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ABSTRACT

This paper addresses the problems of generating a low di-
mensional representation of the shape variation present in
a training set after alignment using Procrustes analysis and
projection into shape tangent space. We will extend the use
of principal components analysis in the original formulation
of Active Shape Models by Timothy Cootes and Christo-
pher Taylor by building new information into the model.
This new information consists of two types of prior knowl-
edge. First, in many situation we will be given an ordering
of the shapes of the training set. This situation occurs when
the shapes of the training set are in reality a time series,
e.g. snapshots of a beating heart during the cardiac cycle or
when the shapes are slices of a 3D structure, e.g. the spinal
cord. Second, in almost all applications a natural order of
the landmark points along the contour of the shape is in-
troduced. Both these types of knowledge may be used to
defined Shape Maximum Autocorrelation Factors. The re-
sulting point distribution models are compared to ordinary
principal components analysis using leave-one-out valida-
tion.

1. INTRODUCTION

The Active Shape Model (ASM) and Active Appearance
Model (AAM) were proposed by Cootes & Taylor in [1, 2].
The ASM is based on learning shape variation for a given
class from a series of training shapes represented by a set
of corresponding points (landmarks). After alignment wrt.
translation, rotation, and scale (e.g. bmo. Procrustes ana-
lysis [3]), and projection into shape tangent space the shape
coordinates are analysed by a principal components analysis
(PCA). A low dimensional representation is then obtained
by only retaining the firstt of the eigen modes. The number
t can be determined so that the retained modes account for
a given proportion of the variation (e.g. 98 %), or so that
an independent validation set is approximated sufficiently
well.

The AAM is an extension to ASM that simultaneously
accounts for shape and texture variation. Again a low di-
mensional representation is obtained by PCA.

We propose an extension to ASM and AAM using the
maximum autocorrelation factor (MAF) analysis instead of

PCA. The MAF analysis was originally proposed as an al-
ternative transformation of multivariate spatial imagery to
the celebrated PCA transform by Paul Switzer [4]. In the
MAF analysis we seek a transformation that maximizes the
autocorrelation between neighbouring observations (i.e. pix-
els). The basic assumption of the MAF analysis is that the
interesting signal exhibits high autocorrelation, whereas the
noise exhibits low autocorrelation. By building the addi-
tional information of the structure of the observations into
the model application examples (cf. [5, 6, 7, 8]) show a more
satisfying ordering and compression of the data. This is par-
ticularly the case when some noise components have higher
variance than some signal components. In this case the prin-
cipal components will fail to give an intuitive order of im-
age quality. The MAF analysis requires knowledge of or
estimation of the variance-covariance matrix of the data as
well as the variance-covariance matrix of the difference be-
tween the original data and the a spatially shifted version of
the data. This may be formulated as a canonical correlation
analysis problem [9]. A similar approach to filter design is
shown in [10].

We propose to apply this technique to ASM/AAM. This
can be achieved in two ways. First, in situations where a
natural ordering of the training shapes is given we may ap-
ply the algorithm directly. Such situations can arise when
the training data a sampled as a time series (e.g. echocar-
diograms of the heart chambers recorded during the cardiac
cycle [1]), or when the training samples are 2-D slices sam-
pled along a 3-D structure. In this way we build in new
information in the form ’neighbouring observations are sim-
ilar’ into the transformation. We will then seek information
that is present in neighbours simultaneously. Information
that is not similar between neighbours is considered noise.

Alternatively, we may also utilise that the shape repre-
sentation usually consists of landmark points with a natural
ordering (i.e. along contours). This approach is based on
a reformulation of the problem using the Eckart-Young the-
orem [11]. By representing the shape coordinates of each
training observation as the rows of a data matrix, the PCA
of the original ASM is an R-mode analysis of this matrix.
In the statistical sense - in this analysis - the variables are
the point coordinates and the observations are the training
shapes. The estimated eigenvectors are used to deform the



mean shape.
In we instead make a Q-mode analysis then the variables

are the (unordered) training shapes and the observations are
the point coordinates. In this case the deformation of the
mean shape is introduced not by the eigenvectors but by the
transformed variables. Q-mode and R-mode analysis are
equivalent in this case. However, we can solve the MAF
eigenproblem in the Q-mode fashion as well. Then we ar-
rive at new (and different) transformed variables.

