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Abstract

This thesis addresses two neural network based control systems. The first
is a neural network based predictive controller. System identification and
controller design are discussed. The second is a direct neural network con-
troller. Parameter choice and training methods are discussed. Both control-
lers are tested on two different plants. Problems regarding implementations
are discussed.

First the neural network based predictive controller is introduced as an
extension to the generalised predictive controller (GPC) to allow control of
non-linear plant. The controller design includes the GPC parameters, but
prediction is done explicitly by using a neural network model of the plant.
System identification is discussed. Two control systems are constructed for
two different plants: A coupled tank system and an inverse pendulum. This
shows how implementation aspects such as plant excitation during system
identification are handled. Limitations of the controller type are discussed
and shown on the two implementations.

In the second part of this thesis, the direct neural network controller is
discussed. An output feedback controller is constructed around a neural
network. Controller parameters are determined using system simulations.
The control system is applied as a single-step ahead controller to two dif-
ferent plants. One of them is a path-following problem in connection with
a reversing trailer truck. This system illustrates an approach with step-wise
increasing controller complexity to handle the unstable control object. The
second plant is a coupled tank system.

Comparison is made with the first controller. Both controllers are shown
to work. But for the neural network based predictive controller, construc-
tion of a neural network model of high accuracy is critical – especially when
long prediction horizons are needed. This limits application to plants that
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can be modelled to sufficient accuracy.
The direct neural network controller does not need a model. Instead

the controller is trained on simulation runs of the plant. This requires
careful selection of training scenarios, as these scenarios have impact on the
performance of the controller.

Daniel Eggert

Lyngby,
den 24. februar 2003
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Chapter 1

Introduction

The present thesis illustrates application of the feed-forward network to
control systems with non-linear plants. This thesis focuses on two concep-
tually different approaches to applying neural networks to control systems.

Many areas of control systems exist, in which neural networks can be
applied, but the scope of this thesis limits the focus to the following two
approaches.

The first application uses the neural network for system identification.
The resulting neural network plant model is then used in a predictive con-
troller. This is discussed in chapter 2.

The other control system uses neural networks in a very different way. No
plant model is created, but the neural network is used to directly calculate
the control signal. This is discussed in chapter 3.

Both chapters discuss theoretic aspects and then try to apply the control
system to two separate plants.

Is is important to note that this thesis is not self-contained. Many aspects
are merely touched upon and others are not at all covered here. Instead this
thesis tries to give an overall picture of the two approaches and some of
their forces and pitfalls.

Due to the limited scope of this thesis, no attempt has been made to dis-
cuss the issues of noise in conjunction with the described control systems.
We assume that the data sources are deterministic.

Likewise the stability of presented controllers will not be discussed either.
Finally, it is worth noting that the plants used throughout this thesis

are merely mathematical models in form of ordinary differential equations
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Chapter 1 Introduction

(ODEs). All runs of the system are exclusively done by simulation on a
computer – even when this is not mentioned explicitly.

1.1 Overview

After a list of used symbols, this chapter will briefly summarise the kind of
neural network used in this thesis.

Then chapter 2 and chapter 3 each discuss one controller type. All find-
ings are then discussed in chapter 4.

The Matlab source files written for this thesis can be found in appendix A.

1.2 The Neural Network

Throughout this thesis we are using the two-layer feed-forward network
with sigmoidal hidden units and linear output units.

This network structure is by far the most widely used. General concepts
translate to other network topologies and structures, but we will limit our
focus to this network and shortly summarise its main aspects.

1.2.1 The Two-Layer perceptron

The neural network used in this thesis has a structure as sketched in fig-
ure 1.1.

The d input units feed the network with signals, pi. Each of the M

hidden units receive all input signals – each of them multiplied by a weight.
The summed input aj of the jth hidden unit is calculated from the input
signals as follows:

aj =

d∑
i=0

wjipi (1.1)

where pi, 1 ≤ i ≤ d are the inputs and p0 := 1, so that wj0 is the bias of
the jth hidden unit. In this way we absorb the bias into the weights.

The activation of the jth hidden unit is g(aj) where g(·) is the hidden
unit activation function.

2



1.2 The Neural Network
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Figure 1.1: The two-layer perceptron with d inputs, M hidden units and k

outputs.

In the same way the activation of the kth output unit is

xk = g̃

 M∑
j=0

Wkj · g(aj)

 (1.2)

Also here we have absorbed the bias into the weights, by setting g(a0) := 1
which results in Wk0 being the bias for the kth output unit.

By inserting (1.1) into (1.2) we get

xk = g̃

 M∑
j=0

Wkj · g

(
d∑

i=0

wjipi

) (1.3)

We will be using a sigmoidal activation function: the hyperbolic tangent
tanh plotted in figure 1.2, for the hidden units:

g(aj) ≡ tanh(aj) ≡
eaj − e−aj

eaj + e−aj
(1.4)
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Chapter 1 Introduction
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Figure 1.2: The hyperbolic tangent that is used as activation function for
the hidden units.

and a linear activation function for the output units:

g̃(ãk) ≡ ãk

such that the kth output xk is given by

xk =

M∑
j=0

Wkj · tanh

(
d∑

i=0

wjipi

)
(1.5)

The network with the functional mapping (1.5) maps a multi-variable in-
put into a multi-variable output. Any functional continuous mapping can
be approximated by this neural network to an arbitrary precision provided
the number of hidden units M is sufficiently large.

1.2.2 Training

The process of tuning the neural network weights in order to achieve a
certain kind of performance of the neural network is called training.

4



1.2 The Neural Network

In general, some kind of error function E is specified, and the training
algorithm will search for the weights that result in a minimum of the error
function.

The two conceptually different approaches of applying a neural network
to a control context in chapter 2 and 3 respectively, result in two very dif-
ferent error functions and hence two different training approaches. Each of
these are discussed in the mentioned chapters.
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Chapter 2

Neural Network Model Based
Predictive Control

The aim of controller design is to construct a controller that generates con-
trol signals that in turn generate the desired plant output subject to given
constraints.

Predictive control tries to predict, what would happen to the plant out-
put for a given control signal. This way, we know in advance, what effect
our control will have, and we use this knowledge to pick the best possible
control signal.

What the best possible outcome is depends on the given plant and situ-
ation, but the general idea is the same.

An algorithm called generalised predictive control was introduced in [1] to
implement predictive control, and we will summarise some of it below in
section 2.1.

The algorithm is based on the assumption that the plant can be modelled
with a linear model. If this is not the case, we can use a non-linear model
of the plant to do the prediction of plant outputs. This chapter deals with
using a neural network model of the plant to do predictive control.

First we discuss the linear case of predictive control. Then aspects of
modelling of the plant with a neural network are investigated. This is also
referred to as system identification. Section 2.3 looks into implementation
of the algorithm for a coupled tank system, and section 2.4 discusses the
implementation for an inverse pendulum, the so-called acrobot.

7



Chapter 2 Neural Network Model Based Predictive Control

2.1 Generalised Predictive Control

The generalised predictive control (GPC) is discussed in [1] [2]. It is a
receding horizon method. For a series of projected controls the plant output
is predicted over a given number of samples, and the control strategy is
based upon the projected control series and the predicted plant output.

We will shortly summarise some of the features of the GPC but refer
to [1] [2] for a more detailed discussion.

The objective is to find a control time series that minimises the cost
function

JGPC = E


N2∑
j=1

(y(t + j) − r(t + j))2 + ρ ·
N2∑
j=1

(∆u(t + j − 1))2


(2.1)

subject to the constraint that the projected controls are a function of avail-
able data.

N2 is the costing horizon. ρ is the control weight. The expectation
of (2.1) is conditioned on data up to time t.

The plant output is denoted y, the reference r, and the control signal u.
∆ is the shifting operator 1 − q−1, such that

∆u(t) = u(t) − u(t − 1)

The first summation in the cost function penalises deviation of the plant
output y(t) from the reference r(t) in the time interval t + 1 ≤ t ≤
t + N2. The second summation penalises control signal change ∆u(t) of
the projected control series.

We will furthermore introduce the so-called control horizon Nu ≤ N2.
Beyond this horizon the projected control increments ∆u are fixed at zero:

∆u(t + j − 1) = 0, j > Nu

The projected control signal will remain constant after this time. This is
equivalent to placing an effectively infinite weight on control changes for
t > Nu. Small values of Nu generally result in smooth and sluggish actu-
ations, while larger values provide more active controls. The use of a control

8



2.1 Generalised Predictive Control

horizon Nu < N2 reduces the computation burden. In the non-linear cast
the reduction is dramatic. [1]

2.1.1 The Control Law for Linear Systems

Let us first derive the control law for a linear system, that can be modelled
by the CARIMA model1

A(q−1)y(t) = q−1B(q−1)u(t) + C(q−1)ξ(t)/∆ (2.2)

where ξ(t) is an uncorrelated random sequence.
We introduce

yN = [y(t + 1), y(t + 2), . . . , y(t + N2)]
T (2.3)

w = [r(t + 1), r(t + 2), . . . , r(t + N2)]
T (2.4)

ũ = [∆u(t), ∆u(1 + 2), . . . , ∆u(t + N2 − 1)]T (2.5)

and let yt represent data up to time t. We now note, that

J = E

{
‖yN − w‖2 + ρ‖∆u‖2

∣∣∣∣yt

}
= ‖ŷN − w‖2 + ρ‖ũ‖2 + σ (2.6)

where in turn
ŷN = E {yN|ũ, yt} (2.7)

In linear case σ is independent of ũ and yN, and when minimising the
cost function, σ constitutes a constant value that can be ignored. We can
separate ŷN into two terms: [1]

ŷN = Gũ + f (2.8)

where f is the free response, and Gũ is the forced response.
The free response is the response of the plant output as a result of the

current state of the plant with no change in input. The forced response is

1The Controlled Auto-Regressive and Moving-Average model is used in [1].
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Chapter 2 Neural Network Model Based Predictive Control

the plant output due to the control sequence ũ. The linearity allows for this
separation of the two responses.

The important fact is that f depends on the plant parameters and yt

(i.e. past values of u and y) while the matrix G only depends on the plant
parameters. G does not change over time, and f can be computed very
efficiently. 2,3

Using (2.6) and (2.8) we now have

J = ‖ŷN − w‖2 + ρ‖ũ‖2

= ‖Gũ + f − w‖2 + ρ‖ũ‖2

= (Gũ + f − w)T (Gũ + f − w) + ρũT ũ (2.9)

The minimisation of the cost function on future controls results in the
following control increment vector: [1]

min
ũ

J = ũ∗ = (GTG + ρI)−1GT (wf) (2.10)

and in the following current control signal:

u(t) = u(t − 1) + ḡT (w − f) (2.11)

where ḡT is the first row of (GTG + ρI)−1GT .

2.1.2 Non-linear Case

If the plant is non-linear, the cost function (2.1) / (2.6) remains the same,
but implementation of the algorithm is done in a different way.4

Especially the prediction of the plant outputs ŷN based on the projected
control series ũ can not be done in the same way.

For a non-linear plant the prediction of future output signals can not be
found in a way similar to (2.8): The relation of the control signal series to

2Note that we let yt denote all data up to time t.
3The matrix G and the vector f are defined in [1].
4Note that σ in equation (2.6) is not independent of ũ nor yN for a non-linear plant. We

will however assume that the effects of σ are small and can be ignored.
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2.1 Generalised Predictive Control

the plant output series is non-linear, i.e. the multi-variable function f, that
fulfils

ŷN = f(yt, ũ) (2.12)

is non-linear. Therefore we can not separate the free response from the
forced response.5

To solve this problem we need to implement the prediction of yN, i.e. f
in (2.12) in a different way. We need a non-linear predictor ŷN for future
plant outputs.

This is where the neural network comes into play: We will facilitate the
neural network to the workings of the function f in (2.12) to obtain the
predictions ŷN. We will train a neural network to do a time series prediction
of plant outputs ŷN for a given control signal time series ũ. This will let us
evaluate the GPC cost function (2.1) for a non-linear plant.

Using a suitable optimisation algorithm on the projected control signal
series with respect to the cost function, we find a control series, that min-
imises the cost function:

min
ũ

J = ũ∗ (2.13)

The complete control algorithm iterates through these three steps:

• choose (a new) control change time series ũ

• predict plant output times series ŷ

• calculate cost function J

That is, first we choose a control time series ũ. Using a model we look at
what would happen if we choose this series of control signals: we predict
the plant output ŷ. Then we use a cost function (2.1) to tell us how good or
bad the outcome is. Then we let the optimisation algorithm choose a new
control time series ũ that is better by means of the cost function (2.1). We
iterate these steps in order to find a series of control signals that is optimal
with respect to the cost function (2.1).

There are 3 distinctive components in this controller:

5See (2.3) and (2.5) for signal definitions.
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Chapter 2 Neural Network Model Based Predictive Control

• time series predictor of plant outputs

• cost function

• optimisation algorithm

The cost function is given by (2.1). For the optimisation algorithm we
can use a simplex method which is implemented as a Matlab built-in func-
tion, such as fminsearch.

As we shall see below in section 2.1.3, the time series predictor will use a
neural network model of the plant.

The complete system diagram is sketched in figure 2.1. The neural net-
work model runs alongside the real plant and is used by the controller as
discussed above to predict plant outputs to be used by the controller’s op-
timisation algorithm.

plant

model

u yr

ŷ

controller

Figure 2.1: The neural network based predictive controller

Control Horizon

As noted earlier in section 2.1, the control horizon Nu ≤ N2 limits the
number of projected control signal changes such that

∆u(t + j − 1) = 0, j > Nu

If we set the control horizon to some value Nu < N2, the optimiser
will only work on a series of Nu projected control signal changes, while
evaluating a predicted plant output series that has N2 samples.

12



2.1 Generalised Predictive Control

Reducing Nu will dramatically reduce the computational burden, as it
effectively reduces the dimension of the multi-dimensional variable that the
optimiser works on.

2.1.3 Time Series Prediction with Neural Networks

The purpose of our neural network model is to do time series prediction
of the plant output. Given a series of control signals ũ and past data yt we
want to predict the plant output series yN (Cf. equations (2.3)-(2.5)).

We will train the network to do one-step-ahead prediction, i.e. to predict
the plant output yt+1 given the current control signal ut and plant output
yt. The neural network will implement the function

ŷt+1 = f(ut, yt) (2.14)

As will be discussed below, yt has to contain sufficient information for this
prediction to be possible.6

To achieve multi-step-ahead prediction of all the plant outputs in (2.12)
we will cycle the one step ahead prediction back to the model input. In this
manner, we get predicted signals step by step for time t+1, t+2, . . . t+n.7

One problem is that this method will cause a rapidly increasing diver-
gence due to accumulation of errors. It therefore puts high demands on
accuracy of the model. The better the model matches the actual plant the
less significant the accumulated error.

A sampling time as large as possible is an effective method to reduce the
error accumulation as it effectively reduces the number of steps needed for
a given time horizon.

The neural network trained to do one-step-ahead prediction will model
the plant. The acquisition of this model is also referred to as system identi-
fication.

6We assume that yt is multi-variable.
7It is possible to train neural networks to take the control signal time series (ut, ut+1, . . .)

as inputs and then output the complete resulting time series of plant outputs (2.12) in
one go. It must be noted, though, that the demands on training data increase dramat-
ically with increasing time series length n (curse of dimensionality). Furthermore, one
might argue that if in fact training data of sufficient size was available this data could
train a one step ahead network model to perform equally well.
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Chapter 2 Neural Network Model Based Predictive Control

Network inputs

In order to predict the plant output, the network needs sufficient informa-
tion about the current state of the plant and the current control signal.

While this state information has to be sufficient to express the state of
the plant, it is at the same time desirable to keep the number of states at
a minimum: A larger number of states will increase the number of inputs
and outputs of the neural network, which in turn will dramatically increase
demands on the training data set size.

If we have a mathematical formula of the plant of the form

Ẏ = f(Y) (2.15)

where Y is a vector of physical parameters, it is apparent that if we choose
Y as our state vector, we will have sufficient information. If furthermore Y

contains no redundant information, we must assume that no other states
will describe the plant using fewer parameters.

Our network model can now be made to predict those states and we will
feed the states back to the neural network model inputs. In this case, the
neural network inputs are the (old) states Y and the control signal, u, as
illustrated in figure 2.2.

For this to work we must be able to extract the state information from the
plant in order to create our training data set. While this is not a problem
when working with mathematical models in a computer, it will be a rare
case in real life. The states in a description such as (2.15) can be difficult to
measure.

A different approach is to use a lag network of control signals and plant
outputs. If no state model (2.15) for the plant is known, this approach is
feasible. The lag network has to be large enough for the network to extract
sufficient information about the plant state.

We still want to keep the network inputs at a minimum since the de-
mands on the training set size grow exponentially with the number of in-
puts. The size of the lag network, however, may have to be quite large in
order to contain sufficient information.

We can effectively reduce the number of input nodes while still being
able to use a sufficiently large lag network, by using principal component

14



2.1 Generalised Predictive Control

plant

model

Y

^
Y

Yt-1

controller u

Figure 2.2: Feeding the plant states as an input to the plant model. The
plant outputs its states Y, and those are delayed and fed into the
neural network model of the plant, that will then be able to pre-
dict the plant output. During time series prediction, the output
of the model itself will be fed back into its own input in order
to do multi-step-ahead prediction as described in section 2.1.3.
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Chapter 2 Neural Network Model Based Predictive Control

analysis on the lag network outputs. Only a subset of the principal com-
ponents is then fed into the neural network. This is discussed below as a
part of pre-processing.

The input to the neural network would then consist of some linear com-
binations of past and present control signals and plant outputs, i.e. some
linear combinations of

(ut−1, ut−2, . . . , yt, yt−1, . . . , rt, . . .). (2.16)

The above concepts are unified in [3] by using a so called regressor. This
regressor-function ϕ(·, ·) maps the known data (2.16) into a regressor ϕt

of fixed dimension:

ϕt = ϕ(ut−1, ut−2, . . . , yt, yt−1, . . . , rt, . . .)

The regressor ϕ is then used as input to the neural network.8

2.2 System Identification

As noted above, we want the neural network to predict the plant states one
time step ahead:

Ŷt+1 = E
{
Yt+1

∣∣Yt, ut

}
(2.17)

As noted above in section 7, we assume that Yt contains sufficient inform-
ation to describe the current state of the plant.

Or said in a different way, we want the neural network to implement the
function f in

Yt+1 = f(Yt, ut) + σt (2.18)

where σt is random noise.
To train the network, we use a data set that we obtain by simulation.

During this simulation, the input signal needs to be chosen with care to
assure that all frequencies and all amplitudes of interest are represented in
this input signal as noted in [4].

8The regressor can also be used to incorporate some other aspects of pre-processing men-
tioned in section 2.2.3.
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2.2 System Identification

[4] suggests a level-change-at-random-instances signal. At random times
the level is set to random values and kept constant between those times:

xt =

{
xt−1 with probability p

et with probability 1 − p
(2.19)

where et is a random variable.
This training data set contains the corresponding Yt+1 for each set (Yt, ut).

(Yt, ut) is the input vector p, and Yt+1 is the target vector t. Our training
data set can be written as {pn, tn}.

2.2.1 Error Function

We want the neural network to model the underlying generator of the train-
ing data rather than memorising the data. When the neural network is faced
with new input data, we want it to produce the best possible prediction for
the target vector t.9 [5]

The probability density p(p, t) gives the most complete and general de-
scription of the data. For this reason the likelihood of the training data –
with respect to this density – is a good measure of how good the neural
network models the underlying data generator.

The likelihood of the training data can be written as

L =
∏
n

p(pn, tn) =
∏
n

p(tn|pn)p(pn) (2.20)

The aim of the training algorithm is now to maximise this likelihood.
Since it is generally more convenient to minimise the negative logarithm

of the likelihood, we introduce the error function

E = − ln L

If we assume that the distribution of the target data is Gaussian and
furthermore remove additive constants from the cost function, we get the

9The problem of fitting the underlying data generator instead of memorising the data
is discussed further in section 2.2.5 and 2.2.6 where the concept of regularisation is
introduced.
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Chapter 2 Neural Network Model Based Predictive Control

following sum-of-squares cost function:10

E =
1
2

N∑
n=1

∑
k

= 1c [xk(pn; w) − tn
k ]2

=
1
2

N∑
n=1

‖x(pn, w) − tn‖2 (2.21)

The error function sums the squares of the deviation of the network
outputs xn for the given weights w from the target values tn. [5]

2.2.2 Error Back-propagation

The error function (2.21) tells us to what degree the neural network model
fits the training data. We now need to consider how the network is trained
to achieve a good model fit, i.e. how we can minimise the error function E.

