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Abstract

This project have mainly focussed on supervised adaptive �lters. Di�erent norm-
based robust adaptive algorithms are introduced and discussed. Information the-
oretical methods are introduced by minimizing a KL-divergence between the true
joint data distribution and the model joint distribution. This leads to the Shannon
generalization error which shows to be a generalization of the norm criterium. A
similar measure introduced is the Renyi generalization error, which is used as an
information theoretical cost-function. The generalization error and its relation to
regularization will be discussed. Two algorithms based on the Renyi generalization
error are derived using a Gauss Newton approach. An existing information theoret-
ical algorithm known as the Stochastic Information Gradient (SIG) is derived and
discussed. Selected norm and information theoretical methods are tested in a real
setup with data sets from an open loop measurement of a hearing aid placed in an
arti�cial ear.
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Synopsis

Dette projekt har hovedsageligt omhandlet robuste adaptive �ltre. Nogle enkelte
norm metoder er blevet introduceret og diskuteret. Ved at minimere Kullback Leibler
divergensen mellem den sande simultane fordelingsfunktion og modellens simultane
fordelingsfunktion, introduceres de informationsteoretiske metoder. Resultatet af
denne minimering leder til en objekt funktion, som i projektet bliver kaldes for
Shannons generalisations fejl. Shannons generalisations fejl er en generalisering af
de klassiske norm metoder. Det vises at Shannons generalisations fejl kan omskrives
til en Renyi generalisations fejl, som er et tilsvarende informationsmål. Renyi gener-
alisations fejlen vil blive brugt som objekt funktion. Der eksisterer et sammenhæng
mellem generalisations fejlen og regularisering, som vil blive vist. To algoritmer er
udledt fra Renyi generalisations fejlen ved brug af en Gauss Newton metode. En
eksisterende stokastisk metode (SIG) blev udledt fra Renyi generalisations fejlen.
Udvalgte norm og informations teoretiske metoder testes med datasæt fra en åben
sløjfe måling, fra et høre-apparat placeret i et kunstigt øre.
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Nomenclature and mathematical
conventions

Abbreviations

LMS Least Mean Square
LMP Least Mean p-norm
SIG Stochastic Information Gradient
NLMS Normalized LMS
NLMP Normalized LMP
GNLMS Gaussian Normalized LMS
RQEGN Recursive Quadratic Entropy Gauss Newton
MSE Mean Square Error
KL Kullback Leibler
RT Rule of Thumb
CV Cross Validation
ANLL Aveage negative log - likelihood
s.t. Subject to
i.i.d. Idependent identically distributed

Math conventions and symbols

Lower case bold letters refer to vectors eg.

x = [x1, x2, x3, . . . , xp]
T .

Upper case refers to matrices (X). Scalar values are given as x.
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Mathematical symbols

D(x) The cumulated probability function of x
Γxx Autocorrelation matrix of x
γyx Crosscorrelation vector between y and x
K Gain vector (RLS/RLP)
p(e) probability density function of the error.
p(y|x) conditional probability density function of y given x
p(y, x) joint probability density function
f(w, x) Mathematical function describing the model. In this project f(·) will be a linear function.
G(w) Generalization error
H(X) Entropy of the discrete or continuous variable X unless other speci�ed

Operators

sgn(x) Sign function
Tr{.} Trace operator

Other symbols

k time index unless other speci�ed
xk input applied to an adaptive �lter.
dk output of an adaptive �lter.
yk desired response.
vk added signal / noise.
ek = dk − yk estimation error.
w The model weights.
L Number of weights in the model.
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Chapter 1

Introduction

This project will mainly focus on supervised adaptive �lters. Robustness is de�ned in
this context, as the ability of the algorithm to maintain convergence when applied to
signals with properties that di�er from the initial environment assumptions. Several
techniques exist for robust �ltering when the environment is non-Gaussian. Many
adaptive algorithms are based on minimizing a speci�c norm, which is assumed to
exist for the data. This assumption however, puts some limitation on �xed norm
methods when applied in other environments than the intended. Some of the al-
gorithms, which have been investigated, cope with this by either ensuring a certain
norm or by minimizing a variable norm. Information theoretic methods will be in-
troduced as to minimize an entropy based generalization error. The generalization
error minimizes a Kullback Leibler divergence between the true joint density func-
tion and the model joint density function. The information theoretic methods will
work directly on the unknown probability density function (working directly on the
di�erent moments of the distribution). The density can be approximated assum-
ing a speci�c environment (parametric method) or one can use a density estimator
(non-parametric method). In the project we have concentrated on non-parametric
methods to determine the distribution from a �nite sized data set.
In the following, a short explanation of the di�erent chapters in the report is given.

Chapter 2 The additive noise model is introduced. A discussion on di�erent kind
of noise sources is also given in this chapter.

Chapter 3 Di�erent robust adaptive �lter algorithms are introduced. Both stochas-
tic gradient and recursive methods are discussed in this chapter.

Chapter 4 The additive noise model together with the KL-divergence is used to
de�ne a generalization error. The generalization error is an information the-
oretic measure, and will be used as a cost function. Several properties of the
cost function is discussed. The cost function, and its relation to regularization
is investigated. Three di�erent types of adaptive algorithms are derived from
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the cost function.

Chapter 5 contains experiments performed on the algorithms based on the infor-
mation theoretic method. In this section a practical example from the hearing
aid industry is tested. Both the norm-algorithms and the information theoretic
methods are tested in this context.

Chapter 6 A discussion on further work.
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Chapter 2

The model

This section introduces the model, which is considered in this project. The second
section of the chapter will discuss di�erent kinds of noise, which are used later in the
project to test the algorithms.

2.1 Additive noise model

The model under consideration in this project is known as an additive noise model
given as

yk = f(xk, w) + ek (2.1)
where

1. ek ∈ R is a noisy measurement (a stochastic process). The noise ek is normally
assumed to be of a speci�c shape.

2. yk ∈ R is a noisy measurement which is linearly or nonlinearly related to w
and xk.

3. w ∈ RL is the model parameters.
4. xk ∈ Rd could be a stochastic process and is given as the input to the model. In

the adaption process the characteristic of this process can have quite big in�u-
ence on the convergence of the di�erent algorithms considered in this project.

5. f(·) is a linear or nonlinear function which maps the input xk and the model
parameters w into a scalar ŷk, so f(·) : Rd 7→ R. In this project only transversal
�lters are considered (FIR-�lters) in which f(·) is a linear function of its inputs.

Other models than the additive noise model exists see [24] for examples of recurrent
models.
Several examples of the practical use of an additive noise model can be found in [15],
some which will be discussed next. First the system identi�cation setup is discussed.
System identi�cation setup
A system identi�cation scheme is illustrated in �gure (2.1) page (4), where the plant
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is the unknown system to be identi�ed using the model. In some cases the number
of model parameters required is not known a priory. If one has a proper measure of
the error, then one should select the number of parameters that minimize the error
measure the most. In the case of linear adaptive �lters, selecting a too big number
of parameters (more than is necessary) will cause the model parameters with no
importance to go to zero. The plant does not necessarily have to be stationary but
could be dynamic in nature, which means that the unknown weights will be time
dependent. With a time-varying plant the requirements to the adaptive algorithm
will increase since the algorithm have to catch changes in the system parameters.
Some di�erent setups which would go under the category system identi�cation are
given in [8] [12] [20].
In the experimental part of this project, we will perform a system identi�cation using
a realistic setup with data from hearing aid setup. This is explained more in details
in the experimental part of the project. Another setup, which is discussed, is the

System input −

+

+
d(k)Plant

Model

v(k)

e(k)

y(k)

^y(k)

Adaptive Algorithm

x(k)

Figure 2.1: System Identi�cation setup

Prediction setup.
Prediction setup
In this setup the adaptive �lter's operation is to provide the best prediction of the
present value of the signal applied (uk). The predictor is shown in �gure (2.2)
page (5). The sample uk acts as the desired signal, which the adaptive �lter has
to predict from earlier signal samples. The prediction can be one sample ahead
or several samples ahead (depending on the delay). A typical example of a signal
that can be used in a prediction setup is the autoregressive process (AR), which is
discussed in more detail in section (2.3) page (12). The AR-process has been utilized
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in [14] and [26] to test an adaptive algorithm (FIR) in a prediction setup. Also other
signals may be applied in a prediction setup, such as deterministic signals, which are
utilized in [6] to test a SIG-algorithm (Stochastic Information Gradient).
The prediction setup is applied to verify the various algorithms on how they perform
in di�erent statistical environments.

u(k)

Adaptive Algorithm

Delay
− +

Model
e(k)^y(k)x(k)

System input

u(k) =y(k)

Figure 2.2: Prediction setup

The signals applied for the adaptive �lter/system can take many di�erent forms. Sta-
tionary and non-stationary signals are considered in this project. The non-stationary
signals will mainly be the realistic setup, where speech signals are used.

2.2 Characterization of the noise

To test the di�erent algorithms presented in this thesis some synthetic data is needed.
Many of the algorithms presented in adaptive �lter theory are optimized with respect
to some speci�c norm. This normally puts a limitation on the �exibility of the
algorithm, when used in other environments than the one speci�ed for the algorithm.
As an example the LMS algorithm is designed for handling Gaussian type of noise,
but many signals are not well approximated by a Gaussian noise source.
Stationary and non-stationary signals have already been mentioned. A de�nition on
a strictly sense stationary signal is found in [29]

Suppose that we have n samples of the random process X(t) at t = ti, i =
1, 2, ...., n, and another set of n samples displaced in time from the �rst
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set by an amount τ . Thus, the second set of samples are Xti+τ ≡ X(ti +
τ), i = 1, 2, ..., n. This second set of n random variables is characterized
by the joint probability density function p(xti+τ , ...., xtn+τ ). The joint
PDF's of the two sets of random variables may or may not be identical.
When they are identical then

p(xt1 , xt2 , ..., xtn) = p(xt1+τ , xt2+τ , ..., xtn+τ ) (2.2)

for all τ and n, then the random process is said to be stationary in the
strict sense.

It is shown that if the joint PDF is not invariant to time, the process is non-stationary.
A weaker requirement to stationarity is the so-called wide-sense stationarity, which
requires that the mean value of the process is constant and that the autocorrelation
function is only dependent on the time-di�erence. Thus assuming that X(t) is a
wide-sense stationary signal , then the mean value should be independent of time
giving

E[Xti ] = E[X(ti+τ )] (2.3)
for all i and τ . The autocorrelation function should only depend on a time di�erence
between two random variables, de�ning τ = t2 − t1 then

γxx(τ) ≡ E[Xt1Xt2 ] = E[Xt1Xt1+τ ] (2.4)

for all τ and t1. Synthetic signals can be used for testing the di�erent algorithms
in their intended environment. The algorithms, when tested with real world signals,
normally shows a worse performance than when used with synthetic signals. This is
due to temporarily correlation and non-stationarity in the real world signals. Real
world signals will have to be applied to the adaptive system as to really characterize
the performance of an algorithm.
In the next section an introduction to stable processes are given. These are of interest
primarily due to the fact that speech/ audio signals can be modelled using the stable
processes [21]. Much of the information to this subject have been found in [30].

α stable random variables

In [21] several examples are given, which shows that stable signals (where α < 2)
models speech/audio signals better than Gaussian signals. Since in the hearing
aid test of chosen algorithms speech signals are used, it makes sense to be able to
generate alpha stable signals for testing. Some basic properties of a stable process
are introduced in this section as well as a discussion of the parameters for alpha
stable variables. Also fractional lower order moments (FLOM) are discussed in this
section.
In [30] it is stated that stable processes share characteristics with Gaussian processes.
The characteristics they share are the stability property and a generalized central
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limit theorem. In [30] examples of noise sources, which are impulsive in nature, is
given. They are not very well modelled by a Gaussian distribution since the tails of a
Gaussian dies out as exp(−x2). The tails of an alpha-stable distribution is generally
larger than for a Gaussian distribution. In addition, the hump is more peaked for an
alpha-stable distribution. The stable distribution is very �exible, since the heaviness
of the tails is controlled by a parameter called the characteristic exponent (α where
0 < α ≤ 2). When α = 2 the stable distribution is a Gaussian distribution. When
α = 1 the stable distribution is also known as a Cauchy distribution. This is used
very often to model impulsive noise. The �Generalized Central Limit Theorem� and
�Stability property� from [30]:

Generalized Central Limit Theorem
The generalized central limit theorem states that if a sum of in�nitely
many i.i.d. random variables with or without variance converges to a dis-
tribution when increasing the number of variables, the limit distribution
will be stable1.
Stability property
The sum of two independent stable random variables with the same char-
acteristic exponent will again be a stable random variable with same
characteristic exponent.

The above statements are a generalization of the central limit theorem and stability
properties known from normal-distributed variables.
For the α-stable variables the moments are only �nite for orders less than α. This is
an important information since many algorithms are based on minimization of the
two-norm of the error (LMS and RLS). A similar measure of variance for Gaussian
variables is called dispersion for α-stable distributions. The larger the dispersion (γ)
of a stable variable, the larger the spread around its median. If the error signal is
an alpha stable signal, then algorithms minimizing the dispersion of the error signal
are needed. This is, according to [30] equal to minimizing the fractional lower order
moments of estimation errors (measure of the Lp-distance between a desired signal
(yk) and an estimated signal (predicted by model, ŷk), where p < α ≤ 2). Algorithms
like the LMP (RLP), which are discussed in chapter (3.1.1) page (15) minimizes the
dispersion.
The probability density function of stable random variables does not exists in closed
form (Only for α = 2 and α = 1). Power series expansions exist for a standard
stable distribution (γ = 1 and a = 0). Instead of specifying a PDF the characteristic
function is given [30]

ϕ(t) = exp{jat− γ|t|α[1 + jβsgn(t)ω(t, α)]} (2.5)
where

ω(t, α) =
{

tanαπ
2 for α 6= 1

2
π log |t| for α = 2

.

}
(2.6)

1This basically means that if a limit distribution exists - say G(x, θ0), taking two or more random
variables of this distribution and adding them, will again produce a variables with a distribution
G(x, θ1)
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and −∞ < a < ∞, γ > 0, 0 < α ≤ 2, −1 ≤ β ≤ 1.

The stable distribution is completely speci�ed by the location parameter a, the dis-
persion (scale parameter) γ, the skewness β and the characteristic exponent α. If
β = 0 and a = 0 the process is also known as a SαS-process (symmetric alpha stable
process).
By setting β = 0 and a = 0 (SαS variable) the PDF of the stable process can be
found by invoking an inverse Fourier transformation with a relevant scaling of the
characteristic function.
The characteristic function of a SαS variable is then given by : ϕ(ω) = e−γ|ω|α .
Performing an inverse Fourier transformation of the characteristic functions gives

p(x, α, γ) =
1
2π

∫ ∞

−∞
ϕ(ω)e−jωxdω

p(x, α, γ) =
1
2π

∫ ∞

−∞
e−γ|ω|αe−jωxdω

p(x, α, γ) =
1
2π

∫ ∞

−∞
e−γ|ω|α [cos(ωx)− jsin(ωx)]dω (2.7)

p(x, α, γ) =
1
π

∫ ∞

0
e−γωα

cos(ωx)dω. (2.8)

Since the sine function is an un-even function and the characteristic function an even
the integral will equal zero. The integral from −∞ to ∞ of two even functions can
be changed to an integral from zero to in�nity. For the case of α = 1 then ([34] p.98
formula 15.68)

p(x, 1, γ) =
1
π

∫ ∞

0
e−γωcos(ωx)dω

=
1
π

γ

γ2 + x2
(2.9)

which is the Cauchy-distribution. For α = 2 the Gaussian PDF is found ([34] p.98
formula 15.73)

p(x, 2, γ) =
1
π

∫ ∞

0
e−γω2

cos(ωx)dω

=
1
2π

√
π

γ
e
−x2

4γ

=
1√
2πσ

e−
x2

2σ2 (2.10)

if γ is selected to σ2

2 , which shows the relationship between the variance of a Gaussian
variable and the dispersion. This is two special cases. Selecting 0 < α ≤ 2 one have
to use a series expansion of the exponential to give

p(x, α, γ) =
∞∑

k=0

−γk

k!

∫
ωαk cos(ωx)dω. (2.11)
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From [30] the moments of an alpha stable variable are given as (0 < α < 2):

E{|x|p} = ∞ , if p ≥ α (2.12)
E{|x|p} < ∞ , if 0 ≤ p < α (2.13)

E{|x|p} < ∞ , for all p ≥ 0 (α = 2) (2.14)

Only for α = 2 all moments exists. Special for the symmetric alpha stable distribu-
tions the Fractional lower order moment also called FLOM are given as

E{|x|p} = C(p, α)γ
p
α for 0 < p < α (2.15)

where C(p, α) is given as

C(p, α) =
2p+1Γ(p+1

2 )Γ(−p/α)
α
√

πΓ(−p/2)
(2.16)

and the Γ(x)- function

Γ(x) =
∫ ∞

0
tx−1e−tdt. (2.17)

The FLOM shown in (2.15) and (2.16) is not dependent on the variable x, but only
on the characteristic exponent α and on p. Inspired by [22] various p'th order FLOM
is plotted for di�erent values of α as a function of p. This plot is seen in �gure (2.3)
page (10). The p'th order moment of a SαS-random variable increases dramatically
when p is chosen higher than the corresponding α. The p'th order moment plotted
for a random SαS variable is the case of an in�nitely sample size. Since the sample
size used for simulating is �nite the p'th order moment of a sample size will generally
not increase in value as fast as shown in �gure (2.3) page (10).

How to generate α stable variables

To generate α-stable random variables, several methods exist. In this project a
method described by [17] have been used. The code, for generation of alpha sta-
ble variables have been borrowed from Preben Kidmose2. The implementation was
done during his PhD-thesis [22]. The method transforms two independent uniform
variables non-linearly into a stable random variable.

2With his permission
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Figure 2.3: p'th order moment of a SαS random variable with dispersion γ = 1

How to generate an arbitrary distribution

Since MATLAB do not have built in functions for generation of random variables
other than Gaussian and uniform distributed variables, some method for generation
of arbitrary random variables is needed. Normally one transforms a uniform dis-
tributed random variable into the wanted distribution by transforming the uniform
distribution in some nonlinear fashion.
To transform a random variable X which is uniform distributed into a variable Y
having a distribution, say p(y), where

∫∞
−∞ p(y)dy = 1 some transformation is needed

[1]. Using the transformation rule of equaling the area under the density function of
the uniform and arbitrary distribution, so:

∫
p(y)dy =

∫
p(x)dx

|p(y)dy| = |p(x)dx|
p(y)|dy| = p(x)|dx|

p(y) = p(x)
∣∣∣∣
dx

dy

∣∣∣∣
(2.18)

and since

p(x) =
{

1 0 ≤ x ≤ 1
0 Otherwise (2.19)
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gives the following di�erential equation to be solved :

dx

dy
= p(y).

The solution to this di�erential equation is the cumulated probability function of
Y: x = D(y). In order to generate random variables with a given PDF the inverse
cumulated probability function of Y is needed to generate the wanted X-variables

y = D−1(x).

So random variables, with an arbitrary PDF, can only be generated if the inverse
cumulated probability function exist (can be found analytical or numerically).
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2.3 Generation of data applying an AR-process

The autoregressive process AR(k) can be used in a prediction setup. The AR(k)
process is given as

xk +
k∑

i=1

aixk−i = vk (2.20)

xk = −
k∑

i=1

aixk−i + vk (2.21)

where vk could be a sequence of i.i.d. SαS random variables, Gaussian distributed
samples or some sub-Gaussian process. When using i.i.d. SαS random variables for
vk then xk is known as a linear SαS stationary process (when AR-parameters are
selected properly).
One have to be careful when selecting the AR-parameters, since a bad selection will
cause the signal xk to become non-stationary.
Performing a z-transformation of the AR-process given in (2.20) gives

X(z) = −
k∑

i=1

aiz
−iX(z) + V (z) (2.22)

which after rearranging gives

X(z)
V (z)

=
1

1 +
∑k

i=1 aiz−i
≡ H(z), (2.23)

a transfer function. In order for the AR-process to be stable the roots of the equation
given in the nominator (solve 1 +

∑k
i=1 aiz

−i = 0) have to be within the unit circle
[15]. From �gure (2.4) page (13) an example of a AR-process, where the parameters
are selected such that one of the poles are just outside the unit circle. The instability
of the process can be seen. Selection of the parameters where one of the poles are
at the unit-circle causes oscillation of the AR-process, which can be seen from �gure
(2.5) page (13). Figure (2.6) page (14) shows that a selection of the poles within the
unit-circle causes the process to be stable as desired.

2.4 Discussion

In this chapter, the additive noise model have been introduced. Some scenarios in
which the additive model can be used has been given. Di�erent forms of additive
noise, which will be used in the project for testing the various algorithms, have been
discussed. The AR process has been introduced.
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Chapter 3

Robust norm-related algorithms

This chapter will discuss a couple of well-known robust algorithms which are based on
norm-minimization. The NLMP (Normalized Least p-norm, NLMS as a special case),
RLP (Recursive Least p-norm) and GNLMS (Gaussian Normalized Least Square)
will be discussed. In the section on the RLP algorithm a method to estimate the
p-parameter when the environment is a S(α)S environment is given.

