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ABSTRACT

The purpose of this study is to compare two types of image
transformations, a first order polynomial (bilinear) transfor-
mation and a Thin Plate Spline transformation in the reg-
istration of 2D gel electrophoresis images. In the registra-
tions protein spot positions serve as landmarks and the Nor-
malised Mutual Information is used to evaluate the registra-
tion quality. The two types of transformations are compared
using a varying number of landmarks in the transformation
parameter estimation.

1. DATA, METHOD AND NOTATION

Consider two images,Ip andIq with N protein spots each.
For each image we have a list of protein spots with 3 at-
tributes for each spot: spot centre coordinates (x, y) and
spot % integrated optical density (%IOD). We denote the
spot centres (in homogeneous coordinates) from imageIp,
P p = {pi}, i = 1, 2, . . . , N wherepi = (1, pix, piy) and
equally for imageIq, P q = {qi}, i = 1, 2, . . . , N where
qi = (1, qix, qiy). The %IOD’s are denotedDp andDq, re-
spectively. The true correspondence between spots fromIp

andIq is known.
Initially the full-size images (approx.2000 × 2000 pix-

els) and point sets have been aligned to eliminate aglobal
first order bilinear transformation using 20 manually de-
picted spots as landmarks.

To ease the computational burden we examine sub-regions
(approx. 450 × 450 pixels) of the images (Ip

r and Iq
r ) in

order to estimate the transformations accounting for the re-
maining disparity in the regions. Ideally we would omit the
global registration and instead estimate the transformations
(TSP and first order polynomial) on the entire dataset (the
full-size images). It is however quite time consuming to
warp the full-size images, especially in the TPS case.

From the sub-regionsIp
r andIq

r (Fig. 1), covering ap-
proximately the same area in the two gels,L landmarks are
selected. The landmarksLp

r are chosen fromP p
r accord-

ing to %IOD cardinality, i.e., theL most intensive spots are
used as landmarks. The corresponding spots inP q

r are se-

Fig. 1: Sub-regionsIp
r (top left) andIq

r (top right). Bottom: dif-
ference imageIp

r − Iq
r .

lected using the known spot correspondence to form the set
of landmarks in the sub regionIq

r , Lq
r.

These landmarks are used to estimate both a TPS trans-
formation and a first order polynomial transformation to
align the sub-regions, and the idea is to compare the per-
formance of the two transformation methods.

1.1. Bilinear transformation

Consider the two 2D point sets of corresponding points (land-
marks)X = (xi, yi) andY = (ui, vi), i = 1...L, whereL
is the number of points in the sets. We estimate the parame-
ters in the first order polynomial transformation (or bilinear
transformation) [3]:

ui = a00 + a10xi + a01yi + a11xiyi (1)

vi = b00 + b10xi + b01yI + b11xiyi (2)

The parameters are estimated using a least squares method
and requires at least 4 sets of matching pairs to estimate



the eight parameters. Having found thea andb parameters
we can now warp all pixels in an image according to this
transformation. The bilinear warped version of an imageIq

r

is denotedIq
r,B

1.2. TPS transformation

The Thin-Plate Spline (TPS) transformation is useful for
mapping landmarks [1], and [2] proposes an elegant transi-
tion from the standard TPS functional to an energy function,
that can be minimised.

Given two point setsP , andQ in homogeneous coordi-
nates, (i.e.,pi = (1, pix, piy) andqj = (1, qjx, qjy)) with
eachL corresponding (landmark) points we wish to find a
TPS transformationf that minimises the TPS energy func-
tion

ETPS =
L∑

i=1

‖pi − f(qi)‖2 +

λ

∫∫ ((∂f2

∂2x

)2 +
( ∂f2

∂x∂y

)2 +
(∂f2

∂2y

)2
)

dxdy, (3)

wheref(qi) is the TPS transformation (or warp) of the
points in setQ. By minimising the first term the point set
Q is mapped as closely as possible toP . Including the sec-
ond term in the minimisation imposes a limit on the second
partial derivatives off , i.e., a smoothness constraint on the
bending energy of the spline.f can be decomposed into an
affine part and a non-affine part (e.g., [2]). For any points
in R2 the TPS mapping ofs can be written as

f(s) = s · d + φ(s) · w, (4)

whered is a 3 × 3 matrix of affine transformation pa-
rameters andw is a L × 3 matrix of non-affine warping
coefficients.φ(s) is a1 × L vector for any points,

φ(s) =


φ1(s)
φ2(s)

...
φL(s)

 (5)

where the i’th element isφi(s) = c‖s − qi‖2 log ‖s −
qi‖, i = 1, 2, . . . , L.

Following the TPS energy function formulation in [2]
we minimise:

ETPS(d, w) = ‖P −Qd − Φw‖2 +

λ1trace(wT Φw) + λ2trace[d − I]T [d − I] (6)

whereP andQ are the corresponding point sets (landmarks),
d is the parameter matrix accounting for the affine part of
the TPS transformation andw is the non-affine part param-
eters.λ1 andλ2 are regularization parameters for the non-
affine and the affine terms respectively.Φ is aL×L matrix
formed from theφ’s. Please refer to [2] for further details.