Other transformations used to describe the contour are
Fourier models [12] and wavelets [13].

2. DATA

We will illustrate the proposed methods on a dataset that
consists of annotations of the contour of 24 metacarpals,
i.e. a bone in the human hand. An example is shown in
Figure 1.

Fig. 1. A metacarpal annotated using 50 landmarks. The
proximal end is up and the distal end is down.

The annotations are based on 2-D wrist radiographs of
human hands. The annotations are prone to errors in the
proximal and distal ends due to the bones being overlaid in
the projection of the radiograph and thus difficult to discern.

3. METHODS

Let there be givenp training examples for a given shape
class, and let each example be represented by a set ofn
landmark points(uij , vij), i = 1, . . . , p andj = 1, . . . , n.
Then each example is given by a2n vector

ui = (ui1, . . . , uin, vi1, . . . , vin)T . (1)

Thep training examples are aligned to a common mean us-
ing a full generalised Procrustes analysis (e.g. see [14]).

The tangent space coordinates are the projections of the
full Procrustes coordinates into the tangent plane to the sha-
pe space at the full Procrustes mean. In the vicinity of this
pole the Euclidean distances of the tangent space are good
approximations to the Procrustes distances. Let the tangent

space coordinates with the origin placed at the pole of the
tangent space for each training example be

xi = (xi1, . . . , xin, yi1, . . . , yin)T . (2)

Note, that
∑p

i=0 xi = 0. We organise the tangent space
coordinates of the training examples in ap×2n data matrix

X =




xT
1

xT
2
...

xT
p


 (3)

This matrix may then be decomposed using Eckart-Young’s
theorem [11]

X = V ΛUT . (4)

WhereU (2n × r) andV (p × r) are orthogonal matrices,
andΛ (r×r) is a diagonal matrix with positive diagonal el-
ements. The diagonal elements ofΛ are called the singular
values ofX. This decomposition is also called the singular
value decomposition (SVD).

By direct calculation using Eckart-Young’s theorem we
have the following two eigenvalue decompositions

XXT = V Λ2V T (5)

XT X = UΛ2UT (6)

The diagonal elements ofΛ2 are the squared diagonal ele-
ments ofΛ and these are the positive eigenvalues ofXXT

andXT X. The analysis ofXT X is called a R-mode anal-
ysis, and the analysis ofXXT is called a Q-mode analysis.
The relation between the eigenvectors corresponding to the
positive eigenvalues for the two problems are given by

V = XUΛ−1 (7)

U = XT V Λ−1 (8)

The estimated variance-covariance matrix of the tangent
space coordinates of the training examples in Eq. (2) is

Σ̂ =
1

p − 1
XT X (9)

the eigenvectors (i.e. the principal components) of which
are given by the columns ofU .

The ASM model then consists of retaining thet ≤ r
first principal components. Deviations from the Procrustes
mean (in tangent space) can then be modelled by

x = U ′b (10)

whereU ′ is a matrix consisting of the firstt columns ofU ,
andb defines a set oft parameters of the deformable model.

However, from Eq. (8) we see that by solving the prob-
lem in Q-mode, i.e. solve forV we could generate the same
ASM by

x = XT V ′b (11)



whereV ′ is a matrix consisting of the firstt columns ofV .
Solving the problem in Q-mode corresponds to an eigen-

value decomposition of a matrix consisting of sums-of-squa-
res of the deviations of a stochastic variable,Z, from0, ex-
amples of which are given by the coordinates of each point
across the shape training examples, i.e.

zj = (x1j , . . . , xpj), for j = 1, . . . , n

zj = (y1j , . . . , ypj), for j = n + 1, . . . , 2n.(12)

This matrix is given by

Π̂ =
1

2n− 2
XXT (13)

The eigenvectors (i.e. the principal components) of this ma-
trix corresponding to the positive eigenvalues are given by
the columns ofV .