3.1 Stochastic gradient methods

3.1.1 NLMS/LMS

The least mean square algorithm (LMS) was originally presented in the sixties by
Widrow and Ho�. The algorithm is a stochastic gradient algorithm and is �nding
practical use in many aspects. The LMS algorithm is also known to be a robust algo-
rithm and is therefore used in many papers for performance comparison, mentioning
just a few [21] [26] [6] and [30]. Most of the papers use a Normalized LMS algorithm
which uses a normalization of the estimated gradient used in the LMS algorithm. In
the literature [15] the LMS algorithm have been investigated analytically regarding
convergence properties, transient behavior utilizing the independence assumption.
The independence assumption given in [15]

1. The tap-input vectors x1, x2, x3, .., xk constitute a sequence of statistically
independent vectors.

2. At time k, the input vector xk is statistically independent of all previous samples
of the desired response, namely, y1, y2, ..., yk−1.

3. At time k, the desired response yk is dependent on the corresponding tap-input
vector xk, but statistically independent of all previous samples of the desired
response.

4. The tap-input vector xk and the desired response consists of mutually Gaussian
distributed random variables for all k.
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The LMS algorithm is a cost function based algorithm. The cost function is the
mean square error which is given as

Jk = E
[|ek|2

]
. (3.1)

In an adaptive system setup the weights of the model are adjusted to minimize the
mean square error. A simple method to achieve minimum MSE is to use a steepest
descent method. This method steps in the direction of steepest descent (the negative
gradient of the cost-function)

wk+1 = wk +
µ

2
[−∇Jk]. (3.2)

The gradient of the cost-function in (3.1) is found to be

∇J(w) = −2γyx + 2Γxxw.

The minimum of the cost-function is found when the gradient equals zero. In order
to be a minimum the Hessian matrix of the cost-function should be positive de�nite1.
Solving for the model weights, when the Hessian is positive de�nite, produces the
Wiener solution (Least Square solution). This solution is optimal in the mean square
sense. The Hessian matrix is found to be proportional with the autocorrelation
matrix ∇2

w = 2Γxx. It can be shown that the autocorrelation matrix usually is a
positive de�nite matrix in which a minimum of the cost function exists and is found
by the least squares solution. In [15] this property is discussed. So in order to �nd
the Wiener solution one solves the system of linear equations

w = Γxx−1γyx (3.3)

Normally we do not know the true auto/- and cross correlation function so the Wiener
solution is approximated at some time instant k as

wk = R−1
xxk

ryxk
. (3.4)

where Rxxk
(w) is the autocorrelation matrix of the input and ryxk

(w) is the cross-
correlation vector estimated at time instant k. Another way to minimize the cost-
function is to use instantaneous estimates of the cross-correlation vector and the auto-
correlation matrix. This leads to the stochastic gradient method. The stochastic
gradient becomes

∇̂Jk = −2xkyk + 2xkx
T
k wk.

Inserting this result into (3.2) using that ek = yk − xT
k wk the following stochastic

update is found, also known as the LMS algorithm:
1All eigenvalues of the Hessian matrix should be positive. It is also the same as requiring that

xTHx > 0 for x : RL.
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wk = wk + µekxk. (3.5)

It can be shown that in order for the LMS algorithm to converge in the mean square
sense the step-size parameter should satisfy the following condition:

0 < µ <
2

λmax

where λmax is the largest eigenvalue of the autocorrelation matrix Γxx(w).
The Normalized LMS algorithm (NLMS) can be derived from the previous observa-
tion of the convergence criteria or by minimizing another cost-function. The latter
method is presented in [15] as a minimization problem of the form

||δwk+1||2 s.t. wT
k+1xk = yk

where δwk+1 = wk+1 −wk. This constrained optimization problem is solved using
the method of Lagrange multipliers. The method gives insight, since the two norm of
the weight update is minimized. A more direct method is to estimate the maximum
eigenvalue from the fact that the autocorrelation matrix Rxxk have nonnegative
eigenvectors (assumed to be semi/ or -positive de�nite) in which an upper bound on
λmax can be found as

λmax <
L−1∑

i=0

λi = tr{Rxxk}.

Using instantaneous estimates of the autocorrelation matrix the following expression
for the step-size is found

λmax < tr{xkx
T
k } = ||xk||22.

From where the step-size is no longer independent on k

µk =
µ

||xk||22
.

Selecting 0 < µ < 2 will make the method convergent. The NLMS algorithm is
written as

wk+1 = wk + µ
ekxk

xT
k xk + a

(3.6)

where a2 is a small constant which assures that the expression do not �blow up� in
the case of very small input values.

2Typically chosen to be 1e-8. For most workstations the �oating point relative accuracy, eps 1e-
16, and sqrt(eps) 1e-8
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The complexity of the LMS algorithms is O(L), where L is the number of weights
(L+1 multiplications and L additions). When the NLMS algorithm have been run-
ning for a while only 2 multiplications, 3 additions and 1 division is needed since
the inner product can be updated recursively. Therefore, the low complexity of the
LMS/NLMS algorithm makes it very useful in many simple setups.

3.1.2 NLMP/LMP

The Normalized Least Mean p-norm algorithm (NLMP) is based on the Least Mean
p-norm algorithm. The LMP algorithm is presented in both [26] and [30] and is
designed to handle non-Gaussian stable processes. Several authors have used this
algorithm for comparison, see [20][21][14]. The algorithm is designed to minimize the
dispersion of the estimation error (ek) in S(α)S noise, which is as mentioned before
more heavy-tailed than Gaussian noise. As discussed earlier S(α)S random processes
do not have a second moment (for α < 2), so minimizing a cost function based on
the mean square error Jk = E

[|ek|2
]
do not provide any good results. Instead it

makes sense to minimize the p'th order moment of the error, which can be expressed
as the following cost-function

Jk = E [|ek|p]

where the p should be chosen small enough so the distribution under consideration,
have information regarding the p'th moment( choose p < α(in [21] p = α − 0.2)).
Minimizing the p'th order moment of the error corresponds to a minimization of the
dispersion.
Using a stochastic update method, the gradient with respect to the weights of the
cost function are determined. The gradient is found to be

∇Jk = −E
[
p|ek|p−1sgn(ek)xk

]
.

Using instantaneous estimates of the gradient and inserting into the method of steep-
est descent one �nds the following update formula also known as the LMP method

wk+1 = wk + βe
〈p−1〉
k xk

where β = µp
2 and a〈p〉 = |a|psgn(a)

A special case of the LMP algorithm is when p = 1, in which the algorithm reduces
to the sign algorithm. This is mentioned in [30] as the LMAD-algorithm (least mean
absolute deviation).
Motivated by the increased convergence speed of the NLMS method with correlation
in the input signal a normalized LMP algorithm is introduced. This algorithm should
also work better in colored environments. The NLMP update algorithm is found in
[26] as



Chapter 3. Robust norm-related algorithms 19

wk+1 = wk +
β

||xk||pp + a
e
〈p−1〉
k xk (3.7)

The p-norm of the input vector is used as normalization. From [8] it is shown that
the following minimization problem

min ||wk+1 −wk||p s.t. yk −wT
k+1xk = 0 (3.8)

leads to the normalized LMP algorithm. a is again a constant assuring that the
weights will not diverge in case of very small input value.
The complexity of the LMP algorithm is given as (2+L) multiplications, L additions
and 1 nonlinear operation. So the complexity of the NLMP algorithm is O(L) op-
erations. The NLMP-algorithm when running only requires 3 additions, 2 nonlinear
operations and 1 division additionally compared with the LMP algorithm.
For the algorithm to work in a changing environment some determination of the
p-value is needed. In the section on the RLP algorithm a method to estimate p from
the N prior samples is given. In [21] a variable p-norm method was tested in a double
- talk situation with positive results.

3.1.3 GNLMS

The Gaussian NLMS algorithm was introduced in [20] as a method for working with
non-Gaussian environments.

Median Orthogonality

The method is based on median orthogonality which has been introduced in [4].
Instead of minimizing a traditional cost-function the algorithm is based on median
orthogonality, which is required at the solution. De�nition of median orthogonality:

Denote x1 and x2 as two random variables and let M{ } denote the me-
dian operator, which is similar to the normal expectation E{ }. If the
median product is zero between the two random variables M{x1x2} = 0
then x1 and x2 are said to be median orthogonal. The median orthogo-
nality can also be expressed as

x1 ⊥M x2.

In the Gaussian case (x1 and x2 ∈ N(µ, σ2)) the MO criterion reduces to the normal
orthogonality criterion. An interesting point is that median orthogonality do not
restrict the distribution of x1 and x2 [4]. In an adaptive setup we require that
e ⊥M x which basically means that no requirement on the distribution of the error
and input is needed.
Properties of median orthogonality (MO) for random variables with symmetric dis-
tributions:
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• Independence is necessary and su�cient for MO
• MO is necessary but not su�cient for independence

The last statement means that variables x1 and x2 can be median orthogonal even
though the variables are dependent.
The following statement is proven in [4]. If x1 and x2 is two random variables (not
necessarily independent variables) and de�ning a new random variable z = x1x2,
then the median orthogonality of x1 and x2 is achieved if the distribution of z is
symmetric:
z = x1x2, M{x1x2} = M{z} = 0 ⇐⇒ p(z) = p(−z).

The GNLMS algorithm

The GNLMS perform a nonlinear transformation of the input variable xk and the
error variable ek. The variables after the nonlinear transformation is Gaussian vari-
ables. This is to ensure a second order moment, since the NLMS algorithm is used
in the minimization. The input signal and error signal may follow an arbitrary
distribution. The algorithm as proposed in [20] can be divided into 4 stages:

1. Perform a empirical density transformation to obtain a uniform distribution.
Let x be some arbitrary random variable from which x1, x2, ..., xN are N obser-
vations of this random variable (arbitrary distribution). Sort the N observa-
tions such that x·,1 ≤ x·,2 ≤ .. ≤ xn,m ≤ .. ≤ x·,N , where m is the index of the
sorted data and n corresponds to the n'th observation in the original data of
x. Then the variable v (the sorted data) is forced to follow a uniform density
with the PDF:

p(v) =
{

1
2r if |x− a| ≤ r
0 if |x− a| > r

.

}

if vk is assigned the value:

vn =
2m−Nr

N
+ a

2. Transform the uniform distributed variables into Gaussian distributed variables.
As mentioned earlier this is done using the inverse cumulated distribution func-
tion for the Gaussian.

3. Scaling the transformed variables. Scaling is needed since all information about
amplitude is lost in the empirical transformation to the uniform data. The
scaling should be performed in a norm, which exist for the arbitrary random
variable x. De�ne z = scaling(y), where y = D−1(v). The scaling should be
so that ||x||p = ||y||p for some norm p. In the algorithm implementation p is
chosen to be 0.5.

4. Update weight coe�cients Denoting the last three steps as a nonlinear trans-
formation function g(·), this function operates on the error ek and the input
signal vector xk. The transformed error and transformed input vector can be
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entered in the NLMS-algorithm such that the following update applies for tap
weights in an adaptive �lter

wk+1 = wk + η
g(xk)g(ek)

||g(xk)||2 + 1e− 6
. (3.9)

The normalization ||g(xk)||2 is based on the N-number of samples used in the
empirical density transformation

The algorithm when viewed in an adaptive �lter-setup can be seen from �gure (3.1)
page (21). As mentioned earlier no cost function is speci�ed for this method. Instead,

NLMS

e(k)

+
−^y(k)

y(k)

x(k)
w(k,n), n=1,..,L 

g(.) g(.)

Figure 3.1: Adaptive �lter setup using the Gaussian NLMS algorithm

a solution criterion is de�ned (such as the MO at the solution) from where the tap-
updates are found. The tap-weight update equation given in (3.9) will have a stability
point at the solution since M [g(xk)g(ek)] = 0, so g(xk) ⊥M g(ek).
It is possible to determine the actual cost function that is minimized [4]. The cost
function can be found by integration of the expectation of the stepping in the stochas-
tic gradient algorithm in the limit as the step-size goes to zero. In [20] the cost
function is found to be

J = E[|g(e)|2], (3.10)
which is minimized when using the Gaussian NLMS algorithm.
The computational workload of the Gaussian NLMS algorithm depends on the num-
ber of samples used in the window (N). Basically the larger the window used the
better the transformation. This means that the variance of the tap-weights will be
smaller when the coe�cients have converged.



22 Chapter 3. Robust norm-related algorithms

In the following a discussion on the complexity of the algorithm.

1. Sorting of N-samples. N is the number of samples used in the empirical density
transformation The �rst sorting is the most time-consuming one, since all val-
ues have to be sorted. For full sorting each time several methods exists. Simple
implementations normally requires O(N2) operations while more complex al-
gorithms require O(Nlog(N)) operations. However, only the �rst time a full
sorting is necessary since only one sample arrives at each tap-weight update.

2. Transforming the N sorted samples with the empirical density transformation.
When the algorithm is running, only the new sample which arrives, needs to
be transformed. Each transformation require around 5 operations (2 multipli-
cations, 1 division and 2 additions).

3. Transforming the uniform variables to a Gaussian variables. Requires a non-
linear operation.

4. Scaling. Can be done iteratively by removing the oldest sample and adding
the transformed new sample.

5. Update �lter coe�cients with the NLMS method
The complexity of the NLMS method is as discussed earlier in the order of
O(L) operations.

So basically the sorting, and updating are controlling the computational complexity.
In the implementation a new sorting is performed with each new sample which means
that the computational complexity is O(NlogN) operations.

3.2 Recursive methods

3.2.1 RLP

The Recursive Least p-norm algorithm is closely related to the recursive Least Square
algorithm (RLS). From [12] a family of recursive algorithms developed for alpha
stable noise is presented. The RLP algorithm minimizes a cost function similar to
the NLMP algorithm. From [12] the cost function associated with the RLP is given
as

Jk =
k∑

i=0

λk−i |e(i)|p
p

. (3.11)

In the derivations to follow the system model is assumed to be a linear system
(transversal �lter). λ in equation (3.11) is a forgetting factor in the range 0 < λ ≤ 1.
If λ = 1 this corresponds to in�nite memory. The memory depth (md) can be
calculated as md = 1

1−λ . In a non-stationary environment the forgetting factor
should be chosen smaller than one.
To minimize (3.11) with respect to the unknown weights a linear system of equations
appear. This linear system takes the form [12]
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Qxxkwk = qxyk, (3.12)
which is solved as

wk = Qxx
−1
k qxyk, (3.13)

where Qxxk is the weighted autocorrelation matrix and qxyk is the weighted cross-
correlation vector at time k. To �nd the model weights one have to solve the linear
system of equations, which using normal methods will be computational expensive.
The weighted autocorrelation matrix and weighted cross correlation vector can be
updated recursively, which makes use of the matrix inversion lemma3 ideal. The
matrix inversion lemma let us approximate P k = Qxx

−1
k recursively. Some initial-

ization of the matrix is needed. The initialization used is known as "soft constrained
initialization" [15]. In [12] the following initialization is given P−1 = Q�1

xx−1 = δ−1I.
Using the initial value for the inverse autocorrelation matrix changes the cost func-
tion de�ned in (3.11) to the following cost-function 4

Jk =
k∑

i=0

λk−i |ei|p
p

+ δλk+1||wk||22 (3.14)

The cost function in (3.14) can be veri�ed by �nding the gradient with respect to the
model weights, and see if this corresponds to the actual initialization of the inverse
autocorrelation matrix. So

∂Jk
∂w = −∑k

i=0 λk−ivieixi + δλk+1wk = 0

where from [12] the following de�nition is made vi = |ei|p−2

using that ei = yi −wT
k xi

−∑k
i=0 λk−iviyixi +

∑k
i=0 λk−iviw

T
k xix

T
i + δλk+1wk = 0

re-arranging gives

∑k
i=0 λk−iviyixi =

[∑k
i=0 λk−ivixix

T
i + δλk+1I

]
wk

(3.15)

In the above vi =
∂|ei|p

∂ei
ei

. Since ei requires information of the model weight vector
wk an approximation to ei is made, the so-called instantaneous a priory estimation
error ξi = yi −wT

k−1xi. vi is then estimated using this a priory estimate:
3The matrix inversion lemma as stated in [15]: Let A and B be two positive de�nite ma-

trices related by A = B�1 + CD�1CH where D is another positive de�nite N × M matrix
and C is an M × N matrix. According to the matrix inversion lemma A�1 may be found as:
A�1 = B �BC(D + CHBC)�1CHB.

4From [3] this is also known as a weight decay regularization.
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vi ≈ ωi =
∂|ξi|p
∂ξi

ξi

Identifying the system of linear equations in (3.15) one can write the weighted auto-
correlation and the weighted cross-correlation vector as:

Qxxk =
k∑

i=0

λk−iωixix
T
i + δλk+1I (3.16)

qxyk =
k∑

i=0

λk−iωiyixi (3.17)

The equations for the weighted autocorrelation matrix and weighted cross-correlation
vector show that the cost function given by (3.14) is valid (insert Qxx−1 = δI =
P−1
−1).

Given the system to be solved in (3.12) the following steps are needed to solve the
system [12] (also similar to the procedure described in [15] for the RLS algorithm):

1. Calculation of a gain vector (denoted with an uppercase letter K, because k
is selected as a time-index)

Kk =
λ−1P k−1xk

ω−1
k + λ−1xT

k P k−1xk

(3.18)

2. Tap weight update at time k

wk = wk−1 + ξkKk (3.19)

3. Update the inverse weighted autocorrelation matrix

P k = λ−1P k−1 − λ−1Kkx
T
k P k−1 (3.20)

4. When the next sample arrives, repeat from step 1.

It should be mentioned that P k = Qxx
−1
k and Kk = ωkP kxk.

In [12] the following limitation is put on ωi:

ωi =
{ | ξi

υ |p−2 if |ξ(i)| > υ
1 if |ξ(i)| ≤ υ

(3.21)

The obvious reason for doing so is to avoid that the weighted autocorrelation matrix
and cross-correlation vector explodes when small values of ξi is present. The recursive
update of the autocorrelation matrix and the cross correlation vector can be found
from equation (3.16) and equation (3.17) respectively and are given as [12]

Qxxk = λQxxk−1 + ωkxkx
T
k (3.22)

qxyk = λqxyk−1 + ωkxkyk (3.23)
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where the in�uence of ωk is clear if the value "blow up".
The convergence speed of the RLS (RLP with p=2) algorithm is faster than both
LMS and NLMS in most cases. Typical problems encountered using the RLS-
algorithm have been analyzed of more than one author. In [15] the following problems
with the algorithm are identi�ed (quotation from [15]):

The mean-squared error in the weight vector wk is magni�ed by the
inverse of the smallest eigenvalue λmin. Hence, to a �rst order of ap-
proximation, the sensitivity of the RLS algorithm to eigenvalue spread
is determined initially in proportion to the inverse of the smallest eigen-
value. Therefore, ill-conditioned least squares problems may lead to bad
convergence properties.

The property will also exist for the RLP algorithm with p < 2 since the weighted
autocorrelation matrix can become close to singular, in which the inverse matrix do
not exists (some of the singular values will be zero).
The initial values for the recursive weighted autocorrelation matrix was given as
the identity matrix multiplied with δ, so the eigenvalues equals δ at initialization.
This puts some bounds on the choice of δ. Choosing the value to small, makes the
eigenvalues very small (in the initialization phase), and hence makes the problem ill
conditioned. Choosing to big a δ will make the weight decay regularization more
dominant and the convergence speed will not be as fast (in the beginning). A com-
promise must be found. In [15] the following selection of δ is suggested δ < 0.01σ2

x

where σ2
x is the variance of the input signal.

The convergence speed of the RLP algorithm is also expected to be faster than when
using the NLMP algorithm. Also the system mismatch is expected to be lower with
the RLP than the tradionally NLMP.
The complexity of the RLP-algorithm is similar to the RLS algorithm O(L2).

Selection of p

The selection of p in the cost function should be based on the error-samples e. The
value of p could either be selected to be constant during the adaption, or one could
change p in accordance with the environment. To �nd the most optimal p value
during the adaption phase a recursive α-estimator based on the error-samples are
derived. It is assumed that the environment is a S(α)S environment. The reason
for selecting p recursively comes from the fact that the RLP method is already a
recursive method. This means that the largest weight will be on the new samples.
This should in some sense in�uence the choice of p - value.
[21] is discussing issues on estimating the p-value from the given samples, and pro-
pose a NLMP-algorithm with adaptive changing p-value. In [25] various methods to
estimate the α (in an S(α)S environment) from the samples are given. We want a
method which is not to computationally expensive.
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We will base the discussion on assuming that the environment that the algorithms
will work in can be approximated with S(α)S distributions. As discussed earlier the
Fractional Lower Order moments (FLOM) exist for symmetric alpha distributions
and is given as

E [|X|p] = C(p, α)γ
p
α 0 < p < α (3.24)

which is used in determining the α estimator from the data. Assuming that X is
S(α)S distributed then the estimator is based on taking the logarithm to the data.
Let us denote Y = loge(|X|) then it can be shown [25] that

var(Y ) =
π2

6

(
1
α2

+
1
2

)
(3.25)

from where the α value can be determined.
The variance of Y will be determined in a recursive manner. De�ned here at time-
sample k

v̂ar(Y )k =µk

k∑

n=1

λk−n (yn − E [Y ])2 (3.26)

=µkλ
k−1∑

n=1

λk−n−1 (yn − E [Y ])2 + µk (yk − E [Y ])2 (3.27)

=(1− µk)v̂ar(Y )k + µk (yk − E [Y ])2 (3.28)

where µk = 1−λ
1−λk and λ (forgetting factor) is selected to be the same as in the

RLP-algorithm. A discussion on this recursive estimator can be found in section
(4.6.3) page (62) which will also show the step in coming from µkλ to (1− µk). To
determine the variance we need a measure of the mean value. The mean value will
also be determined recursively

Ê [Y ]k =µk

k∑

n=1

λk−nyn (3.29)

=(1− µk)Ê [Y ]k−1 + µkyk. (3.30)

The above mean-value will be used in the variance estimate of Y. The α estimate
can be calculated as

α̂k =
(

6
π2

v̂ar(Y )k −
1
2

)−0.5

. (3.31)

This α-estimate may be very noisy and to make it more smooth, an averaging is
performed also using a recursive method. The recursive averaging operation is de-
termined as

avg [α̂k] = (1− µpk)avg [α̂k−1] + µpkα̂k (3.32)
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where µpk = 1−λp

1−λk
p
and λp is the forgetting factor for the averaging operation.