This tuning of the neural network is done by adjusting the weight. The
question is which weights are responsible for a poor performance. This is
known as the credit assignment problem.

The solution is to evaluate the derivatives of the error E with respect to
the neural network weights w. The sum-of-squares error function (2.21) is
a differentiable function. We use the derivatives to find the weights, that
minimise the error function by using an optimisation method such as gradi-
ent decent. The algorithm we have used is the more powerful Levenberg-
Marquardt algorithm. It generally results in faster training. This algorithm
is discussed in detail in [5].

Let us shortly summarise the general concept of this optimisation al-
gorithm.

The evaluation of the derivatives of the error function is called error back-
propagation because the errors are propagated backwards through the net-
work.

10For a more detailed derivation see [5]. Note that w are the network weights, xk the kth
network output, and tn

k the target value for the kth output for the nth data vector of
the training set.
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2.2 System Identification

The error function 2.21 is a sum over the errors for each pattern in the
training data set in the following way

E =
∑
n

En

The error function En for the pattern n can be written as a differentiable
function of the network output variables: En = En(x1, . . . , xc). The de-
rivatives of the error function E can now be expressed as the sum over the
training set patterns of the derivatives for each pattern.

∂E

∂wji
=

∑
n

∂En

∂wji
(2.22)

Let us therefore look at the derivative of the error function En for one
pattern. Using the notation of section 1.2.1 we introduce δ, a so called error
for each unit as follows

δj ≡
∂En

∂aj
(2.23)

For each output unit k this results in

δk ≡ ∂En

∂ãk
= g̃ ′(ak)

∂En

∂xk

= yk − tk (2.24)

and for the hidden units this results in

δj ≡ ∂En

∂aj
=

∑
k

∂En

∂ãk

∂ãk

∂aj

= g ′(aj)
∑

k

Wkjδk (2.25)

The derivatives with respect to the weights are now given by

∂En

∂wji
= δjpi

∂En

∂Wkj
= δkg(aj) (2.26)

The back-propagation procedure now works as follows: [5]
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Chapter 2 Neural Network Model Based Predictive Control

1. Apply the input pn to the neural network input and find the activa-
tions of all units

2. Evaluate all δk for the output units using (2.24)

3. Back propagate these values using (2.24) to find all δj for the hidden
units

4. Evaluate the derivatives with respect to the weights using (2.26)

As noted above, the derivatives are summed up over all training patterns
as noted in (2.22).

Once we know what all derivatives are, we can update the weights. As
noted above several strategies for parameter optimisation exist. The sim-
plest is the fixed-step gradient descent technique. By summing up the de-
rivatives over all the patterns in the training set, the weights are updated
using

∆wji = −η
∑
n

δn
j xn

i (2.27)

where η is the step length.
We will be using the Levenberg-Marquardt algorithm that is described in

textbooks such as [5]. It generally results in faster training.

2.2.3 Pre-processing and post-processing

If we have a-priori knowledge, there is no need to re-invent this know-
ledge with the neural network. If we instead move this knowledge outside
the neural network, we will let the neural network focus on what we don’t
know, yet. Pre-processing and post-processing is one way of utilising a-
priori knowledge by moving it outside the context of the neural network.
Proper pre-processing and post-processing can effectively improve network
performance.

A very simple, yet effective transformation of input and output data is to
transform all inputs and outputs to zero mean and unit standard deviation.
This way, all input and output levels will be of equal magnitude. The neural
network model will not have to model the mean and standard deviation of
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2.2 System Identification

signals, and this will result in better convergence of the neural network error
function.

We can use the available training data set to estimate the mean and stand-
ard deviation of the neural network inputs and outputs. Then we use a lin-
ear transformation, that will map all signals to zero mean and unit standard
deviation based on those estimates.

Another case where pre-processing can be of use, is if we know (or sus-
pect) the input vector to contain redundant information. We want to keep
the number of neural network inputs at a minimum without loosing valu-
able information contained in the input vector. Principal component ana-
lysis is a tool to reduce the dimension of the input vector while minimising
information loss. We have not used principal component analysis in this
present work.11

2.2.4 Model order selection

A network of too low order will not be able to fit the training data very well
– it will not be flexible enough.

With growing model order the computation work needed for training
will increase, and – what is worse – the demands on the size of the training
data set grow exponentially. Simply put, n input and output variables span
an n-dimensional space. The training data set has to fill up this space. This
fact explains the requirement for an exponential growing data set and is
referred to as the curse of dimensionality.

Finally we have to ensure that the neural network will not over-fit. We
want the network to stay generic. If we present it with a new set of data, we
expect it to perform equally well on this set, as it did on the training set.

The topic of formal model order selection is beyond the scope of this
thesis. It is a complex topic, and many methods’ complexity and demand
for questionable assumptions make a trial and error approach a plausible
alternative.

Furthermore it must be noted that if we choose a model order that is too
high, but which we can train successfully, pruning methods such as optimal

11Principal components analysis is also know as Karhunen-Loéve transformation.
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brain surgeon allow us to reduce the model order in a hands-on way, while
keeping an eye on the network performance.12

Whichever method for model order selection is the most feasible depends
very much on the problem at hand and available computation power. We
shall not dig into this any further.

Let us turn towards methods for ensuring good generalisation, i.e. meth-
ods that will keep the neural network from over-fitting training data while
allowing the network to be flexible.

2.2.5 Regularisation

As noted above, we need to avoid over-fitting on the training data. One
way of doing this is to apply regularisation. In the following we shall shortly
summarise the general concept.

Training of the neural network aims at minimising a given error function
E that describes how well the neural network fits the training data.

If we use regularisation, we use a modified error function Ẽ by adding to
the standard error function E a penalty Ω, such that

Ẽ = E + φΩ

where φ is a scalar weight on the penalty function. The penalty function
Ω enforces a penalty on network weights, that over-fit the training data.

Different approaches for choosing the penalty function Ω exist. One of
the simplest and most widely used regularisers is called weight decay, in
which the penalty function consists of the sum of the squared weights. We
shall not go any further into this topic as it is well covered in neural network
literature such as [5]. We will use early stopping instead of regularisation as
noted below in section 2.2.6.

2.2.6 Neural Network Training

During training we minimise the error function introduced in section 2.2.1.
This way the neural network will be made to model the structure of the
training data.

12Pruning algorithms are not discussed here. Refer to [5] for more on this topic.
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2.2 System Identification

We train the neural network using back propagation as discussed above in
section 2.2.2. We’re using the Levenberg-Marquardt algorithm for weight
updating, and this algorithm is implemented in the Matlab Neural Network
Toolbox.

To get a decent starting point for the network weights, we use a method
similar to what is called the hold out method: We train 6 networks with
random start guesses using the training data set. We only train 50 training
epochs (steps). Then we evaluate the error function on the validation set
and choose the network with the best performance. This network is then
further trained using early stopping.

The initial cross-validation ensures, that our random start-guess is de-
cent, and that our network is likely to have good convergence. We’re less
likely to be stuck in a local minimum far away from the optimal solution.

The neural network training is then used on this network until termin-
ated by early stopping as explained below.

The overall training approach can be summarised as:

repeat 6 times
choose random start weights for neural network
train network for 50 epochs

end
choose best of above networks
train network using early stopping as termination

Early Stopping

It is important for the network to generalise well. The approach to ensure
good generalisation we have chosen is called early stopping. We use two data
sets for this method: One training data set and a separate validation data
set.

While training the neural network using an error function on the training
data set, we investigate the performance of the network on the validation
data set. Poor generalisation will show as an increasing error function on
the validation data set.
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tank 1 tank 2

q1

Ut = q

q2

yt = H2

H1

Figure 2.3: The coupled tank system has one input, the flow ut = q into
tank 1, and one output, the height yt = H2 of tank 2.

Early stopping will stop the training algorithm once the error function
increases on the validation set. In this way we avoid over-fitting.13

2.3 Implementation of the Coupled Tank System
Controller

The first out of two plants to be controlled with the non-linear GPC is a
coupled tank system. It is a single-input-single-output (SISO) system.

2.3.1 System Description

The system is illustrated in figure 2.3. The flow into tank 1 is the control
signal u, while the level in tank 2 is the plant output y to be controlled.

13For quadratic error functions, early stopping gives rise to a behaviour similar to the one
when using weight decay regularisation.[5], p. 345.
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2.3 Implementation of the Coupled Tank System Controller

Physical sizes are:

C = 1.539m g = 9.81m
s2

al = 5mm ao = 8mm

σl = 0.44 σo = 0.31

Where C is the cross section area of the tanks, al and ao are the cross
sections of the pipe connecting the two tanks and the pipe leaving tank 2
respectively. σl and σo are the flow coefficients such that the flow between
the tanks ql and the flow out of tank 2 qo are

ql = σlal

√
2gY2 (2.28)

qo = σoao

√
2gY1

where Y1 = H2 is the level in the second tank, and Y2 = H1 − H2 is the
difference in tank levels. The tank height is 0.6m.14

Introducing

a1 = σoao

√
2g

C
a2 = σlal

√
2g

C

we can write the plant’s system equation as

Ẏ = A · Y + B · u[
Ẏ1

Ẏ2

]
=

[
−a1 a2

a1 −2a2

] [ √
Y1√
Y2

]
+

[
0
1
C

]
u (2.29)

where u is the control signal. Note that for the plant output we have y =

Y1.
We will be using a sampling frequency of Ts = 5s as suggested for this

system by [6].

2.3.2 System Identification

In order to control the coupled tank system with a GPC we need to train a
neural network model. General aspects are explained in sections 7 trough 2.2.6.

14We assume that Y1 ≥ 0 and Y2 ≥ 0. For the ODE solver to work properly at Y1 or Y2

close to zero we have to expand equation (2.28) to hold for negative values as well.
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Model Structure

As we assume that the plant obeys (2.29), we will feed the states

Y =

[
Y1

Y2

]
=

[
H2

H1 − H2

]
(2.30)

into the model as inputs along with the current control signal and train the
network to predict the states for the next time step (t + 1). Figure 2.2 on
page 15 illustrates the interconnection.15

Altogether the neural network has three input nodes: The control signal
and the tank levels at time t. There are two model outputs: the predicted
tank levels for both tank 1 and tank 2 one time step ahead, i.e. at time
t + 1.

Since we use early stopping, we’re not troubled with over-fitting. This
allows us to select a flexible network structure. We have chosen to use 12
hidden sigmoidal units. As we will see this number is large enough for the
neural network to be able to model the plant. See also section 2.2.4.

The resulting model structure is sketched in figure 2.4.

Input Signal Design

In order to be able to train the neural network model (system identifica-
tion), we need data that describes the entire operating range of the plant.
Demands on input signals are stronger than for linear models. As stated in
literature such as [4], the input signal should represent all amplitudes and
frequencies.

Using a level-change-at-random-instances signal is suggested as it will give
good excitation of the plant. This is true in a standard case. However, with
the coupled tank system we can not use such a signal as input. This is due
to the nature of the plant. If we did, the first tank would either flood or be
at a low level all the time.

To get an excitation signal that will make the plant go through all its op-
erating range, we need to investigate the coupled tank system more closely.

15Section 2.2.4 discusses the feasibility of this approach. The availability of state informa-
tion is questionable in real-world implementation, but we will ignore this fact.
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u

Y1

Y2

1 1

Y2
^

Y1
^

Figure 2.4: The structure of the neural network that is used to model the
coupled tank system has 3 input units, 12 hidden sigmoidal
units and 2 output units. Additionally there is one bias unit for
both the input layer and the hidden layer (only 5 hidden units
are shown here).
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We need to find an appropriate control strategy that is both random and
controlled. It needs to be random in order to excite the system and yield a
rich data set for training, but at the same time it needs to be controlled in
order to make the state of the tank to change through the entire operating
range.

If we wanted to raise the level in tank 2, we would fill a lot of water into
tank 1, and then stop filling in water. If we wanted to lower the level in
tank 2, we would stop filling in water into tank 1 for some time. Our input
signal needs to mimic this behaviour in some sort of way. At the same time,
we need to note that the pump controlling the inflow into tank 1 can not
operate in reverse. That is, we can not use negative control signals. While
the model needs to learn this non-linearity near u = 0, there’s no point in
the control signal being negative for long periods of time.

We have all these observations put together into the following algorithm
used for creating the input data:16

• As a starting point, we use a level-change-at-random-instances algo-
rithm. The probability of changing the control signal for this algo-
rithm is set to 5%. To help the control signal from wandering off
into negative (and meaningless) values, there is a slight tendency for
the change of the control signal to be positive.

• If the tank level in tank 2 is above a high mark of 0.55m for more
than 25 consecutive sampling periods, the control signal is fixed to
zero for a random count of sampling periods.17

• If the control signal wanders off below zero for more than 60 samp-
ling periods, the control signal is reset to some random, positive
value.

This algorithm has proved to create data sets with rich excitation. One
resulting training set with 40.000 samples is depicted in figure 2.5. The
bottom graph shows the state of the algorithm.

16Implemented in createtrainset.m and nnmodel.m in section A.1.7 and A.1.6.
17The tank height is 0.6m and units are SI.
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Figure 2.5: The training set with its 40, 000 samples. y = Y1 and Y2 are
the model states corresponding to the tank level in tank 2 (y)
and the difference in tank levels (Y2). The second graph shows
the control signal, and the third graph shows the action of the
input signal generation algorithm. a = 0 and a = 1 corres-
pond to the level-change-at-random-instances algorithm, while
a = −1 corresponds to a control signal fixed at zero (too high
tank level), and a = −2 corresponds to a reset of the control
signal because it has wandered of into negative values.
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Figure 2.6: The neural network performance during training. The x-axis
shows the training epochs / iterations. The performance is eval-
uated on both the training data set and the validation data set.

Once the data set is created, it is used to estimate the mean and variance
of the neural network model input and output signals. The estimates are
then used for pre-processing and post-processing as noted in section 2.2.3.

Neural Network Training

With the training data set and validation data set ready, the network is
trained as explained in section 2.3.2. The performance during training is
shown in figure 2.6.

Implementing Predictive Control

Using the neural network model with predictive control is done as noted in
section 2.1.2. But the coupled tank system again needs special attention.

What is problematic in this case is the fact that a negative control signal
doesn’t have any effect beyond that of a zero control signal. The gradient
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2.3 Implementation of the Coupled Tank System Controller

for a negative control point hence is zero, and this is problematic for the
off-the-shelf Matlab optimisation algorithm fminsearch.

What we need to do is to find the minimum of a constrained multi-
variable function. The Matlab function fminsearch can minimise a multi-
variable function, but it does not enforce constrains on the variables. In
order to achieve this, we use iterative calls of this optimiser. Between calls
we adjust the resulting variables (i.e. control signal) by re-setting negative
values to zero:

repeat 8 times
minimise U according to cost function

using 4 * N_U iterations
reset negative values of U to 0

end

The performance is discussed in the next section.

2.3.3 Performance

We will first look at the neural network model’s ability to predict future
plant outputs.

Time Series Prediction

To investigate the model’s performance, we will feed the same random con-
trol signal into both the plant and the model. The random control signal is
given by

ut =

{
ut−1 + et with a probability of 95%
1 · 10−3 otherwise

(2.31)

where et is a white noise sequence with zero mean and a variance of σ2
e =

10−4.
A simulation series of 1000 samples and their corresponding one-step-

ahead prediction are gathered. The resulting information is used to calcu-
late the squared multiple correlation coefficient R2:

R2 =
V(y) − V(ε)

V(y)
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Figure 2.7: The model error ε compared to the plant output y for a predic-
tion series. Note that the model error uses the right side axis,
while the plant output uses the left side axis. The difference in
magnitude is ≈ 200.

where V(·) is the variance, and ε = y − ŷ. The estimated variances result
in

R2 = 0.9935

This coefficient measures how much of the information on y is contained in
the estimate ŷ. R2 = 0.9935 is a high value and indicates good estimation.

Another way to investigate how good predictions are is to look at the
cross-correlation coefficients.

Tests show that the error ε is correlated with both the plant output y and
with the control signal u. This must be seen in light of the high multiple
correlation coefficient R2:

The error is very small compared to y and u as can be seen in figure 2.7
and hence the cross-correlation can not be used to support a higher model
order.

Finally we will feed a random control signal as given by (2.31) into both
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Figure 2.8: To test the model’s ability to predict the plant output the same
random control data is fed into the plant and the model. At
every 100th sampling step the model is re-calibrated with the
real plant. The resulting output is shown above. It is apparent
that the model copes quite well with the prediction horizon of
100 steps.

the plant and the model. This time the model is doing a multi-step ahead
prediction.

Figure 2.8 shows a simulation where the model is synchronised with the
real plant at every 100 simulation steps. It is apparent that the neural net-
work model can predict the plant output to a great degree of precision over
a 100 samples horizon.

When selecting the horizon N2 of the predictive controller it is important
that the model can make accurate predictions within this horizon. Other-
wise the iterative optimisation of the control strategy with respect to the
cost function will not converge to any meaningful result.

With the above results values as high as N2 < 100 seems reasonable, but
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we will use a smaller value as noted below.

Predictive Control

The algorithm for the predictive controller is discussed in section 2.1 and
the following sections.

There are a number of parameters we have to choose: the control horizon
Nu, the costing horizon N2 and the control weight ρ.

Let us first look at the horizons. We have chosen the values 18

Nu = 10 N2 = 40

The accumulation of errors in the prediction of future plant outputs lim-
its the horizon N2. We can not increase N2 beyond a certain limit, where
the accumulated error starts to have impact.

As noted in [1], the costing horizon has to be large enough to extend
over the dynamics of the plant. In other terms, the costing horizon has to
be large enough to allow the algorithm to see the outcome of the predicted
controls.

At the same time, an increased N2 increases the computation time needed
in a quasi-linear way, as we need to predict the plant output for a longer
time series for each evaluation of the optimiser.

As we have seen above N2 = 40 is within the model’s ability to predict
future outputs and it also covers the dynamics of the plant as we shall see
in simulations done below.19

The choice of control horizon Nu has serious impact on the computa-
tional burden. As noted in section 2.1.2 increasing Nu will increase the
dimension of the space in which the optimiser searches for an optimum.
The limited computer power and the computation-overhead required by
Matlab enforce the moderate choice of Nu = 10.

18Whether N2 = 40, Nu = 10 are optimal is not evaluated here. The values are a trade
off between computational burden and controller performance. They have been chosen
most of all since they work well, not because they have been found to be optimal. [1]
and [2] discus the choice of Nu and N2 in more detail.

19Cf. figure 2.8 on page 33.
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The third parameter to fix is ρ. We have chosen a value of ρ = 100,
which allows rather large control signals.

Even with the above choice of parameters the computational burden was
heavy. A simulation of the system with controller running 800 time steps,
i.e. 800Ts = 4000s ≈ 1h6 ′ as shown in figures 2.9 and 2.10 took 2 hours
of computation time.20

For this reason, the optimiser that searches for a projected control series
is terminated after 320 iteration steps.21 To help the divergence of the
algorithm, the search for the optimal control sequence takes the sequence
found at t − 1 shifted one time step and re-uses it as start guess for the
projected control signal series.

Simulation-runs with these values are shown in figure 2.9. Two features
are immediately evident: The noisy appearance of the control signal u and
the dive of the plant output y preluding each increase in the reference signal
r.

The noise-like appearance of the control signal u is an artefact from the
termination of the optimiser on the projected control series. Increasing
the number of iterations assigned to each optimisation run would help this
situation, although real impact would be reached by decreasing the control
horizon Nu.

The dive of the plant output y preluding an increase in the reference
signal r may look strange at first, but it is a result of the predictive nature
of the controller. By letting the plant output y go a bit below the reference
signal r, the subsequent increase in plant output can be shaped in such a
way, that minimises the control cost function (2.1).

There are two more things that are important to note. The first one
is best illustrated in figure 2.9(d), the results of a simulation with a level-
change-at-random-instances reference signal. During the time interval

120 ≤ t ≤ 400

the reference signal is constant. The plant output is close to the reference,

20This time needed will decrease as computer power increases. Implementing the algorithm
in a more efficient computer language would also dramatically improve performance,
but this is beyond the scope of this thesis.