In the experiments, the regularization parameters for the
TPS warpλ1 = 1 andλ2 = 0.01, are chosen relatively
small to allow almost free behaviour of the TPS.λ2 is set
smaller thanλ1 to allow more freedom for the affine part of
the transformation. Ifλ1 = λ2 = 0 we allow for maximum
bending of the spline and the error at the landmarks will be
small, but then the spline will not be smooth.

Having foundd andw we can now warp all pixels in
an image according to this transformation. The TPS warped
version of an imageIq

r is denotedIq
r,TPS

1.3. Normalised Mutual Information

We use the Normalised Mutual Information (NMI) to mea-
sure how well two images are registered. The NMI of two
imagesM andN is defined as [4]:

NMI (M ,N ) =
1
2

H(M) + H(N)
H(M,N)

(7)

whereH(M) andH(N) are the marginal entropies of the
two imagesM andN respectively andH(M,N) is the joint
entropy between the two images. The NMI is a real num-
ber between 0 and 1. The betterM andN are registered
the closerNMI(M,N) is to 1. To measure the results of
the warpings we compute the normalised mutual informa-
tion before warping:NMI(Ip

r , Iq
r ). After bilinear warping:

NMI(Ip
r , Iq

r,B), and after TPS warping:NMI(Ip
r , Iq

r,TPS).
Histograms are necessary in the computation of the en-

tropies and ideally we should have a class for each image
grey level, i.e.,2N classes for aN -bit image. Since the
joint histogram is a2N × 2N matrix this computation is in-
feasible for 16-bit images. The joint histogram will be a
very large65536 × 65536 matrix. Therefore,we are forced
to use a lower number of classes in the computation of the
histograms, i.e., to reduce the bit-depth if the images. For a
given registration the NMI is rather sensitive to the number
of bins used in the histogramming, but for a fixed number
of classes it is still possible to compare NMI values from
different registrations. In the experiments we have used 200
classes. This number is chosen as a tradeoff between large
NMI values and low execution times.

2. EXPERIMENTS AND COMMENTS

For a different (increasing) number of landmarks we have
computed the optimal parameters for both the bilinear and
the TPS transformation and subsequently warped the sub
images accordingly to the parameters.

Figs. 2 and 3 show example results using Bilinear and
TPS warping to align the regionsIp

r andIq
r . The normalised

mutual information (NMI) the regions before alignment is
0.5868 and after warping of the image the NMI is 0.6084
and 0.6411 for bilinear and TPS warp respectively (see also
Table 1).

In general one would expect the NMI to increase after
warping and also the NMI is expected to increase as the



iQr with 79 landmarks iQrw
B

iPr−iQrw
B

Fig. 2: Bilinear warping results usingτ = 0.05 (79 landmarks). Top left: imageIq
r with landmarks. Top right: imageIq

r,B . Bottom left:
difference imageIp

r − Iq
r,B . Bottom right: Bilinear warp of grid with original (x) and warped (o) landmarks.

number of landmarks is increased, i.e., when the landmarks
used spread out and “cover” more and more of the entire
image area.

In Fig. 4 is the difference images from Figs. 1, 2 and 3 is
shown, scaled to the same gray level interval. It seems clear,
that the TPS warp is superior to the bilinear registration.

NMI
τ # landmarks,L Before After Bilinear After TPS
0.15 12 .5868 0.6004 0.6209
0.10 30 do 0.6076 0.6241
0.05 79 do 0.6084 0.6411
0.01 240 do 0.6088 0.6527
0.005 280 do 0.6087 0.6531
0.001 309 do 0.6089 0.6551

Table 1: Selected experimental results.

Fig. 5 shows the number of landmarks and the NMI af-
ter bilinear and TPS warp of the images. Note that the NMI
after TPS warp is always higher than the NMI after bilinear
warp. Furthermore the NMI increases slightly as the num-
ber of landmarks increases. For the bilinear transformation
the NMI is almost constant as function of the number of
landmarks. In the computation of the bilinear transforma-
tion the problem is over determined for more than 4 cor-
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Fig. 5: Number of landmarks and normalised mutual information
after TPS and bilinear warps as functions of %IOD threshold.



iQr with 79 landmarks iQrw
TPS
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Fig. 3: TPS warping results usingτ = 0.05 (79 landmarks). Top left: imageIq
r with landmarks. Top right: imageIq

r,TPS . Bottom left:
difference imageIp

r − Iq
r,TPS . Bottom right: TPS warp of grid with original (x) and warped (o) landmarks.

Fig. 4: Difference images in same grey level scaling. Left: originalsIp
r − Iq

r . Middle: after bilinear warpIp
r − Iq

r,B . Right: after TPS warp
Ip

r − Iq
r,TPS



responding landmarks and therefore the registration quality
(NMI) is more or less constant as the number of landmarks
increase. The TPS, however is capable of capturing all in-
formation from all landmarks and the quality of the regis-
tration continues to improve as the number of landmarks
increase.

In future work it would be necessary to carry out more
extensive experiments on more sub-areas of the gel images
and on more gels. Also it would be interesting to compare
the TPS with other spline functions.
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