It has to be remembered that the proposed estimator only works for S(α)S variables.
To test the recursive α estimator a sample X which is S(α)S i.i.d. distributed
was generated using three di�erent α values (1.3, 1.8, 1.1). The sample size was
N = 100000. The identi�cation of the changing moments using the recursive α
estimator can be seen from �gure (3.2) page (27), where also the true α value is
shown for each interval as a black line. From the �gure it can be seen that using
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Figure 3.2: Estimation of α of a mixed S(α)S signal using the recursive method.

a forgetting factor of λ = 0.999 and λp = 0.999 still gives a bit noisy results, but
generally the di�erences in the α values are found. When the system becomes sub-
Gaussian an upper limit of p = 2 (RLS) will be applied, since the theory only applies
to S(α)S variables. It is also known that the second order moment exists for uniform
distributed data.

3.3 Discussion

In this section two di�erent cost-functions, and algorithms for minimizing these cost-
functions has been proposed. The theory which covers the stochastic gradient ap-
proaches have existed for many years, and new theory keeps on coming. The main
di�erence between the methods presented in this section and the section to come
(information theoretic methods) are the di�erences in the cost-function.
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Chapter 4

Information Theoretical Methods

In this chapter we will start with a model of the conditional output density p(y|x).
By minimizing the KL-divergence between our model and the observed distribution
will lead to the Shannon generalization error. This generalization error will be trans-
formed to a Renyi generalization error. These two measures are information theoretic
measures and gives rise to di�erent investigations. The Parzen window density es-
timate will be discussed and methods for determining an optimal width parameter
will be discussed. In the last section of the chapter three di�erent algorithms: a
Batch, stochastic information gradient and a recursive method will be developed /
introduced.

4.1 De�nition of generalization error for Information The-
oretical Methods

The aim of this project will be to model the conditional output density1

p(y|x) (4.1)

where x ∈ Rd is a d dimensional input to the system moreover y ∈ R is the output.
We will denote the modelled conditional output density as

pM (y|x,w) (4.2)

where w ∈ RL is the weights of the model to be determined. The M is added to
be able to di�er between the model and the true conditional output density. The
true joint data distribution will be denoted as p(x, y). It should be mentioned that
we are not modelling the input distribution p(x). A way to measure the di�erence
between the two joint distributions p(x, y) and pM (x, y), where dependence on the
parameters w is understood, is to use the Kullback-Leibler divergence measure, also
known as relative entropy. The Kullback-Leibler divergence measure is based on

1This subsection is primarily based on a note written by Jan Larsen (2002): "Nonparametric
Adaptive Filtering".
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Shannon's entropy, therefore share axioms with Shannon's entropy measure. Using
the KL divergence [16] measure shows to be a good idea in the aim to determine the
model parameters. Minimizing the KL-divergence minimizes the di�erence between
the model joint distribution and the joint data distribution. So

KL (p(x, y), pM (x, y)) =
∫

log
p(x, y)

pM (x, y)
p(x, y)dxdy (4.3)

=
∫

log
p(x, y)

pM (y|x, w)p(x)
p(x, y)dxdy (4.4)

= −
∫

log (pM (y|x,w)) p(x, y)dxdy

−
∫

log (p(x)) p(x, y)dxdy

+
∫

log (p(x, y)) p(x, y)dxdy (4.5)

= G + H(x)−H(y, x) (4.6)
= G−H(y|x) (4.7)

Where G will is denoted as the generalization error and H(y|x) is the conditional
entropy2. In this project upper-case letters will be used to denote both the entropy
of discrete and continuous random variables. The aim is as mentioned earlier to
minimize the KL-divergence measure with respect to the model parameters, so

min
w

KL(p(x, y), pM (x, y) = min
w

(G−H(y|x)) (4.8)

= min
w

G (4.9)

due to the fact that H(y|x) is independent of the model parameters w. Since we
have assumed an additive noise model where the additive noise is assumed i.i.d.

y = f(x, w) + e (4.10)

then substituting this into pM (y|x,w) gives

pM (y|x, w) = p(f(x, w) + e|x,w) (4.11)
= pe(e|x, w), (4.12)

where pe(e) is the noise distribution. The generalization error to be minimized can
from (4.5) be written as

G = −
∫

log (pe(e|x, w)) p(x, y)dxdy (4.13)

The generalization error given in (4.13) have similarities with the maximum likeli-
hood principle which will be shown in the following. In a maximum likelihood setup

2In [16] the term di�erential entropy is the word used for entropy of continuous variables which
as well is denoted with a lowercase letter (h)
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we consider the density function p(y|x,w) which depends on the model parame-
ters and some given x. Given a data-set D = {(x1, y1), (x2, y2), .., (xN , yN )} which
is drawn independently from the distribution p(y|x,w) then the joint probability
density of the data set will be given as [3]

p(D|w) =
N∏

n=1

p(yn|xn,w) ≡ L(w) (4.14)

where L(w) is the likelihood of w given the data samples D. The technique of
maximum likelihood is to maximize L(w) with respect to the model parameters,
hence make the model-parameters most likely to the given data set D.

Similarities between Maximum likelihood and Generalization error

Instead of maximizing the likelihood given in (4.14) one normally minimizes the
negative logarithm of the likelihood, so

E = − log (L(w)) = −
N∑

n=1

log p(yn|xn, w) (4.15)

Normally one assumes to know the density function (parametric).
From the generalization error given in (4.13) one can insert an empirical density
estimate of p(x, y) (will be discussed in subsection (4.4.2) page (48))

p̂(x, y) =
1
N

N∑

n=1

δ(x− xn)δ(y − yn) (4.16)

of p(x, y) which would give

ĜML(w) = − 1
N

N∑

n=1

∫
log (pe(e|x, w)) δ(x− xn)δ(y − yn)dxdy (4.17)

= − 1
N

N∑

n=1

∫
log (p(y|x, w)) δ(x− xn)δ(y − yn)dxdy (4.18)

= − 1
N

N∑

n=1

log (p(yn|xn, w)) = NE, (4.19)

which is just a scaling of the maximum likelihood procedure.
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4.2 Getting from Shannon generalization error to Renyi
Generalization error

Motivated by the work of Jose C. Principe [18] [19] instead of using Shannon entropy
measure the Renyi entropy measure is introduced. It is shown in this section that
the Renyi generalization error can be written as

GR =
1

1− α
log

∫ ∞

−∞
pe(e|x, w)α−1p(x, y)dxdy (4.20)

where in this content the generalization error will only be investigated for α ≥ 1. In
the limit as α goes to one, the Shannon generalization error is equal to the Renyi
generalization error. Introducing the Renyi generalization error instead of using
Shannon generalization error is partly due to simplicity when α = 2 but also due
to a di�erent weighting of the probability density function pe(e|x, w). Shannon
generalization error weights the low probability higher than Renyi entropy (α > 1)
due to the log. Renyi generalization error is weighting the more probable event
higher, in which small probabilities have low weights. This is mentioned in [18] and
[19].
Since Shannon and Renyi entropy share properties, which is discussed in section (4.3)
page (37), the minimization of Renyi generalization error will also minimize Shannon
generalization error.
To determine the Renyi generalization error one have to take a more general approach
from the general theory of means [19]. In the following discrete probabilities are used
but can be generalized to continuous distributions. In [19] a generalized mean of real
numbers is given as

x̄ = ϕ−1

(
N∑

k=1

pkϕ(xk)

)
(4.21)

where ϕ(x) is called the Kolmogorov-Nagumo function. This function is arbitrary
continuous and a strictly monotonic function de�ned on the real numbers. Since
Shannon entropy is an average of Hartley's information measure: I(pk) = − log2(pk)
a more general entropy measure can be written using (4.21) and Hartley's information
measure

H(x) = ϕ−1

(
N∑

k=1

pkϕ(− log2(pk))

)
. (4.22)

Because information should be additive ϕ(.) cannot be selected arbitrarily. A couple
of functions which ful�lls the additivity property is [19] ϕ(x) = x and ϕ(x) = 2(1−α)x.
Selecting ϕ(x) = x results in Shannon's entropy since the mapping function is linear.
Using ϕ(x) = 2(1−α)x the mapping is nonlinear and leads to Renyi's entropy

ϕ(x) = 2(1−α)x ↔ ϕ(x)−1 =
1

1− α
log2(ϕ(x)) (4.23)
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Inserting Hartley's information measure into (4.21) and using the above expression
gives

HR(x) =
1

1− α
log2

[
N∑

k=1

pk2−(1−α) log2(pk)

]

=
1

1− α
log2

[
N∑

k=1

pk2−(1−α) log2(pk)

]

=
1

1− α
log2

[
N∑

k=1

pkp
α−1
k

]
. (4.24)

This result is the Renyi entropy, which can be generalized to continuous variables

HR(x) =
1

1− α
log2

∫ ∞

−∞
p(ξ)p(ξ)α−1dξ. (4.25)

The above calculations show that the di�erence between Renyi's entropy and Shan-
non's entropy are the way in which the Hartley information measure is averaged.
The generalization error can be regarded as a kind of averaging with respect to
p(x, y):

G = −
∫

log p(e|x, w)p(x, y)dxdy (4.26)

G = −Ex,y [log p(e|x, w)] . (4.27)

Instead of averaging using ϕ(x) = x in (4.27) one can use the nonlinear mapper
ϕ(x) = 2(1−α)x which leads to the Renyi generalization error

GR =
1

1− α
log2 Ex,y

[
p(e|x, w)α−1

]
(4.28)

=
1

1− α
log2

∫ ∞

−∞
pe(e|x, w)α−1p(x, y)dxdy. (4.29)

As in [11] the Renyi generalization error can be written as

GR =
1

1− α
log2 Vα(w) (4.30)

where Vα(w) is the information potential given as

Vα(w) =
∫ ∞

−∞
pe(e|x, w)α−1p(x, y)dxdy. (4.31)

The generalization error do not have to be determined in the log2(·) base. In this
project the natural logarithm is used as a base.
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4.2.1 Similarities between measures using Jensen's Inequality and
L'Hospitals rule

Using Jensen's Inequality it can be shown that the generalization error of Shannon
and Renyi equals when the error distribution is uniform distributed. In the limiting
case of α = 1 it can be shown using L'Hospitals rule that Renyi's generalization error
will equal Shannon's generalization error.
First a de�nition of Jensen's Inequality [9]

The inequality
f(

∑

i

λiai) ≤
∑

i

λif(ai) (4.32)

whenever
∑

λi = 1 and λi ≤ 1, that is satis�ed by all convex combina-
tions of points in the domain of a convex function, and is equivalent to
the convexity of the function f.

Using an empirical density estimate for p(x, y)3 in the generalization error expres-
sion given by (4.28) and (4.13) (Renyi and Shannon) gives the following unbiased
expressions of the generalization error

ĜS = − 1
N

∑

k

log (p(ek)) (4.33)

ĜR =
1

1− α
log

(
1
N

∑

k

p(ek)α−1

)
. (4.34)

Using Jensen's inequality identifying that λk = 1/N for all k and that ak = p(ek)α−1

then inserting ĜR in (4.32) gives

1
1− α

log

(
1
N

∑

k

p(ek)α−1

)
≤ 1

1− α

1
N

∑

k

log
(
p(ek)α−1

)

1
1− α

log

(
1
N

∑

k

p(ek)α−1

)
≤ − 1

N

∑

k

log (p(ek)) for α > 1 (4.35)

From (4.35) it can be seen that ĜR ≤ ĜS . The equality is ful�lled in the limiting case
α → 1, and when the probabilities equal each other, namely when p(e1) = p(e2) =
p(e3) = .... = p(eN ). This requires that p(e) is uniformly distributed. To show that
this also applies in the continuous case we let the sample-size increase to in�nity
in the expression given by (4.35) since in the limiting case the empirical density
estimate gives the true joint probability density p(x, y) and hence transforming the
sums to integrals 4

3p(x, y) = 1
N

P
i δ(x− xi)δ(y − yi)

4

p(x, y) = lim
N→∞

1

N

X
k

δ(x− x(k))δ(y − y(k))
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lim
N→∞

1
1− α

log

(
1
N

∑

k

p(ek)α−1

)
≤ lim

N→∞
− 1

N

∑

k

log (p(ek))

1
1− α

log
∫ ∞

−∞
pe(e|x, w)α−1p(x, y)dxdy ≤ −

∫ ∞

−∞
log (pe(e|x, w)) p(x, y)dxdy.

(4.36)

This means that GR ≤ GS for α > 1 and the two expression are equal when p(e|x, y)
is uniform distributed (or α = 1). When the error distribution is not uniform dis-
tributed Renyi generalization error is smaller in value than Shannon generalization
error.
In the limiting case when α → 1 both the numerator and denominator in (4.28) will
go towards zero. Using L'Hospitals rule, we can determine the result in the limit:
Denote

t(α) = log
∫

p(e)α−1p(x, y)dxdy (4.37)

d(α) = 1− α (4.38)

where the derivatives with respect to α are determined as

t′(α) =
1∫

p(e)α−1p(x, y)dxdy

∫
log p(e)p(e)α−1p(x, y)dxdy (4.39)

d′(α) = −1. (4.40)

Using L'Hospitals rule gives in the limit

lim
α→1

t(α)
d(α)

=
t′(1)
d′(1)

= −
∫

log p(e)p(x, y)dxdy = GS (4.41)

Which shows that GR = GS in the limit as α → 1. This tells us that Renyi entropy
contains Shannon entropy.
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4.3 A discussion on properties of the entropy measures

Since we in this project focus on the Renyi generalization error instead of the Shannon
generalization error, the properties of the two entropy measures are discussed here.
A reasonable description of Renyi and Shannon entropy was found in [13] where the
description is given using discrete random variables. For a random variable X taking
K distinct values X = {x1, x2, x3...., xk} with probability p(X) = {p1, p2..., pK} the
Shannon and Renyi entropy are given respectively as

H(X) = −
∑

k

pk log pk, (4.42)

HR(X) =
1

1− α

∑

k

pα
k where α > 0 (4.43)

where the probability density functions should ful�ll: 0 ≤ pk ≤ 1 and
∑K

k=1 pk = 1.
With Renyi entropy using α > 1 events with high probabilities are weighted more
than events with low probability due to the power in the sum (or integral in terms
of continuous variables).
The Shannon and Renyi entropy share the following properties[13]

1. The entropy measures are nonnegative for any arbitrary distribution p(X).
2. The measures are strictly positive except for the certain event, in which both

measures equals zero (H = 0).
3. Adding an event with zero probability do not give any new information, so

H(p1, p2, p3, 0) = H(p1, p2, p3).
4. Both measures achieves a maximum when events are equally likely to hap-

pen meaning that p1 = p2 = ... = pK = 1/K. In the continuous case this
corresponds to the uniform distribution.

5. Each measure is concave for an arbitrary probability function p(X).

Further, the Renyi entropy is a monotonically decreasing function of α for any dis-
tribution function p(X).
The Renyi and Shannon entropy measure di�er in their additivity properties. The
Shannon entropy of a composite event equals the sum of the conditional and marginal
entropies. This is given as

H(X,Y ) = H(Y ) + H(X|Y ) = H(X) + H(Y |X). (4.44)

This is not ful�lled by Renyi entropy. Given that the events X and Y are independent
the composite events gives the standard additivity

H(X, Y ) = H(X) + H(Y ) (4.45)

which is ful�lled for Renyi entropy. So basically Renyi and Shannon entropy will
di�er when the events are dependent. In appendix (A.2) page (111) the additivity is
shown for the continuous case.
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Some properties, which holds for both Shannon and Renyi entropy regarding scaling
and translation is summarized here
Translation property
H(X + c) = H(X) where c ∈ R is an arbitrary constant.
Scaling property
H(aX) = H(X) + log |a| where a ∈ R.
This is derived in appendix (A.2) page (111) for continuous variables.
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4.4 Nonparametric density estimates

4.4.1 Parzen Windows

The Parzen estimator [27] is known as a non-parametric density estimate and is
a kernel method. The primary reason for selecting a Parzen estimator is its nice
analytical properties [10]. One of the problems using this kind of estimators though
will be the selection of a proper kernel-width [3], which can be done in several ways.
Assume we have a given sequence of independent identically distributed random
variables x1, x2, x3, .., xN with common probability density function p(x), then an
estimate of the underlying distribution is given as [27]

p̂(x) =
1

Nσ

N∑

k=1

κ

(
x− xk

σ

)
(4.46)

where σ is the width parameter and κ(·) is the chosen kernel (also called weighting
function). The method is placing kernels on each data point with a weighting con-
trolled by the chosen kernel and kernel width. This weighted sum gives an estimate
which will be dependent on both the kernel-function and on the width parameter σ.
The Parzen estimate given in (4.46) is asymptotically unbiased if σ is chosen as a
function of k in the following way

lim
k→∞

σ(k) = 0 (4.47)

then
lim

k→∞
E [p̂(x)] = p(x). (4.48)

When selecting a width parameter of zero, this corresponds to placing delta-function
on each sample, similar to an empirical density estimate (will be discussed in the
next subsection). To see what in�uence the kernel have on the PDF estimate the
expectation of the PDF-estimate is performed

E [p̂(x)] = E

[
1
σ

κ

(
x− y

σ

)]
=

∫ ∞

−∞

1
σ

κ

(
x− y

σ

)
p(y)dy, (4.49)

which turns out to be a convolution between the true density, here denoted by p(y),
and the kernel function.
Di�erent kernels exist and Parzen suggested di�erent kernels himself. A kernel have

Kernel Function κ(x)

Uniform
1
2 , |x| ≤ 1
0, |x| > 1

Gaussian (2π)−1/2e−
1
2
x2

Cauchy π−1(1 + x2)−1

Table 4.1: Di�erent kernels
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to be normalized in order to be a proper kernel5
∫ ∞

−∞
κ(x)dx = 1 (4.50)

Table (4.1) page (38) show three di�erent kernels. The uniform kernel is a so-called
compact kernel. In this report the Gaussian kernel will be considered due to its nice
mathematical properties.

Selection of width parameter for univariate data

The width parameter is more di�cult to determine since we normally do not know
the underlying distribution of the data that we are modelling. (non-parametric
approach). The determination of the width parameter has to depend solely on the
measurable data. When considering estimation at a single point a natural measure
is given as the mean square error ([27] and [32])

MSEx{p̂} = E
{

[p̂(x)− p(x)]2
}

(4.51)

This measure is denoted as a local measure. It is possible to rewrite the mean square
error into an expression given as a bias term and a variance term

MSE{p̂(x)} = E
[
(p̂(x)−E [p̂(x)])2

]
+ (E [E [p̂(x)]− p(x)])2 (4.52)

= var [p̂(x)] + (bias [p̂(x)])2 . (4.53)

Selecting a to small width parameter will increase the variance of the estimate while
selection of a too big width parameter will give a big bias (smooth). In [32] a global
measure of the accuracy of p̂(·) on p(·) is denoted as the mean integrated square error
(MISE) and is de�ned as

MISE{p̂} = E

[∫ ∞

−∞
{p̂(x)− p(x)}2dx

]
. (4.54)

This expression can be written as an integrated bias2 and an integrated variance
term.
To get an understanding of the in�uence of the kernel-size on the estimation of a
unknown density three di�erent test cases was put up. Gaussian distributed (N(0,1)),
uniform distributed (width=1) and Cauchy distributed (unit dispersion) samples was
generated (sample size N=100) and di�erent width parameters was tested in the three
cases using Gaussian kernels. The Gaussian distribution as well as the estimates is
shown in �gure (4.1) page (40). Figure (4.2) page (40) shows the uniform distributed
estimates. The density estimates of the Cauchy distribution can be seen from �gure
(4.3) page (41). It is clear from all three examples that the selection of the width
parameter in the Parzen-estimate will control the MISE de�ned earlier. The density
estimation when the width parameter is chosen to small will be very accurate but

5In addition, other functional properties should be ful�lled[27]
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Figure 4.1: Estimation of a N(0, 1) distribution using various kernel sizes.
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very noisy, hence the variance is big. If the width parameter is chosen to large,
the density is over-�tted, and the bias will increase in size. On the three �gures an
optimal value is given. This value is determined from the �Rule of Thumb� method,
which will be discussed in the next subsection.
The Rule of Thumb method
By demanding that the kernel used in the Parzen density estimate is symmetric
and that the unknown density p(x) has continuous derivatives of all orders the in-
tegrated bias2 and the integrated variance term can be approximated using Taylor
expansion. Using Taylor expansion of the integrated bias2 and integrated variance
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an approximate expression for the width parameter can be found as [32]

σopt =

[ ∫
[κ(t)]2 dt

k2
2

∫
[p′′(x)]2 dx

]1/5

N−1/5 (4.55)

where k2
2 =

∫
t2κ(t)dt and N is the number of samples used in the width estimate.