21The number of evaluations (i.e. predictions) done is somewhat bigger.
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Figure 2.9: Simulation-runs of the neural network model based general pre-
dictive controller. Note that the axes of the control signal u have
a different scale for figures 2.9(c) and 2.9(d) as compared to fig-
ure 2.9(a) and 2.9(b). This explains – to some extend – why
the control signal appears to flutter more in the first two graphs.
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Figure 2.10: Simulation-runs of the neural network model based general
predictive controller with a step reference signal

but it ripples about the reference. The reason for this is the behaviour of
the control signal which in turn is due to the termination of the optimiser
as noted above.

The other one concerns the behaviour shown in figure 2.9(c). Here the
plant output drifts away from the reference in the time interval 600 ≤
t ≤ 750. This is not the diving behaviour discussed above. Note that the
costing horizon is only N2 = 40.

The explanation is more cumbersome and includes some of the above.
Note that we at this point need to hold the plant output at a level of r ≈ 0.2
for a long period of time. This requires the input signal to be small for that
period of time.

The problem with small input signals is that there is a discontinuity at
u = 0. The control signal u can not go below u = 0, or said in a different
way, the gradient of u on the negative side of u = 0 is non-existent or zero
(depending on interpretation). This results in very poor performance of the
simplex optimiser for values of u close to u = 0.

For the same reason, the control is more calm for higher values, such as
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in figure 2.9(c) for 350 ≤ t ≤ 450 and in figure 2.10 for t ≥ 450.

2.3.4 Discussion

Overall the coupled tank system shows that the approach to neural network
based predictive control illustrated in this test is doable – at least for this
system.

But at the same time it emphasises the fact that this straight forward
concept results in many problems that are not easily overcome.

The predictive control algorithm needs a good predictor and this prob-
lem was solved. Demands for predicting over a time horizon that incorpor-
ates the plant’s dynamics were met.

The problem of optimising the projected control signals was not solved
in a satisfactory way. The resulting control signal is very sluggish and to
some extend noisy due to convergence problems of the optimiser. The hard
constraint of the control signal u > 0 caused problems with the simplex
optimiser.

Never the less, the controller is able to control the plant. Even though the
noisy nature of the control signal propagates to the plant output, the plant
output follows the reference as one would expect for a receding horizon
method.

Additional work on a better optimisation algorithm for the projected
control series is likely to move the performance of the controller to different
levels.

2.4 Implementation of the Acrobot Controller

The second of the two plants faced with the non-linear GPC is the so-called
acrobot as implemented in [7]. The acrobot is a highly non-linear inverse
pendulum.

We want the control system to keep both arms pointing upwards. A
linear and a pseudo linear controller have been implemented in [7], both
with a very limited region of attraction due to the systems non-linearity.

As we shall point out, general predictive control of this system faces severe
difficulties and no working implementation was found. Simply put, this is
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v2

v1

ar
m

 1

arm 2

Figure 2.11: The acrobot consists of two arms. The end of the first arm is
mounted on a bar and can freely rotate round this end. The
other end connects to the second arm. A servo can act on this
joint and create a moment on the second arm.

due to problems with modelling the acrobot and the length of the predic-
tion horizon required.

2.4.1 System Description

The acrobot is sketched in figure 2.11. Although several equilibriums exist
for the angles v1 and v2, we are interested in controlling the system such
that the angles stay close to (v1, v2) = (0, 0) which corresponds to an up-
right position of both arms.

Derivation of the kinematic equations is done with some detail in [7].
The results are, that the kinematics of the acrobot are governed by the
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following ordinary differential equation (ODE):

ẏ =


y3

y4
−a2(y

2
4−2∗y3∗y4)sin(y2)+a4sin(y1)+a5sin(y1−y2)+a3+a2cos(y2)u

a1+2a2cos(y2)

u


(2.32)

The state vector y is defined as

y =


y1

y2

y3

y4

 =


v1

v2
dv1
dt
dv2
dt

 (2.33)

and the physical parameters are transformed into a1, a2 etc. as follows

A =


a1

a2

a3

a4
a5

 =


m1l

2
c1 + m2(l2

1 + l2
c2) + I1 + I2

m2l1lc2

m2l
2
c2 + I2

g(m1lc1 + m2l1)

gm2lc2


The physical parameters values are

l1 = 0.438m l2 = 0.410m

lc1 = 0.102m lc2 = 0.100m

m1 = 3.49kg m2 = 1.03kg

I1 = 91.3 · 10−3kgm2 I2 = 17.5 · 10−3kgm2

g = 9.83m
s2

Notes on the Control Goal

As noted above, we want the acrobot to keep close to the upright (v1, v2) =

(0, 0) position. We will have to narrow down our design goal further as
noted in the following.

The controllers constructed in [7] have a very limited region of attraction
(ROA). The region of attraction for the linear controller suggested in [7] is
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2.4 Implementation of the Acrobot Controller

limited to ±1.5◦ for the angle v2 while limits for the angle v1 are slightly
wider. A second, so-called Isidori controller has a ROA of approximately
±30◦ for v1 and no limits on the second angle v2.

Adding to this the fact that both controllers take 2 − 4s to catch the
acrobot from within the controllers ROA, we need to limit our expectations
as to what the model based controller will be able to do.

We will therefore target a ROA of size comparable to the one of the
Isidori controller.

2.4.2 System Identification

In the following, we will summarise the system identification done for mod-
elling the acrobot system with a neural network model.

We will use a neural network with a structure very much like the one
used for the coupled tank system as described in section 2.3.2. The four
parameters y = [y1, y2, y3, y4]

T corresponding to (2.33) will be used as
model states. The physical acrobot implemented in [7] allows measurement
of all these states.

We will use y as the input to the neural network along with the current
control signal u, while the network output will be the predicted state ŷ.
This results in a total of 5 input signals and 4 output signals.

We have used as much as 30 hidden units, to get a very flexible network.
The resulting model structure is sketched in figure 2.12.22

We note that the network has to model the wrap-around of the angles v1

and v2, i.e. the fact that the angle 2π − δ is next to 0 (δ being some small
value). It is furthermore important to note that the kinematic equations are
quite complex in nature.

These two facts cause the desired input-output mapping to be highly
non-linear and support the fact that we need to use a high number of hid-
den units.

[7] suggests a sampling frequency of Ts = 1
64s. We have chosen to use the

slightly faster Ts = 1
100s for reasons of convenience (more straightforward

interpretation of sample count vs. time).

22We would still need higher precision of the model in order to get a usable model based
predictive controller. This is discussed later in section 2.4.3.
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ut-1

y'1

y'2

y'3

y'4

Figure 2.12: The structure of the neural network used to model the acrobot.
Inputs are the current state along with the current control sig-
nal. Output is the next state. While only five are shown here,
there are a total of 30 hidden sigmoidal units in the model.
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Input Signal Design

The unstable nature of the acrobot makes it rather difficult to gather useful
data for training the neural network model. We want to achieve a good
model for the acrobot near the upright position. It is also important to
note that the linear controller designed in [7] moves the angle v2 as low as
−60◦ ' 1.0rad to catch the arm from a starting point where v1 = v2 =

1.2◦ ' 0.0209rad. This tells us that we need a wide range of available
data, especially for v2. (See figure 5, p. 22, [7])

Early attempts to start the acrobot near equilibrium and then use a linear
controller to hold the acrobot near this position failed as the acrobot would
fall off and quickly leave its region of attraction. Furthermore, the simple
behaviour of the linear controller would limit the effective dimensionality
of the training data set.

What turned out to be a more effective approach is to start the acrobot
at a random state near the equilibrium situation and then use a combina-
tion of the earlier linear controller and a level-change-at-random-instances
signal, i.e. there’s a 20% chance, that we use the linear controller (as long
as it generates a control signal within certain bounds) – otherwise we use a
level-change-at-random-instances signal as control signal (Cf. section 2.2).

The control signal is hence given by

ut =

{
−K · Yt pt > 0.8 ∧ |K · Yt| < 300
δt otherwise

(2.34)

where ut = −K · Yt−1 is the linear controller, pt is a uniformly distributed
random number sequence on the interval [0,1], and δt is a level-change-at-
random-instances signal.

This combination of the deterministic and control gives good excitation,
but due to the unstable nature of the plant, the acrobot will soon leave the
region that is of interest to us. We solve this problem by concatenating
several short simulations as follows:

Once the acrobot leaves a defined range v1 < 2 ' 115◦ we restart the
simulation with a new starting point near equilibrium. In this way we
gather a total of 1228 simulation series making up 69, 980 samples for the
training data set. Figure 2.13 shows a few of these simulation series.
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Figure 2.13: Short simulation sets such as the ones shown here are concat-
enated to form data for the training and validation data set.
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Figure 2.14: The neural network performance during training a model for
the acrobot kinematics. The x-axis shows the training epochs /
iterations. The performance is evaluated on both the training
data set and the validation data set.

Before training the network, we have to do some preprocessing on the
data. It is important only to use the modulus of 2π of the angles v1 and v2.
The acrobot kinematics don’t depend on how many times the angles have
turned – only on the position relative to 0. Failing to do this would severely
degrade the information available in the simulation results.

We furthermore use pre-processing and post-processing as noted in sec-
tion 2.2.3 to get zero mean and unit standard deviation signals for inputs
and outputs.

Neural Network Training

With the training and validation data set obtained as discussed above, train-
ing is done as described in section 2.2.6. The performance characteristics
during training are shown in figure 2.14.
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As we will see below, the training of the neural network fails by means of
achieving an accurate model.

2.4.3 Performance

Let us first look at some simulations of time series predictions.

Time Series Prediction

In the same way as we did with the coupled tank system, we will initialise
both the plant and the model of the plant in the same state, and then
investigate the resulting time series of the two.

Figure 2.15 shows a few examples of simulation runs. The plant and the
model are set in the same state and then the same control signals are fed
into both the model and the plant. It is immediately apparent that this
doesn’t work very well.

While the predictions in figure 2.15(b) follow each other rather closely
for all of the 25 simulation steps, all other plots in figure 2.15 show a sad
story. The angles of the model hardly follow the plant’s angles at all.

While the difference in angular velocity of angle v1 is at times huge, even
the other offsets are by far too large in order to be useful for cost function
evaluation.

Predictive Control

Since we can not do short term prediction of the plant output accurately,
there is no hope that we can use a predictive controller on the acrobot
system.

It is important to remember that other controllers, such as the Isidori
controller suggested in [7] take almost 4s to stabilise the system from a
start position where v1 = v2 = 10◦ ' 0.175rad.

If the model based predictive controller at hand would have a similar
performance, it would have to have a costing horizon N2 that would cover
approximately 4s. With a sampling period of Ts = 1

100 this equals to N2 =

4000.
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Figure 2.15: These graphs show simulations of the neural network and the
plant. The model is synchronised with the plant at time t = 0
and then the plant and model are fed with the same control
signal. The resulting states for both the plant and the model
are shown. v1 and v2 are the angles of the plant, while vm1

and vm2 are the angles of the model. Note that the angles
wrap around at ±π.
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This is far beyond the capabilities of the present model. Hence we must
conclude that the present approach to construct a neural network model
based predictive controller for the acrobot system has failed.

2.4.4 Discussion and Improvements

As noted in the previous section 2.4.3, the prediction done by the model is
by far not accurate enough to allow the controller work.

The reason why the model doesn’t play nicely is that the plant’s behaviour
is too complex for the above approach.

A sincere refinement of the model is outside the scope of this thesis,
but we will discuss a few thoughts on what could be done to improve the
performance.

Improving the Model

In our neural network based model, we’re using the neural network to
model the plant behaviour. The only pre-processing and post-processing
we do is to get zero mean and unit standard deviation on input and output
signals.

The neural network will then have to model the underlying function of
the plant. We know that this is possible since the two-layer neural network
we are using can approximate any smooth function for a sufficiently high
number of hidden units. But it appears not to be very efficient.

If we look at the system model (2.32), we see that it contains a lot of
information on how the acrobot state y behaves. In our first approach we
were not utilising any of this a-priori knowledge.

One solution would be to use an ODE solver to solve equation (2.32)
and to use this to predict future plant states.23

This way we would leave the neural network based model altogether.
There are two things worth noting regarding this solution. First of all,
solving an ODE in an on-line system is very time consuming and places a
high computational burden on the control system.

23ODE: ordinary differential equation.
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Another thing is that the ODE solver is fixed, and is not able to model
differences between the ODE and the plant.

An in-between solution would be to incorporate some of the information
of equation (2.32) into the model.

The state equation (2.32) tells us what the time derivative of the states is.
If we introduce Y ′ as a function of the state Y as follows

Y ′(Yt) = Ts · Ẏt (2.35)

= Ts


y3

y4
−a2(y

2
4−2∗y3∗y4)sin(y2)+a4sin(y1)+a5sin(y1−y2)+a3+a2cos(y2)u

a1+2a2cos(y2)

u


this corresponds to a time-wise linear approximation.

The equations for the state one time step ahead can now be expressed as

Yt+1 = Yt + Y ′(Yt) + δY (2.36)

Here δY denotes the mis-match of the linear Yt+1 = Yt + Y ′(Yt) model.
We can now use a neural network to model δY . In this way, we have

moved some of the non-trivial a-priori knowledge of kinematic equation (2.32)
outside the neural network. But at the same time, our neural network is still
able to model mis-match between (2.32) and the plant. A diagram of such
a model is shown in figure 2.16.24

A different solution would be to calculate only the time derivate of the
state y3 and use this as an auxiliary input variable ya

ya ≡ ẏ3

=
−a2(y

2
4 − 2 ∗ y3 ∗ y4)sin(y2) + a4sin(y1)

a1 + 2a2cos(y2)
(2.37)

+
a5sin(y1 − y2) + a3 + a2cos(y2)u

a1 + 2a2cos(y2)

The variable ya would then be used as a 6th input to the neural network
that is set up in the usual way. This is illustrated in figure 2.17.
24Obviously we could move even more information outside the neural network by adding

higher order derivatives to the equation (2.36).
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Figure 2.16: Some of the a-priori knowledge is moved outside the neural
network, by using a model structure corresponding to equa-
tion (2.36) as shown here.
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Figure 2.17: A different way of utilising the a-priori knowledge is to feed
the time derivatives of the a model structure corresponding to
equation (2.36) as shown here.
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Since the derivatives of y1, y2 and y4 are given by y3, y4 and u respect-
ively, all time derivatives are fed into the neural network in this way – except
for a scaling by the sampling time Ts. The scaling is not a problem as this is
easily achieved by the neural network. In fact the pre-processing that scales
the inputs to unit standard deviation would remove such a scalar anyhow.

2.5 Chapter Discussion

The general predictive control strategy introduced in the beginning of this
chapter has an intuitive interpretation and is known to work well for many
linear applications.

We have seen how it easily extends to application on non-linear plants.
Prediction of future plant outputs is done using a neural network based
model of the plant. The projected control series is then optimised based on
those predictions.

This extension is mainly troubled by two problems: The process of pre-
dicting future plant outputs is non-trivial. While the GPC strategy de-
mands a costing horizon of size comparable to the plant dynamics, the pre-
diction of the plant output may not work over this horizon as was shown
in the acrobot implementation in section 2.4.

The second problem is the one of finding an optimal control strategy.
While this problem in many cases is merely one of computational speed,
other cases such as the coupled tank system in section 2.3 require special
care when designing an optimisation algorithm to ensure convergence of
the projected control series.
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Chapter 3

Direct Neural Network Control

The idea of this controller is very simple. The control diagram is shown in
figure 3.1. It is an output feedback controller with a neural network at the
core of the controller.

The controller implements some function f on past and present refer-
ences r and plant outputs y and on past control signals u:

ut = f(rt, rt−1, . . . , yt, yt−1, . . . , ut−1, ut−2, . . .) (3.1)

Section 3.1 discusses how this controller is constructed using a neural
network, and how the controller is tuned to minimise a given cost function.

Sections 3.2 and 3.3 describe two implementations of the direct neural
network controller. The first implementation controls a reversing trailer
truck to let it follow a given path. The second implements a new controller
for the coupled tank system from section 2.3.

3.1 Controller Design

The direct neural network controller we will describe here implements the
function (3.1) in the following way:

A regressor function maps the known data at time t into a regressor ϕt

of fixed dimension:

ϕt = ϕ(ut−1, ut−2, . . . , yt, yt−1, . . . , rt, . . .)
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plant
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NN-controller

y

ut-1
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Figure 3.1: The system diagram of a plant controlled directly by a neural
network controller. Section 3.1 discusses the design of such a
controller.

The regressor ϕt is then used as input to a neural network, and the neural
network output is the control signal.

The regressor has to extract the useful information from all known in-
formation. A very simple implementation would be to use just a few of the
known data values directly, such that e.g.

ϕt = ϕ(ut−1, ut−2, . . . , yt, yt−1, rt, . . .)

= [ut−1, yt, rt]
T (3.2)

A more complex approach is to use some linear mapping such as principal
component decomposition to remap a larger set of known data to a set of
neural network inputs with lower dimension.

In the following we will only use the first method corresponding to equa-
tion (3.2).

Next section discusses the number of input data to use as a part of the
model order selection followed by section 3.1.2 on neural network training.

3.1.1 Model order selection

The number of neural network outputs is fixed for this controller as the
only output is the control signal. Tunable parameters are the number of
hidden units and the input units.

The neural network controller we will use has inputs that are the outputs
of a lag-network as shown in figure 3.2 since we are using a regressor ϕt of
a type as discussed above.
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Figure 3.2: The lag network feeds the neural network with current and old
signals by storing signals internally

The number of input units hence divides down to three distinct paramet-
ers: We can adjust the number of inputs originating from reference signals,
plant outputs and control signals respectively.

Determining the number of input signals can be aided by using covari-
ance analysis on time series of the input signals (i.e. r, u and y). This is
non-trivial, however, since y and u are feed-back signals that are by nature
correlated to themselves.

For the systems that this method was tested on, sparse lag networks with
e.g. only one of each signal r, y and u worked just fine. No effort has been

55



Chapter 3 Direct Neural Network Control

made to investigate the results of an increased input signal dimension.

3.1.2 Neural Network Training

Training of the neural network is done by iteratively simulating the system
consisting of controller and plant, and then evaluating the resulting time
series of plant outputs (y1, y2, . . . , yN) and control signals (u1, u2, . . . , uN)
with respect to a given cost function J:1

J = f(y1, y2, . . . , yN, u1, u2, . . . , uN) (3.3)

An optimisation algorithm is used to minimise the cost function through
this iterative process.

It is important to understand how this is fundamentally different from
training a neural network using back-propagation. Neural network training
as discussed in chapter 2 uses a training set of neural network inputs and
outputs (or: targets) and tries to train the network to this data. In that
case the error function E during neural network training is evaluated on the
neural network outputs, ỹt, compared to the training data set targets yt,
i.e. E =

∑
f(yt, ỹt).

The present neural network training works in a very different way. For a
given neural network we run a simulation, and then evaluate how well the
controller did the job using the cost function (3.3).

This works as follows:

1. run simulation of system

2. evaluate result with respect to given cost function (J)

3. choose new neural network weights according to optimisation algo-
rithm

4. go back to step 1 as long as stop criterion is not met

1The cost function will in the general case also include the reference signal, but this has
been omitted here for easy readability. The trailer truck discussed in section 3.2 has no
reference signal (i.e. ∀t : rt = 0) and the cost function does not have a reference term
in that case.
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The stop criterion for the optimisation algorithm would be some com-
bination of a maximum number of iterations and some termination tole-
rance on the cost function.

The optimisation algorithm used in this work is Matlab’s fminsearch.

Start Guess

The implementations we look at later in this chapter “get away” with a
random start guess, but for some systems a decent start guess can be very
critical for the optimisation algorithm to converge.

A simple, yet powerful solution to finding a decent start-guess is to use a
linear controller and approximate this controller with a neural network. In
this way we obtain a start guess for the neural network weights.

First we design a linear controller (e.g. LQG) using a well-known design
method on a linear approximation of the plant. This controller can be
implemented as

ut =
[

w1 w2 w3 · · ·
]

(3.4)[
rt rt−1 · · · yt yt−1 · · · ut−1 ut−2

]T
Then we use a very simple network structure with one hidden unit, no
biases and input units corresponding to the signals available in the linear
controller.

A network with only one hidden node, one output and no bias has the
following transfer function (Cf. equation 1.5):

x = W · tanh

(
d∑

i=0

wjipi

)

For small values, the hyperbolic tangent can be approximated by a linear
function (Cf. figure 1.2). This allows us to approximate the neural net-
work transfer function as follows for small activations (sum of inputs) of
the hidden node:

x ≈ W
∑

i

(wipi) (3.5)
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We can now take the values w1, w2, . . . from (3.4) and use as neural
network weights and set

W = 1

To ensure that the activation (sum of inputs) of the hidden node is not
too far away from the approximately linear region, we can scale the neural
network weights W and w with some scalar k:

w ′ =
w

k
W ′ = kW

The resulting neural network will be a good start guess.
Changing the neural network model to another order is straight forward.

