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Abstract

This paper describes fuzzy spectral-spatial clustering of
multivariate image data to perform a segmentation into a
desired number of clusters and orthogonal subspace pro-
jection (OSP) to reduce the influence of undesired spectra.
The clustering is used to identify clouds in SeaWiFS data.
The influence of the clouds is successfully reduced by means
of OSP causing the ocean signal to become much more con-
spicuous.

1. Introduction

Input data meant for change detection is often corrupted
by undesired spectra such as clouds. Here, we suggest a
method for reducing the influence of undesired spectra in
multispectral images. This is done by first applying a classi-
fication algorithm in order to obtain spectral means of which
the image is composed. From these the undesired means are
empirically selected, and finally the input data are projected
onto a subspace orthogonal to the undesired spectra. Some
of the work presented here can also be found in [4].

An often occurring task in image analysis is the segmen-
tation of multispectral (or multi-temporal) image data into
a number of clusters/classes. Given an image withp spec-
tral bands, the job is to assign to each observation or pixel a
degree of membership. This can be done based on spectral
characteristics alone, on spatial characteristics alone, or on
combined spectral-spatial characteristics.

By applying the fuzzyc-means (FCM) algorithm, [1], we
are able to segment an image into meaningful regions. For a
given number of classes, the algorithm estimates the cluster
centres in thep-dimensional feature space, including the de-
gree of membership of each pixel. By assigning each pixel
to the class with the maximum membership (CMM), we are
able to segment the image. Optionally, a threshold can be
introduced whereby pixels that do not have their member-
ships dominated by a single class are assigned to a reject
(unknown) class.

The resulting cluster centres can be empirically classified
according to the most significant related sources. This al-
lows for an unmixing of signals related to different sources.
Here the influence of cloud signals, represented by the cor-
responding cluster centres, is reduced by means of orthog-
onal subspace projection (OSP), [5].

In this contribution, Section 2 briefly describes a fuzzy
spectral-spatialc-means clustering algorithm. Section 3

briefly describes orthogonal subspace projection. In Sec-
tion 4 cloud signal in SeaWiFS data as identified by the
above fuzzy algorithm is removed by means of OSP. Sec-
tion 5 compares the resulting images with the original data.

2. The FCM algorithm

The spectral fuzzyc-means algorithm

1. assigns values top-dimensional feature vectors forC
cluster centres,

rc, c = 1, . . . , C;

2. calculates membership weight for clusterc =
1, . . . , C;

uc =
1/d2/(m−1)

c∑C
i=1 1/d2/(m−1)

i

wheredc is the (Euclidean) spectral distance from the
running observationr to each cluster centred2

c = (r−
rc)T (r − rc), andm > 1 is a user defined weight to
control the degree of fuzziness which increases withm
(default valuem = 2);

3. calculates new cluster centres from

rc =
∑N
i=1 u

m
c · r∑N

i=1 u
m
c

whereN is the number of observations (bothuc andr
depend oni). Steps 2 and 3 are iterated until the largest
change in cluster membership becomes small or zero.

To boost performance, the FCM algorithm can be em-
bedded into a multi-resolution inheriting hierarchy. In [8] a
spatial element is added. [2] adds a multi-resolution aspect.

2.1. Spatial membership

The spatial membership is defined as

uspat,c =
1
Z

exp(−βEN )

whereEN = 1/|N |
∑
N (1−uc) is a Markov random field

energy function,β ≥ 0 is a weighting parameter, andZ is
a normalising constant. The sum overN indicates a sum



over the neighbourhood of an observation and|N | is the
number of neighbours inN . With β = 0 no spatial context
information is included. The spatial membership to a class
is large if the observations in the neighbourhood have large
memberships to the same class and small if the neighbours
tend to belong to other classes.

2.2. Spectral-Spatial membership

Given the spectral and spatial memberships as defined
above, we combine them into a joint membershipuc in this
fashion

uc =
uspec,c · uspat,c∑C
i=1 uspec,i · uspat,i

Figure 1. The original SeaWiFS bands 1-8 row-
wise. The data is stretched under the whole
image.