In order to get an estimate of the optimal width parameter the unknown distribution
should be known which of course put some limitations on this method. Selecting a
Gaussian kernel and assuming that p(x) : N(µ, σ2) gives an optimal width of the
kernels of

σopt = 1.06σN−1/5. (4.56)
It should be noted that since this expression depends on N the expression given in
(4.47) is ful�lled. Silverman [32] proposed a more robust measure where an adap-
tive estimate of the spread is used. The selection of kernel widths should be done
according to

σ = 0.9AN−1/5 (4.57)
where

A = min{standarddeviation, interquartilerange/1.34} (4.58)
where the interquartile range6 is determined as IQR = Q3 − Q1, where Q1 is the
25 quantile of a distribution and Q3 is the 75 quantile. The measure of spread using
the interquartile range is a robust measure. It is noted in [32] that: �This will cope
well with the unimodal densities and will not do too badly if the density is moderately
bimodal�.
From [35] the interquartile range can be determined as :

6Interquartile Range / 1.34 is a robust estimation of the spread.
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1. Determine the statistical median of the data and denote a low and a high group
(below and above the median)

2. Determine the median of the low and high group, and denote them as the Q1
and Q3 quartile respectively.

3. Calculate the interquartile range as ÎQR = Q3−Q1

The complexity of this method will depend on the sorting algorithm used, since
this will be needed to estimate the IQR from the data. A well-implemented sorting
algorithm will have a complexity of O(NlogN) operations.
Likelihood cross-validation
Another method, which among others has been considered [32] is called the likeli-
hood cross-validation method. The method relies on the fact that beside the data-set
(which we want to determine the width parameter of) an additional measurement
Y sampled from the unknown density is available. This is sampled independent
from the other samples. The likelihood of the unknown density would then be
−log(p(Y |σ)). Using a Parzen estimate of the unknown density would give a like-
lihood of −log(p̂(Y |σ). Since we do not have any independent observations of the
samples, one of the samples (xi) from the data-set can be used as an independent
observation. This gives the log-likelihood −log( ˆp−i(xi|σ)) where the notation p̂−i

means that sample xi is left out in the density estimate 7. Since we do not know
whether to leave sample i or i + 1 out, an average of the samples is taken. The
cost-function to be minimized with respect to the width parameter σ will be [32]

CV (σ) = − 1
N

N∑

i=1

logp̂−i(xi|σ) (4.59)

where

p̂−i(xi|σ) =
1

(N − 1)σ

N∑

k=1,k 6=i

κ

(
xi − xk

σ

)
. (4.60)

Noted in [32]: the method is very sensitive to outliers in the data. To give an
explanation to this suppose that a sample xi is an outlier. Using a Gaussian kernel
in the estimate then p̂(xi) will be very small (very close to zero). The �log� of
this result will tend towards −∞, hence the cost-function CV (σ) will be big. This
depends on the outlier and chosen kernel-function. So as to minimize CV (σ) a rather
large value of σ is needed which will result in an under-�t of the wanted distribution
(big bias).
The complexity of the this method will be O(N2) since the Parzen estimate requires
O(N) evaluations and in the cross-validation formulation N kernel evaluations are
needed.

7The method is also denoted as the Leave-One Out method
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Comparison of the two methods
To test the two methods a sample size of 100 was drawn from three di�erent unimodal
distributions : a Gaussian, Uniform and a Cauchy distribution (S(1)S) as in the
example before. Instead of comparing various width values only the optimal values
given by the �Rule of Thumb� method and the �likelihood cross-validation� method
were used in these plots. Only one realization of the data was used in this PDF-
graph comparison. The estimated MISE is estimated for several runs in the end of
this subsection. Figure (4.4) page (43) shows the two PDF-estimates of Gaussian
distributed data. The CV (σ) (log-likelihood) can be seen from �gure (4.5) page (44).
The minimum of the cross validation method do not seem to be very peaked (a �at
minimum) and the solution given by the �Rule of Thumb� is not that far from the
cross-validation method. Several runs of the test with di�erent data showed quite
similar performance of the two methods. The optimal value for Gaussian distributed
data can be determined to σopt ≈ 0.42.
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Figure 4.4: Gaussian distributed samples estimated using Parzen windows.

Identi�cation of the underlying distribution using uniform distributed data can be
seen from �gure (4.6) page (44). The estimate using the width parameter from the
cross validation log-likelihood method is more over-�tted than the estimate given by
the �Rule of Thumb� method. The CV log-likelihood as a function of width parameter
�gure (4.7) page (45), show that the minimum of the two methods are not that far
apart in absolute value. In the last example where Cauchy-distributed data is used,
the problem of the CV log-likelihood method is apparent, see �gure (4.8) page (45).
The width parameter is chosen much higher than the width parameter using the
�rule of thumb�-method. The CV log-likelihood estimate is highly biased, and do not
follow the peak as well as the �Rule of Thumb� method. The CV log-likelihood as a
function of width parameter, see �gure (4.9) page (46), shows a not so well de�ned
minimum. The reason for this high choice of width parameter was discussed earlier
under the likelihood cross validation section. Since we only evaluated one run, the
Mean Integrated Square Error (MISE) have been estimated for the di�erent runs by
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Figure 4.5: Cross validation log-likelihood as a function of width parameter.
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Figure 4.6: Uniform distributed samples estimated using Parzen windows.

splitting the expression into a bias2 and a variance part. In the following the bias2

and integrated variance have been estimated for the cross validation and "Rules of
thumb" method. From [32]:

MISE(p̂) = E

[∫
(p̂(x)− p(x))2 dx

]
(4.61)

=
∫
{E [p̂(x)]− p(x)}2dx +

∫
var{p̂(x)}dx (4.62)



Chapter 4. Information Theoretical Methods 45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

width parameter

C
os

t−
fu

nc
tio

n 
C

V
(σ

)

Likelihood cross validation method in uniform environment

samples=100 

Estimated optimum 

Figure 4.7: Log-likelihood as a function of width parameter

−30 −20 −10 0 10 20 30

0.05

0.1

0.15

0.2

0.25

0.3

PDF estimate of Cauchy distributed samples with unit dispersion

x−values

am
pl

itu
de

samples=100 

log−likelihood estimate
σ=2.4 

Rule of Thumb estimate
σ=0.56 

True distribution 

Figure 4.8: Cauchy distributed variables. PDF estimated using Parzen windows

where the integral is estimated using a simple numerical scheme

MISE(p̂) ≈ ∆x

N∑

n=0

{{E [p̂(xn)]− p(xn)}2 + var{p̂(xn)}} (4.63)

M̂ISE(p̂) = ∆x
N∑

n=0






 1

K

K∑

j=0

p̂j(xn)− p(xn)




2

+ var{p̂(xn)}


 (4.64)

M̂ISE(p̂) = Ibias2 + Ivar (4.65)

where ∆x = maxx−minx
N and minx ∈ R and maxx ∈ R is the window in which the

density estimate is compared to the true density estimate.
In the following Ibias2 and Ivar will be compared for the two methods. The results
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Figure 4.9: Cross validation log-likelihood as a function of the width parameter

of the di�erent setups (uniform, Gaussian and Cauchy environment) can be seen
from table (4.2) page (46), (4.3) page (47) and (4.4) page (47). The simulations was
performed as follows

1. Determine optimal width parameter for Parzen windows using the "Rule of
thumb" method and cross validation method. Out of 20 runs, the mean value
was determined and used.

2. calculate Ibias2 and Ivar for the two methods
3. Estimate the mean kernel-width value and the spread on the mean kernel-width

value from these 20 runs.

The PDF-estimates of the Gaussian distributed variables showed quite similar per-
formance for both RT and CV method. The RT method showed lower bias than the
CV method, but the total M̂ISE can be seen to be approximately the same. In the

minx = −5, maxx = 5, N = 100 Avg = 20
Parameters Rule of Thumb (RT) Cross validation log-likelihood (CV)

Ibias2 0.001 0.002
Ivar 0.006 0.005

M̂ISE 0.007 0.007
E [σ] 0.035 0.4323

var [σ] 0.001 0.011

Table 4.2: Mean and Variance decomposition of the M̂ISE for the two methods in
a Gaussian environment.

uniform case it seems to be the other way around, since the RT method shows bigger
bias and lower variance than the CV-method which have higher variance than bias
in this setup. The M̂ISE however, is a little lower for the RT than the CV-method.
In the last test setup, the M̂ISE is ten times lower for the RT-method than the CV-
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minx = −2, maxx = 2, N = 100 Avg = 20
Parameters Rule of Thumb Cross validation log-likelihood method

Ibias2 0.051 0.028
Ivar 0.02 0.06

M̂ISE 0.071 0.088
E [σ] 0.102 0.045

var [σ] 3.3e− 5 2.7e− 4

Table 4.3: Mean and Variance decomposition of the M̂ISE for the two methods in
a uniform environment.

minx = −20, maxx = 20, N = 100 Avg = 20
Parameters Rule of Thumb Cross validation log-likelihood method

Ibias2 0.0014 0.059
Ivar 0.0044 2.54e− 4

M̂ISE 0.006 0.059
E [σ] 0.512 3.08

var [σ] 0.06 4.2

Table 4.4: Mean and Variance decomposition of the M̂ISE for the two methods in
a Cauchy environment.

method. When looking at the variance of the estimated sigma value, the variance
is extremely high with the CV-method, which again tells that the value of sigma is
very dependent on outliers in the data.

Discussion

When outliers are present in the data the evaluation of the CV log-likelihood tend to
give a much larger value for the width parameter σ, where the estimate given by the
�Rule of Thumb� method was much more consistent with the true distribution. Since
we need a method which is reliable for small sample sizes and e�cient with respect to
the computational burden makes the �Rule of Thumb� method the preferred method
for the di�erent algorithms later in the project.
Since the CV log-likelihood method over-�ts the data in super-Gaussian environment
some method, which is not dependent on the shape of the data is needed. A method
which might be relevant is known as the Least-squares cross-validation technique
[32]. The cost function is given as:

∫ ∞

−∞
[p(x)− p̂(x)]2 dx (4.66)

from which the following cost-function will be found (only p̂(x) depend on the kernel
width)

R(p̂) =
∫ ∞

−∞
p̂(x)2dx− 2

∫ ∞

−∞
p̂(x)p(x)dx. (4.67)
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This cost-function should also be minimized using cross-validation. This method does
not have problems with outliers in the data as the CV log-likelihood approach. This
method have not been implemented but a fruitful discussion on how to implement
this method is given in [32].

4.4.2 Empirical density estimate

An empirical density estimate, which have already been used, is much like the Parzen
estimate8 de�ned as

p̂(x) =
1
N

N∑

k=1

δ(x− xk), (4.68)

which is an unbiased estimate of the distribution function. The use of the empirical
density estimate may come in handy when one have to determine a mean value

E [x] =
∫ ∞

−∞
xp(x)dx, (4.69)

inserting the empirical density estimate will give

Ê [x] =
∫ ∞

−∞
xp̂(x)dx (4.70)

=
1
N

N∑

k=1

∫ ∞

−∞
xδ(x− xk)dx (4.71)

=
1
N

N∑

k=1

xk. (4.72)

Since the empirical density estimate is an unbiased estimator of the true distribution
the following must hold

p(x) = lim
N→∞

1
N

N∑

k=1

δ(x− xk). (4.73)

8In the limit as σ → 0 the Parzen window will become equal to the empirical density estimate,
since the kernel will approach a delta-function.
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4.5 Generalization error and its relation to regularization

In this subsection, a Parzen window will be used to estimate p(x, y) instead of
using an empirical density estimate. It is shown that this corresponds to a kind of
regularization. A similar statement is found in [5].
The expression for the generalization error is repeated here (Using Renyi generaliza-
tion and Shannon generalization error)

GR =
1

1− α
log

∫
p(e(x, w, y))α−1p(x, y)dxdy (4.74)

GS = −
∫

log p(e(x, w, y))p(x, y)dxdy. (4.75)

For simplicity e(x, w, y) will be denoted as e where the dependency on the variables
x, w, y is understood. Applying a Parzen density estimate as in [33] to the joint
density p(x, y) will simplify the expression. The Parzen estimate is given as

p̂(x, y) =
1
N

N∑

n=1

κσx(x− xn)κσy(y − yn). (4.76)

It was noted in [33] that this estimator is a good choice for estimation of the prob-
ability density function if it can be assumed that the underlying density function
is continuous and that the �rst partial derivatives of any x is small9. Inserting the
PDF-estimate into (4.74) and (4.75) gives

CR = Ĝα =
1

1− α
log

1
N

N∑

n=1

∫
p(e)α−1κσx(x− xn)κσy(y − yn)dxdy (4.77)

CS = ĜS = − 1
N

N∑

n=1

∫
log p(e)κσx(x− xn)κσy(y − yn)dxdy (4.78)

The two integrals are rather complicated since we do not know the distribution of the
error and further the error e is dependent on both y and x in a linear or nonlinear
manner. It will be shown in the following derivations that the approximated Shannon
generalization error (4.78) can be split into two parts as

CS(w) = ĈS(w) + R(w) (4.79)

where ĈS(w) is the result obtained when applying an empirical density estimate of
p(x, y) to (4.78) plus a term which involves higher order derivatives of log p(e). The
term R(w) can be regarded as a regularization term controlling the curvature of

9This might not always be the case with the unknown data
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log p(e) with respect to x and y. The modi�ed Renyi generalization error given in
(4.77) cannot be splitted directly. Only the information potential can be splitted, so

CR(w) =
1

1− α
log

[
V̂α(w) + VαR(w)

]
(4.80)

where V̂α(w) is the information potential that would be obtained using an empirical
density estimate of p(x, y), and VαR(w) is a regularization term. This term controls
higher order derivatives of p(e)α−1 with respect to x and y.

A simple case

To get an understanding of the method a simple case is investigated at �rst. Consider
the following integral in one variable (scalar)

Gsimple =
∫ ∞

−∞
f(x)p(x)dx (4.81)

where both functions f(x) and p(x) is assumed to be probability functions. Further
we assume that f(x) has continuous derivatives. p(x) is estimated using a Parzen
window with width parameter σ using a Gaussian kernel

p̂(x) =
1
N

∑

i

κσ(x− xi). (4.82)

This estimate is inserted into (4.81) to give

Gsimple =
∫ ∞

−∞
f(x)

1
N

∑

i

κσ(x− xi)dx (4.83)

=
1
N

∑

i

∫ ∞

−∞
f(x)κσ(x− xi)dx. (4.84)

Since we have assumed that f(x) has continuous derivatives its Taylor expansion
around xi can be de�ned

f(x) =
∞∑

q=0

1
q!

f 〈q〉(xi)(x− xi)q, (4.85)

where f 〈q〉(xi) is the q'th derivative of f(xi). Inserting (4.85) into (4.84) and moving
the dependency on x under the integral sign results in the following expression

Gsimple =
1
N

∑

i

∞∑

q=0

1
q!

f 〈q〉(xi)
∫ ∞

−∞
(x− xi)qκσ(x− xi)dx (4.86)

Substituting variables such that u = x− xi in the integral above gives
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I(q, x(i)) =
∫ ∞

−∞
uqκσ(u)du. (4.87)

This integral is zero when q is not an even number, so

∫ ∞

−∞
uqκσ(u)du = 0 for q = 1, 3, 5, ... (4.88)

Using this observation the expression given by (4.86) can be written as

Gsimple =
1
N

∑

i

∞∑

q=0

1
2q!

f 〈2q〉(xi)
∫ ∞

−∞
(x− xi)2qκσ(x− xi)dx. (4.89)

The integral given in (4.89) can be solved in a closed form, since this is the central
moments of x. The �rst couple of central moment of x given that the kernel is
Gaussian can be seen from table (4.5) page (51). The q'th central moments for a

q Central moments
0 1
1 σ2

2 3σ4

Table 4.5: The �rst central moments of a Gaussian distributed variable

Gaussian distributed variable can be expressed as [31]
∫ ∞

−∞
(x− xi)2qκσ(x− xi)dx =

(2q)!σ2q

q!2q
q ∈ Z. (4.90)

Inserting the above observation into equation (4.87) gives the following

Gsimple =
1
N

∑

i

∞∑

q=0

1
(2q)!

f 〈2q〉(xi)
(2q)!σ2q

q!2q

=
1
N

∑

i

∞∑

q=0

f 〈2q〉(xi)
σ2q

q!2q
. (4.91)

The solution given in (4.91) shows that the derivative of f(xi) should be bounded in
order for the sum to converge.
It has been shown that the integral expression given in (4.81) can be splitted into an
expression dependent on the samples alone and additional terms which will depend
on the derivatives of f(x). To select the number of terms to use, will depend on the
application. Using q = 0 gives the following expression

Gsimple =
1
N

∑

i

f(xi), (4.92)
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which is the same as applying the empirical density estimate of p(x) in (4.81). Using
the �rst two terms would provide the following solution

Gsimple =
1
N

[∑

i

f(xi) +
σ2

2!
f 〈2〉(xi)

]
, (4.93)

where the cost function will now contain second order information about f(x)10

which will put a limit on the curvature for the unknown density f(x). From the
above formula it is seen that the width-parameter in the Parzen estimate will have
an in�uence on how much regularization is performed.

10This is also known as Tikhonov regularization since we are modelling the density f(x)
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Generalizing the simple case to several variables

Since our main purpose was to split the integral given in (4.78) or (4.77) we now
have to generalize the result found in the simple case into several variables. Let us
start with writing equation (4.78) using the parzen estimate for p(x, y)

CS = − 1
N

N∑

n=1

∫
f(x, y)κσx(x− xn)κσy(y − yn)dxdy (4.94)

where f(x, y) is equal to log p(e|x, y,w).
The next step as before, is to do a Taylor expansion of f(x, y), which from [35] and
some additional calculation, which can be seen from appendix (A.1) page (110) can
be found to the following (using following notation f = f(x′, y′)) :

f(x, y) = f(xn, yn) + (x− xn)T · ∇x′f + (y − yn)∇y′f+
1
2!

(x− xn)T ·∇x′x′f · (x− xn) + (y − yn)(x− xn)T · ∇y′x′f+

1
2!

(y − yn)2∇y′y′f + R3

∣∣∣∣
x′=xn,y′=yn

(4.95)

where the term R3 refers to the remainder after three terms. The Taylor expansion
(4.95) is substituted into the expression for the generalization error in (4.94). This
will be a very long expression, so each term is written out separately under the
integral and calculated:

f(xn, yn)
∫

κσx(x− xn)κσy(y − yn)dxdy = f(xn, yn). (4.96)

∇x′f
∣∣∣∣
T

x′=xn

∫
(x− xn)κσx(x− xn)κσy(y − yn)dxdy =

∇x′f
∣∣∣∣
T

x′=xn

∫
(x− xn)κσx(x− xn)dx = 0. (4.97)

∇y′f

∣∣∣∣
y′=yn

∫
(y − yn)κσx(x− xn)κσy(y − yn)dxdy =

∇y′f

∣∣∣∣
y′=yn

∫
(y − yn)κσy(y − yn)dy = 0. (4.98)

∫
1
2!

(x− xn)T∇x′x′f
∣∣∣∣
x′=xn

(x− xn)κσx(x− xn)κσy(y − yn)dxdy = (4.99)

1
2!

∫
(x− xn)T∇x′x′f

∣∣∣∣
x′=xn

(x− xn)κσx(x− xn)dx.
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Since we know that, the result should be a scalar the trace operator Tr{·} is invoked
which gives

1
2!

∫
Tr

{
(x− xn)T∇x′x′f

∣∣∣∣
x′=xn

(x− xn)κσx(x− xn)dx

}
=

1
2!

Tr

{
∇x′x′f

∣∣∣∣
x′=xn

∫
(x− xn)(x− xn)T κσx(x− xn)dx

}
=

1
2!

Tr

{
∇x′x′f

∣∣∣∣
x′=xn

σ2
xI

}
=

1
2!

σ2
xTr

{
∇x′x′f

∣∣∣∣
x′=xn

}
.

∫
(y − yn)(x− xn)T∇x′x′f

∣∣∣∣
x′=xn

κσx(x− xn)κσy(y − yn)dxdy =

∫
(y − yn)κσy(y − yn)dy∇x′x′fT

∣∣∣∣
x′=xn

·
∫

(x− xn)κσx(x− xn)dx = 0. (4.100)

1
2!

∫
(y − yn)2∇y′y′f

∣∣∣∣
y′=yn

κσy(y − yn)κσx(x− xn)dydx =

1
2!

∫
(y − yn)2∇y′y′f

∣∣∣∣
y′=yn

κσy(y − yn)dy =
1
2!

σ2
y∇y′y′f

∣∣∣∣
y′=yn

. (4.101)

The last many terms are collected in R3 and is written as

CS3 =
∫

R3κσx(x− xn)κσy(y − yn)dxdy. (4.102)

Using the results from the above calculations in (4.94), gives the following expression
for CS

CS = − 1
N

∑
n

[
f(xn, yn) +

1
2!

σ2
xTr

{
∇x′x′f

∣∣∣∣
x′=xn

}
+

1
2!

σ2
y∇y′y′f

∣∣∣∣
y′=yn

+ CS3

]
. (4.103)

It is seen that the expression given in (4.94) has been splitted according to (4.79).
It can be seen that CR can be written in a similar manner:

CR =
1

1− α
log

1
N

∑
n

[
f(xn, yn) +

1
2!

σ2
x Tr

{
∇x′x′f

∣∣∣∣
x′=xn

}
+

1
2!