Adding input nodes with zero weight or dividing the hidden node(s) with
corresponding scaling of the neural network weights W and w is trivial.

3.2 Implementation of the Reversing Trailer
Truck

The parametric optimisation algorithm will now be used on a reversing
trailer truck. The controller is steering a reversing truck that pushes a trailer
along a given path. We will first define a coordinate system that eases the
subsequent kinematic system description.

3.2.1 System Description

The problem of reversing the trailer truck along a path is best described
in the coordinate system of the path. Terms such as “along the path” and
“close to the path” are complicated to express in a Cartesian (x, y)-coordinate
system.

Coordinate System

Referring to figure 3.3 we therefore introduce a new (s, d)-coordinate sys-
tem as done in [8].

The coordinates of the point P0 are defined as follows: Let the path to be
followed be denoted by C. For the point P0, let P0,proj be the point on C
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l1

l2

P2
P1

P0

C

P0,proj

α0

α1
α2

n t

Figure 3.3: The path-relative coordinate system and the trailer truck. ~t is
the tangent of the curve C at the point P0,proj, and ~n is the
normal at that point. Angles and physical parameters of the
truck are also shown.
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closest to P0. Now the s coordinate is defined by the distance along C from
the beginning of C (where s = 0). d is defined as the scalar that fulfils

~P0,projP0 = d~n

i.e. d is the signed distance from P0,proj to P0.
Note that the mapping (s, d) → (x, y) is unique while the mapping

(x, y) → (s, d) may be ambiguous.
We will assume that there is a lower bound rmin > 0 to any circle tan-

genting C at two or more points and the interior of which does not contain
any point of the curve.

This assumption limits how close two segments of the path can be to
each other. This implies that the path is not allowed to cross itself. The
parameter rmin also puts a limit on how tight turns the path may take. The
bound rmin > 0 implies, for the curvature curv(s) that

∀s ∈ [0; S] : curv(s) ≤ 1
rmin

(3.6)

where S denotes the path length.
To avoid any ambiguity in the parameterisation one of the control ob-

jectives is to keep the coordinate d smaller than rmin at all times.
In this coordinate system following the path means that we want to keep

d close to 0. We will interpret the angle θ in such a way that θ is close to 0
when we are reversing along the path.

Kinematic equations

The physical parameters of the trailer truck are depicted in figure 3.3 and
listed in table 3.1.

The kinematic equations of the trailer truck are derived in [8]. We shall
shortly summarise the results below. Note that curv(s) is the curvature of
the path at point s.

The kinematic equations describing the trailer truck motion are:

ṡ = v0
cos(θ)

1 − curv(s)d
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3.2 Implementation of the Reversing Trailer Truck

li distance between Pi and Pi+1

α0

angle of the first vehicle with respect to a fixed frame.
We choose the Cartesian base coordinate system as
reference for this angle.

αi (1 ≤ i ≤ n)
angle between Pi−1Pi and PiPi+1 (the orientation of
vehicle (i + 1) with respect to the previous vehicle)

αn+1
angle of the car’s driving front wheel with respect to
the car’s body.

vi
intensity of the velocity of the point Pi. This is the
translational velocity of the (i + 1) vehicle.

Table 3.1: The physical parameters of the trailer truck. See figure 3.3 for
illustration.

ḋ = v0sin(θ)

θ̇ = v0
tan(α1)

`1
−

curv(s)cos(θ)

1 − curv(s)d
(3.7)

α̇1 = v0
1

cos(α1)

(
tan(α2)

`2
−

sin(α1)

`1

)
(3.8)

α̇2 = u

and since

vi = vi+1cos(αi+1) (0 ≤ i ≤ n)

this can be rewritten as

ṡ = v2cos(α1)cos(α2)
cos(θ)

1 − curv(s)d

ḋ = v2cos(α1)cos(α2)sin(θ)

θ̇ = v2cos(α2)
sin(α1)

`1
−

curv(s)cos(θ)cos(α1)

1 − curv(s)d
(3.9)

α̇1 = v2

(
sin(α2)

`2
−

sin(α1)cos(α2)

`1

)
α̇2 = u
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The control signal u = α̇1, i.e. the control signal controls the change in
the truck’s driving front wheel’s angle.

We will assume that the speed is constant. As long as there is no limit on
our control signal u = α̇1 this makes sense.

A change in speed is needed when α̇1 can not exceed a given limit. We
would then need to decrease the truck speed in order to change the angle
α1 fast enough relative to the translational movement.

We will stick to the simple case, where u = α̇1 is not limited.2

3.2.2 Bezier Path Implementation

To simulate the reversing trailer truck, we need a mathematical description
of the path. Throughout this section we use x and y to refer to Cartesian
coordinates – not states or other signals.

The path that the trailer truck is to follow is implemented as a Bezier
curve. We’ve chosen Bezier curves since they have a well defined curvature
and use an intuitive parameterisation. It is important to have a well defined
curvature, both due to the constraint (3.6) and due to the fact that the
kinematic equations (3.9) are based on the path curvature. The intuitive
parameterisation furthermore makes it simple to construct paths to our lik-
ing.

Splines

The Bezier path consist of several splines that are concatenated. The spline
is a parametric curve p parameterised by the free variable t ∈ [0; 1]:

p(t) = (x(t), y(t)) (3.10)

For the Bezier spline, the functions x and y are given by3

p(t) =
∑

i=0...3

Bi(t)pi

2It is not entirely true that there is no limit on u. We are penalising control signal incre-
ments and thus also a change in control signal needed to obtain high control signals.
We will ignore this, though, since the control cost has been set to a low level.

3 Bi(t) denotes the i’th Bernstein polynomial of t.
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p1

p0

p2

p3

Figure 3.4: The points p0, p1, p2 and p3 define the Bezier spline. The
point p0 is the starting point of the spline, and p3 is the end
point of the spline. The points p1 and p2 define how the spline
forms from p0 to p3. The tangent in p0 is equal to ~p0p1 and
correspondingly for p3 and p2.

Bi(t) =

(
3
i

)
ti(1 − t)3−i

p(t) = (1 − t)3p0 + 3(1 − t)2tp1 + 3(1 − t)t2p2 + t3p3 (3.11)

such that

x(t) = (1 − t)3x0 + 3(1 − t)2tx1 + 3(1 − t)t2x2 + t3x3 (3.12)

y(t) = (1 − t)3y0 + 3(1 − t)2ty1 + 3(1 − t)t2y2 + t3y3 (3.13)

The points p0, p1, p2 and p3 are shown in figure 3.4 with the correspond-
ing Bezier spline.

The above parameterisation uses t ∈ [0; 1] as the free parameter. The
coordinate system defined in section 3.2.1 is based on the distance s along
the path. We have to change the parameterisation of (3.11) from t to s.

Mapping the variable t to s is done by using the arc length parameterisa-
tion4

s(t) =

∫ t

0

√
p ′(τ) · p ′(τ)dτ

4Here p ′, x ′ and y ′ are the derivatives with respect to τ.
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p1

p0

p2

p3=q0

q1

q2

q3

Figure 3.5: The Bezier curve is made up of several splines fitted together
end to end as shown here. The point p2 of the old spline is
mirrored through the new starting point q0 to obtain the point
q1.

=

∫ t

0

√
x ′2(τ) + y ′2(τ)dτ (3.14)

Note that s(t) is monotonic, and hence the inverse function t(s) is
uniquely defined.5

We implement the inverse function by using a table of values for the s(t)

function and doing reverse lookup in this table. With sufficient data sets in
this table and using linear interpolation an arbitrary level of approximation
can be achieved.

As noted the Bezier curve will consist of several Bezier splines fitted to-
gether end to end. The end point p3 of one spline will be the starting point
q0 of the next. The point p2 of the old spline will be mirrored through the
new starting point to obtain the new q1. In this way, the tangent at the
end point of the old spline will be the same as the tangent at the starting
point of the new spline. The resulting Bezier path will have a well-defined
curvature. This is illustrated in figure 3.5.

Figure 3.12 on page 73 shows the Bezier path used for training the net-
work. The division of the path into splines is apparent. On other paths

5We are using this loose syntax to ease readability. s(τ) = s|t=τ and t(σ) = t|s=σ.
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(a) Meaningless movement going
nowhere
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(b) The truck is spinning and pulls the
trailer instead of pushing it.

Figure 3.6: The trailer truck movement with a network structure as shown
in figure 3.8(b) and random weights. Both examples show how
the truck and trailer overlap.

such as the one shown in figure 3.18 on page 78 the start and end points of
splines are less obvious.

3.2.3 Training the Neural Network

The control problem of the reversing trailer truck consists of two interre-
lated problems. One problem is to follow the path. The other one is the
unstable problem of reversing the truck without the trailer and the truck
getting entangled as the angle α1 grows above 90◦.

Starting off with the complete problem it is impossible to get the op-
timiser to converge. The problem is too complex. To give an idea of this
problem figure 3.6 shows the trailer truck movement for a random network
with a network structure as shown in figure 3.8(b). Therefore we approach
the problem with a two-stage solution.
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Reversing the Trailer Truck

First we try to train the network to be able to reverse the trailer truck in
a given direction without the truck and trailer colliding (i.e. we keep ∀t :

α1 < π
2 ). Then we’ll train the network to reverse the trailer truck along the

path.
During the first step, we disregard the distance of the trailer to the path,

and we choose a straight line as the path to follow. We want the trailer
truck to go in this line’s direction while keeping the trailer and truck from
colliding.

To achieve this , we use the following cost function

J1 = send +
1
N

N∑
i

θ2
i +α2

1 +

(
α1

0.95 · π/2

)40

+

(
α2

0.95 · π/2

)40

(3.15)

where send is the total distance travelled along the path. This term favours
network weights that get the trailer moved far along the path.

In the summation the first two terms are regular quadratic cost terms on
the angels θ and α1. These are supposed to tell the optimiser to let the
trailer truck straighten up and go in the same direction as the path.

The last two terms inside the summation are penalty terms. These terms
keep the angles α1 and α2 from going outside the interval ] − π

2 ; π
2 [. Fig-

ure 3.7 shows a plot of the penalty function.
At the same time we use a simple network structure as shown in fig-

ure 3.8(a) where only the three angles θ, α1 and α2 are fed into the neural
network controller.

As noted in section 3.1.2 training of the neural network is done by run-
ning a simulation of the complete system and evaluating the cost function
(in this case equation (3.15)) on this simulation.

As figure 3.6 shows, these simulations will lead to meaningless movement
for some weight combinations. Therefore termination conditions for the
simulations need to be chosen with care.

The simulations will be terminated if either the end of the path is reached:
send ≥ S or a given maximum iteration count has been reached.

The neural network is then trained with a random start guess. We use
4 training scenarios. In the first scenario the trailer and truck point in the
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Figure 3.7: The penalty function on the angles α1 and α2 in the cost
functions (3.15) and (3.16) is used to penalise angles outside
] − π

2 ; π
2 [. Note that π

2 ≈ 1.57.

same direction (α1 = 0), in the second the trailer is angled with respect
to the truck (α1 = 0.2). In both scenarios the trailer truck is angled with
respect to the direction it has to follow.

Figures 3.10 and 3.11 on pages 70 and 71 show these two start scenarios
at the very right hand side of the plots.

The last two scenarios are the mirrored versions of the two first (all angles
are mirrored). The presence of these mirrored scenarios ensures that the
network is not biased to favour a turn in a certain direction (e.g. that it will
have a tendency to always turn to the right).

The cost function 3.15 is evaluated on the four simulation runs of the
four scenarios.

After approximately 200 iterations of the optimiser, the neural network
is able to reverse the trailer truck in the right direction and straighten it up.

The resulting network with weights is illustrated in figure 3.9. Note that
the output weight is fixed to 10.

The movement of the reversing trailer truck and the signals are plotted
in figure 3.10 and figure 3.11 for two of the four scenarios. Note that
the trailer truck motion is right to left, while the signals are plotted left to
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θ

α1

α2

u

(a) The reduced neural network struc-
ture used for initial training of the net-
work.

θ

α1

α2

d

curv
(s)

u

ut-1

(b) The full neural network structure,
that controls the reversing trailer truck.

Figure 3.8: The controller is trained using a two step approach. First the
the simpler network structure in figure 3.8(a) is used with cost
function (3.15) to train the network to be able to reverse the
truck properly. Then the full network shown in figure 3.8(b)
is used with the cost function (3.16) to control the complete
system.
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θ
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-0.1363

0.4076

-0.3327

10

u

(not to scale)

Figure 3.9: The resulting weights after training of the neural network con-
troller to straighten up the reversing trailer truck. Line widths
are relative to absolute weights (except for the weight of 10).
Dashed lines indicate negative values.

right.6

Following the Path

Once the network is able to reverse the trailer truck we want the neural
network controller to learn to keep the trailer truck on the path.

The fact that we want the reversing trailer truck to follow the path has to
be expressed by means of a new cost function. We use the following new
cost function

Jtruck =
1
N

N∑
i

[
ρdd2 + ρθθ

2
i + ραα2

1

+

(
α1

0.95 · π/2

)40

+

(
α2

0.95 · π/2

)40
]

(3.16)

+ρu
1
N

N∑
i

(∆u)2

6The other two scenarios are mirrored versions of these two with all angles and the start
offset reversed as discussed earlier.
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(a) Motion of the trailer truck
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(b) Signals

Figure 3.10: After initial trailing with the cost function 3.15 the revers-
ing trailer truck straightens up from an angled start position
with the truck and the trailer pointing in the same direction.
The truck and trailer outlines are plotted with distances cor-
responding to 5 sampling periods. The path of the truck and
the trailer rear are plotted as solid and dotted lines respectively.
Note that the truck motion in 3.10(a) is right to left while data
is plotted left to right in 3.10(b).
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Figure 3.11: As in figure 3.10 the controller successfully controls the revers-
ing trailer truck to follow the direction of the x-axis. In the
start position, the trailer and the truck are angled. Note again,
that the truck motion is right to left while data is plotted left
to right.
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We’ve chosen the following cost weights

ρd = 10 ρθ = 0.2 ρα = 0.2 ρu = 0.001

When compared with (3.15), the new terms are quadratic costs on the
distance to the path d and on the control signal change ∆u. Furthermore
we have added weights on the quadratic costs to balance control aims.

We will now extend the neural network structure to the one shown in
figure 3.8(b) on page 68. All parameters

d, θ, α1, α2, ut−1

will be fed into the network.7

The training path is shown in figure 3.12 and was chosen as a combina-
tion of 90◦ turns with different curvatures. The curvatures of the training
path have to span the interval of curvatures we want the trailer truck to
handle on new paths.

While neural networks are known to be good at interpolating, extrapol-
ating of data in general does not work well with neural networks. Hence
the curvatures of the training path have to span the interval of curvatures
we want the trailer truck to handle on new paths.

To ensure that the training path is balanced, each right turn is followed
by a left turn of the same curvature. This keeps the network from favouring
right turns over left turns and vice versa.

The neural network is trained with these new settings, and the resulting
network weights are shown in figure 3.13. The performance of the neural
network controller is discussed in the next section 3.2.4.

3.2.4 Performance

The neural network controller is trained as described above in section 3.2.3.
The resulting motion along the training path (figure 3.12 on page 73) is
shown in figure 3.14. Two enlarged areas are shown. The signals for the
motion along the entire path are shown in figure 3.15.

7There is no point in feeding the 5th model parameter s into the network. s is the distance
along the path and holds no information on control actions to be taken.
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(b) The curvature of the training path

Figure 3.12: The Bezier path used for training and the path curvature along
the path. Alternating right and left turns ensure, that training
is balanced. The curvature of the turns is chosen to span from
zero up to 0.5.
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Figure 3.13: The resulting weights after training of the neural network con-
troller for path following of the reversing trailer truck. Line
widths are relative to absolute weights. Dashed lines indicate
negative values. Cf. figure 3.9.

The trailer truck outlines shown are plotted every 5 sampling times. The
edges on the motion trails are due to the sampling. Motion data is only
sampled for each controller step. It is apparent that the controller has prob-
lems with stabilising the movement.

The trailer truck keeps moving from one side of the path to the other
and back again. This becomes even clearer when looking at figure 3.15.
The distance d to the path is oscillating around 0.

The reason for this is discussed below, and a new neural network con-
troller is trained to fix this problem. It turns out that the last two turns of
the training path are very sharp (i.e. have a sudden, high change curvature),
and that the controller weights have to be very high in order not to loose the
trailer truck off the path in those turns.

These weights, however, are not optimal for paths that do not have this
kind of turns, but are smoother.

Overall the controller is able to keep the reversing trailer truck on the
path.
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Figure 3.14: Enlarged areas of the reversing trailer trucks motion along the
training path shown in figure 3.12 on page 73.
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Figure 3.15: The signals while following the training path. Cf. figure 3.12
and 3.14

75



Chapter 3 Direct Neural Network Control

0 5 10 15 20 25 30 35 40

-20

-15

-10

-5

0

5

10

15

20

(a) The path

0 20 40 60 80 100 120
-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

(b) The path’s curvature

Figure 3.16: A Bezier path with curvatures equal of magnitude as the train-
ing path shown in figure 3.12

Ability to Follow New Paths

We will now see how the controller performs on a new path. Figure 3.16
shows a path that has curvatures of equal magnitude as compared with the
training path.

We now run controller and reversing trailer truck on this path. Simu-
lation results are shown in figure 3.17. The trailer truck also follows this
path and the problems noted above remain. The controller keeps the trailer
truck close to the path, but the distance is oscillating.

The reason for this is discussed below when the network is re-trained.

Parameter Sensitivity

The fact that the controller doesn’t perform optimal on paths with lower
curvature becomes apparent when we look at the change in cost function
as a result of a change in neural network weights when we evaluate the
cost function on simulations runs on the path shown in figure 3.18 with
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Figure 3.17: The motion of the reversing trailer truck on the new path
shown in figure 3.16

moderate curvatures.
We have evaluated the sensitivity of the system to change in weights of

the neural network on the one hand and in change of the physical paramet-
ers of the trailer truck on the other.

We have used the cost function (3.16) on simulation runs on the path
shown in figure 3.18. The results are shown in figure 3.19.

The sensitivity of the controller towards changes in physical parameters
shown in figure 3.19(a) is not very spectacular. If the ratio of the truck
length l1 to the trailer length l2 increases, the controller performance de-
creases. The change in v2 corresponds to the truck moving faster than the
speed, the controller thinks the truck is moving.

Of more interest is the second figure 3.19(b), showing the sensitivity to-
wards change in network weights. What we would expect is that neural
network weights are optimal and hence all change – no matter in what dir-
ection – would decrease the controller performance. What we see, however,
is that the controller performs better if weights are changed away from the
trained values.

As noted above, this is due to the fact that the training path has some very
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Figure 3.18: This Bezier path was used for evaluating the parametric sensit-
ivity of the controller trained on the path shown in figure 3.12
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Figure 3.19: The change in cost function as the result of a change in either
physical parameters or weights of the neural network control-
ler is shown here. The cost function is evaluated on the path
shown in figure 3.18. Note how a change can actually reduce
the cost function. This is due to the fact that the network is
trained on a different path – the one shown in figure 3.12.
This is discussed further in the text.
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Figure 3.20: After re-training the neural network controller with the new
training path weights are as illustrated. Line widths are relat-
ive to absolute weights. Dashed lines indicate negative values.
Cf. figure 3.13.

sharp turns. The network weights resulting from training are chosen in a
way that keeps the system from entering a state where the penalty functions
of the cost function (3.16) are activated.

3.2.5 Re-training the Neural Network

Performance on paths with moderate curvature was sub-optimal, and the
reversing trailer truck was zig-zagging along the path due to the harsh re-
quirements of the original training path in figure 3.12.

To improve the system performance on paths with moderate curvature,
we use a new training path by removing the two sharp turns from the ori-
ginal training path, and then retrain the neural network controller.

Training is done as described in the second part of section 3.2.3 with the
mentioned cost function (3.16). The resulting network weights are shown
in figure 3.20.
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Figure 3.21: Enlarged areas of the reversing trailer trucks motion along the
new training path.

3.2.6 Performance, revisited

The motion of the reversing trailer truck along the new training path is
shown in figure 3.21 and figure 3.22.