2.3. Extensions to the fuzzy segmentation

In order to include the spatial context information, addi-
tional approaches can be applied. Some of these are briefly
described below:

• Add feature bands to the original data set. These fea-
ture bands should include textural information. Ob-
vious feature band candidates are e.g. a mean filtered
image and an image representing the local variance.

• Apply an external field in the fusion of the spectral and
spatial memberships. In this manner a priori knowl-
edge can be included in the analysis.

• Utilise the clustering algorithm in a hierarchical struc-
ture such as a scale pyramid. Working top down, the
result of segmentation at one level is passed down to
the lower levels as e.g. a priori knowledge. By ap-
plying the hierarchical framework, fast convergence of
the algorithm can be obtained. This is done by pass-
ing down the resulting cluster means as initial cluster
centres for an analysis at a lower level.

The methods described can be applied both individually
and in union. Also, they can be utilised in conjunction
with the spatial membership previously introduced in Sec-
tion 2.1.
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Figure 2. Cluster centres 1 through 9.

3. Orthogonal subspace projection, OSP

Say we want to predict the runningp×1 vector observa-
tion r by means of a set of variables written as columns in
a matrixU ,

r = Uα+n.

We want to minimizen2 = nTn = (r−Uα)T (r−Uα).
Setting the partial derivative∂n2/∂α = 0 we get

∂n2/∂α = 2(−U )T (r −Uα) = 0
⇒ UTUα−UTr = 0
⇔ α = (UTU)−1UTr.



For the residual we now obtain

n = r −Uα
= (I −U(UTU)−1UT )r.

An application of OSP, [3, 5, 6], is the projection ofr onto a
subspace orthogonal to undesired spectra. Now, assume that
U contains exactly the undesired spectra in the columns.
Applying thep× p matrix

P = I −U(UTU)−1UT

to r we obtain the desired projection.
By its nature OSP is a rank reducing transformation. Per-

forming OSP onk spectra reduces the dimensionality of the
data fromp to p− k.

4 A SeaWiFS case study

SeaWiFS is an 8 channel optical scanner on the SeaStar
spacecraft which orbits sun synchronously at a 705 km al-
titude. On a daily basis, SeaWiFS provides 10 bit data in
the 402-422, 433-453, 480-500, 500-520, 545-565, 660-
680, 745-785 and 845-885 nm regions. The pixel size is
1.1 km× 1.1 km. See also [7].

Figure 1 shows the eight channels of a SeaWiFS scene
acquired on 14 May 1998. The image is segmented into
9 classes using the FCM algorithm. In Figure 2 the esti-
mated cluster centres are presented. The memberships of
each pixel to the clusters, along with the CMM estimated
classes, are illustrated in Figure 3. Empirically, cluster 1
is recognised as a water class, 2-4 cloud classes, 5-7 veg-
etated land classes, and 8-9 cloud/ice classes. In Figure 4
the eight channels of SeaWiFS data are stretched under the
CMM obtained water mask. The OSP is performed on the
cluster centres 2-4 and the result is presented in Figure 5.
The Figure shows the enhanced ocean related signal after
OSP cloud signal reduction. The stretch is under the water
mask and the Figure is to be compared with Figure 4. All
SeaWiFS images are stretched using histogram matching to
an approximated Gaussian distribution.

5. Discussion and conclusions

Looking at Figure 3 we see that the applied unsuper-
vised fuzzy clustering produces meaningful classes. In an
attempt to enhance the ocean related signal, theundesired
cloud cluster means are extracted from the FCM results and
OSP is performed. Figures 4 and 5 clearly show the abil-
ity of OSP to allow us to “see through” some of the clouds.
Thus, OSP successfully reduces the influence of the unde-
sired spectra.
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Figure 3. SeaWiFS, fuzzy, spectral segmen-
tation, cluster memberships 1-9 row-wise.
Most significant sources empirically related
to each cluster: 1 water, 2-4 clouds, 5-7 ve-
getation, and 8-9 clouds and ice. Bottom right
frame is the CMM estimated classes. The
black region, corresponding to cluster 1, is
the water mask used in Figure 4 and 5 for
stretching. The brightest region corresponds
to cluster 9.



Figure 4. The original SeaWiFS bands 1-8 row-
wise. The data is stretched under the CMM
obtained water mask.
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