σ2
y∇y′y′f

∣∣∣∣
y′=yn

+ CR3

]
, (4.104)
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which corresponds to the splitting in (4.80). The terms CR3 and CS3 is the higher
order terms of the Taylor expansion of f(x, y).
It is now clear that the Renyi generalization error cannot be splitted into an empirical
estimate plus a regularization term, due to the log function outside the integral.
Instead of minimizing Renyi generalization error normally the information potential
is maximized. The information is exactly the integral so the curvature of p(e)α−1 is
limited instead (regularized).

What have we shown

It have been shown that when using an Parzen estimate for the joint probability
density function p(x, y) this corresponds to adding a regularization term to the gen-
eralization error, obtained with an empirical density estimate. In the case of Shan-
non generalization error this corresponds to higher derivatives of log p(e) while in
the Renyi case (when maximizing the information potential) corresponds to an ad-
ditional term controlling higher order derivatives of p(e)α−1. In this project though,
I have only considered empirical density estimates.
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4.6 Algorithms that can be derived from the generaliza-
tion error

In this section, three algorithms are derived. One batch-algorithm, which updates
the unknown weights of the model at each N'th time step. Another algorithm are
the stochastic information gradient method, which updates the unknown weights of
the model online. The last algorithm considered are a recursive algorithm, also an
online version that is derived in a similar way to the RLS algorithm. In the �rst part
of the section the cost-function that is considered is de�ned.
The Renyi generalization error will be considered as the cost-function to be mini-
mized.

GR(w) =
1

1− α
log

∫
p(e|w,x)α−1p(x, y)dxdy for α ≥ 1. (4.105)

Instead of minimizing the Renyi generalization error, one can maximize the informa-
tion potential [7]

Vα(w) =
∫

p(e|w, x)α−1p(x, y)dxdy (4.106)

since log is a monotonic function in the given interval. Using an empirical density
estimate of p(x, y) in the information potential expression

p̂(x, y) =
1
N

N∑

n=1

δ(x− xn)δ(y − yn) (4.107)

gives

V̂α(w) =
1
N

N∑

n=1

p(en|w, xn)α−1. (4.108)

A special simple case happens when α = 2 which will be denoted as the quadratic
Renyi generalization error, similar to [7].
The cost-function given in (4.108) will be denoted as our general cost-function. From
this cost-function several algorithms can be derived.
As mentioned earlier the error is determined as

e(w) = y − f(x, w) (4.109)

where f(·) might be a linear or non-linear function.
Throughout this chapter the following notation will be used:

ei,j(w) = ei(w)− ej(w) (4.110)

φi,j(w) =
∂f(xi, w)

∂w
− ∂f(xj , w)

∂w
(4.111)

where φi,j(w) is a vector of size L× 1 where L is number weight in the model.
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4.6.1 Batch Algorithms

In an online adaptive setup, the unknown system parameters need to be updated
according to the ever-changing environment. In a batch-setup N - samples will be
used to update the unknown weights of the system at time k. The cost function
using the last N samples will look like

V̂α,k(w) =
1
N

k∑

n=k−N+1

p(en|w, xn)α−1 (4.112)

where k is the time instant where the weights of the model are updated. One way
to maximize the cost-function is to update the unknown weight coe�cients using a
steepest accent method. This method have been used in several papers on informa-
tion theoretic methods [28], [10] and [7]. The steepest accent updates the unknown
weights at time k in the direction of the gradient

wk = wk−1 − ηk−1
∂V̂α,k(w′)

∂w′

∣∣∣∣
w′=wk−1

, (4.113)

where ηk−1 is the step taken in the gradient direction. In steepest descent/accent ap-
proaches the step-size will control the convergence speed and the �nal error achieved
(system mismatch). In the following, the notation p(e) = p(e|x, w) is used. The
gradient is calculated as

∂V̂α,k(w)
∂w

=
1
N

k∑

n=k−N+1

(α− 1)p(en)α−2 ∂p(en)
∂w

. (4.114)

As already mentioned the performance of the method will depend very much on the
selection of ηk−1 and normally a steepest descent algorithm will not converge very
fast, since one should not step more than the smallest eigenvalue of the system. A
method which contains the steepest descent/accent method, but can be modi�ed to
a Newton method is found in [23] and is given as

wk = wk−1 − ηkR
−1
k

∂V̂α,k(w′)
∂w′

∣∣∣∣
w′=wk−1

(4.115)

where the steepest accent method for maximizing (4.112) can be identi�ed when
choosing R = −I, where I is the identity matrix. When selecting R as the Hessian
of the cost-function Newton's method appears. The Hessian of the cost function
given in (4.112) can be calculated to give (similar to [10])

∂2V̂α,k(w)
∂w∂w

=
1
N

k∑

n=k−N+1

(α− 1)(α− 2)p(en)α−3 ∂p(en)
∂w

+

(α− 1)p(en)α−2 ∂2p(en)
∂w∂w

. (4.116)

The above results will be used to derive a Gauss Newton algorithm in the quadratic
case.
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Deriving a Gauss Newton algorithm for α = 2

It is clear that selecting α = 2 will simplify things considerately. The unknown
probability function (p(en)) will be estimated using a Parzen window using Gaussian
kernel functions. In the following the PDF-estimates as well as its derivatives with
respect to the unknown weights given as

p(en(w)) =
1
N

k∑

i=k−N+1

κσ(en,i(w)) (4.117)

∂p(en(w))
∂w

=
1
N

k∑

i=k−N+1

en,i(w)
σ2

κσ(en,i(w))φn,i(w) (4.118)

where the derivative of a Gaussian kernel can be found in the footnote11 . Di�erenti-
ating once more using the chain rule gives (the result should be a matrix of dimension
L× L) the Hessian matrix of the non-parametric density estimate

∂2p(en(w))
∂w∂w

=
1
N

k∑

i=k−N+1

[
− κσ(en,i(w))

σ2
φn,i(w)φn,i(w)T +

e2
n,i

σ4
κσ(en,i(w))φn,i(w)φn,i(w)T +

en,i(w)
σ2

κσ(en,i(w))
∂φn,i(w)

∂w

]
. (4.119)

So the gradient and the Hessian of the cost-function when α = 2 is given as
The gradient:

bk(w) =
∂V̂2,k(w)

∂w
=

1
N2σ2

k∑

n=k−N+1

k∑

i=k−N+1

en,i(w)κσ(en,i(w))φn,i(w) (4.120)

and the Hessian:

∂2V̂2,k(w)
∂w∂w

=
1

N2σ2

k∑

n=k−N+1

k∑

i=k−N+1

[
− κσ(en,i(w))φn,i(w)φn,i(w)T +

e2
n,i

σ2
κσ(en,i(w))φn,i(w)φn,i(w)T + en,i(w)κσ(en,i(w))

∂φn,i(w)
∂w

]
. (4.121)

Instead of using the full Hessian matrix a pseudo Hessian [23] can be used. In the
vicinity of the maximum of the cost-function the Hessian matrix given by (4.121)
can be approximated by

∂2V̂2,k(w)
∂w∂w

=
1

N2σ2

k∑

n=k−N+1

k∑

i=k−N+1

[
− 1 +

e2
n,i

σ2

]

κσ(en,i(w))φn,i(w)φn,i(w)T (4.122)
11

∂κσ(en,i(w))

∂w
=
−2en,i(w)

2σ2
κσ(·)∂en,i(w)

∂w
=

en,i(w)

σ2
κσ(en,i(w))φn,i(w)
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since we assume independence of the error at the solution. The same method has
been used in [23] to obtain the pseudo Hessian12. The pseudo Hessian in [23] is
guaranteed positive de�nite (In that he minimizes the mean square error). The
pseudo Hessian given in (4.122) should be negative de�nite (Since we are maximizing
the cost-function), but this is not ensured due to the kernel-dependent part e2

n,i

σ2 . Near
the minimum w ≈ wopt the kernel should be independent of the weights, so

∂κσ(en,i(w′))
∂w′

∣∣∣∣
w′=wopt

≈ 0 (4.123)

which corresponds to the gradient. So the expression for the pseudo-Hessian can be
approximated by

Ĥk(w) =
∂2V̂2,k(w)

∂w∂w
=

−1
N2σ2

k∑

n=k−N+1

k∑

i=k−N+1

κσ(en,i(w))φn,i(w)φn,i(w)T

(4.124)

which will also guarantee negative de�niteness when the number of samples N is large
enough (N > L to ensure a non-singular Hessian matrix). The negative de�niteness
is required for the algorithm to converge and as can be seen from the expression the
matrix will be symmetric. A small simulation study of including and excluding the
term e2

n,i

σ2 in a simple AR(2) setup in di�erent statistical environments, will be given
in section (4.6.3) page (68).

Using the above pseudo Hessian gives a Gauss Newton update of the weights [23].
The weights will be updated as

wk = wk−1 − ηk−1Ĥk(wk−1)−1bk(wk−1). (4.125)

In the simple case when considering a linear system such as a FIR-system setup then
φn,i(w) = xn,i.

Minimizing the computational burden using symmetry

Due to the symmetry

κσ(en,i(w)) = κσ(ei,n(w)) (4.126)
en,i(w) = −ei,n(w) (4.127)
φn,i(w) = −φn,i(w). (4.128)

the gradient and Hessian can be calculated computational more e�cient13. The
computation of the pseudo Hessian and the gradient can be calculated to be

12If the error is a linear function of the weights then the Hessian given by (4.122) is exact
13If thinking of e.g. ei,j as a matrix, then this is a symmetric matrix, and the summation of this

symmetric matrix can be done by only summing the LU of the matrix.
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Gradient

bk(w) =
1

N2σ2

k∑

n=k−N+1

k∑

i=n

scn,ien,i(w)κσ(en,i(w))φn,i(w) (4.129)

where scn,i = 2 when n 6= i and scn,i = 1 for n = i.
pseudo Hessian

Ĥk(w) =
−1

N2σ2

k∑

n=k−N+1

k∑

i=n

scn,iκσ(en,i(w))φn,i(w)φn,i(w)T (4.130)

Thus only requiring around N2/2 + N summations instead of N2 summations.

Algorithm layout and computational Requirements of the Algorithm

The general setup of the algorithm

• Initialization

Select initial weights w0

Select step-size η

• Update formula

for k = ninit..step(N)..Nsamp

calculate b(wk−1) using (4.120).

Calculate Ĥ(wk−1) using (4.124).

Update the unknown weights according to (4.125).

end

A rough estimate of the calculation burden is O(L3 + L2(N/2)2). The L2(N/2)2

term is the dominating part when building the gradient and the pseudo Hessian.
The number of samples used in the PDF-estimate is controlled by N .
Instead of using the normal inversion in MATLAB, since we have to solve a linear
system of equation, the MATLAB backslash operator is used. This solves the system
of equations using Gaussian elimination, which also speed up the computations, and
make the system more stable. But using Gaussian elimination still requires around
O(L3) operations.
The algorithm was implemented in MATLAB with the name "GNBatch.m".
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4.6.2 Stochastic Gradient Algorithm

In [6] the stochastic information gradient (SIG) is introduced. This algorithm is
minimizing the cost-function given by (4.112). The stochastic gradient can be de-
termined using N = 2 in the cost-function, meaning that only the current sample k
and previous sample k − 1 is used in the evaluation of the gradient. Using N = 2
in equation (4.112) and inserting a Parzen estimate for p(en) using Gaussian kernels
gives

V̂α, k(w) =
1
2α

k∑

n=k−1

[
k∑

i=k−1

κσ(en − ei)

]α−1

. (4.131)

Deriving the gradient with respect to the unknown weights gives

bk(w) =
∂V̂α, k(w)

∂w
(4.132)

=
(α− 1)
2ασ2

k∑

n=k−1

[
k∑

i=k−1

κσ(en,i(w))

]α−2 k∑

i=k−1

en,i(w)κσ(en,i(w))φn,i(w).

(4.133)

Only using the current sample k in the outer sum gives the following stochastic
gradient [6]

bk(w) =
(α− 1)
2α−1σ2

[
k∑

i=k−1

κσ(ek,i(w))

]α−2 k∑

i=k−1

ek,i(w)κσ(ek,i(w))φk,i(w). (4.134)

This can be written as

bk(w) =
(α− 1)
2α−1σ2

[κσ(ek,k−1(w)) + κσ(0)]α−2 ek,k−1(w)κσ(ek,k−1(w))φk,k−1(w).
(4.135)

The expression is similar to the expression given in [6]. The unknown weights will
be updated using a steepest accent approach

wk = wk−1 + ηbk(wk−1). (4.136)

The window width still has to be determined. With this method only a few samples
will be available with each update, and the width estimate would not be very good
with only two samples. Either a constant width value is selected or else the width
value is obtained using the last M samples (where M is a relevant number of samples
for use in the estimate of the width parameter). The complexity of the algorithm is
of O(L).
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4.6.3 Recursive Quadratic Information Potential

To build a recursive algorithm, the empirical density estimate used in getting from
(4.106) to (4.108) will be combined with a forgetting factor, in which the empirical
density estimate of the joint probability density function p(x, y) will look like

p̂(x, y) = µk

k∑

n=1

βk,nδ(x − xn)δ(y − yn) (4.137)

(4.138)

where µk is a proper normalization

µk =
1∑k

n=1 βk,n

(4.139)

ensuring that p̂(x, y) is a probability function. Inspiration have been found in [23].
The weighting is selected to be of exponential form (as in the RLS) βk,n = λk−n

where λ is real number between 0 and 1. If λ = 1 the system is said to have in�nite
memory, but normally one will choose λ < 1 if the algorithm should work in a
non-stationary environment. µk can be determined in a closed form

µk =
1∑k

n=1 λk−n

=
1∑k

n=1 λn−1

=
1− λ

1− λk
for λ < 1 (4.140)

=
1
k

for λ = 1. (4.141)

Using the expression (4.137) in the expression for the information potential (4.106)
gives the following estimate of the information potential

V̂α,k(w) = µk

k∑

n=1

λk−np(en(w))α−1. (4.142)

The expression given in (4.142) is regarded as the cost function to be maximized.
The iterative algorithm applied to maximize this cost function is known as a recursive
Gauss-Newton prediction error algorithm. The unknown model weights is updated
according to

wk = wk−1 − ηk

[
Ĥk(wk−1)

]−1
b̂k(wk−1) (4.143)

where Ĥk(wk−1) is a pseudo Hessian of V̂α,k(w) and b̂k(wk−1) is a modi�ed gradient
of V̂α,k(w) [23].
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The gradient of V̂α,k(w) can be determined as

bk(w) =
∂V̂α,k(w)

∂w

= µk

k∑

n=1

λk−n(α− 1)p(en(w))α−2 ∂p(en(w))
∂w

. (4.144)

Rewriting the above expression

bk(w) =
µk

µk−1
λµk−1

k−1∑

n=1

λk−1−n(α− 1)p(en(w))α−2 ∂p(en(w))
∂w

+ µk(α− 1)p(ek(w))α−2 ∂p(ek(w))
∂w

. (4.145)

This can then be simpli�ed using the recursive nature of the above expression. First
µk

µk−1
λ is simpli�ed

µk

µk−1
λ =

1− λ

1− λk

1− λk−1

1− λ
λ

=
λ− λk

1− λk

=
1− 1 + λ− λk

1− λk

= 1− 1− λ

1− λk

= 1− µk (4.146)

from where the gradient can be expressed as

bk(w) = (1− µk)bk−1(w) + µk(α− 1)p(ek(w))α−2 ∂p(ek(w))
∂w

. (4.147)

The recursive method is used in an online setup, which means that the gradient
calculated with the weights from the last time step is used in updating the weights
at time step k, so inserting wk−1 gives

bk(wk−1) = (1− µk)bk−1(wk−1)+

µk(α− 1)p(ek(wk−1))α−2 ∂p(ek(w′))
∂w′

∣∣∣∣
w′=wk−1

. (4.148)

Since we do not know bk−1(wk−1) we assume that wk−1 actually maximized V̂α,k(wk−1)
which means that bk−1(wk−1) = 0. The estimate of the gradient becomes

b̂k(wk−1) = µk(α− 1)p(ek(wk−1))α−2 ∂p(ek(w′))
∂w′

∣∣∣∣
w′=wk−1

. (4.149)
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Next, the Hessian has to be determined. The gradient (4.148) is di�erentiated once
more with respect to the weights w to give

Hk(w) =
∂bk(w)

∂w
(4.150)

= (1− µk)
∂bk−1(w)

∂w
+ µk(α− 1)


 (α− 2)p(ek(w))α−3

(
∂p(ek(w))

∂w

)2

+(α− 1)p(ek(w))α−2
(

∂2p(ek(w))
∂w∂w

)



= (1− µk)Hk−1(w) + µk(α− 1)


 (α− 2)p(ek(w))α−3

(
∂p(ek(w))

∂w

)2

+(α− 1)p(ek(w))α−2
(

∂2p(ek(w))
∂w∂w

)



(4.151)

which is a rather complicated expression. The Hessian and the gradient simplify
much when α = 2, which was also seen with the batch algorithm.

Recursive algorithm for α = 2

To fully determine the gradient and the Hessian when α = 2, the gradient and
Hessian of the unknown error distribution p(ek(w)) must be determined. A Parzen
density estimate given as

p̂(ek(w)) =
1
N

k∑

j=k−N

κσ(ej(w)− ek(w)). (4.152)

could be applied, but since the error-distribution will be dependent on the weights
and the weights are updated at each time-step instead of in batches, a di�erent
Parzen estimate will be applied. The suggested Parzen estimate will weight the
newest sample the most, so

p̂(ek(w)) = γN

k∑

j=k−N

λj−k
r κσ(ej,k(w)) (4.153)

where γN = 1−λr

1−λN
r
, which assures that the estimate is a true density estimate. So λr

controls the weighting of the samples in the Parzen estimate.
Di�erentiation of the Parzen-estimate (using Gaussian kernels) gives

∂p̂(ek(w))
∂w

= γN

k∑

j=k−N

λk−j
r

∂κσ(ej,k(w))
∂w

= γN

k∑

j=k−N

λk−j
r

ej,k(w)
σ2

κσ(ej,k(w))φj,k(w). (4.154)
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The above found result inserted into equation (4.149) gives the gradient

b̂k(wk−1) = µk
γN

σ2

k∑

j=k−N

λk−j
r ej,k(wk−1)κσ(ej,k(wk−1))φj,k(wk−1). (4.155)

Finding the Hessian of the Parzen estimate given in (4.153) using the chain-rule gives

∂2p̂(ek(w))
∂w∂w

=
γN

σ2

k∑

j=k−N

λk−j
r




−κσ(ej,k(w))φj,k(w)φj,k(w)T

+ ej,k(w)2

σ2 κσ(ej,k(w))φj,k(w)φj,k(w)T

+ej,k(w)κσ(ej,k, w))∂�j,k(w)

w


 . (4.156)

Since we are maximizing the information potential, we wish to make sure that the
Hessian matrix Hk(w) will be negative de�nite at all times. In [23] it is outlined
that some part of the Hessian will be negligible near a point wopt due to the fact that
the error ej,k(wopt) is assumed to be independent at wopt. In the above expression
this corresponds to the last part of the expression

γN

σ2

k∑

j=k−N

λk−j
r ej,k(wopt)κσ(ej,k(wopt))

∂φj,k(wopt)
w

≈ 0. (4.157)

This was also discussed in the subsection on the batch algorithm. This expression
is zero if the error depends linearly on the weight parameters. We have also argued
that the kernel-dependent part is assumed to be small at the solution. Using the
above observations and expressions and inserting these into (4.150) gives the following
pseudo Hessian

Ĥk(w) = (1− µk)Ĥk−1(w)− µk
γN

σ2

k∑

j=k−N

λk−j
r

[
κσ(ej,k(w))φj,k(w)φj,k(w)T

]
. (4.158)

Inserting w = wk−1 gives

Ĥk(wk−1) = (1− µk)Ĥk−1(wk−1)− µk
γN

σ2

k∑

j=k−N

λk−j
r

[
κσ [ej,k(wk−1)]φj,k(wk−1)φj,k(wk−1)T

]
. (4.159)

Since we do not know Ĥk−1(wk−1) we approximate it with Ĥk−1(wk−2) which is a
good approximation near the maximum of the cost-function.
The Hessian given in (4.159) have resemblance to the expression given for the weighted
autocorrelation matrix of the RLP method given in (3.22).
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The algorithm and computational complexity

The algorithm is called �RQEGN� for �Recursive Quadratic Entropy Gauss Newton�.
Below is given a layout on how the algorithm works.

• Step 1 Initialization
Choose initial weights w(0)

Select the number of samples used for parzen estimate N .

Select forgetting factors λr and λ.

Select step size η

Initialize Ĥ(w0) = −Iδ and b̂N (w0) = 0 where the selection of δ will be
discussed below.

• Step 2 Update formula

for k = N + 1..Nsamp

calculate b̂k(wk−1)

calculate Ĥk(wk−1)

update �lter coe�cients according to

wk = wk−1 − η
[
Ĥk(wk−1)

]−1
b̂k(wk−1) (4.160)

end

The step-size η is selected to be constant during the adaption. A more expensive se-
lection of the step-size would be to select the step size such that V̂2,k(wk�1(ηk−1)) <

V̂2,k(wk�1(ηk)). This would require additional computations of the cost-function.
The initialization of the pseudo Hessian is called a soft-constrained initialization [15]
and is done to ensure negative de�niteness of the Hessian when N < L. L is the
number of model weights and N is the number of points used in the Parzen window
estimate. Experimentally I have found that a good selection of δ is ≈ σ2

10 , where σ is
the kernel width.
The algorithm was implemented in MATLAB and denoted as "RQEGN.m".

