CVPR'96), 1996

This article was processed using the LATEX macro package with LLNCS style