The improvement over the results illustrated in figure 3.14 and 3.15 are
apparent. The oscillation of the motion is damped, and the reversing trailer
truck is in average closer to the path.

To further demonstrate this, the parameter sensitivity analysis is re-run.
It is apparent from figure 3.23(b) that the new neural network weights

are closer to an optimum for this path.8 Also the sensitivity to change in
physical parameters has been reduced.

3.2.7 Discussion

The neural network based direct controller is able to control the reversing
trailer truck.

8Note that the parameter sensitivity is evaluated on the path shown in figure 3.18 and not
the training path.
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Figure 3.22: The signals while following the new training path. Cf. fig-
ure 3.21.
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Figure 3.23: The parameter sensitivity as shown in figure 3.19 on page 79,
but this time after additional training of the neural network
controller on the new training path.
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Using a path based coordinate system, transformation of the control goal
is simple. Using a random start guess, the tuning of the controller is done
in a two-staged approach. First the controller learns to reverse the trailer
truck, and only then it is faced with the full control problem.

The optimisation of the controller parameters is done in a brute force way
by using a simplex optimiser on the parameters and a cost function on the
simulation runs.

Since the controller is a single step ahead controller, the plant output has
a tendency to have damped oscillations.

One of the reasons that the controller works well is that the plant has a
local linear approximation.

3.3 Implementation of the Coupled Tank System

We will now use the direct neural network control on the coupled tank
system described in section 2.3.1.

In the last chapter this plant was controlled with a neural network model
based predictive controller. We will now see, how the present controller
compares with the one from chapter 2.

Opposed to the reversing trailer truck system, the coupled tank system
has a reference signal. This fact changes things only slightly. The process of
training the neural network and the resulting performance are discussed in
the following.

3.3.1 Neural Network Training

The neural network we will use has 4 inputs: The states Y1,t, Y2,t, the
reference signal rt, and the last control signal ut−1.

We are using two hidden units. There’s only one network output, the
control signal ut. The network structure is shown in figure 3.25 with the
weights after training.

We will train the neural network to minimise the cost function

J =
1
N

N∑
t

(yt − rt)
2 + ρ(∆ut)

2 (3.17)
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Figure 3.24: The reference signal used for training the neural network is a
N-samples-constant signal that changes every 250 samples and
has a total length of 1000 samples like the one shown here.

During training, an N-samples-constant reference signal with a total
length of 1000 samples is used. This signal changes every 250 samples
and is constant in between these changes. This allows the controller to let
the plant output reach the reference before the next change in reference.
Figure 3.24 shows one such reference signal.

The neural network weights are now optimised for 40 iteration steps
using a reference signal like this one, and then a new reference signal is
chosen. This helps generalisation without increasing the computational
burden of each iteration of the optimiser.9

As noted above, negative control signals can not be implemented by the
coupled tank system. The control signal is therefore limited to ∀t : ut ≥ 0.
For this reason if the control signal generated by the controller is negative,
it is reset to ut = 0.

The network weights obtained by training are shown in figure 3.25.

9Another way to get good generalisation would be to use simulation runs with more
samples. But this would decrease the speed of the network weight optimisation.
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Figure 3.25: The neural network with the weights. Line widths correspond
to weights, and negative values are indicated by dashed lines.
Note how the reference signal r and the tank level difference
Y2 have the greatest impact on the hidden node activation.

3.3.2 Performance

To test the performance of the controller, simulation runs equal to the ones
in chapter 2 were done. The results are shown in figure 3.26.

What immediately catches the eye is that also this controller has problems
with the constraint u > 0. The control signal oscillates when it is small.

The controller tries to set a negative control signal, but the control signal
is limited to u = 0. The result of this confuses the controller as it sets a
higher value the next time and starts to oscillate.

Less visible is the fact, that the controller has a stationary offset. If we
turn back to figure 3.24 on page 84, we will realise that this behaviour is
due to the way the neural network was trained.

Figure 3.24 shows that the main source of error with respect to the cost
function (3.17) is deviation of the plant output y from the reference r

immediately after the change of the reference.
The term (yt − rt)

2 is very small once the plant output is close to the
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Figure 3.26: Simulation runs of the direct neural network controller. Cf.
figure 2.9 on page 36.
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reference, and hence the optimiser will favour a controller that will make
the plant output reach the vicinity of the reference within a short time over
a controller that has a small stationary offset.

3.3.3 Discussion

As opposed to the predictive controller for the coupled tank system imple-
mented in chapter 2, the present controller is a single-step ahead controller.
This shows by the oscillating behaviour on the one hand, and on the other
hand that the controller does not act upon a level change of the reference,
before the reference change is reached.

This said, the control signal of this controller is deterministic and does
not contain noise. The predictive controller in chapter 2 generated a con-
trol signal that contained noise that was introduced by the poor conver-
gence of the optimisation algorithm.

It is likely that extending the neural network structure to a higher order,
would prevent the mentioned oscillations, but the available time did not
allow further investigations on this control system.

3.4 Chapter Discussion

This chapter has discussed the direct neural network controller. The two
implementations show that this controller works.

Since the implemented controllers are single-step ahead controllers, the
simulations show typical artefacts of single-step ahead controllers such as
damped oscillations of the control signal under certain circumstances.

The direct neural network controller does not need training of a plant
model. Instead the controller itself is trained. This is done on simulation
runs of the complete system. Hence a careful choice of the training scenario
is of importance. Both implementions showed how the final controller was
affected by different training scenarios.

The following chapter will summarise all conclusions found throughout
this thesis.
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Chapter 4

Conclusion

This thesis has investigated two conceptually different approaches to utilise
neural networks in control systems. The first one uses the neural network to
construct a model of the plant that in turn allows predictive control of non-
linear systems. The second uses the neural network in a direct controller
where the network output is the control signal.

The following sections present conclusions on both controller types dealt
with in this thesis and present some topics of interest for future work.

4.1 Neural Network Model Based Predictive
Controller

The generalised predictive control algorithm is extended to non-linear plants
by using a neural network based model for prediction.

This concept was then applied to two plants. Methods for system identi-
fication were extended to ensure good excitation of the plant during train-
ing data generation for plants where standard methods such as a level-
change-at-random-instances failed. A combination of random and con-
trolled excitation yielded good results.

The first plant that the controller was tested on is a coupled tank system.
It is a non-linear plant with constraints on both the plant states and on the
control signal.

The process of creating a neural network based model of the plant – also
known as system identification – was solved to a high accuracy. Tests on
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prediction performance were done to show this.
The neural network model based predictive control algorithm uses these

predictions to optimise the projected control series. The simplex optimisa-
tion algorithm used here to optimise the projected control series has poor
convergence near hard constraints.

This is problematic, since the plant output was constrained to be positive
for this plant: The projected control signals did not converge well, and this
introduced noise to the control signal.

This showed that the control algorithm is highly dependant on an op-
timisation algorithm with good convergence.

Even though the poor convergence degraded the performance of the
controller, simulation runs with several different kinds of reference signals
showed that the control system worked. Apart from the mentioned noise,
the controller tracks the reference signal.

The second system is a highly non-linear inverse pendulum. Applying
the predictive controller to this system failed for two reasons. This showed
some limitations of the discussed methods and highlighted considerations
to make before applying them.

Predicting future plant outputs in non-trivial. The predictive control
strategy demands a costing horizon of size comparable to the plant dy-
namics. The prediction of plant output, however, may not be sufficiently
accurate over this horizon. This would make the control strategy fail, as it
did for the inverse pendulum.

Suggestions were put forward on how to change the model structure
to increase the performance of the model by applying a-priori knowledge
about the plants kinematic behaviour. Implementation of these suggestions
lay outside the scope of this thesis, though.

4.2 Direct Neural Network Controller

The second controller type is a direct neural network controller. This is an
output feedback controller where the controller is implemented by a neural
network. The implemented controllers are single-step ahead controllers.

Training the neural network is done in a different way for this controller
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type. In stead of minimising an error function on a training set, the training
algorithm minimises the control cost function.

This optimisation is done using a simplex optimiser. A simulation run
is done to evaluate the cost function for a given neural network. And the
result is fed into the optimiser.

The training algorithm was investigated and an algorithm was proposed
for finding a start guess for network weights based on a linear model.

First the controller was tested on a reversing trailer truck. The trailer
truck is to follow a given path while reversing.

A parameterisation of the path to follow based on Bezier-splines is presen-
ted. This allows for an intuitive representation of the path. A path-relative
coordinate system known from other literature on path following was ap-
plied to the control system. It allows formulation of the control goal as a
cost function of plant states.

The control problem was solved in a two step approach, where first a
controller is constructed that is able to reverse the truck without the trailer
and the truck colliding. Then the controller was extended to make the
reversing trailer truck follow the given path.

The resulting controller’s ability to control the reversing trailer truck
along a new paths was shown, and the sensitivity to change in controller
parameters and physical parameters is tested.

The effect of using different training paths for training was also investig-
ated and discussed. When measured on a test path with low curvatures a
controller trained on a path with low curvatures was shown to outperform
a controller trained on a path with high curvatures.

The direct neural network controller is also tested on the coupled tank
system mentioned above.

Due to its different nature, the controller behaves in a different way.
The training simulations were chosen to favour a controller that responds
quickly to a reference change over a controller that has a low stationary
offset. Hence the resulting controller had a noticeable stationary offset.

Furthermore this controller was designed to be a single-step ahead con-
troller, which resulted in a different response to reference changes as com-
pared to the predictive controller.

The control system did not perform as well as the predictive control by

91



Chapter 4 Conclusion

means of the deviation of the plant output from the reference. This is
caused by the advance that the predictive controller has due to its use of a
costing horizon.

Given these facts, the controller performed well if it was not for the hard
constraint of the control signal that is not allowed to be negative.

For small control signals, the controller generates oscillating control sig-
nals due to the constraint enforced on its output. This situation could be
solved by extending the model order which would allow the controller to
learn that the control signal is limited.

Both controller types require a proper choice of model order, but for the
direct neural network controller, the choice of training scenarios is a key
factor to obtaining a good controller.

For the neural network model based predictive controller the system
identification and the construction of the neural network model of the plant
play the key role in controller design.

4.3 Future Work

All in all the implemented control systems show that neural network control
can be a feasible solution to a control problem. The suggested controllers
can be applied in many cases to obtain better performance on non-linear
systems than linear controller can achieve, and in some cases it can control
system, that could not be controlled with a linear controller.

But the present thesis also shows that there are many aspects of neural
network control that need further investigation.

One topic that has merely been touched upon is model order selection.
A step-by-step solution to this problem would be of great help to designers
of neural network based control systems.

Another topic is that of noise. Throughout this thesis all signals were
assumed to be deterministic. The effects of noise to these systems have not
been investigated. Due to the non-linear nature of both the controller and
the plants, the extension to non-linear systems of noise theory for linear
system is non-trivial.

As for the two controller types investigated here, the more complex model
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based predictive controller has a potential for good performance on non-
linear systems.

But more elaborate work on using neural network models for highly non-
linear models would greatly extend the methods reach.

Furthermore work needs to be done on implementing a better optimisa-
tion algorithm for the projected control series. Especially the handling of
hard constraints on the control signal needs to be handled without severely
degrading the convergence of the optimiser.
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Appendix A

Matlab Source Code

This appendix lists the sources files written in conjunction with this thesis.
The following section A.1 lists the Matlab files used for the neural network
model based predictive controller and section A.2 on page 120 lists the
Matlab files used for the direct neural network controller.

All files are richly commented, and (almost) all function files contain a
header, that explains the arguments passed to the function and the resulting
output,

Additionally each of the sections A.1 and A.2 contains a graphical over-
view of the files in figure A.1 on page 96 and figure A.2 on page 121 re-
spectively.

A.1 Neural Network Model Based Predictive
Control

The entire environment used for chapter 2 was coded in Matlab. We will
only show the Matlab files for the coupled tank system since the acrobot
was done in an almost identical way.

Figure A.1 shows on overview of the Matlab files, that are listed in the
following. Note that the file wb.m is the main file.

A.1.1 wb.m

% Work bench
%
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work bench: simulation parameters
(such as reference signal) are set up

wb.m

runs the simulations
runsim.m

simulates the plant
plant.m

implements the predictive
control algorithm

pcontrol.m

the neural network
model of the plant

plantmodel.m
creates (trains) a neural
network model of the plant

nnmodel.m

creates a training (and
validation) data set for neural
network training

createtrainset.mparameter sensitivity
variations.m

test model prediction
testprediction.m

show time in human readable
format

humantime.m

create square-wave signal
sqwave.m

Figure A.1: The Matlab files used for the neural network model based pre-
dictive controller. Arrows correspond to function calls.
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%

5 Nmax = 8 0 0 ;
U0 = 0 ;
N2 = 4 0 ;
NU = 1 0 ;
rho = 1 0 0 ;

10 R from = 5 ;

%
%

15

g l o b a l R

s w i t c h R from
c a s e 1

20 R = 0 . 1 ∗ ones ( Nmax , 1 ) ;
c a s e 2
R = −0 . 0 5∗ s q w a v e ( Nmax , 1 0 0 ) + 0 . 0 5 + 0 . 1 ;

c a s e 4
R = −0 . 0 5∗ s q w a v e ( Nmax , 2 0 0 ) + 0 . 0 5 + 0 . 2 ;

25 c a s e 3 ,
R ( 1 ) = 0 ;
f o r n = 2 : Nmax ,

i f ( rand >0 .99 ) ,
R( n ) = 0 . 1 + rand ∗ 0 . 3 0 ;

30 e l s e
R( n ) = R( n −1) ;

end
end

c a s e 5 ,
35 R = −0 . 0 5∗ s q w a v e ( Nmax , Nmax ) + 0 . 0 5 + 0 . 3 ;

end

run s im ( N2 , NU, rho , Nmax , U0 , 1 ) ;

A.1.2 runsim.m

f u n c t i o n [ Y , U ] = run s im (N2 , NU, rho , Nmax , U 0 , d o p l o t , i n i t a r g )
% RUNSIM Simulate p r e d i c t i v e c o n t r o l l e r system
%
% [ Y , U ] = RUNSIM ( N2 , NU , RHO ) Returns the r e s u l t i n g ouput in Y

5 % and the r e s u l t i n g c o n t r o l l s in U . N2 s p e c i f i e s the p r e d i c t i v e
% c o n t r o l l e r horizon and RHO c o n t r o l s the weight on the cont ro l
% s i g n a l change . The reference s i g n a l has to be present as the
% global v a r i a b l e R .
%
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10 % [ Y , U ] = RUNSIM ( N2 , NU , RHO , NMAX ) A d d i t i o n a l l y s p e c i f i e s the
% maximum number of i t e r a t i o n s to s imulate ( defau l t = 3 0 0 ) .
%
% [ Y , U ] = RUNSIM ( N2 , NU , RHO , NMAX, UINIT ) Does the same as
% above , but s p e c i f i e s UINIT as the i n i t a l c o n t r o l l e r output

15 % ( d e f a u l t s to 0 ) .
%
% [ Y , U ] = RUNSIM ( N2 , NU , RHO , NMAX, UINIT , DOPLOT ) I f DOPLOT i s
% p o s i t i v e the r e s u l t i n g c o n t r o l s and output are plotted .
%

20 % [ Y , U ] = RUNSIM ( N2 , NU , RHO , NMAX, UINIT , DOPLOT , . . . INITARG )
% A d d i t i o n a l l y s p e c i f i e s an argument INITARG to be passed to the
% plant i n i t i a l i z e funct ion .
%
% The GLOBAL v a r i a b l e Y POS should be used to l i m i t c e r t a i n plant

25 % output v a r i a b l e s not to be used .

g l o b a l R Y POS

s a v e t r a i n d a t a = 0 ;
30

t i m e o f f s e t = cput ime ; % used to measure computation time

i f n a r g i n < 4 ,
Nmax = 3 0 0 ;

35 end

i f n a r g i n < 7
p l a n t ( ’ i n i t ’ ) ; % i n i t i a l i z e plant model
p l a n t m o d e l ( ’ i n i t ’ ) ;

40 e l s e
p l a n t ( ’ i n i t ’ , i n i t a r g ) ; % i n i t i a l i z e plant model
p l a n t m o d e l ( ’ i n i t ’ , i n i t a r g ) ;

end

45 i f n a r g i n < 5
U 0 = z e r o s ( p l a n t ( ’ i n p u t c o u n t ’ ) , 1 ) ;

end

i f n a r g i n < 6
50 d o p l o t = 0 ;

end
i f d o p l o t > 1

d o d e r i v = 1 ; % c a l c u l a t e ( and plot ) d e r i v a t e s
e l s e

55 d o d e r i v = 0 ;
end
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% setup s imulat ion
60 U ( 1 , : ) = U 0 ;

Y ( 1 , : ) = p l a n t ( ’ a c t u a t e ’ , U 0 ) ;
%plantmodel ( ’ actuate ’ , U 0); %%% DEBUG%%%
i f Y POS = = [ ] ,

Y POS = 1 : s i z e ( Y , 2 ) ;
65 c l e a r y p o s = 1 ;

e l s e
c l e a r y p o s = 0 ;

end

70 % pad reference
R2 = [ R ; R( end )∗ ones (N2 , 1 ) ] ;

% run s imulat ion
n = 2 ;

75 nCount = f l o o r ( Nmax / 1 0 0 ) ;
i f nCount = = 0 , nCount = 1 ; end
f o r n = 1 : Nmax

i f mod ( n , nCount ) = = 0 ,
f p r i n t f ( ’ s i m u l a t i o n w i t h % i s t e p s : %3 i%% done\ r ’ , . . .

80 Nmax , f l o o r ( ( n −1)/Nmax ∗ 1 0 0 ) ) ;
end
i f 0 ,

U n = 0 . 5 ∗ randn ;
e l s e

85 U n = p c o n t r o l ( NU, n −1 , R2 ( n : n+N2−1 ) , rho ) ;
end
U( n , : ) = U n ;
Y ( n , : ) = p l a n t ( ’ a c t u a t e ’ , U( n ) ) ;
%Y( n , : ) = plantmodel ( ’ actuate ’ , U( n ) ) ; %%%DEBUG%%%

90 i f ( s a v e t r a i n d a t a > 0 ) ,
% e x t r a c t s t a t e info
s t a t e = p l a n t ( ’ s a v e s t a t e ’ ) ;
X ( n , : ) = s t a t e . X ’ ;

end
95 end

N = n − 1 ;
f p r i n t f ( ’ \ r \ r ’ ) ;
i f ( c l e a r y p o s = = 1 )

c l e a r g l o b a l Y POS ; % Clean up Y POS
100 end

f p r i n t f ( [ ’CPU t i m e u s e d : ’ . . .
humantime ( cputime− t i m e o f f s e t ) ’ \n ’ ] ) ;

105 i f ( d o p l o t > 0 ) ,
n p l o t s = 2 ;
newplot ;

99



Appendix A Matlab Source Code

% number of s imulat ion step to plot
110 N max = I n f ;

N max = min ( N max , N ) ; % l i m i t to N
n = 1 : N max ;
yrow = 1 ; % row in y−matirx to plot

115 s u b p l o t ( n p l o t s , 1 , 1 ) ;
i f ( s a v e t r a i n d a t a = = 0 ) ,

p l o t ( n , Y ( 1 : N max , yrow ) , n , R ( 1 : N max ) ) ;
l e g e n d ( ’ y ’ , ’ r ’ , 0 ) ;

e l s e
120 p l o t ( n , X ( 1 : N max , 1 ) , n , X ( 1 : N max , 2 ) , n , R ( 1 : N max ) ) ;

l e g e n d ( ’ x1 ’ , ’ x2 ’ , ’ r ’ , 0 ) ;
end

s u b p l o t ( n p l o t s , 1 , 2 ) ;
125 p l o t ( n ,U( 1 : N max ) ) ;

l e g e n d ( ’ u ’ , 0 ) ;

drawnow ;
end

130

i f ( s a v e t r a i n d a t a > 0 ) ,
U = U ’ ;
Y = X ’ ;
s a v e t r a i n d a t a U Y

135 end

A.1.3 plant.m

f u n c t i o n r e s u l t = p l a n t ( a c t i o n , i npu t )
% PLANT Simulate plant
%
% RESULT = PLANT ( ACTION , INPUT ) S imulates the plant . Action

5 % s p e c i f i e s the act ion to be taken and can be one of the fol lowing :
% o ’ i n i t ’ I n i t i a l i s e plant . The must be c a l l e d before using
% ’ measure ’ or ’ actuate ’ . No input nor return value .
% o ’ savestate ’ Returns the current s t a t e in RESULT .
% o ’ r e s t o r e s t a t e ’ Restores the s t a t e from the value passed in

10 % INPUT , which in turn should be obtained by an ( e a r l i e r ) c a l l to
% ’ savestate ’
% o ’ measure ’ Returns in RESULT the current measurement . Th i s does
% not a f f e c t the plant ’ s s t a t e .
% o ’ acutate ’ Takes INPUT as the cont ro l s i g n a l ( s ) to the plant and

15 % acutates the plant . P lant s t a t e s w i l l be updated accord ing ly
% and the plant output w i l l be returned in RESULT .
% o ’ outputcount ’ / ’ inputcount ’ return in RESULT the number of
% output and input s i g n a l s r e s p e c t i v e l y .
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% o ’ plot ’ ( i f defined ) w i l l take plant s p e c i f i c data as INPUT and
20 % plot i t .