Computational complexity

When L is not that large, the number of samples used in the PDF-estimate will
increase the computational complexity approximately as ≈ L3 + (20N)L2 + NL. So
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when N < L the computational complexity will be O(L3) (Gaussian elimination in
solving the system of linear equations) and when N > L then the computational
complexity will be O(NL2). In comparison the RLP-method uses around O(L2)
operations.



68 Chapter 4. Information Theoretical Methods

Investigation of the Hessian-matrix

The Hessian matrix was in section (4.6.1) page (57) and in the previous section sim-
pli�ed since we want the Hessian to be negative de�nite at all times. As to see what
happens with the Hessian matrix in a simple AR(2)-prediction setup the eigenvalues
are observed when including and excluding the term ej,k(w)2

σ2 in the expression for
the pseudo Hessian (given here for the RQEGN algorithm)

Ĥk(wk−1) = (1− µk)Ĥk−1(wk−1) + µk
γN

σ2

k∑

j=k−N

λk−j
r

[[
ej,k(wk−1)2

σ2
− 1

]
κσ [ej,k(wk−1)]φj,k(wk−1)φj,k(wk−1)T

]
. (4.161)

The main purpose of this investigation is to see how big the di�erence are in perfor-
mance of the algorithm when including or excluding this term.
The AR(2)-parameters was selected to be a = [0.9 − 0.09]. Three di�erent noise
environments was investigated:

• Sub-Gaussian (test 1 and Test 2)
• Gaussian (test 3 and test 4)
• Super - Gaussian (test 5 and test 6)

In the investigations the Recursive Quadratic Entropy Gauss Newton algorithm was
used with the parameters: N = 30, λr and λ was both 0.999.

In test 1, 3 and 5 the term ej,k(w)2

σ2 is excluded and in test 2,4 and 6 the term is
included. The eigenvalues of the Hessian was plotted as a function of the time index
in the di�erent situations. Figure (4.10) page (68) show the eigenvalues of the
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Figure 4.10: The eigenvalues in test 1 and test 2 as a function of time-k
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Figure 4.11: Modelling error in test 1 and test 2

Hessian matrix of test 1 and test 2. The similarities between the eigenvalues are
observed, in that they follow the same trend. Figure (4.11) page (69) shows the
corresponding modelling error14 which shows similar result in both test cases. In a
Gaussian environment the eigenvalues are behaving equally whether or not the term
is included. This is shown in �gure (4.12) page (69), where it is a bit di�cult to see
the di�erence. The modelling error, see �gure (4.13) page (70) shows no di�erence
between the two scenarios. It is noted that the Hessian is negative de�nite in both
the sub-Gaussian and Gaussian environment. In the super Gaussian environment
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Figure 4.12: The eigenvalues of test 3 and test 4 as a function of time-k.

14which is de�ned as
ME = loge

||wopt −w||22
||wopt||22
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Figure 4.13: Modelling error from test 3 and test 4

the di�erence between excluding and including the term shows to have a big in�uence
on the eigenvalues. The results from test 5 can be seen in �gure (4.14) page (70)
which shows that the eigenvalues is negative (It may be hard to see for the small
valued eigenvalue, but it is below zero), while the eigenvalues is positive and in some
cases close to singular in test 6 which can be seen from �gure (4.15) page (71) in
which the term is included. The modelling error of test 5 and test 6 can be seen from
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Figure 4.14: The eigenvalues in test 5

�gure (4.16) page (71) clearly showing the nice convergence in the case of avoiding
the term ej,k(w)2

σ2 and what happens when the term is included.
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Figure 4.15: The eigenvalues in test 6
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Figure 4.16: The modelling error of test 5 and test6

4.7 Discussion

This chapter has introduced the information theoretic method by introducing the
Kullback Leibler divergence and minimizing the distance between the true/observed
joint density function and model joint density function, which due to the additive
noise model equals the error-distribution. It has been shown that the generaliza-
tion error, which is found by minimization of the Kullback leibler divergence can
be rewritten into a Renyi generalization error expression. Further the similarities
between the two di�erent measures have been discussed. The parzen window is in-
troduced as an estimator of p(x, y) and p(e) in the generalization error expression.
Two di�erent methods of determining the optimal width parameter in the case of
unimodal data was investigated. It was further found that the generalization error
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using Parzen estimates for p(x, y) corresponds to regularization. In the last section
a stochastic, batch and recursive method was suggested for minimizing the Renyi
generalization error.
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Chapter 5

Experimental tests - simulations

In this section simple AR(3) processes will be used in an prediction setup to test the
di�erent information theoretic methods presented in the last chapter, for di�erent
environments. In the �rst section a discussion on how to evaluate performance is
given. In preceding subsections an investigation of the parameters of the RQEGN
and Batch algorithm will be given (shown in appendix). An investigation of the
performance of the SIG algorithm in a prediction setup and system identi�cation
setup is given. A comparison of the RQEGN, RLP and GNLMS method is given
in section (5.2.3) page (84) when mixed environments are investigated (bi/tri-modal
distributions) in a AR(3)-setup. In the last section the SIG/RQEGN, NLMP/RLP
and GNLMS algorithms will be tested in a hearing aid test setup.

5.1 How to evaluate performance

When selecting a measure of performance in evaluating the di�erent algorithms, one
have to be critical in the sense that the error measure might favor one algorithm
over another. The choice of performance measure is divided into two groups: Toy
Examples and Realistic examples.
Toy examples
By toy-examples we mean that the model-parameters, from which the data was
generated are known. When this is the case some authors use the modelling error as
a performance measure [20][14]. This measure is de�ned in this project to be

ME = loge

||w − h||22
||h||22

(5.1)

where w is the model weights, which are adjusted by the algorithm, and h is the
optimal system weights which are used for the toy example. The natural logarithm
have been used. The modelling error gives a good idea of the system mismatch when
the model parameters have converged.
In the toy-examples, using stochastic data generated with MATLAB, normally sev-
eral runs are performed using di�erent signal realizations. From the di�erent runs an
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average value can be obtained as well as a spread on the average value. The spread
of the mean value is given as

σx̄ =
1√
N

σx (5.2)

where σx is the spread on the data.
Realistic examples
In many papers as well as books the mean square error (MSE)-measure is used as
a performance measure. This measure is relevant to use, when the expected distri-
bution of the error have a second order moment. In impulsive noise environments,
the second order moment do not exist. For �nite sample sizes a second order mo-
ment exists however, the value can be rather large, making it a non-robust measure.
Another measure, which might be used, is the one-norm of the error ||e||1.
The goal of the adaptive �lters are to model the error-distribution (as shown by
minimization of KL-divergence). To measure the goodness of a distribution the
average negative log-likelihood is used [3]

ANLL = − 1
M

m∑

i=1

log p̂(ei). (5.3)

The error-distribution (p(ei)) is modelled using a Parzen window with a �xed width
parameter.

Algorithm selection in the simulations

The cost-functions, which the di�erent algorithms are minimizing are shown in table
(5.1) page (74). The di�erent tests, except for the algorithm speci�c test, will include

method cost function
NLMP/RLP E{|e|2}
GNLMS E{|g(e)|2}

SIG(α = 2)/RQEGN /Batch GR = − log
∫∞
−∞ pe(e)p(x, y)dxdy

Table 5.1: Cost-function of the di�erent algorithms

at least one of the algorithms from each of the di�erent cost functions.

5.2 Simple Prediction setup-AR(3)

In the next three subsections, the main subject is identi�cation of parameters in an
AR(3) setup. As mentioned earlier the AR-process can be used in a prediction setup
modelled as in �gure (5.1) page (75). The parameters of the AR(3) process is

a = [0.9 − 0.09 0.1]T .



Chapter 5. Experimental tests - simulations 75

The poles of the characteristic equation are determined to be

p1,2,3 =

{ 0.9203
−0.0101 + i0.3295
−0.0101− i0.3295

which is within the unit-circle and hence the AR-process is a stable process. The
di�erent signals in accordance with �gure ((5.1) page (75)) is

uk =
3∑

i=1

aiuk−i + vk (5.4)

xk = uk−1 (5.5)
yk = uk (5.6)

where it is apparent that the delay should be selected to 1. The process vk is in
most cases an i.i.d. process. In the tests of the information theoretic methods
(RQEGN and the Batch algorithm) Gaussian, super-Gaussian and colored super-
Gaussian noise are used for vk. In the comparison of the norm-algorithms with the

u(k)

Adaptive Algorithm

Delay
− +

Model
e(k)^y(k)x(k)

System input

u(k) =y(k)

Figure 5.1: Prediction setup

information theoretic methods other distributions for vk are tested.

5.2.1 Investigation of the RQEGN and Batch algorithm

Investigations of the recursive quadratic entropy Gauss Newton and Gauss Newton
Batch method have been performed to get acquainted with the algorithms. The
algorithms have been tested in the simple AR- test setup described in subsection (5.2)
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page (74). The investigation of the RQEGN algorithm can be seen from appendix
(B.1) page (113). The investigation of the Batch algorithm can be seen from appendix
(B.2) page (123).
Main results from the investigation of the RQEGN algorithm:
As to summarize: the algorithm was tested in three di�erent environments. The
results was very similar whether the environment was a Gaussian or super Gaussian
except for a better system mismatch in the super Gaussian case. The most important
parameters seem to be λ, δ and the number of samples N which indirectly controls
λr.
Main results from the investigation of the Batch algorithm:
The batch algorithm is minimizing an undisturbed error-distribution, which should
make it more "correct". The algorithm is updated in Batches but requires that at
least N > L to be e�cient. This algorithm has only been developed for comparison
purposes with the recursive method. The Batch and recursive method show to have
more or less similar performance, except for a more smooth convergence when using
the RQEGN method.

5.2.2 Investigation of the SIG-algorithm

The Stochastic Information Gradient (SIG) algorithm was �rst introduced in [6]
intended to be an online adaptive algorithm. The SIG-algorithm is derived from the
batch-update selecting N = 2 (The number of samples to evaluate cost-function).
The SIG-algorithm updates the unknown �lter-weights according to

wk = wk−1 + ηbk(wk−1). (5.7)

To verify the implementation of the SIG-algorithm, one of the test-examples given
in [6] have been tried with this algorithm.
A time-prediction problem is used to evaluate the performance of the SIG-algorithm.
The signal to be predicted is a signal of mixed sines :

x(t) = sin(20t) + 2sin(40t) + 3sin(60t). (5.8)

The signal is sampled with a frequency of 100Hz, which gives at period of around 32
samples. The signals to the prediction �lter is given as

uk = sin(20tk) + 2sin(40tk) + 3sin(60tk) (5.9)
xk = uk−1. (5.10)

where tk is the current sample. The prediction scheme that is used is also referred
to as a One-step linear prediction in the forward direction. In this setup a FIR-�lter
using two coe�cients are used. In [6] a comparison is made to the traditionally
LMS-algorithm, but here we compare the SIG algorithm with the NLMS algorithm



Chapter 5. Experimental tests - simulations 77

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2
Convergence of tap weights in prediction of mixture of sines setup

time−k

T
ap

 W
ei

gt
hs

NLMS−algorithm
η=0.05 

Figure 5.2: Convergence of the �lter-taps using a NLMS-algorithm
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Figure 5.3: Convergence of the �lter-taps using the SIG-algorithm

since this works better for environments with correlation in the input signal to the
adaptive �lter.
From [6] the optimal coe�cients were determined to be w ≈ [1.65 − 1]. The
convergence of the NLMS algorithm can be seen from �gure (5.2) page (77) and
the convergence of the SIG algorithm from �gure (5.3) page (77) where it is clear
that the solution given by the SIG algorithm is �uctuating more than the solution
given by the NLMS algorithm. In [6] it is stated that the convergence of the �lter
coe�cient of the SIG-algorithm is much smoother than the LMS algorithm with the
same convergence. Using the NLMS algorithm ensures that the step size is adjusted
according to the maximum eigenvalue of the autocorrelation matrix at the input.
To investigate how the SIG-algorithm works in a stochastic environment the simple
AR(3)-process described in section (5.2) page (74) is used in a prediction setup. vk
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is in this test setup Gaussian distributed.
In the simulation the unknown model weights were initialized to the true values.
Figure (5.4) page (78) shows the convergence of the �lter taps and �gure (5.5) page
(78) shows the average modelling error, where error bars have been applied. Only
�ve (5) realizations of vk have been tested but as seen the spread on the modelling
error is not that big. The surprising result is that the SIG-algorithm do not converge
to the AR(3)-parameters as would be expected. Instead another maximum of the
cost-function is found. To make the SIG-algorithm perform better in this kind
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Figure 5.4: Convergence of the �lter-taps to the AR-parameters using the SIG-
algorithm
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Figure 5.5: Model error of the SIG-algorithm with error-bars

of stochastic environment it was found that a delay-factor should to be introduced.
Instead of using the prior sample for the density estimate, the d'th prior sample is
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used. The gradient is then modi�ed according to

bk(wk−1) =
(α− 1)
2α−1σ2

[κσ(ek,k−d(wk−1)) + κσ(0)]α−2

ek,k−d(wk−1)κσ(ek,k−d(wk−1))φk,k−d(wk−1). (5.11)

When d = 1 then we have the original SIG algorithm. Increasing d will provide better
convergence properties of the SIG-algorithm. As can be seen from �gure (5.6) page
(79) increasing d lead to an optimal limit in this setup around d = 20. The reason
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Figure 5.6: Convergence using di�erent values of memory-depth value d

for the SIG algorithm do not converge to the true weights in the simple AR-setup is
outlined in the following. For α = 2 and d = 1 the stochastic gradient can be written
as

bk(wk−1) =
1

2σ2
ek,k−1(wk−1)κσ(ek,k−1(wk−1))φk,k−1(wk−1). (5.12)

Given that we are at the optimum �lter values, namely when wo = a then the
expected value of the update should be zero, thus

E [bk(wo)] = 0. (5.13)

The expectation of the gradient is (the weights is left out)

E

[
1

2σ2
(ek,k−1)κσ(ek,k−1)xk,k−1

]
, (5.14)

which can also be written as

E [κσ(ek,k−1) [xkek − xkek−1 − xk−1ek + xk−1ek−1]] (5.15)
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neglecting the constant term 1
2σ2 . Since we are using a Gaussian kernel then

E [xkek − xkek−1 − xk−1ek + xk−1ek−1] ≥
E [κσ(ek,k−1) [xkek − xkek−1 − xk−1ek + xk−1ek−1]] . (5.16)

The expression given by

E [xkek − xkek−1 − xk−1ek + xk−1ek−1] (5.17)

is investigated at the solution, where it should be zero. To see if the above expression
is zero when wo = a then

ek = ŷk − yk = (wo − a)T uk−1 + vk = vk (5.18)
and

xk = uk−1 = aT uk−2 + vk−1 (5.19)
xk−1 = uk−2 = aT uk−3 + vk−2 (5.20)

is inserted into (5.17) and each term is evaluated:

E [xkek] = E [uk−1vk] = 0 (5.21)
E [xkek−1] = E [uk−1vk−1] = σ2

v (5.22)
E [xk−1ek] = E [uk−2vk] = 0 (5.23)

E [xk−1ek−1] = E [uk−2vk−1] = 0. (5.24)

Since we are using a Gaussian kernel (κσ(ek,k−1) > 0) then

E [κσ(ek,k−1) [xkek − xkek−1 − xk−1ek + xk−1ek−1]] > 0. (5.25)

which means that wo = a is not the maximum found by the SIG algorithm in an
AR setup.
As mentioned before using the d'th prior example gave better convergence. This
means that the term, which did not give zero (5.22) now gives

E [xkek−d] = E [uk−1vk−d] ≈ 0 (5.26)

when the d value is chosen properly. The AR process in some sense determines this
depth factor. In the AR(3)-example it was shown that a value of d of around 20
would make the SIG-algorithm converge to values close to the minimum. Using a
value of d = 20 with Gaussian distributed noise vk starting from w0 = 0 gives a
convergence of the �lter-taps as shown in �gure (5.7) page (81). The modelling error
is seen from �gure (5.8) page (81). From the �lter-taps and modelling error it still
looks as if there is a little bias in the system, which is due to the fact that the d = 20
only gives that E [xkek−20] ≈ 0.
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Figure 5.7: Convergence of the �lter-taps to the AR-parameters using the SIG-
algorithm with d = 20.
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Figure 5.8: Model error of the SIG-algorithm with error-bars when using d = 20

Invoking the independence assumption

By looking at the requirements to the gradient at the optimal model parameters
one actually �nds that invoking the independence assumption, mentioned in the
chapter on norm-algorithms (3.1) page (15), equation (5.17) is zero. The fourth
requirement in the independence assumption does not necessarily have to be ful�lled
when using the SIG algorithm, which is shown in the next couple of examples. The
SIG-algorithm will now be tested in a system identi�cation setup (�gure (5.9) page
(82)) where the plant is a FIR-�lter of length L = 5 (the parameters were h =
[0.9 − 0.09 0.1 0.5 0.20]T ). The system input xk will in all cases be Gaussian noise
with unit variance but di�erent characteristics of the added signal vk are tested. The
SIG algorithm is compared to its counterpart the NLMP algorithm. The following
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Figure 5.9: System Identi�cation setup

tests are considered
• vk is Gaussian noise with variance of 0.01.(Test SIG 1)
• vk is S(1.2)S distributed with a dispersion of ≈ 0.015. (Test SIG 2)
• vk is uniform distributed with a variance of 0.01. (Test SIG 3)

where xk in all cases are Gaussian distributed with variance one.
Test SIG 1
The modelling error from the �rst test can be seen from �gure (5.10) page (83) using
the NLMS (NLMP with p = 2) and the SIG algorithm with α = 2 and σ = 0.5.
The system mismatch of the SIG algorithm was around −7dB which was about 2dB
above the NLMS algorithm. The convergence speed of the two methods was selected
to be more or less equal as to be able to compare the system mismatch. The SIG-
algorithm seem to be a bit more noisy than the NLMS algorithm. Choosing another
value for σ did not have big impact on the actual convergence or mismatch, except
that one has to change the step-size.
Test SIG 2
In this test setup both the NLMP with p=2 and p=1.2 was tested. For the SIG
algorithm σ = 1 and α = 2. The modelling error of the algorithms can seen from
�gure (5.11) page (83). The system mismatch of the NLMP algorithm with p = 1.2
is the lowest, around −7.2dB, while the SIG algorithm achieves around −5.9dB
in system mismatch. Using a p = 2 shows that the algorithm is very sensitive to
outliers, which is seen when the algorithm looses track of the �lter coe�cients. The
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Figure 5.10: System Identi�cation setup using Gaussian noise for vk
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Figure 5.11: System Identi�cation setup using S(1.2)S noise for vk

SIG algorithm actually seem to be a very robust to impulsive noise environments.
Test SIG 3
In the last test p=2 for the NLMP and σ = 0.5 for the SIG algorithm. The two
methods are quite close in performance in this test, which is seen from the modelling
error in �gure (5.12) page (84). The system mismatch though was around a dB lower
with the NLMP algorithm (around −8dB).

Discussion

The stochastic information gradient have been tested in a prediction setup and a
system identi�cation setup. The prediction setup showed that the SIG algorithm did
not converge to the true model parameters, but converged to some other parameters.
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Figure 5.12: System Identi�cation setup using uniform noise for vk

The SIG algorithm converged in some sense if the d'th prior sample was used instead
of the last sample in the PDF-estimate of pe(e). It was then mentioned that under
independence assumption the algorithm would converge. This was tested using a
system identi�cation setup. The performance achieved with the SIG algorithm was
quite good considering that the algorithm was converging nicely in both sub-, super-
and Gaussian noise environments. For the NLMP algorithm we made the prior
assumption that we knew the signal statistics, and also showed the drastic choice of
p = 2 in an S(1.2)S environment.

5.2.3 Comparison of Selected Robust Adaptive Algorithms in a
mixed noise environment

In this subsection the GNLMS, RLP and RQEGN algorithm will be compared in
other statistical environments than the previous environments investigated. The fol-
lowing di�erent distributions for vk in the AR(3)-prediction setup will be investigated

• Test Mixed 1: Bi-Gaussian process with parameters µ1 = −5,µ2 = 5, σ2
1 = 1/2,

σ2
2 = 3/4.

• Test Mixed 2: Bi-Gaussian process with parameters µ1 = 0,µ2 = 10, σ2
1 = 1/2,

σ2
2 = 3/4.

• Test Mixed 3: Mixed environment
vk ∈

[
N(µ1, σ

2
1) + Cauchy(µ2, γ) + Uniform(a, b)

]
, where the parameters are

µ1 = −5, σ1 = 1, µ2 = 5, γ = 1, a = 10, b = 13. The way the stochastic signal
is generated is to select with equal probability randomly between samples from
the three distributions.