3.1. Maximum Autocorrelation Factors

In this section we will describe two approaches to using the
maximum autocorrelation factors (MAF) [4]
transform instead of principal components for formulation
of an ASM. The first approach is based on a prior ordering
of the training shapes. The second approach assumes an
ordering of the landmarks.

We will begin by reviewing the MAF transform. Con-
sider the spatial covariance function

Γ(∆) = Cov{Zk, Zk+∆} (14)

where∆ denotes a spatial shift. EvidentlyΓT (∆) = Γ(−∆).
Defining the variance-covariance matrixΣ∆ = D{Zk −
Zk+∆}, we find

Σ∆ = 2Σ− Γ(∆) − Γ(−∆) (15)

We are now able to compute the covariance between the
original variables an the shifted variables

Cov{wT
i Zk, wT

i Zk+∆}
= wT

i Γ(∆)wi = wT
i ΓT (∆)wi

=
1
2
wT

i (Γ(∆) + Γ(−∆))wi

= wT
i (Σ − 1

2
Σ∆)wi, (16)

which results in the following correlation coefficient

Corr{wT
i Zk, wT

i Zk+∆} = 1 − 1
2

wT
i Σ∆wi

wT
i Σwi

. (17)

In order to minimize that correlation we must maximize
the Rayleigh coefficient

R(a) =
wT Σ∆w

wTΣw
. (18)

Let κ1 ≤ · · · ≤ κm be the eigenvalues andw1, . . . , wm

corresponding conjugate eigenvectors ofΣ∆ with respect to
Σ. Let

W =
[

w1 w2 · · · wm

]
. (19)

Then the minimum/maximum autocorrelation factor trans-
form is given by

Y k = W T Zk. (20)

Note that ordering is defined so that the first MAF has maxi-
mum autocorrelation. An additional problem will arise when
the number of training examples is less than the dimen-
sionality of the problem. Then the variance-covariance ma-
trix in the nominator of Eq. 18 is not positive definite. In
this case the optimization must be carried out in the sub-
space spanned by the eigenvectors corresponding to non-
zero eigenvalues of this matrix.

3.2. Shape R-MAF

This is the most straightforward application of the MAF
transform to ASMs. We now assume that the numbering
of the training examples constitute a natural order. This or-
der may come from the shapes being sampled on a time axis
or on a spatial axis (e.g. slicing a 3D structure). This is a
generalisation of the ordinary R-mode analysis of ASMs.
This generalisation works also for the AAMs, where shape
information is extended with texture information.

An estimate of the variance-covariance matrix is given
by Eq. (9). An estimate of the difference variance-covariance
matrix is given by

Σ̂∆ =
1

p − 1
DT D (21)

where

D =




(x1 − x2)T

(x2 − x3)T

...
(xp−1 − xp)
(xp − x1)T




. (22)

The MAF ASM is then built by retaining thet ≤ r first
maximum autocorrelation factors. Deviations from the Pro-
crustes mean (in tangent space) is then be modelled by

x = W ′b (23)

whereW ′ is a matrix consisting of the firstt columns of
W (Eq. (19)), andb defines the set oft parameters of the
deformable model.

In ordinary ASMs limits are applied to the parametersb
according to the variance of the parameters across the train-
ing set. In the ASM case the variance of theith parameter
equals theith eigenvalue of the principal component ana-
lysis. Here the result does not simplify as well. The vari-
ance of theith parameter across the training set is given by

V {bi} =
wT

i Σwi

wT
i wi

. (24)
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Fig. 2. Boxplots of the leave-one-out RMS error for the
principal components analysis (PCA) analysis as a function
of model size (model 1 is using the mean shape only). The
box defines the interquartile range (IQR), the whiskers show
the extend of the data, their length is at maximum 1.5 IQR.
Data outside the whiskers are denoted outliers and drawn
individually.