%
% When s imulat ing the plant , f i r s t c a l l ’ i n i t ’ and then use
% ’ actuate ’ . ’ savestate ’ and ’ r e s t o r e s t a t e ’ ( i f implemented ) allow
% simulat ion to go back in time , i f necces sa ry .

25 %
% Severa l g lobal v a r i a b l e s are maintained , a l l with names s t a r t i n g
% with ’ plant ’ . They should be considered p r i v a t e to the funct ion
% and be l e f t unaltered .
%

30 % Thi s implementation s imula te s a coupled tank system .
%

g l o b a l p l a n t X p l a n t A p l a n t 1 C p l a n t T a n k h e i g h t
35 g l o b a l p l a n t T s p l an tU

g l o b a l p l a n t O p t i o n s
g l o b a l p l a n t S t o r e X p l a n t S t o r e U

s w i t c h lower ( a c t i o n )
40 c a s e ’ i n i t ’

%f p r i n t f ( ’ Coupled tank system\n ’ ) ;

i f n a r g i n > 1 ,
s c e n a r i o = i npu t ∗ 1 ;

45 e l s e
s c e n a r i o = 0 ;

end

% set up v a r i a b l e s
50 % u n i t s are cm , cm ˆ 2 , etc

p l a n t X = [ 0 . 1 0 ; 0 ] ;

C = 0 . 0 1 5 3 9 2 8 ; % tank fo otpr in t
g = 9 . 8 1 ; % g r a v i t y

55 ao = 0 . 0 0 0 0 5 ; a l = 0 . 0 0 0 0 8 ; % pipe f ootpr in t
s o = 0 . 4 4 ; s l = 0 . 3 1 ;
a1 = s o ∗ ao∗ s q r t (2∗ g ) / C ;
a2 = s l ∗ a l ∗ s q r t (2∗ g ) / C ;

60 g l o b a l VARIATE
i f ( s i z e ( VARIATE , 1 ) > 0 ) ,

s w i t c h VARIATE . p a r a m e t e r
c a s e 1

ao = ao ∗ VARIATE . c h a n g e ;
65 c a s e 2

a l = a l ∗ VARIATE . c h a n g e ;
end
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end

70 p l a n t A = [ − a1 a2 ; a1 −2∗ a2 ] ;
p l a n t 1 C = [ 0 ; 1 / C ] ;
p l a n t T s = 5 ; % sampling period

p l a n t T a n k h e i g h t = 0 . 6 ;
75

% set up options for ODE s o l v e r
p l a n t O p t i o n s = o d e s e t ( ’ MaxOrder ’ , 3 , . . .

’ R e l T o l ’ , 1 e − 7 , . . .
’ AbsTol ’ , [ 1 e −7 1 e − 7 ] , . . .

80 ’ R e f i n e ’ , 1 ) ;

% v a r i a b l e s to s to re plant input / output
% ( for post mortem p l o t t i n g )
p l a n t S t o r e X = [ ] ;

85 p l a n t S t o r e U = [ ] ;

c a s e ’ s a v e s t a t e ’
% save s t a t e s
r e s u l t . X = p l a n t X ;

90

% save lag space for plant model
g l o b a l p l an tmode lLagU p l a n t m o d e l L a g Y
f o r n = 1 : s i z e ( p l an tmode lLagU , 1 )

i f ( n > s i z e ( p l a n t S t o r e U , 1 ) )
95 r e s u l t .U( n , : ) = 0 ;

e l s e
r e s u l t .U( n , : ) = p l a n t S t o r e U ( end+1−n ) ;

end
end

100 % $$$ for n=1: s i z e ( plantmodelLagY , 1 )
% $$$ i f ( n > s i z e ( plantStoreX , 1 ) )
% $$$ r e s u l t . Y ( n , : ) = 0 ;
% $$$ e l s e
% $$$ r e s u l t . Y ( n , : ) = plantStoreX ( end+1−n , 1 ) ;

105 % $$$ end
% $$$ end

c a s e ’ r e s t o r e s t a t e ’
p l a n t X = i npu t . X ;

110

c a s e ’ m e a s u r e ’
r e s u l t = p l a n t X ( 1 ) ;

c a s e ’ a c t u a t e ’
115 n = s i z e ( p l a n t S t o r e U , 1 ) ;
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% get old cont ro l
i f n = = 0 ,

p l an tU = 0 ;
120 e l s e

p l an tU = p l a n t S t o r e U ( n , : ) ;
end

% we cannot pump water out of tank 1
125 i f ( p l an tU < 0 ) ,

p l an tU = 0 ;
end

% solve d i f f e r e n t i a l equations
130 y0 = p l a n t X ;

[T , Y ] = ode45 ( @plantDif fM , [ 0 p l a n t T s ] , y0 , p l a n t O p t i o n s ) ;
% update s t a t e s
p l a n t X = Y ( end , : ) ’ ;

135 % check for tank l e v e l s below 0 :
i f p l a n t X ( 1 ) < 0 ,

p l a n t X ( 1 ) = 0 ;
end
i f ( p l a n t X ( 2 ) + p l a n t X ( 1 ) ) < 0 ,

140 p l a n t X ( 2 ) = − p l a n t X ( 1 ) ;
end
% . . . and check for tanks l e v e l s above maximum
i f ( p l a n t X ( 1 ) > p l a n t T a n k h e i g h t ) ,

p l a n t X ( 1 ) = p l a n t T a n k h e i g h t ;
145 end

i f ( ( p l a n t X ( 2 ) + p l a n t X ( 1 ) ) > p l a n t T a n k h e i g h t ) ;
p l a n t X ( 2 ) = p l a n t T a n k h e i g h t − p l a n t X ( 1 ) ;

end

150 % return r e s u l t
r e s u l t = p l a n t X ( 1 ) ;

i f r e s u l t > 0 . 6 ,
m e s s a g e = s p r i n t f ( ’ P rob l em w i t h s t a t e s X1 = % f > 0 .6 ! ’ , . . .

155 r e s u l t ) ;
warning ( m e s s a g e ) ;

end

% store cont ro l s i g n a l ( input ) and outputs
160 p l a n t S t o r e U ( n + 1 , : ) = i npu t ;

p l a n t S t o r e X ( n + 1 , : ) = p l an tX ’ ;

c a s e ’ o u t p u t c o u n t ’
r e s u l t = 1 ;

165
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c a s e ’ i n p u t c o u n t ’
r e s u l t = 1 ;

c a s e ’ p l o t ’
170 s u b p l o t ( 2 , 1 , 1 ) ;

end

% sub−func t ions
175

f u n c t i o n dy = p l a n t D i f f M ( t , y ) ;
g l o b a l p l a n t X p l a n t A p l a n t 1 C p l an tU
dy = p l a n t A ∗ ( s q r t ( abs ( y ) ) . ∗ s i g n ( y ) ) + p l a n t 1 C ∗ p l an tU ;

A.1.4 pcontrol.m

f u n c t i o n u = p c o n t r o l ( NU, t , r , rho )
% CONTROL Ca l cu la te cont ro l s i g n a l
%
% U = PCONTROL ( T , R ) re turns in U the output of the non− l i n e a r

5 % p r e d i c t i v e c o n t r o l l e r for time t=T . R conta ins the reference
% s igna l , such that R ( 1 , : ) i s the reference for t=T and R ( 2 , : ) i s
% the reference for t=T+Ts .
%
% I f T > 0 then PCONTROL r e q u i r e s that PCONTROL ( T − 1 , . . . ) has been

10 % c a l l e d p r e v i o u s l y .
%
% PCONTROL uses PLANTMODEL for pred i c t ing the plant outputs .
%
% U = PCONTROL ( T , R , RHO ) Weights the cont ro l s i g n a l change with

15 % rho .
%
% Uses s e v e r a l g lobal v a r i a b l e s ( names s t a r t i n g with CONTROL ) .

% DU corresponds to \ Delta U = U − qˆ{ −1} U
20 % U corresponds to U

g l o b a l CONTROL rho CONTROL ref CONTROL U CONTROL DU
g l o b a l CONTROL offsetU ;
g l o b a l CONTROL state CONTROL stateModel

25 g l o b a l CONTROL usemodel

CONTROL usemodel = 1 ;
% set to 0 for DEBUG ( uses r e a l model for p red i c t ion )

30

t = t + 1 ; % array o f f s e t
q u i e t = 1 ; % p r i n t i n g of i t e r a t i o n s
i f n a r g i n < 3 ,
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CONTROL rho = 0 ;
35 e l s e

CONTROL rho = rho ;
end

% save time using global v a r i a b l e
40 CONTROL ref = r ;

N2 = s i z e ( r , 1 ) ;

% Get the lag network from the ’ rea l ’ p lant . ’ savestate ’ w i l l a l so
% r e t r e i v e the s t a t e information , but the PLANTMODEL w i l l not use

45 % t h i s information , but only the lag network of old input /
% ouput . Th i s way we have a ( rather ) c lean way of moving data from
% the plant to the plant model .
CONTROL state = p l a n t ( ’ s a v e s t a t e ’ ) ;
% Get the info from the model , so we can r e s t o r e i t s s t a t e a f t e r

50 % pre d i c t ing :
CONTROL stateModel = p l a n t m o d e l ( ’ s a v e s t a t e ’ ) ;

i f q u i e t ,
55 o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ none ’ ) ;

e l s e
o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ i t e r ’ ) ;

end
%options = optimset ( options , ’ TolX ’ , 1 e −8) ;

60 o p t i o n s = o p t i m s e t ( o p t i o n s , ’ L a r g e S c a l e ’ , ’ o f f ’ ) ;

% get s t a r t guess i f e x i s t s and se t maximum i t e r a t i o n s accord ing ly
i f ( t − 1 ) = = 0 , % we’ ve s h i f t e d t to t +1

CONTROL offsetU = 0 ;
65 DU = 0 . 0 0 0 0 1 ∗ randn (NU, 1 ) ;

i t e r a t i o n s = 1 6 ;
CONTROL DU = [ ] ;

e l s e
CONTROL offsetU = CONTROL U( t −1) ;

70 DU = [ CONTROL DU( t : ( t +NU− 2 ) , : ) ; 0 ] ;
i t e r a t i o n s = 8 ;

end

o p t i o n s = o p t i m s e t ( o p t i o n s , ’ M a x I t e r ’ ,4∗NU) ;
75

i t e r a t i o n = 0 ;
e x i t f l a g = 0 ;
w h i l e ( ( i t e r a t i o n < i t e r a t i o n s ) & ( e x i t f l a g = = 0 ) ) ,

i t e r a t i o n = i t e r a t i o n + 1 ;
80

% find cont ro l s i g n a l s
[DU, f v a l , e x i t f l a g ] = f m i n s e a r c h ( @ c o s t f u n c t i o n ,DU, o p t i o n s ) ;
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% l i m i t s i g n a l s > 0
85 % c a l c u l a t e future absolute cont ro l s i g n a l s

U = CONTROL offsetU + DU( 1 ) ;
f o r n = 2 : s i z e (DU, 1 ) ,

U( n ) =U( n−1)+DU( n ) ;
end

90

i f s i z e ( f i n d (U<0) ) ,
e x i t f l a g = 0 ;

end

95 U = U . ∗ ( U > 0 ) ;
% c a l c u l a t e cont ro l s i g n a l i n c r e a s e
DU( 1 ) = U( 1 ) − CONTROL offsetU ;
f o r n = 2 : s i z e (DU, 1 ) ,

DU( n ) = U( n)−U( n −1) ;
100 end

end

% store s i g n a l s ( to use as s t a r t guess at next funct ion c a l l
CONTROL DU( t : ( t +NU− 1 ) , : ) =DU;

105 CONTROL U( t ) = CONTROL offsetU+CONTROL DU( t ) ;

% r e s t o r e plant s t a t e
p l a n t m o d e l ( ’ r e s t o r e s t a t e ’ , CONTROL stateModel ) ;
p l a n t ( ’ r e s t o r e s t a t e ’ , CONTROL state ) ;

110

% return value
u = CONTROL U( t ) ;

115

f u n c t i o n J = c o s t f u n c t i o n ( DU )
% c a l c u l a t e the cos t funct ion when c o n t r o l l i n g with cont ro l
% s i g n a l s given by U

120 g l o b a l CONTROL rho CONTROL ref CONTROL state CONTROL offsetU
g l o b a l CONTROL usemodel
N2 = s i z e ( CONTROL ref , 1 ) ;
NU = s i z e (DU, 1 ) ;
% Put s t a t e into plant

125 i f ( CONTROL usemodel > 0 ) ,
p l a n t m o d e l ( ’ r e s t o r e s t a t e ’ , CONTROL state ) ;

e l s e
p l a n t ( ’ r e s t o r e s t a t e ’ , CONTROL state ) ;

end
130 % run s imulat ion

U = CONTROL offsetU ;
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f o r n = 1 :N2 ,
i f ( n ≤ NU ) ,

U = U + DU( n ) ;
135 end

i f ( CONTROL usemodel > 0 ) ,
Y ( n , : ) = p l a n t m o d e l ( ’ a c t u a t e ’ , U ) ;

e l s e
Y ( n , : ) = p l a n t ( ’ a c t u a t e ’ , U ) ;

140 end
end
% evaluate cos t funct ion
J = sum ( ( CONTROL ref−Y ) . ˆ 2 ) / N2 + . . .

CONTROL rho∗sum (DU. ˆ 2 ) /NU;

A.1.5 plantmodel.m

f u n c t i o n r e s u l t = p l a n t m o d e l ( a c t i o n , i npu t )
%PLANT Simulate plant ( model )
%
% RESULT = PLANTMODEL ( ACTION , INPUT ) Runs the plant model . Th i s

5 % i s very much l i k e PLANT with the di f ference , that PLANTMODEL i s
% the model known to the c o n t r o l l e r , while PLANT i s the s imulat ion
% of the ac tua l plant .
%
% When using the plant model , f i r s t c a l l ’ i n i t ’ and then use

10 % ’ actuate ’ .
%
% Severa l g lobal v a r i a b l e s are maintained , a l l with names s t a r t i n g
% with ’ plantmodel ’ . They should be considered p r i v a t e to the
% funct ion and be l e f t unaltered .

15 %
% The plant model i s created as a neural network model of the
% actua l plant implemented in PLANT . C a l l i n g
% plantmodel ( ’ i n i t ’ , ’ r e t ra in ’ )
% w i l l cause the neural network plant model to be ret ra ined by

20 % c a l l i n g NNMODEL . Otherwise
% plantmodel ( ’ i n i t ’ )
% w i l l t r y to load the model from a f i l e c a l l e d ’ plantnnmodel . mat ’
% to save time .
%

25 % See a l so PLANT , NNMODEL

g l o b a l p l a n t m o d e l N e t plantmodelW1 plantmodelW2
g l o b a l p l an tmode lLagU p l a n t m o d e l X

30 g l o b a l plantmode lMeanP p l a n t m o d e l S t d P
g l o b a l plantmodelMeanT p l a n t m o d e l S t d T

s w i t c h lower ( a c t i o n )
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c a s e ’ i n i t ’
35 % c l e a r e x i s t i n g plantmodelNet

p l an tmode lLagU = = [ ] ;

r e t r a i n = 0 ;
i f n a r g i n > 1 ,

40 i f input = = ’ r e t r a i n ’ ,
r e t r a i n = 1 ;

end
end

45 i f ˜ r e t r a i n ,
% t r y to load from f i l e
t r y

l oad p l a n t n n m o d e l ;
end

50 i f p l an tmode lLagU = = [ ] ,
r e t r a i n = 1 ;

end
end

55 % lag space
p l an tmode lLagU = z e r o s ( 3 + 1 , 1 ) ; % number of va lues to lag

% plus cur rent
% plant model s t a t e
p l a n t m o d e l X = z e r o s ( 2 , 1 ) ;

60

% i f we s t i l l have no nn model r e t r a i n one
i f r e t r a i n ,

% nn model
p l a n t m o d e l N e t = nnmodel ( s i z e ( p l an tmode lLagU , 1 ) − 1 , . . .

65 0 , . . .
1 2 , 4 0 0 0 0 ) ;

% save i t to a f i l e
s a v e p l a n t n n m o d e l p l a n t m o d e l N e t p l an tmode lLagU p l a n t m o d e l X

end
70

% r e s e t lag space ( in case we loaded i t )
% . . . you never know

p l an tmode lLagU = 0 ∗ p l an tmode lLagU ;
75

% To speed up things , we’ l l use our own implementation of
% network / sim . To do t h i s we e x t r a c t the weight and b ia s info :

plantmodelW1 = [ p l a n t m o d e l N e t . b {1 , 1} p l a n t m o d e l N e t . IW{ 1 , 1 } ] ;
80 plantmodelW2 = [ p l a n t m o d e l N e t . b {2 , 1} p l a n t m o d e l N e t .LW{ 2 , 1 } ] ;

p l an tmode lMeanP = p l a n t m o d e l N e t . u s e r d a t a . meanp ;
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p l a n t m o d e l S t d P = p l a n t m o d e l N e t . u s e r d a t a . s t d p ;
p lantmodelMeanT = p l a n t m o d e l N e t . u s e r d a t a . meant ;

85 p l a n t m o d e l S t d T = p l a n t m o d e l N e t . u s e r d a t a . s t d t ;

c a s e ’ s a v e s t a t e ’
r e s u l t .U = p l an tmode lLagU ;
r e s u l t . X = p l a n t m o d e l X ;

90

c a s e ’ r e s t o r e s t a t e ’
p l an tmode lLagU = i npu t .U;
p l a n t m o d e l X = i npu t . X ;

95 c a s e ’ m e a s u r e ’
r e s u l t = p l a n t m o d e l X ( 1 ) ;

c a s e ’ a c t u a t e ’
% simulate plant

100

% get neural network input
p = [ p l an tmode lLagU ; p l a n t m o d e l X ] ;

% c a l c u l a t e output
105 %p = ( p−plantmodelMeanP ) . / plantmodelStdP ;

p = t r a s t d ( p , p lantmode lMeanP , p l a n t m o d e l S t d P ) ;
y = plantmodelW2 ∗ [ 1 ; tanh ( p lantmodelW1 ∗ [ 1 ; p ] ) ] ;
%y = y . ∗ plantmodelStdT + plantmodelMeanT ;
y = p o s t s t d ( y , plantmodelMeanT , p l a n t m o d e l S t d T ) ;

110

% s h i f t cont ro l input output into lag space
p l an tmode lLagU = [ i npu t ; p l an tmode lLagU ( 1 : end − 1 ) ] ;

% update plant model s t a t e
115 p l a n t m o d e l X = y ;

r e s u l t = p l a n t m o d e l X ( 1 ) ;

c a s e ’ o u t p u t c o u n t ’
120 r e s u l t = 1 ;

c a s e ’ i n p u t c o u n t ’
r e s u l t = 1 ;

125 c a s e ’ p l o t ’
warning ( ’ ’ ’ p l o t ’ ’ i s no t imp l emen t ed ’ ) ;

c a s e ’ p l o t t r a i n ’
t r = p l a n t m o d e l N e t . u s e r d a t a . t r ;

130 s u b p l o t ( 1 , 1 , 1 ) ;
s e m i l o g y ( t r . epoch , t r . p e r f , ’ k ’ , . . .
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t r . epoch , t r . v p e r f , ’ b ’ , . . .
t r . epoch , t r . t p e r f , ’ r ’ , . . .