The modelling error have been produced as an average over 10 runs with di�erent
realizations of the noise to get an idea of the spread on the mean modelling error.
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Test Mixed 1

In the �rst simulation the di�erent investigated algorithms had the following values:
• RLP: p = variable, λp = 0.95, λ = 0.999, δ = 1e− 3, ω = 0.1.
• RQEGN: N = 50, λr = 0.98, λ = 0.999, η = 12, δ = −1
• GNLMS : N = 300, η = 15

The modelling error seen from �gure (5.14) page (85) show that the lowest system
mismatch is obtained by the RQEGN algorithm at −8dB (k = 1000). The system
mismatch obtained for the RLP and the GNLMS algorithm is very alike and are
around −4.5dB. A typical error-signal (produced by the GNLMS algorithm) and
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Figure 5.13: Error signal produced when using the GNLMS algorithm compared to
the expected signal.
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Figure 5.14: Modelling error of the three algorithms in Test mix 1.
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its true value (vk) is shown in �gure (5.13) page (85). The di�erent estimated PDF
of the error can be seen from �gure (5.15) page (86) showing best performance of the
RLP-algorithm. It should be mentioned that the distributions shown, is generated
from one realizations of the error and not as an average of all the runs. The di�erence
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Figure 5.15: The Probability density function of one realization of the error for the
di�erent algorithms, compared to the true distribution (distribution of signal to be
identi�ed)

though are very small, and all the three algorithms identify the true distribution
very nicely. In all cases a Parzen window estimator with a width of σ = 0.2 was
used to plot the distributions and to estimate the ANLL (average negative log-
likelihood). The ANLL was determined from each of the 10 realizations. For the
GNLMS algorithm ANLL = 1.908(0.019), RLP ANLL = 1.880(0.014) and for the
RQEGN ANLL = 1.82(0.010). The number in parenthesis is the spread on the
average value. The ANLL only shows a little di�erence between the three methods,
which is expected from the similarities of the probability density functions.

Test Mixed 2

The di�erent algorithms had the same values as in the simulation above. The sig-
nal to be identi�ed was changed with respect to its mean-value. This change in
mean value has a big in�uence on the norm-based algorithms. The modelling error
of the three methods is seen from �gure (5.16) page (87) showing the best overall
performance of the RQEGN method. The nice thing about the information theoret-
ical methods is that it works directly on the error-distribution and not on a speci�c
norm. This makes the method more insensitive to changes (such as mean value) in
the distribution. The system mismatch is around −8dB as before and convergence
is achieved around N=1000. The RLP algorithm still achieves a system mismatch
as before, around −4.5dB but the actual distribution is shifted in mean value into
the symmetric case observed in "Test Mixed 1". The estimated error-distributions
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from the di�erent methods can be seen from �gure (5.17) page (87). The algorithm
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Figure 5.17: Estimated PDF for the three di�erent methods.

which shows the biggest deviation from the simulation with a symmetric distribu-
tion was the GNLMS algorithm. The modelling error using this method was around
−1dB. From the estimated PDF using one realization of the error with the GNLMS
algorithm clearly shows that this distribution is far from the true distribution. The
only algorithm which models the underlying distribution, is the RQEGN algorithm.
The ANLL have been calculated from the results of these three algorithms. The
results are seen from table (5.2) page (88) obtained using 10 realizations of the
noise. As expected, the RQEGN algorithm is having the lowest ANLL.
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Method ANLL
GNLMS 3.56(0.08)
RLP 2.39(0.01)

RQEGN 2.12(0.02)

Table 5.2: ANLL for the three methods in test mixed 2

Test Mixed 3

Again the same parameters was used for this setup as in the two other setups. The
modelling error can be seen in �gure (5.18) page (88). The GNLMS algorithm have a
system mismatch at around −1dB. The RLP algorithm is quite close to the system
mismatch obtained using the RQEGN algorithm, which is around −8dB. The small
di�erence in modelling error apparently still have quite a in�uence on the distribution
of the error. The error distribution
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Figure 5.18: Average modelling error for the three di�erent algorithms in the mixed
environment.

found by using a Parzen window estimator on the error of the three di�erent algo-
rithms, show that the RQEGN is the one, which resembles the true distribution the
most, see �gure (5.19) page (89). Also in this test the GNLMS is far from the true
distribution. The ANLL achieved by the three methods is seen from table (5.3) page

Method ANLL
GNLMS 3.67(0.06)
RLP 3.20(0.02)

RQEGN 2.98(0.006)

Table 5.3: ANLL for the three methods in test mixed 2

(88), showing as expected lowest ANLL using the RQEGN method.
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Figure 5.19: The Probability density function of one realization of the error deter-
mined using the di�erent algorithms.

Discussion

What have been shown in this subsection on mixed noise environments is that the
information theoretic methods are really e�cient in modelling the underlying distri-
bution when these are not just simple distributions like the Gaussian, Uniform or
some S(α)S distribution. If the distribution is more special (non-symmetric) the in-
formation theoretical method (RQEGN in this case) really shows its e�ciency. One
drawback of the method is still the estimate of the width parameter. The width
parameter was selected using the RT method. This showed to handle the bi-modal
situation quite nicely.

5.3 Selected algorithms tested in an open loop hearing
aid setup

To test the di�erent proposed algorithms as well as some of the robust algorithms in
a real setup, data has been obtained from a realistic hearing aid setup1. A hearing
aid is placed in an arti�cial rubber ear. Noise or speech are played through the
loudspeaker of the hearing aid and data is sampled synchronically at the microphone
of the hearing aid. The measurement is a so-called open loop-measurement, and
a setup would look "more or less" like �gure (5.20) page (90) where the bar with
microphone and speaker is the hearing aid. The open loop is not a true test setup,
but functions to test whether or not the algorithms converges. The arti�cial rubber
ear together with the hearing aid will in the following be denoted as the test-setup.
Two situations have be set up for the two di�erent signals applied to the loudspeaker

1With a great deal of help from Preben Kidmose which have performed the measurements.
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Figure 5.20: Model of test setup with the hearing aid.
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Figure 5.21: Model of the hearing aid setup

• The test-setup is put into a anechoic chamber (sound dead room). The setup
is modelled as shown in �gure (5.21) page (90). The ideal situation would be
that vk is zero which is not the case, since there is some inherent noise of the
system2.

• The test-setup is placed in a "simulated" open o�ce environment which can
also be modelled as shown in (5.21) page (90) but in this case the applied
signal(vk) will also contain a speech signal3 and some background noise as well
as the inherent noise.

2Thermical noise from the microphone and quantization noise from the converter
3A male news reader
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The channel is well modelled by a FIR-�lter since the tissue introduces delays and
attenuation to the sound played in the loud-speaker.
The following data-sets have been recorded (the symbols is in accordance with the
schematic sketch of the layout in �gure (5.21) page (90)):

• whitenoise.wav Gaussian white noise signal which is played through the hearing
aid loudspeaker (x).

• whitenoise_anechoic_mic.wav Microphone signals recorded synchronized with
whitenoise.wav. The test-setup have been placed in an anechoic chamber (y).

• whitenoise_ambient_mic.wav Microphone signal sampled synchronically with
whitenoise.wav. The test-setup have been placed in an open o�ce environment(y).

• Track13.wav Speech signal ("DanTale" a standard speech signal - (Spor 13))
played through the hearing aid loudspeaker(x).

• Track13_ambient_mic Microphone signal recorded in an open o�ce environ-
ment (Speech signals/noise etc.). The samples is synchronous withTrack13.wav(y
in the adaptive �lter setup).

• Track13_anechoic_mic.wav Microphone signals recorded where the test-setup
is placed in an anechoic chamber(y). The samples were sampled synchronously
with the samples in Track13.wav.

All of the data have been sampled at a sample-frequency of Fs = 32kHz. Each of
the recordings were around 140 seconds. Only the �rst part of the signal is used for
the investigation (The �rst 0.5-10 seconds). Due to the high sample-rate this gives
a signal length of nsamp = 3.04e5.
During the measurements it has been assumed that the hearing aid have not been
moved4, meaning that the channel remains more or less �xed (same impulse-response)
during the di�erent tests.
The following test-cases have been set up

• Test 1
x : White noise signal. y : Synchronized sampled signal at the microphone
when the test-set is in an anechoic chamber (Microphone noise present).

• Test 2
x : White noise signal. y : Synchronized sampled signal at the microphone
when the test-setup is placed in an open o�ce environment.

• Test 3
x : DanTale signal. y : Synchronized sampled signal at the microphone when
the test-setup is in an anechoic chamber (Microphone noise present).

• Test 4
x : DanTale signal. y : Synchronized sampled signal at the microphone when
the test-setup is placed in an open o�ce environment (Speech and microphone
noise present).

In test 2 - test 4 the �ve algorithms which have been investigated are the RLP/NLMP,
GNLMS and RQEGN/SIG.

4Preben Kidmose, which did the measurement, said that no practical changes to the setup have
been made during the measurements.
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Test 1 was made as to determine the optimal �lter-length and the values of the �lter
coe�cients. This was done using the Wiener-�lter(see section (3.2.1) page (22)). The
Wiener �lter �nds the optimal �lter coe�cients in a 2-norm sense.
To determine the optimal number of �lter-coe�cients 30000 samples was used in
the estimate of the cross-correlation vector ryx and autocorrelation matrix Rxx.
The linear system of equations was solved with the di�erent �lter lengths, and the
�lter-length was plotted against the training error and test-error. The test-error was
determined using another 30000 samples of the signal. The �lter length was varied in
the range L=100 to L=300. The results from this simulation can be seen from �gure
(5.22) page (92). Selecting a �lter-length of L > 200 will only give small improvement
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Figure 5.22: Determination of the optimal �lter-length using the Wiener �lter.

in the MSE both for the train- and test error so L was selected to 200. To check
the result also the RLP algorithm (variable-p) was used in Test 1. Using the RLP
method produced close to the same error as the Wiener �lter solution. The RLP-
algorithm was run on a sample-size of nsamp=5000. The obtained �lter-coe�cients
was used to �lter the 9.5 seconds of the input signal to produce an error signal. The
one-norm and two-norm of the error-samples was compared for the optimal Wiener
solution and the RLP-solution. This comparison is given in table (5.4) page (92)
where one can see that the two measures are almost identical. In the following the

Measures ||e||1 ||e||2
RLP (Variable p-norm) 340.06 0.9956

Wiener Solution 338.15 0.9922

Table 5.4: Comparison of 1, and 2-norm of the error in Test 1 using RLP and
Wiener-�lter.
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�lter coe�cients obtained from the Wiener �lter solution are used as the optimal
coe�cients5. The obtained impulse response (�lter coe�cients) which were found
can be seen from �gure (5.23) page (93)(left �gure) and the corresponding frequency
response can be seen from the right �gure. The frequency response shows that the
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Figure 5.23: Left:Impulse response of the optimal �lter coe�cients. Right: Fre-
quency response of the �lter(amplitude)

coupling is largest in the frequency range 2000 − 7000Hz which is covering speech
and music signals. Low frequencies are attenuated more as well as signals with higher
frequency.
Since we know the "near optimal" �lter coe�cients it is possible to estimate the SNR
in the di�erent scenarios as a function of time. Even though the signal to noise ratio
is a 2-norm measure it is used here since the signals applied have limited power. The
signal to noise ratio will here be de�ned as

ŜNR =
P̂v

P̂d

=
∑N

k=1 |v̂k|2∑N
k=1 |d̂k|2

. (5.27)

where d̂k = wT
optxk and v̂k is calculated as v̂k = yk−d̂k where yk is the measurements

from the microphone. Due to this de�nition a high SNR will normally give problems
for the adaptive algorithms.
Test 2 The di�erent parameters for the algorithm is given in the parenthesis below.

• RLP(λ = 0.999, λp = 0.95, ω = 0.1, δ = 1e − 6) and the RQEGN(η = 1, N =
100, λ = 0.999, λr = 0.999, δ = −1e6) algorithm

• NLMP(p = 1.2, η = 0.008), SIG(α = 2, η = 0.2, σ = 1) and GNLMS(N =
1000, η = 0.1)

The parameters were found trying di�erent values and performing test-runs to de-
termine parameters for the stochastic methods such that they had more or less the

5Since 300000 samples was available, I splitted the signal into 10 parts and determined the
optimal �lter coe�cients for each window. The mean of the 2-norm of the �lter-weights and the
standard deviation of this mean was found to be Mean(||w||2) = 0.0358 and std(Mean(||w||2)) ≈
2e− 6, showing that no big variations in the solution occurred over the data-set
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same convergence speed. For the RQEGN a rather large δ value was needed, to en-
sure negative de�niteness of the Hessian matrix. As mentioned in the investigation
of the RQEGN algorithm a reasonable choice for δ is around 1

10σ2 to ensure negative
de�niteness when L > N . N is the number of samples used in the Parzen estimate
of pe(e) and σ is the kernel width estimated from the error-data. The δ value for the
RLP algorithm was chosen as mentioned in [15] to be δ < 0.01σ2

x, where σ2
x is the

spread on the input signal.
The modelling error using the near optimal �lter coe�cients as comparison can be
seen for the RLP and RQEGN algorithm in �gure (5.24) page (94) and for the
stochastic gradients in �gure (5.25) page (95)
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Figure 5.24: Modelling error in Test 2 for the RLP and RQEGN algorithm.

The modelling error shows that the performance of the stochastic methods is very
equal to its recursive counterparts (NLMP, RLP) and (SIG/RQEGN). The SIG al-
gorithm is really performing well in this setup which can be seen from the rather fast
convergence rate and quite low system mismatch. It should be mentioned here that
since we are using a quite large value for σ, compared to the spread of the data, the
stochastic gradient at time instant k can be approximated by

≈ ek,k−1xk,k−1 (5.28)

which is much like the LMS algorithm except that this algorithm works on di�erences
[7]. The GNLMS algorithm was performing a little better than the NLMP algorithm.
The variable p-norm RLP and the �xed norm NLMP did not perform bad, but it
seems as these algorithms are very sensitive to the high SNR. The SNR calculated
as an moving average is plotted for this scenario of the �rst 20000 samples, and is
shown together with the modelling error of the GNLMS, NLMP and RLP-algorithm
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Figure 5.25: Modelling error in test 2 for the stochastic methods.
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Figure 5.26: SNR plotted for test 2 scenario for the �rst 20000 samples(lower �gure)
upper �gure shows the model-error of the GNLMS, NLMP and RLP algorithm.

(see �gure (5.26) page (95)). It is clear that an increase in the SNR makes the
GNLMS,NLMP and RLP algorithm lose tracking of the �lter-coe�cients. The RLP
algorithm attains the highest system mismatch, which is due to its fast tracking.
Increasing the number N (samples in transformation) in the GNLMS algorithm did
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not really improve the system mismatch (N=2000 was tried). The RQEGN is also
shown on the plot and the modelling error seem to become constant when the SNR
is increasing.
Since we aim at identifying the o�ce environment noise and speech (v̂) the error-
signal is plotted against the v̂ signal. This plot is denoted as an EV-plot. If the
model �nds the optimal �lter coe�cients the plot should show a line with unit slope.
Since we have only approximated the true coe�cients with the Wiener solution,
some inherent noise is present due to a non-perfect match. The di�erent plots can
be found in �gure (5.27) page (96) for the stochastic methods, and in �gure (5.28)

Figure 5.27: Error signal versus expected applied signal v̂ for the di�erent stochas-
tic algorithms. Left: SIG-algorithm Middle: GNLMS algorithm Right: NLMP
algorithm

page (96) for the recursive methods. All the plots were generated from time index k =
50000− 304000. As we have already seen from the modelling error, the information
theoretic methods is performing the best. The spread around the optimal line is less
for the information theoretic methods, than any of the other methods. This indicates

Figure 5.28: Error signal versus expected applied signal v̂ for the two recursive
algorithms.Left: RQEGN algorithm Right: RLP algorithm

a good �t of the model-parameters to the coe�cients determining the unknown path.
Due to the unit slope of all the EV-plots the output distribution is more or less equal
for the di�erent methods.
Test 3
In Test 3 and Test 4 a Gaussian distributed signal with variance 1e − 6 and zero
mean was added to the input signal (x - Dantale signal). It was shown in [2] that
this corresponds to Tikhonov regularization when the cost function can be written
as

E =
1
2

∫ ∫
||f(w,x)− y||2p(x, y)dxdy (5.29)
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where the added signals noise variance will control how much regularization is per-
formed. Inserting an empirical density estimate in (5.29) actually gives the cost-
function of the NLMS/RLS algorithm. As seen the variance should have been bigger
in order to really act as regularization on the di�erent algorithms.
The parameters, given below, for the algorithms was used in both Test3 and Test4.

• RLP(λ = 0.999, λp = 0.95, ω = 0.1, δ = 1e − 8) and the RQEGN(η = 1, N =
100, λ = 0.999, λr = 0.999, δ = −1e6) algorithm

• NLMP(p = 1, η = 0.002), SIG(α = 2, η = 0.2, σ = 1) and GNLMS(N =
1000, η = 0.1)

The modelling error for this setup can for the recursive methods be seen in �gure
(5.29) page (97) and from �gure (5.30) page (98) showing the results of the stochastic
methods. The high SNR combined with the low input power, which makes the
eigenvalues of the weighted autocorrelation matrix (as well as the eigenvalues of the
Hessian) small, will make the recursive methods lose its tracking of the coe�cients.
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Figure 5.29: Modelling error in Test 3 for the RLP and RQEGN algorithm.

The most successful algorithm in keeping the tracking of �lter coe�cients are the SIG-
algorithm. The algorithm converges around k = 70000 with a "system mismatch"
of ≈ −6dB which is very nice. The GNLMS method is losing tracking of the �lter-
coe�cients drastically a couple of times. The reason has not been fully understood,
but it normally happens when the environment have remained unchanged for a period
and then suddenly changes. Figure (5.31) page (98) shows the SNR ratio in the time
interval k = 1e5−1.5e5 as well as the model error of the RLP, RQEGN and GNLMS
method. As mentioned before the e�ect of the low input signal and high SNR will
cause the RLP and RQEGN algorithm to lose its tracking. In this time-interval the
GNLMS managed alright. In test 4 it is shown that the smallest eigenvalue of the
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Figure 5.30: Modelling error in test 3 for the stochastic methods.
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Figure 5.31: SNR plotted for test 3 scenario in the interval k = 1e5 − 1.5e5(lower
�gure). The upper �gure shows the model-error of the GNLMS, NLMP and RLP
algorithm.

Hessian is very close to zero, when the input signal gets small (as with the RLP -
algorithm). It is shown that increasing the size of the eigenvalues by regularization
improves the modelling error, in those situations. The EV-plots of the di�erent
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algorithms can be seen in �gure (5.32) page (99) for the stochastic algorithms and

Figure 5.32: Test 3. Error signal versus expected applied signal v̂ for the di�erent
stochastic algorithms. Left: SIG-algorithm Middle: GNLMS algorithm Right:
NLMP algorithm

in (5.33) page (99) for the recursive methods. As expected the SIG algorithm show
to have the least spread, which means that it determines the microphone noise the
best. The GNLMS algorithm is not really good, since the error-signal is much larger
in amplitude than the signal (v̂) which means that it is dominated by an attenuated
linear combination of the input signal. These �gures is presented in order to give

Figure 5.33: Test 3. Error signal versus expected applied signal v̂ for the two recur-
sive algorithms.Left: RQEGN algorithm Right: RLP algorithm

a intuition of how the algorithms models the added signal(v). Since the modelling
error has been shown, we more or less know the outcome, but as seen in the RLP-
case one would apparently expect a bad results in the EV-plot but due to the fast
convergence of the RLP algorithm the result is not that bad.
Test 4
The test is very similar to test 3 except that the test setup is placed in an open o�ce
environment, making the situation a bit harder. When looking at the modelling error
for the recursive (�gure (5.34) page (100)) and for the stochastic methods (�gure
(5.35) page (100)) it is seen that the performance have been degraded in all cases,
since the system mismatch is higher for the di�erent algorithms. In this setup only
the SIG algorithm seem to give nice performance with a system mismatch of around
−4dB. The convergence rate of the SIG algorithm is the same as observed in test 3
in that it converges around k = 70000. In this setup the smallest absolute eigenvalue
as a function of time in the interval k = 1e5−1.5e5 was determined. This plot can be
seen from �gure (5.36) page (101) where the lower �gure shows the estimated SNR
(averaging 50 samples). The 3'th �gure from above shows the smallest eigenvalue
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Figure 5.34: Modelling error in Test 4 for the RLP and RQEGN algorithm.
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Figure 5.35: Modelling error in test 4 for the stochastic methods.