3.3. Shape Q-MAF

Another extension of the ASM uses the MAF transform
based on the Q-mode analysis. It is therefore not as straight-
forward as the previous method. In general, it should be
more applicable, since a natural ordering of the training ex-
amples is seldom present, but an ordering of the landmark
points is almost always present.

In the MAF analysis in Section 3.1 we substitute the ma-
trix Π̂ from Eq. (13) for the variance-covariance matrixΣ.
The estimate of the difference variance-covariance matrix is
given by

Σ̂∆ =
1

2n − 2
EET (25)

where

ET =




(z1 − z2)T

...
(zn−1 − zn)T

(zn − z1)T

(zn+1 − zn+2)T

...
(z2n−1 − z2n)T

(z2n − zn+1)T




(26)

wherezj is defined in Eq (12).
The MAF ASM in this case is built by retaining the

t ≤ r first maximum autocorrelation factors. From Eq. (11)
deviations from the Procrustes mean (in tangent space) is
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Fig. 3. Boxplots of the leave-one-out RMS error for the
Q-mode maximum autocorrelation factor (MAF) analysis
as a function of model size (model 1 is using the mean
shape only). The box defines the interquartil range (IQR),
the whiskers show the extend of the data, their length is at
maximum 1.5 IQR. Data outside the whiskers are denoted
outliers and drawn individually.

then be modelled by

x = XT W ′b (27)

whereW ′ is a matrix consisting of the firstt columns of
W (Eq. (19)), andb defines the set oft parameters of the
deformable model.

4. RESULTS AND DISCUSSION

The Q-MAF transformation is performed on the metacarpal
dataset and compared to ordinary PCA. The resulting eigen
modes are shown in Fig. 4. In the figure all eigen modes
for the two transformations are shown. The eigen modes
are visualised as deviations from the (full Procrustes) mean
shape. The mean shape and the deviations from the mean
shape is shown for each eigen mode as±5 standard devi-
ations across the training, respectively. Note that if we as-
sume that the variation from the mean value across the train-
ing set can be modelled by a Gaussian distribution, then we
would expect (almost) all deviations to be within±3 stan-
dard deviation.

From the plots in Fig. 4 we see that the Q-MAF transfor-
mation results in different eigen modes from the PCA trans-
formation. The Q-MAF modes constitute a decomposition
of (localized) spatial frequency along the contour with fre-
quency increasing with mode number. Furthermore, the first
two modes are easily interpreted as thickness of the cortical
bone, mode three as bending, and mode four as thickness
of the proximal (top) end. In the high order number modes



variations composed of neighbouring points deforming in
opposite directions are concentrated.

The PCA eigen modes are less easily interpreted and it
seems that many low number modes are devoted to descrip-
tions of variations of the proximal end. These are variations
that may well stem from annotation arbitrariness.

In order to truly evaluate which method is better at re-
taining the real variations of the specimens of the training
set and excluding annotation arbitrariness and unique fac-
tors we would have to evaluate the repeatability/reproducibi-
lity of the annotation procedure for this class of shape. Such
data have not been available.

A leave-one-out evaluation where the root-mean-square
error as a function of model size (retained eigen modes)
for the two methods has been carried out. Boxplots of the
root-mean-square error are shown in Figs. 2 and 3. Those
data are inconclusive with respect to disqualifying one of
the methods.

5. CONCLUSION

In this paper we have described a new alternative to using
principal components analysis in active shape models. This
method is based on the maximum autocorrelation factors
transform and may be applied in a Q-mode or a R-mode
type of analysis depending on the nature of the shape data.

In Q-mode we seek deformation modes that exhibit sim-
ilar deformation of neighbouring points of the shape. It is
assumed that this is a natural choice. On an example we
have demonstrated that the Q-MAF transformation leads to
a decomposition of spatial frequency along the contour and
that the resulting modes are easily interpreted.
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Fig. 4. The eigen modes for the shape Q-MAF and the PCA transformation are visualised as deviations from the (full
Procrustes) mean shape. The mean shape and the deviations from the mean shape is shown for each eigen mode as±5
standard deviations across the training, respectively.