’ L ineWidth ’ , 2 )
135 a x i s a u t o

x l a b e l ( ’ e p o c h s ’ ) ;
y l a b e l ( ’ e r r o r f u n c t i o n ( b l a c k : t r a i n i n g b l u e : v a l i d a t i o n ) ’ ) ;
g r i d on ;

end

A.1.6 nnmodel.m

f u n c t i o n [ ne t , t p ] = nnmodel ( l a g u , l a g y , hidden , N, v e r b o s e ) ,
%NNMODEL Create NN model for plant
%
% NET = NNMODEL ( LAGU , LAGY ) Creates a neural network model of

5 % the plant defined by PLANT . The parameters LAGU and LAGY s p e c i f y
% how many cont ro l inputs and plant outputs r e s p e c t i v e l y are to be
% contained in the lag network for the plant .
%
% E . g . for LAGU = 0 and LAGY = 1 only the current cont ro l s i g n a l

10 % used as input along with the corrent and prev ious plant output .
%
% The network i s created using NEWFF and tra ined using TRAIN .
%
% NET = NNMODEL ( LAGU , LAGY , N ) N a d d i t i o n a l l y s p e c i f i e s the

15 % number of samples to create in the t r a i n i n g s e t for the neural
% network . N d e f a u l t s to 3 0 0 0 .
%
% See a l so PLANT , NEWFF , TRAIN

20 u s e t e s t s e t = 0 ;

% number of samples
i f n a r g i n < 4 ,

N = 1 0 0 0 0 ;
25 end

% verbose
i f n a r g i n < 5 ,

v e r b o s e = 1 ;
end

30

g l o b a l NNMODEL P NNMODEL T NNMODEL VP NNMODEL VT
g l o b a l NNMODEL TP NNMODEL TT

i f s i z e (NNMODEL T, 2 ) = = N
35 P = NNMODEL P;

T = NNMODEL T;
VP = NNMODEL VP;
VT = NNMODEL VT;
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i f u s e t e s t s e t ,
40 TP = NNMODEL TP;

TT = NNMODEL TT;
end

e l s e
% t r a i n i n g se t

45 [ P , T] = d a t a s e t ( l a g u , l a g y ,N, 1 ) ; % t r a i n i n g s e t
% v a l i d a t i o n se t
[ VP , VT] = d a t a s e t ( l a g u , l a g y , f l o o r (N/ 2 ) , 2 ) ; % v a l i d a t i o n s e t
i f u s e t e s t s e t ,

% t e s t se t
50 [ TP , TT] = d a t a s e t ( l a g u , l a g y , f l o o r (N/ 2 ) , 3 ) ; % t e s t se t

end

% store data for next time
NNMODEL P = P ;

55 NNMODEL T = T ;
NNMODEL VP = VP ;
NNMODEL VT = VT ;
i f u s e t e s t s e t ,

NNMODEL TP = TP ;
60 NNMODEL TT = TT ;

end
end

% do pre−proces s ing of data :
65 % Normalise the mean and standard dev iat ion

[ P , meanp , s t dp , T , meant , s t d t ] = p r e s t d ( P , T ) ;
VP = t r a s t d ( VP , meanp , s t d p ) ;
VT = t r a s t d ( VT , meant , s t d t ) ;
i f u s e t e s t s e t ,

70 TP = t r a s t d ( TP , meanp , s t d p ) ;
TT = t r a s t d ( TT , meant , s t d t ) ;

e l s e
TP = [ ] ;
TT = [ ] ;

75 end

% setup NN
n e t = n e w f f ( minmax ( P ) , [ hidden , s i z e (T , 1 ) ] , . . .

{ ’ t a n s i g ’ , ’ p u r e l i n ’ } , ’ t r a i n l m ’ ) ;
80 n e t . t r a i n P a r a m . show = NaN ;

n e t . t r a i n P a r a m . mu max = 1 e12 ;
n e t . t r a i n P a r a m . t i m e = I n f ;
n e t . t r a i n P a r a m . m a x f a i l = 2 5 ;

85 % v a l i d a t i o n data
VV . P = VP ;
VV . T = VT ;
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VV. P i = [ ] ;
VV . Ai = [ ] ;

90 % t e s t data
i f u s e t e s t s e t ,

TV . P = TP ;
TV . T = TT ;
TV . P i = [ ] ;

95 TV . Ai = [ ] ;
e l s e

TV = [ ] ;
end

100 o l d w a r n = warning ( ’ o f f ’ ) ;

% s e l e c t best NN out of a smal l s e r i e s
n e t . t r a i n P a r a m . e p o c h s = 5 0 ;
n e t . t r a i n P a r a m . g o a l = 1 e −8;

105 t r i e s = 6 ;
b e s t n e t = [ ] ;
b e s t t r . v p e r f = I n f ;
f o r i = 1 : t r i e s

f p r i n t f ( ’ I n i t i a l c r o s s − v a l i d a t i o n t r a i n i n g # % i o f % i \ r ’ , . . .
110 i , t r i e s ) ;

% setup weights
n e t = i n i t ( n e t ) ;

% t r a i n to 1 s t goal without v a l i d a t i o n data
[ ne t , t r ] = t r a i n ( ne t , P , T , [ ] , [ ] , VV , [ ] ) ;

115 i f t r . v p e r f ( end ) < b e s t t r . v p e r f ( end ) ,
% t h i s one i s better
b e s t n e t = n e t ;
b e s t t r = t r ;

end
120 end

n e t = b e s t n e t ; b e s t n e t = [ ] ;
f p r i n t f ( ’ \ r ’ ) ;

i f v e r b o s e ,
125 n e t . t r a i n P a r a m . show = 5 0 ;

end

% t r a i n to f i n a l goal with v a l i d a t i o n data
n e t . t r a i n P a r a m . e p o c h s = 1 2 0 0 ;

130 n e t . t r a i n P a r a m . g o a l = 1 e −8 ; % f i n a l goal
[ ne t , t r ] = t r a i n ( ne t , P , T , [ ] , [ ] , VV, TV ) ;

warning ( o l d w a r n ) ;

135 % Post−t r a i n i n g a n a l y s i s
% ( not done ; see postreg )
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% put pre−poroccess ing data into neural network userdata :
u s e r d a t a . meanp = meanp ;

140 u s e r d a t a . s t d p = s t d p ;
u s e r d a t a . meant = meant ;
u s e r d a t a . s t d t = s t d t ;

% and put t r a i n i n g record into userdata
u s e r d a t a . t r = t r ;

145

n e t . u s e r d a t a = u s e r d a t a ;

i f na rgout > 1
t p = t r . t p e r f ( end ) ;

150 end

155

f u n c t i o n [ P , T] = d a t a s e t ( l a g u , l a g y ,N, s e t s e l e c t ) ,
% Get dataset of c o n t r o l s and plant outputs

i f l a g y > 0 ,
160 e r r o r ( ’ l a g y must be 0 ’ ) ;

% using model s t a t e ins tead of lag space for y
end

s w i t c h s e t s e l e c t ,
165 c a s e 1 ,

name = ’ t r a i n i n g ’ ;
c a s e 2 ,

name = ’ v a l i d a t i o n ’ ;
c a s e 3 ,

170 name = ’ t e s t ’ ;
o t h e r w i s e ,

name = ’ unknown ’ ;
end

175 i f N > 0 ,
% i n i t i a l i s e plant
p l a n t ( ’ i n i t ’ ) ;

U= [ 0 ] ;
180 % get i n i t i a l s t a t e

Y = p l a n t ( ’ m e a s u r e ’ ) ;
s t a t e = p l a n t ( ’ s a v e s t a t e ’ ) ;
X = s t a t e . X ;

185 % create cont ro l s i g n a l and get plant response

113



Appendix A Matlab Source Code

nCount = f l o o r (N/ 1 0 0 ) ;
i f nCount = = 0 , nCount = 1 ; end
s t o p = 0 ;
f o r n = 2 :N,

190 i f mod ( n , nCount ) = = 0 ,
f p r i n t f ( [ ’ C r e a t i n g ’ name . . .

’ s e t w i t h % i s a m p l e s : %3 i%% done\ r ’ ] , . . .
N, f l o o r ( ( n −1)/N∗ 1 0 0 ) ) ;

end
195

i f ( Y ( 1 , n − 1 ) > 0 . 5 5 ) ,
p o s c o u n t = p o s c o u n t + 1 ;

e l s e
p o s c o u n t = 0 ;

200 end
i f ( p o s c o u n t > 2 5 ) & ( s t o p < 1 ) ,

s t o p = f l o o r ( rand ∗1 0 0 ) ;
U( n ) = 0 ;

end
205 i f ( U( n −1 ) < −0 . 0 0 0 0 5 ) & ( Y ( 1 , n − 1 ) < 0 . 0 5 ) ,

n e g c o u n t = n e g c o u n t + 1 ;
e l s e

n e g c o u n t = 0 ;
end

210

s t o p = s t o p − 1 ;
i f ( s t o p < 1 ) ,

i f rand > 0 . 9 5
U( n ) = U( n −1)+2∗ ( rand −0 . 5 2 )∗0 . 0 0 1 0 ;

215 a ( n ) = 1 ;
e l s e

U( n ) = U( n −1) ;
a ( n ) = 0 ;

end
220 U( n ) = U( n ) + ( rand − 0 . 5 )∗0 . 0 0 0 2 ;

e l s e
a ( n ) = − 1 ;
U( n ) = rand ∗0 . 0 0 0 0 5 ;

end
225 i f n e g c o u n t > 60 ,

a ( n ) = − 2 ;
U( n ) = rand ∗0 . 0 0 0 1 ;

end
% i f U( n ) < 0 ,

230 % U( n ) = U( n ) ∗ 0 . 1 ;
% end

% actuate plant and get output
Y ( : , n ) = p l a n t ( ’ a c t u a t e ’ , U( n ) ) ;
s t a t e = p l a n t ( ’ s a v e s t a t e ’ ) ;
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235 X ( : , n ) = s t a t e . X ;
end

f p r i n t f ( [ ’ ’ . . .
’ \ r ’ ] ) ;

240 e l s e
% t r y to load from f i l e
l oad t r a i n d a t a
N = s i z e (U , 2 ) ;
% Use 1 s t ha l f for t ra in ing , and d iv ide 2 nd ha l f into v a l i d a t i o n

245 % and t e s t se t :
s w i t c h s e t s e l e c t ,

c a s e 1
U = U ( : , 1 : f l o o r (N/ 2 ) ) ;
Y = Y ( : , 1 : f l o o r (N/ 2 ) ) ;

250 c a s e 2
U = U( : , f l o o r (N/ 2 ) + 1 : f l o o r (3∗N/ 4 ) ) ;
Y = Y ( : , f l o o r (N/ 2 ) + 1 : f l o o r (3∗N/ 4 ) ) ;

c a s e 3
U = U( : , f l o o r (3∗N/ 4 ) + 1 :N) ;

255 Y = Y ( : , f l o o r (3∗N/ 4 ) + 1 :N) ;
end
% Get new s i z e
N = s i z e (U , 2 ) ;

end
260

i f 1 ,
% plot
s u b p l o t ( 3 , 1 , 1 ) ;
p l o t ( X ’ ) ;

265 t i t l e ( s p r i n t f ( ’%s s e t w i t h % i s a m p l e s ’ , name , N ) ) ;
l e g e n d ( ’ y ’ , ’ X2 ’ , 0 ) ;
s u b p l o t ( 3 , 1 , 2 ) ;
p l o t (U ’ ) ;
l e g e n d ( ’ u ’ , 0 ) ;

270 s u b p l o t ( 3 , 1 , 3 ) ;
p l o t ( a ’ , ’ . ’ ) ;
l e g e n d ( ’ a ’ , 0 ) ;
drawnow ;

end
275

% Reshape input / output data
% to a lag−network of input data
P = [ ] ; T = [ ] ;
f o r n = 1 : l a g u +1 ,

280 P ( n , : ) = [ z e r o s ( 1 , n ) U( 1 :N−n ) ] ; % lag c o n t r o l s
end
i f 0 ,

% lag outputs
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f o r n = 1 : l a g y +1 ,
285 P ( n+ l a g u + 1 , : ) = [ ones ( 1 , n )∗Y ( 1 ) Y ( 1 :N−n ) ] ; % lag outputs

end

% Neural network target va lues are the outputs :
T = Y ;

290 e l s e
% use s t a t e s
P ( l a g u + 2 : l a g u + 3 , : ) = [ X ( : , 1 ) X ( : , 1 : end − 1 ) ] ;
% Neural network target va lues are the s t a t e s
T = X ;

295 end

% Output data se t s i z e
name ( 1 ) = upper ( name ( 1 ) ) ;
f p r i n t f ( [ name ’ s e t h a s % i s a m p l e s .\ n ’ ] , N ) ;

A.1.7 createtrainset.m

%
% Create t r a i n i n g data se t
%
% for system model

5 %

% number of samples
N = 1 0 0 0 ;

10 U = [ ] ;
Y = [ ] ;

% create input data

15 maxu = 0 . 2 ;
minu = − 0 . 2 ;
a l p h a = 1 − 1 / 1 0 ;

f p r i n t f ( ’ C r e a t i n g i n p u t s i g n a l w i t h r a n g e %f t o %f \ r ’ , . . .
20 minu , maxu ) ;

f p r i n t f ( [ ’ ’ . . .
’ \ r ’ ] ) ;

25 f o r n = 1 :N,
i f ( n = = 1 ) | ( rand > a l p h a ) ,

U( n ) = minu + ( maxu−minu )∗ rand ;
e l s e

U( n ) = U( n −1) ;
30 end
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end

% i n i t i a l i s e plant

35 p l a n t ( ’ i n i t ’ ) ;

f o r n = 1 :N,
f p r i n t f ( ’ S i m u l a t i n g p l a n t w i t h % i s a m p l e s : %3 i%% done\ r ’ , . . .

N, f l o o r ( ( n −1 ) / (N− 1 ) ∗ 1 0 0 ) ) ;
40 Y ( n ) = p l a n t ( ’ a c t u a t e ’ ,U( n ) ) ;

end

f p r i n t f ( [ ’ ’ . . .
’ \ r ’ ] ) ;

45

% plot
s u b p l o t ( 2 , 1 , 1 ) ;
p l o t ( Y ) ;
l e g en d ( ’ y ’ , −1) ;

50 s u b p l o t ( 2 , 1 , 2 ) ;
p l o t (U ) ;
l e g en d ( ’ u ’ , −1) ;
drawnow ;

55 f p r i n t f ( ’ Data s e t r e a d y i n U and Y .\ n ’ ) ;

P = [ ] ; T = [ ] ;
l a g u = 2 ;
f o r n = 1 : l a g u +1 ,

60 P ( n , : ) = [ z e r o s ( 1 , n −1) U( 1 :N−n + 1 ) ] ;
end
l a g y = 2 ;
f o r n = 1 : l a g y +1 ,

P ( n+ l a g u + 1 , : ) = [ ones ( 1 , n−1)∗Y ( 1 ) Y ( 1 :N−n + 1 ) ] ;
65 end

A.1.8 sqwave.m

f u n c t i o n u= s q w a v e ( n , p e r )
% SQWAVE Create square wave s i g n a l
%
% U = SQWAVE ( N , PER ) Creates a square wave of length N with a

5 % period eqaul to PER .

% Programmed 2 0 0 2 by Daniel Eggert
% Department of Mathematical Modelling ,
% Techn i ca l U n i v e r s i t y of Denmark

10

m = rem ( ( 1 : n ) ∗ ( 1 / p e r ) , 1 ) ;
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m = (m+ (m= = 0 ) )≤0 . 5 ;
u = ( 2 ∗m−1 ) ’ ;

A.1.9 humantime.m

f u n c t i o n S = humantime ( s ) ,

m = f l o o r ( s / 6 0 ) ;
s = mod ( s , 6 0 ) ;

5

h = f l o o r (m/ 6 0 ) ;
m = rem (m, 6 0 ) ;

i f h > 0 ,
10 S = [ i n t 2 s t r ( h ) ’ h ’ ] ;

e l s e
S = [ ] ;

end
i f ( h > 0 ) | (m > 0 ) ,

15 S = [ S i n t 2 s t r (m) ’ ’ ’ ’ ] ;
end
S = [ S i n t 2 s t r ( s ) ’ ’ ’ ’ ’ ’ ] ;

A.1.10 variations.m

%
% Run through parameter v a r i a t i o n s and plot r e s u l t i n g cos t func t ion
%
% Wi l l v a r i a t e p h y s i c a l parameters defined in plant .m by using

5 % global v a r i a b l e

g l o b a l R
10 Nmax = 8 0 0 ;

U0 = 0 ;
N2 = 4 0 ;
NU = 1 0 ;
rho = 1 0 0 ;

15 R = −0 . 0 5∗ s q w a v e ( Nmax , 2 0 0 ) + 0 . 0 5 + 0 . 2 ;

f p r i n t f ( [ ’ Computing c o s t f u n c t i o n f o r p h y s i c a l p a r a m e t e r ’ . . .
’ v a r i a t i o n s : \ n ’ ] ) ;

20

% array of parameters
p a r a m e t e r = 1 : 2 ;
p a r a m e t e r i d x = 1 : s i z e ( p a r a m e t e r , 2 ) ;
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25

% array of r e l a t i v e changes
r e l c h a n g e = 0 . 9 : 0 . 0 0 2 : 1 . 1 ;
r e l c h a n g e i d x = 1 : s i z e ( r e l c h a n g e , 2 ) ;

30 f p r i n t f ( ’ W i l l do a t o t a l o f % i s i m u l a t i o n s r u n s . . . \ n ’ , . . .
p a r a m e t e r i d x ( end )∗ r e l c h a n g e i d x ( end ) + 1 ) ;

% matrix for r e s u l t s
J v a r = z e r o s ( p a r a m e t e r i d x ( end ) , r e l c h a n g e i d x ( end ) ) ;

35

% s e t up VARIATE v a r i a b l e for modifying p h y s i c a l parameters
% in plant .m
g l o b a l VARIATE
VARIATE = [ ] ;

40

% Get cos t func t ion for o r i g i n a l parameters
[ Y ,U ] = run s im ( N2 , rho , Nmax , 0 , 1 ) ;
DU = U( 1 : end−1)−U( 2 : end ) ;
J o r g = sum ( ( R−Y ) . ˆ 2 ) / s i z e ( R , 1 ) + . . .

45 rho ∗sum (DU. ˆ 2 ) / s i z e (DU, 1 ) ;

t i m e o f f s e t = cput ime ;
f o r i = p a r a m e t e r i d x ,

f o r c h a n g e = r e l c h a n g e i d x ,
50 f p r i n t f ( ’ \ r%i%% ’ , . . .

f l o o r ( 1 0 0 ∗ ( ( i −1)∗ r e l c h a n g e i d x ( end ) + change − 1 ) / . . .
( r e l c h a n g e i d x ( end )∗ p a r a m e t e r i d x ( end ) ) ) ) ;

% change the parameters
55 VARIATE . p a r a m e t e r = p a r a m e t e r ( i ) ;

VARIATE . c h a n g e = r e l c h a n g e ( c h a n g e ) ;

% c a l c u l a t e cos t func t ion for these weights
[ Y ,U ] = run s im ( N2 , NU, rho , Nmax , 0 , 1 ) ;

60 DU = U( 1 : end−1)−U( 2 : end ) ;
J = sum ( ( R−Y ) . ˆ 2 ) / s i z e (R , 1 ) + . . .

rho ∗sum (DU. ˆ 2 ) / s i z e (DU, 1 ) ;

% store cos t func t ion r e s u l t
65 J v a r ( i , c h a n g e ) = J ;

s a v e v a r i a t i o n s . mat J o r g J v a r r e l c h a n g e
end

end
f p r i n t f ( [ ’CPU t i m e u s e d : ’ humantime ( cputime− t i m e o f f s e t ) ’ \n ’ ] ) ;

70

% normal ise c o s t f u n c t i o n s with o r i g i n a l os t funct ion
J v a r n o r m = J v a r / J o r g ;
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% plot r e s u l t s
75 p l o t ( r e l c h a n g e , J v a r n o r m )

a x i s ( [ r e l c h a n g e ( 1 ) r e l c h a n g e ( end ) 1 2 ] ) ;
g r i d on ;
x l a b e l ( ’ r e l a t i v e c h a n g e o f p a r a m e t e r ’ ) ;
y l a b e l ( ’ r e l a t i v e c h a n e g i n c o s t f u n x t i o n ’ ) ;

80 l e g e n d ( ’ l 1 ’ , ’ l 2 ’ , ’ v 2 ’ , 0 ) ;

% save r e s u l t s
f p r i n t f ( ’ S a v i n g r e s u l t s t o f i l e ’ ’ v a r i a t i o n s . mat ’ ’ \n ’ ) ;
s a v e v a r i a t i o n s . mat J o r g J v a r J v a r n o r m r e l c h a n g e

A.2 Direct Neural Network Control

Below the Matlab files used for chapter 3 are listed. Again only files for one
of the two implementations are listed.