(in absolute sense) in the interval k = 1e5−1.5e5. It is seen that the eigenvalue gets
very close to zero (near singular), which makes the algorithm lose its tracking. To
improve the "ill-conditioned" problem a regularization (Levenberg-Marquardt) term
was added to the Hessian [3]. The new Hessian is determined as

Ĥk(w) = Hk(w)− aI, (5.30)
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Figure 5.36: Model-error using di�erent constants for regularization in time interval
k = 1e5− 1.5e5.

where I is the identity matrix with same dimension as the Hessian and if a is selected
large the RQEGN algorithm will tend towards a steepest descent approach. Di�erent
values of a was tried which can be seen from the modelling error of the RQEGN
method in the second plot. Selecting a value of a = 1000 shows to improve the
problem with the higher SNR since the algorithm will not lose track of the coe�cients
as much as with a = 0. The EV-plots of the stochastic gradient approaches can be
seen from �gure (5.37) page (101) and for the recursive methods in �gure (5.38)
page (102). The good performance of the SIG algorithm is also seen in the EV-plot,
showing that the o�ce environment noise is catched quite well by this algorithm.
Actually the second best algorithm seem to be the RLP-algorithm, which do not

Figure 5.37: Test 4. Error signal versus expected applied signal v̂ for the di�erent
stochastic algorithms. Left: SIG-algorithm Middle: GNLMS algorithm Right:
NLMP algorithm

show so big di�erence between the error signal and the o�ce environment noise and
speech(v̂). Even though the error-estimate of the GNLMS algorithm is quite noisy,
the result achieved looks better than in the last experiment.
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Figure 5.38: Test 4. Error signal versus expected applied signal v̂ for the two recur-
sive algorithms.Left: RQEGN algorithm(a = 0) Right: RLP algorithm

5.3.1 Discussion

The results obtained in test 2, test 3 and test 4 is summarized in table (5.5) page
(102), using both the one norm and two norm as a measure. The ANLL have not been
used for comparison since the di�erent error distributions of the di�erent algorithms
in the di�erent tests show very little deviation from each other, making the ANLL
estimate show very similar performance. The one-norm and two-norm though seem
to be adequate in this setup to describe the performance of the system. The results is
merely a summation of what we have already observed, namely that the Stochastic
Information Gradient (SIG) algorithm is the one performing the best in all three
test cases. Considering the problem (L=200), this is a quite hard problem for the
Recursive methods computational wise. For transversal adaptive �lters with a rather
large �lter-length it seems as if stochastic methods are preferable partly due to its low

Method Test 2 Test 3 Test 4
||e||2 ||e||1 ||e||2 ||e||1 ||e||2 ||e||1

NLMP 2.82 1117 0.34 123 2.35 897
SIG 2.74 1085 0.30 132 2.34 960

GNLMS 2.80 1112 4.51 962 3.21 1203
RLP 2.85 1129 0.31 139 2.56 1049

RQEGN 2.76 1090 0.38 145 4.09 1251
Optimal 2.74 1092 0.31 134 2.37 971

Table 5.5: Norm-1 and Norm-2 of error of the di�erent algorithms in Test2, Test3
and Test4.

computational complexity but also, as seen, with respect to the observed problems
with ill-conditioning of either the Hessian matrix or the cross-correlation matrix. I
must say that I was impressed how the SIG algorithm performed in these di�erent
setups considering the problems in the AR- tests. Whether or not this algorithm will
work in a closed loop system would need further investigation.
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5.4 Discussion

In the simple simulations, it was shown that more complex distributions will be re-
covered well by using the information theoretic methods. One could say the these
methods work well in unknown environments, since the methods works directly on
the distributions. In the case of normal symmetric distributions the information the-
oretic methods did not really provide any e�ciency compared to algorithms designed
speci�cally to handle some norm in the distribution. In addition, the computational
burden was seen to be bigger with the information theoretic methods (except for the
SIG algorithm).
In the hearing aid example the stochastic information gradient really showed to be
good when comparing it to other known algorithms. The recursive methods did
not do very well in this setup due to bad conditioning of the Hessian and weighted
autocorrelation matrix.
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Chapter 6

Further work

During this project, there have been many interesting issues which have not been
investigated fully. Some, which would be interesting are

• A theoretical investigation of the SIG algorithm similar to what exists on the
LMS algorithm. How will the algorithm work in highly correlated environ-
ments? How is the tracking of this algorithm? etc.

• The RQEGN has the drawback that the Parzen estimate is using the last N
samples in the PDF-estimate. Not all samples have equally in�uence on the
PDF-estimate so it must be possible to determine the most important samples
in this estimate. In that way the computational complexity will be reduced.

• Investigate di�erent system setups using the Renyi generalization error with
regularization as introduced in section (4.5) page (49).
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Chapter 7

Conclusion

In chapter two the additive noise model was introduced and some scenarios were
sketched in which this model can be used. A class of distributions were introduced,
known as alpha stable distributions. These distributions were used when evaluat-
ing the di�erent adaptive algorithms. A discussion on how to generate arbitrary
distributed data was given. In chapter three a discussion on norm based robust
adaptive algorithms were given. A couple of stochastic methods as well as some re-
cursive methods were discussed. A method to determine the p-parameter for correct
norm minimization using the RLP algorithm was introduced. The information theo-
retical methods were introduced using the KL-divergence measure between the true
joint density function and the model joint density function. The minimization of
the KL-divergence lead to the Shannon generalization error. It was argued that this
measure could be substituted with a similar information measure, the Renyi gener-
alization error, which in the limit as α goes to 1 equals the Shannon generalization
error. The Renyi generalization error was especially simple for α = 2. Similarities be-
tween Renyi and Shannon generalization error were discussed, and it was shown that
the two measures equals when the error is uniform distributed. The non-parametric
Parzen density estimate was introduced as to approximate the error distribution for
the information theoretical methods. Two methods to determine an optimal kernel
width were investigated, and it was found that the "Rule of Thumb" method was
e�cient in unimodal environments. Further investigation of the generalization error
using a Parzen density estimate for the joint density p(x, y) showed to correspond to
regularization. From the Renyi generalization error three algorithms were derived.
One method based on batches of samples (Batch algorithm), one recursive method
(RQEGN) and a stochastic method (SIG, [7]).
In the simple simulations, it was shown that more complex distributions are recovered
well by using an information theoretical algorithm (RQEGN). It was basically found
that these methods work well in unknown environments since the unknown error
distribution is modelled. In "simple" environments (normal symmetric distributions)
the information theoretical methods did not really provide any e�ciency compared
to simple norm algorithms. The proposed methods (RQEGN and Batch) have the
drawback that they are computationally expensive O(L3), except for the stochastic
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information gradient which has a workload of O(L). It was shown that this algorithm
do not converge to the true coe�cient in an AR - setup. In the hearing aid example
the stochastic information gradient performed really good, when compared to other
robust algorithms. The recursive methods (RLP and RQEGN) did not do well in this
setup due to bad conditioning of the Hessian and weighted autocorrelation matrix.
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Appendix A

Derivations

A.1 Taylor expansion of a function with multiple vari-
ables

The aim of this appendix is to show how a function f(x, y), which is assumed con-
tinuous and in�nitely di�erentiable can be Taylor expanded.
From [35] a Taylor expansion of a function f : Rn 7→ R is given as

f(z) =
∞∑

j=0

1
j!

(
(z − zn)T · ∇z′

)j
f(z′)

∣∣∣∣
z′=zn

. (A.1)

So the �rst couple of derivatives of f(z) would be

f(z) = f(zn) + (z − zn)T∇z′f(z′)
∣∣∣∣
z′=zn

+

1
2!

(z − zn)T∇z′z′f(z′)
∣∣∣∣
z′=zn

(z − zn) + R3 (A.2)

where R3 accounts for the higher order terms. Next we assume that z consist of
both x and y, so

z =
[

x
y

]
(A.3)

which is of dimension p × 1 from which the terms in (A.2) can be substituted with
x and y:

(z − zn)T∇z′f(z′)
∣∣∣∣
z′=zn

=
p∑

i=1

(zi − zni)
∂f

∂z′i

∣∣∣∣
z′=zn

(A.4)

=
p−1∑

i=1

(xi − xni)
∂f

∂x′i

∣∣∣∣
x′=xn

+ (y − yn)
∂f

∂y′

∣∣∣∣
y′=yn

(A.5)

= (x− xn)T∇x′f
∣∣∣∣
x′=xn

+ (y − yn)
∂f

∂y′

∣∣∣∣
y′=yn

(A.6)
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(z − zn)T∇z′z′f(z′)
∣∣∣∣
z′=zn

(z − zn) =
p∑

i=1

p∑

j=1

(zi − zni)(zj − znj)
∂2f

∂z′i∂z′j

∣∣∣∣
z′=zn

(A.7)

. . . =
p−1∑

i=1

p−1∑

j=1

(xi − xni)(xj − xnj)
∂2f

∂x′i∂x′j

∣∣∣∣
x′=xn

+

2(y − yn)
p−1∑

j=1

(xj − xnj)
∂2f

∂y′∂x′j

∣∣∣∣
y′=yn,x′=xn

+ (y − yn)2
∂2f

∂2y′

∣∣∣∣
y′=yn

(A.8)

which is then equal to :

. . . = (x− xn)T∇x′x′f |x′=xn(x− xn)+

2(y − yn)(x− xn)T∇y′x′f |y′=yn,x′=xn + (y − yn)2
∂2f

∂2y′

∣∣∣∣
y′=yn

(A.9)

From the above calculations it have now been shown that f(x, y) can be written as

f(x, y) = f(xn, yn) + (x− xn)T∇x′f
∣∣∣∣
x′=xn

+ (y − yn)
∂f

∂y′

∣∣∣∣
y′=yn

+
1
2!

(x− xn)T ·

∇x′x′f
∣∣∣∣
x′=xn

(x−xn)+(y−yn)(x−xn)T∇y′x′f

∣∣∣∣
y′=yn,x′=xn

+
1
2!

(y−yn)2
∂2f

∂2y′

∣∣∣∣
y′=yn

+R3

(A.10)

using Taylor expansion.
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A.2 Properties of Renyi and Shannon entropy

The term "entropy" is used to express di�erential entropy (continuous variables) and
entropy determined from a �nite sized data set.

A.2.1 Properties of Shannon's entropy

Translation property

HS(X + c) = HS(X + c) where c ∈ R. (A.11)

Proof.
HS(X + c) = −

∫ ∞

−∞
p(ξ + c) log p(ξ + c)dξ = HS(x) (A.12)

Scaling property
In [16] the following property of Shannon's di�erential entropy is given H(aX) =
H(X)+log |a|, where a ∈ R. The scaling property can be veri�ed using the following
identity p(x) = 1/|a|p(x/a) (since the area of an probability density function is unity)
in the expression for Shannon entropy.
Additivity property
A special property of Shannon entropy is the additivity property. Given two random
variables X and Y , the additivity property states that H(X,Y ) = H(X|Y )+H(X).
In the case that X and Y are independent the following result applies H(X, Y ) =
H(X) + H(Y ).

H(X, Y ) = −
∫

log(p(x, y))p(x, y)dxdy

= −
∫

log(p(x|y)p(y))p(x, y)dxdy

= −
∫

log(p(x|y))p(x, y)dxdy −
∫

log(p(y))p(x, y)dxdy

= H(X|Y )−
∫

log(p(y))
∫

p(y|x)p(x)dxdy

= H(X|Y ) + H(Y ) (A.13)

Which tells us that information is additive.

A.2.2 Renyi's di�erential entropy and its properties

Renyi's di�erential entropy de�ned here for the process X

HR(X) =
1

1− α
log

∫ ∞

−∞
p(x)αdx. (A.14)
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Translation property
In the following X is a random variable and c ∈ R.

HR(X + c) =
1

1− α
log

∫
p(x + c)αdx = HR(X) (A.15)

Scaling property
To show what happens with Renyi's entropy when X is scaled with a, p(x) = 1

|a|p(x
a )

is used.

HR(X) =
1

1− α
log

∫
p(x)αdx

=
1

1− α
log

∫
1
|a|α p(

x

a
)αdx

=− 1
1− α

log |a|+ log |a|+ 1
1− α

log
∫

p(
x

a
)αdx

inserting that aY=X

=− 1
1− α

log |a|+ log |a|+ 1
1− α

log
∫

p(y)αd(|a|y)

= log |a|+ HR(Y ) (A.16)

where a ∈ R. So the same scaling relative change in entropy is obtained using
another scaling of the variable.
Additivity property
For standard additivity, this property can be shown for independent event using
Renyi entropy :

HR(X, Y ) =
1

1− α
log

∫ ∫
p(x, y)αdxdy

HR(X, Y ) =
1

1− α
log

∫ ∫
p(x|y)αp(y)αdxdy

If X and Y are independent then the following applies p(x|y) = p(x)

HR(X, Y ) =
1

1− α
log

∫
p(x)αdx

∫
p(y)αdy

HR(X, Y ) = HR(X) + HR(Y ) (A.17)
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Appendix B

Simulations

B.1 Investigation of the Recursive Quadratic Entropy
Gauss Newton Algorithm

To test/investigate the Recursive Quadratic Entropy Gauss Newton algorithm with
respect to the di�erent adjustable parameters several simulation runs have been
performed. Di�erent environments (vk) have been tested to see if the parameters
behave equally, independent of the environment. The following environments are
investigated

• Gaussian noise (Test A)
• Super-Gaussian noise (S(1.2)S)-distributed (Test B).
• Correlated super-Gaussian noise (S(1.5)S)-distributed using a moving average

�lter (Filter length 10) to generate process vk. (Test C)

The RQEGN algorithm has �ve parameters, which can be adjusted

• λ controls the forgetting factor in the empirical density estimate of p(x, y).
The closer to one, the more accurate density estimate (larger memory).

• λr controls the forgetting factor in the estimate of pe(e).
• N controls the number of samples used in the parzen estimate of pe(e). Is

connected to the parameter λr.
• η is the step size which is used for the update equation. In this test (as well as

other simulations), the step-size is �xed, but may be made adjustable as well
as to improve the convergence of the algorithm.

• δ is controlling the initialization of the Hessian matrix.

Since we know the AR(3)-parameters we will concentrate on the modelling error as
a quality measure, and plot the mean modelling error with corresponding error-bars
(± the standard deviation of the mean), since each simulation is run 10 times using
di�erent realizations of the noise.
The parameters investigated is seen in table (B.1) page (114)
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parameter red blue black magenta green constant
1 2 3 4 5

λ 0.999 0.998 0.99 0.98 0.9 λr = 0.999, N = 50
η = 4, δ = −1

6 7 8 9 10

λr 0.999 0.998 0.99 0.98 0.6 λ = 0.999, N = 50
η = 4, δ = −1

11 12 13 14 15

N 10 30 50 70 100 λr = 0.999, λ = 0.999
η = 4, δ = −1

16 17 18 19 20

η 1 4 6 10 20 λr = 0.999, λ = 0.999
N = 50, δ = −1

21 22 23 24 25

δ 0 -0.1 -1 -5 -10 λr = 0.999, λ = 0.999
N = 50, η = 4

Table B.1: Parameters for the RQEGN algorithm in test A-B-C

Simulation results

The modelling error, in the investigation of λ, of the three environments can be seen
from �gure (B.1) page (115), (B.2) page (115) and (B.3) page (116). The �rst thing
that should be observed is that the selection of λ seem to have a similar in�uence
on the modelling error in the di�erent environments. Another thing, which is seen
from the �gures
is that the system mismatch seem to be smaller when the system environment gets
more super-Gaussian. In the case of i.i.d. S(1.2)S noise (Test B) and colored S(1.5)S
noise (Test C) the system mismatch is at a lower level than in the Gaussian case
(Test A). Selecting a λ value of λ = 0.998 seem to be a good compromise between
system mismatch and initial convergence speed in this setup.
The forgetting factor (λr) controlling the e�ective number of samples used in the
error-PDF estimate was investigated. This investigation can be seen from �gure (B.4)
page (116), (B.5) page (117) and (B.6) page (117) for the di�erent environments.
Again, similarities is seen between the di�erent environments, where it is clear that
this parameter do not seem to control the performance much, except when selected
very small. It should be noted here, that the selection of λr is very much related to
the number of points selected in the parzen estimate (N). It is known [15] that the
forgetting factor is a kind of e�ective length of the window. Using N as selection of
λr would give

λr =
N − 1

N
(B.1)

Selecting a value of λr = 0.1 or even lower corresponding to an e�ective length of
around 1 will make the algorithm diverge in all cases. This issue is discussed in the
experiment section on the SIG algorithm.
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Figure B.1: Test A 1-5 (investigation of λ)
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Figure B.2: Test B 1-5 (investigation of λ)

As already mentioned in the text a to low value of λr will give the model a larger
system mismatch. The same is true when selecting a to small number of samples
(N) in the PDF estimate of pe(e). N controls the e�ective number of samples which
is used, where λr is a more soft weighting of samples. The test of di�erent sample
sizes N can be seen from �gure (B.7) page (118), (B.8) page (118) and (B.9) page
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Figure B.3: Test C 1-5 (investigation of λ)
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Figure B.4: Test A 6-10, investigation of λr

(119), for the di�erent environments, where the system mismatch is biggest in the
di�erent environments for N=10. In test B the di�erence to the other sample sizes
is not that big, this comes the fact that the cost-function is more well de�ned for
super-Gaussian signals than for Gaussian signals, hence needs a smaller number of
samples to obtain a good system mismatch. Selecting N very big will only give a
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Figure B.5: Test B 6-10, investigation of λr
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Figure B.6: Test C 6-10, investigation of λr

little system mismatch improvement.
In the next investigation the step-size η is investigated. As in other algorithms
using a �xed step size, the step size here control the rate of convergence as well as
system mismatch (variance of system mismatch). The di�erent tests in the di�erent
environments is seen in �gure (B.10) page (119), (B.11) page (120) and (B.12) page
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Figure B.7: Test A 11-15(Investigation of N)
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Figure B.8: Test B 11-15(Investigation of N)

(120). Selecting a to small value will cause the rate of convergence to be slow, but
the system mismatch as well as the variance of the system mismatch is low. In the
three di�erent environments a selection of a to big η will make the convergence speed
fast, but the system mismatch larger. This test should illustrate that even though
the selection of η is crucial to the end performance, the algorithm is not so sensitive
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Figure B.9: Test C 11-15(Investigation of N)
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Figure B.10: Test A 16-20, investigation of η

on selection on this parameter.
In the last test the initialization factor δ is investigated. The modelling error can
be seen from �gure (B.13) page (121), (B.14) page (121) and (B.15) page (122) for
the three di�erent tests. In the simulations a positive modelling error have been
observed during the �rst samples. The cost function (and its derivatives) need some
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Figure B.11: Test B 16-20, investigation of η
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Figure B.12: Test C 16-20, investigation of η

samples to build up a good empirical density estimate of p(x, y). This means that
local maximums/stationary points will exist, causing the weights to be di�erent from
the true weights. A very severe case where the weights jump into a local maximum
is seen in Test case B ((B.14) page (121)) where the model parameters are far from
the true ones until k=3500.
A selection of δ < 0 introduces a kind of weight decay which was shown for the



Appendix B. Simulations 121

0 2000 4000 6000 8000 10000 12000
−7

−6

−5

−4

−3

−2

−1

0

1

2
Modelling error

time−k

M
od

el
lin

g 
er

ro
r−

[d
B

]

δ=−10 

δ=−5 

δ=−1 (black)
δ=−0.1(blue)
δ=0 (red) 

Test A21−A25 

Figure B.13: Test A 21-25, investigation of initialization constant δ
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Figure B.14: Test B 21-25, investigation of initialization constant δ

RLS/RLP algorithm. This helps the algorithm not to fall into any local maximums.
Selection of di�erent values of δ can seem to have an in�uence on the convergence
speed of the algorithm. I have found through di�erent simulation that an appropriate
value for δ can be determined as −1

10σ2 , where σ is the width of the kernel. In the
Gaussian case that gave a estimate of δ = −0.4 which seem to be a good compromise.
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Figure B.15: Test C 21-25, investigation of initialization constant δ

Discussion

As to summarize the algorithm was tested in three di�erent environments. The
results was very similar whether the environment was a Gaussian or super Gaussian
except for a better system mismatch in the super Gaussian case. The most important
parameters seem to be λ, δ and the number of samples N which indirectly controls
λr.
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parameter red blue black magenta green constant
Test Nr. 1 2 3 4 5

N 10 50 100 200 500 η = 3

Table B.2: Parameters for the GNBatch algorithm in test D-E-F

B.2 Investigation of the Gauss Newton Batch algorithm

The batch algorithm has two parameters to be controlled namely the step-size and the
number of samples used in the PDF-estimate (pe(e)) and in the empirical density
estimate of p(x, y). In this section the three environments from the test on the
RQEGN algorithm is used again. These environments where

• Gaussian noise (Test D)
• Super-Gaussian noise (S(1.2)S)-distributed (Test E).
• Correlated super-Gaussian noise (S(1.5)S)-distributed using a moving average

�lter (Filter length 10) to generate process vk which is used for the AR(3)-
process. (Test F)

The only parameter, which is investigated using this algorithm are the window length
(N). The di�erent values of window length investigated can be seen from table (B.2)
page (123).
The simulations was performed with samples sizes of nsamp = 30000 moreover, the
modelling error is determined from the mean of 10 realizations. In addition, the
spread is shown on the mean value. The modelling error obtained in the three dif-
ferent environments is seen from �gure (B.16) page (124), (B.17) page (124) and
(B.18) page (125). As can be seen from the di�erent tests the convergence proper-
ties are more or less equal in the three di�erent environments. Again as with the
RQEGN algorithm the system mismatch is lower with the S(α)S environment than
the Gaussian environment. Using a low sample-size in the empirical density estimate
of p(x, y) and parzen estimate of pe(e) gives a quite big variance on the model error,
as well as big system mismatch. Increasing the number of samples in the estimates
gives partly lower system mismatch but also decreases the variance of the estimate,
which can be seen in all cases for N=200 and N=500. To see how the model param-
eters converges to the AR parameters in the three cases the adaptive weights have
been plotted against the sample number in �gure (B.19) page (125), (B.20) page
(126) and (B.21) page (126) for the three di�erent environments using N=100(The
taps is the result of averaging 10 times).
From the taps a clear mismatch is seen in the Gaussian case, where one of the
coe�cients (0.9) is around 0.05 from the true value.

Discussion

The batch algorithm is minimizing an undisturbed error-distribution, which should
make it more "correct". The algorithm is updated in batches and requires at least
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Figure B.16: Test D 1-5, testing di�erent window lengths N in the empirical density
estimate (and error density estimate)
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Figure B.17: Test E 1-5, testing di�erent window lengths N in the empirical density
estimate (and error density estimate)

N > L to be e�cient. This algorithm have only been developed for comparison
purposes with the recursive method. The batch and recursive method show to have
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Figure B.18: Test F 1-5, testing di�erent window lengths N in the empirical density
estimate (and error density estimate)
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Figure B.19: Convergence of tap weights in test D - 3 (N=100) and η = 3.

more or less similar performance, except for a more smooth convergence when using
the RQEGN method.
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Figure B.20: Convergence of tap weights in test E - 3 (N=100) and η = 3.
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Figure B.21: Convergence of tap weights in test F - 3 (N=100) and η = 3.
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