The reversing trailer truck is slightly more complex as it includes files to
implement the Bezier-spline based path. An overview of its files are shown
in figure A.2.

A.2.1 wb.m

%
% Thi s i s the workbench
%
% Run FMINSEARCH to f ind neural network weights

5 %

g l o b a l RUNSIM BATCH COUNT Y POS

RUNSIM BATCH COUNT = 4 ; % Number of d i f f e r e n t i n i t i a l s c e n a r i o s
10 w e i g h t s F r o m = 0 ; % Where to get the i n i t a l weights from ( 0 = load

% from f i l e )
s e a r c h = 0 ; % I f se t to 0 the weights w i l l remain unchanged
s a v e W e i g h t s = s e a r c h ; % Whether to save r e s u l t i n g weights to f i l e
p l o t m o t i o n = 0 ; % Whether to p lot the motion of the v e h i l e

15 m a x I t e r = 1 0 0 ; % Number of i t e r a t i o n s to run with fminsearch
%Nmax = 1 0 0 ; % max number of s imulat ion s teps ( N∗Ts )
p l a n t ( ’ i n i t ’ ) ; Nmax = b e z i e r l e n g t h ∗3 ;
r e s e t R = 1 ; % get new references
rho = 0 . 0 0 1 ; % contro l co s t weight

20 q u i e t = 0 ;

s w i t c h w e i g h t s F r o m

120



A.2 Direct Neural Network Control

work bench: simulation parameters
(such as reference signal) are set up

wb.m

runs the simulations
runsim.m

simulates the plant
plant.m

handles the lag-network
lagnnout.m

set-up the bezier path and
initialise bezier-related data

bezierinit.m

show time in human readable
format

humantime.m

create square-wave signal
sqwave.m

evaluate the cost function
by running simulations

fmincost.m

transform weight matrices
into vector and vice versa

scalar2weights.m
weights2scalar.m

calculates the neural
network outputs

nnout.m

culculate (x,y) coordinates
of curve point, or first /
second derivatives of curve
point

bezierxy.m
bezierxyd.m
bezierxydd.m

total length of the path
bezierlength.m

curvature of path at
given point

beziercurvature.m

convert (s,d) coordinates to
(x,y) coordinates

sd2xy.m

parameter sensitivity
variations.m

Figure A.2: This is how the Matlab files for the direct neural network con-
troller fit together. Arrows correspond to function calls.
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c a s e 0
25 l oad w e i g h t s . mat

c a s e 1
% zero a l l 1 s t l e v e l weights and uni t a l l 2 nd l e v e l weights
n R = 0 ;
n Y = 1 ;

30 n U = 1 ;
n h i d d e n = 1 ;

% Y = [ s d theta alpha 1 alpha 2 curv ( s ) ]
Y POS = [ 2 : 6 ] ;
s i z e U = p l a n t ( ’ i n p u t c o u n t ’ ) ;

35 s i z e Y = s i z e ( Y POS , 2 ) ;
% zero weights
W1 = z e r o s ( n h idden , 1 + n R∗ s i z e Y + n U∗ s i z e U + n Y∗ s i z e Y ) ;
% W1 / = / [ o f f s e t d theta alpha 1 alpha 2 curv ( s ) U]
%W1(1 ,2 )= −0 .1 ;

40 g l o b a l g l P
W1( 1 , 3 ) = g l P ( 1 ) / 1 0 ; % theta
W1( 1 , 4 ) = g l P ( 2 ) / 1 0 ; % alpha 1
W1( 1 , 5 ) = g l P ( 3 ) / 1 0 ; % alpha 2
W2 = [ 0 ones ( s i z e U , ( n h i d d e n ) ) ] ∗ 1 0 ;

45 c a s e 2 % r e s u l t of f inda
n R = 0 ;
n Y = 1 ;
n U = 1 ;
n h i d d e n = 1 ;

50 Y POS = [ 2 : 6 ] ;
W1 = z e r o s ( 1 , 1 + 0 + 1 + 5 ) ;
W1( 1 , 3 ) = − 1 . 3 6 3 5 / 1 0 ;
W1( 1 , 4 ) = 4 . 0 7 5 6 / 1 0 ;
W1( 1 , 5 ) = − 3 . 3 2 6 5 / 1 0 ;

55 W2 = [ 0 1 0 ] ;
c a s e 3

l oad w e i g h t s . mat
W1 = W1/ 2 ; 1
W2 = [ W2 ( : , 1 ) W2( : , 2 : end ) ∗ 2 ] ;

60 c a s e 1 0
% go from using o f f s e t to not using o f f s e t ( s ca la r2weight s )
l oad w e i g h t s . mat
W1( : , 1 ) = 0 ∗W1 ( : , 1 ) ;
W2( : , 1 ) = 0 ∗W2 ( : , 1 ) ;

65 c a s e 2 0
n h i d d e n = 1 ;
Y POS = [ 2 : 6 ] ;
s i z e U = p l a n t ( ’ i n p u t c o u n t ’ ) ;
s i z e Y = s i z e ( Y POS , 2 ) ;

70 n R = 0 ;
n U = 1 ;
n Y = 1 ;
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l oad w e i g h t s 3 . mat
o t h e r w i s e

75 % neural network s t r u c t u r e
n R = 0 ; % number of re ferences in lag network
n Y = 1 ; % number of plant outputs −−’’−−
n U = 1 ; % number of c o n t r o l s −−’’−−
n h i d d e n = 1 ; % number of hidden u n i t s in neural network

80 Y POS = [ 2 : 6 ] ;
s i z e U = p l a n t ( ’ i n p u t c o u n t ’ ) ;
s i z e Y = s i z e ( Y POS , 2 ) ;

% random weights
W1 = randn ( n h idden , 1 + n R∗ s i z e Y + n U∗ s i z e U + n Y∗ s i z e Y ) ;

85 W2 = randn ( s i z e U , ( n h i d d e n + 1 ) ) ;
end

g l o b a l R
i f r e s e t R ,

90 % force new reference funct ion
R = [ ] ;

end

% Search for minimum using fminsearch
95 [SW, S1 , S2 ] = w e i g h t s 2 s c a l a r ( W1, W2, 1 ) ;

i f s e a r c h ,
o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ i t e r ’ , ’ M a x I t e r ’ , m a x I t e r ) ;
t i m e o f f s e t = cput ime ;
[SW, Jmin , e x i t f l a g ] = f m i n s e a r c h ( @fmincos t , SW, o p t i o n s , S1 , . . .

100 S2 , n R , n U , n Y , rho , . . .
Nmax , − 1 ) ;

f p r i n t f ( [ ’CPU t i m e u s e d : ’ . . .
humantime ( cputime− t i m e o f f s e t ) ’ \n ’ ] ) ;

end
105 [W1, W2 ] = s c a l a r 2 w e i g h t s ( SW, S1 , S2 , 1 ) ;

i f ˜ q u i e t ,
% output r e s u l t
f p r i n t f ( ’ R e s u l t i n g n e u r a l n e t w o r k w e i g h t s :\ n ’ ) ;

110 W1,W2
end

i f s a v e W e i g h t s = = 1 ,
s a v e w e i g h t s . mat W1 W2 n R n Y n U Y POS

115 end

% Run s imulat ion with found weights ( and plot )
[ Jmin , Y ,U ] = f m i n c o s t ( SW, S1 , S2 , n R , n U , n Y , rho , Nmax , . . .

˜ q u i e t ) ;
120 i f ˜ q u i e t ,

f p r i n t f ( ’ J = % f \n ’ , Jmin ) ;
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end

i f p l o t m o t i o n = = 1 ,
125 %pause

p l a n t ( ’ p l o t ’ ) ;
end

A.2.2 scalar2weights.m

f u n c t i o n [ W1, W2 ] = s c a l a r 2 w e i g h t s (X , S1 , S2 , n o o f f s e t )
% SCALAR2WEIGHTS Create weight matr i ces from s c a l a r vector
%
% [ W1, W2] = SCALAR2WEIGHTS (X , S1 , S2 ) The content of X and the

5 % s i z e s S1 and S2 are used to create the weight matr i ces W1 and
% W2.

i f n a r g i n < 4 ,
n o o f f s e t = 0 ;

10 end
i f n o o f f s e t ,

S1 ( 2 ) = S1 ( 2 ) − 1 ;
S2 ( 2 ) = S2 ( 2 ) − 1 ;

end
15

f o r n = 1 : S1 ( 1 )
W1( n , : ) = X ( 1 + ( n−1)∗S1 ( 2 ) : n∗S1 ( 2 ) ) ;

end
i f n o o f f s e t ,

20 W1 = [ z e r o s ( S1 ( 1 ) , 1 ) W1 ] ;
end
X = X(1+ S1 ( 1 )∗ S1 ( 2 ) : end ) ;
f o r n = 1 : S2 ( 1 )

W2( n , : ) = X ( 1 + ( n−1)∗S2 ( 2 ) : n∗S2 ( 2 ) ) ;
25 end

i f n o o f f s e t ,
W2 = [ z e r o s ( S2 ( 1 ) , 1 ) W2 ] ;

end

A.2.3 weights2scalar.m

f u n c t i o n [ X , v a r a r g o u t ] = w e i g h t s 2 s c a l a r (W1, W2, n o o f f s e t )
% WEIGHTS2SCALAR Put conta int of weight matr i ces into s c a l a r
%
% [ X ] = WEIGHTS2SCALAR (W1, W2) puts a l l the elemtns of W1 and W2

5 % into the s c a l a r X .
% [ X , S1 , S2 ] = WEIGHTS2SCALAR (W1, W2) a l so outputs the s i z e of W1
% and W2 into S1 and S2 r e s p e c t i v e l y .

i f n a r g i n < 3 ,

124



A.2 Direct Neural Network Control

10 n o o f f s e t = 0 ;
end
i f n o o f f s e t ,

s t a r t = 2 ;
e l s e

15 s t a r t = 1 ;
end

X = [ ] ;
f o r n = 1 : s i z e (W1, 1 )

20 X = [ X W1( n , s t a r t : end ) ] ;
end
f o r n = 1 : s i z e (W2, 1 )

X = [ X W2( n , s t a r t : end ) ] ;
end

25 i f na rgout > 1
v a r a r g o u t ( 1 ) = { s i z e (W1) } ;
v a r a r g o u t ( 2 ) = { s i z e (W2) } ;

end

A.2.4 fmincost.m

f u n c t i o n [ J , Y ,U ] = f m i n c o s t ( s c a l a r , S1 , S2 , n R , n U , n Y , rho , . . .
Nmax , d o p l o t )

% FMINCOST Ca l cu la te cos t funct ion for nn cont ro l
%

5 % J = FMINCOST ( SW, S1 , S2 , NR , NU , NY , RHO )
% J = FMINCOST ( SW, S1 , S2 , NR , NU , NY , RHO , N , DOPLOT )
% C a l c u l a t e s the cos t func t ion for a neural network with a lag
% network s p e c i f i e d by NR , NU and NY . These are the number of
% references , cont ro l and output s i g n a l s contained in the lag

10 % network feeding the input to a neural network .
%
% Thi s funct ion can be used as a cos t funct ion for fminsearch .
%
% The n e u l r a l network s t r u c t u r e and weights are s p e c i f i e d by SW,

15 % S1 , S2 . The weights are ext racted by using SCALAR2WEIGHTS .
%
% Nmax s p e d i f i e s the maximum number of samples to s imulate . I t i s
% opt ional and d e f a u l t s to 1 0 0 .
%

20 % The parameter DOPLOT i s opt ional . I f s p e c i f i e d and se t to 1 the
% simulat ion r e s u l t s w i l l be plotted . I f se t to 0 no p l o t t i n g w i l l
% be done ( defau l t ) and i f se t to −1 a plot w i l l be done every
% 30 th funct ion c a l l .
%

25 % The reference s i g n a l i s a square wave function , and the
% cos t func t ion evaulated i s
% J = sum ( ( Y−R ) ˆ 2 ) + RHO ∗ sum ( U ˆ 2 )
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% where R i s the reference , Y the plant output and U the cont ro l
% s i g n a l . ( Th i s due to change )

30 %
% I f the global v a r i a b l e RUNSIM BATCH COUNT i s s e t to a p o s i t i v e
% integer RUNSIM w i l l be c a l l e d with a l l i n i t i a l i t a i o n parameters
% in the i n t e r v a l 1 : RUNSIM BATCH COUNT .
%

35 % [ J , Y ,U ] = FMINCOST ( SW, S1 , S2 , NR , NU , NY , RHO )
% Th i s a l t e r n a t i v e l y funct ion c a l l w i l l a l so output the r e s u l t i n g
% output Y and cont ro l U .

g l o b a l fmincost COUNT RUNSIM BATCH COUNT
40

% optional arguments
i f n a r g i n < 8

Nmax = 1 0 0 ;
end

45 i f n a r g i n < 9
d o p l o t = 0 ;

end

% funct ion c a l l count
50 i f ( d o p l o t ≥ 0 ) | ( fmincost COUNT = = [ ] )

fmincost COUNT = 0 ;
e l s e

fmincost COUNT = fmincost COUNT + 1 ;
end

55

% check for p e r i o d i c p l o t s
i f ( d o p l o t < 0 ) & ( mod ( fmincost COUNT , 1 0 ) = = 0 ) ,

d o p l o t = − d o p l o t ;
end

60

% create neural network with lag network :
s i z e U = p l a n t ( ’ i n p u t c o u n t ’ ) ;
s i z e Y = p l a n t ( ’ o u t p u t c o u n t ’ ) ;
g l o b a l Y POS

65 i f Y POS ˜ = [ ]
s i z e Y = s i z e ( Y POS , 2 ) ;

end
l a g n n . R = z e r o s ( 1 , n R ) ;
l a g n n .U = z e r o s ( 1 , s i z e U ∗n U ) ;

70 l a g n n . Y = z e r o s ( 1 , s i z e Y ∗n Y ) ;

% Get neural network weights from s c a l a r
[ l a g n n .W1, l a g n n .W2 ] = s c a l a r 2 w e i g h t s ( s c a l a r , S1 , S2 , 1 ) ;

75 % run s imulat ion with lagnn
i f ( RUNSIM BATCH COUNT ˜ = [ ] ) & ( RUNSIM BATCH COUNT > 0 )
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f o r b a t c h c o u n t = 1 :RUNSIM BATCH COUNT
[ Y , U ] = run s im ( l agnn , Nmax , z e r o s ( s i z e U ) , d o p l o t , . . .

b a t c h c o u n t ) ;
80 end

e l s e
[ Y , U ] = run s im ( l agnn , Nmax , z e r o s ( s i z e U ) , d o p l o t ) ;

end

85 % c a l c u l a t e cos t func t ion
c o s t = 1 ;

% Y = [ s d theta alpha 1 alpha 2 ]
s w i t c h c o s t

c a s e {1 , 2 , 3}
90 % cos t = 1 : ’ standard ’ <−− use t h i s

% cos t = 2 : inc lude t rave led d i s tance ( use for s t a r t guess )
% cos t = 3 : exclude penalty on angles outs ide bounds ( p i / 2 )
DeltaU =U( 2 : end )−U( 1 : end −1) ;
r e m a i n i n g S = Y ( end , 1 ) ;

95 i f r e m a i n i n g S < 0 ,
r e m a i n i n g S = 0 ;

end
J = ( 1 0 ∗ sum ( Y ( : , 2 ) . ˆ 2 ) + . . .

0 . 2∗ sum ( Y ( : , 3 ) . ˆ 2 ) + . . .
100 0 . 2∗ sum ( Y ( : , 4 ) . ˆ 2 ) + . . .

( c o s t ˜ = 3 )∗ sum ( ( Y ( : , 4 ) / ( 0 . 9 5 ∗ pi / 2 ) ) . ˆ 4 0 ) + . . .
( c o s t ˜ = 3 )∗ sum ( ( Y ( : , 5 ) / ( 0 . 9 5 ∗ pi / 2 ) ) . ˆ 4 0 ) . . .
) / s i z e ( Y , 1 ) + . . .

( c o s t = = 2 ) ∗ r e m a i n i n g S + . . .
105 rho ∗ sum ( Del taU . ˆ 2 ) / s i z e ( Y , 1 ) ;

c a s e 4
% for s t a r t g u e s s ( d i s regard d i s tance to path )
J = ( sum ( Y ( : , 3 ) . ˆ 2 ) + . . .

sum ( Y ( : , 4 ) . ˆ 2 ) + . . .
110 sum ( ( Y ( : , 4 ) / ( 0 . 9 5 ∗ pi / 2 ) ) . ˆ 4 0 ) + . . .

sum ( ( Y ( : , 5 ) / ( 0 . 9 5 ∗ pi / 2 ) ) . ˆ 4 0 ) . . .
) / s i z e ( Y , 1 ) + . . .

Y ( end , 1 ) ;
o t h e r w i s e

115 J = 0 ;
warning ( ’No c o s t f u n c t i o n s p e c i f i e d i n f m i n c o s t .m ’ ) ;

end

A.2.5 runsim.m

f u n c t i o n [ Y , U ] = run s im ( l agnn , Nmax , U 0 , d o p l o t , i n i t a r g )
% RUNSIM Simulate neural network c o n t r o l l e r
%
% [ Y , U ] = RUNSIM ( LAGNN ) Returns the r e s u l t i n g ouput into Y and

5 % the r e s u l t i n g c o n t r o l l s into U . R i s a ( g lobal ) vector of
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% reference s i g n a l s and LAGNN i s the neural c o n t r o l l e r with lag
% network . See LAGNNOUT for d e t a i l s .
%
% [ Y , U ] = RUNSIM ( LAGNN , NMAX ) A d d i t i o n a l l y s p e c i f i e s the

10 % maximum number of i t e r a t i o n s to s imulate ( defau l t = 1 0 0 ) .
%
% [ Y , U ] = RUNSIM ( LAGNN , NAMX, UINIT ) Does the same as above , but
% s p e c i f i e s UINIT as the i n i t a l p lant and c o n t r o l l e r output .
%

15 % [ Y , U ] = RUNSIM ( LAGNN , NAMX, UINIT , INITARG ) A d d i t i o n a l l y
% s p e c i f i e s an argument INITARG to be passed to the plant
% i n i t i a l i z e funct ion .
%
% The GLOBAL v a r i a b l e Y POS should be used to l i m i t c e r t a i n plant

20 % output v a r i a b l e s not to be used . See LAGNNOUT.

g l o b a l Y POS

i f n a r g i n < 2 ,
25 Nmax = 1 0 0 ;

end

i f n a r g i n < 5
p l a n t ( ’ i n i t ’ ) ; % i n i t i a l i z e plant model

30 e l s e
p l a n t ( ’ i n i t ’ , i n i t a r g ) ; % i n i t i a l i z e plant model

end

i f n a r g i n < 3
35 U 0 = z e r o s ( s i z e ( l a g n n .W2, 1 ) , 1 ) ;

end

i f n a r g i n < 4
d o p l o t = 0 ;

40 end
i f d o p l o t > 1

d o d e r i v = 1 ; % c a l c u l a t e ( and plot ) d e r i v a t e s
e l s e

d o d e r i v = 0 ;
45 end

% setup s imulat ion
U ( 1 , : ) = U 0 ;

50 Y ( 1 , : ) = p l a n t ( ’ a c t u a t e ’ , U 0 ) ;
i f Y POS = = [ ] ,

Y POS = 1 : s i z e ( Y , 2 ) ;
c l e a r y p o s = 1 ;

e l s e
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55 c l e a r y p o s = 0 ;
end

% run s imulat ion
n = 2 ;

60 s = 0 ;
S = b e z i e r l e n g t h ;
p r o g r e s s c o u n t = c e i l ( Nmax / 2 0 ) ;
w h i l e ( ( n < Nmax ) & ( s ≥ 0 ) & ( s ≤ S ) ) ,

i f mod ( n , p r o g r e s s c o u n t ) = = 0 ,
65 f p r i n t f ( ’ . ’ ) ;

end
% f p r i n t f ( ’%d ’ , n ) ;

i f d o d e r i v = = 1 ,
[ l a gnn , U n , YD n ] = l a g n n o u t ( l a gnn , [ ] , Y ( n − 1 , : ) , U( n − 1 , : ) , . . .

70 Y POS ) ;
YD( n , : ) = YD n ;

e l s e
[ l a gnn , U n ] = l a g n n o u t ( l a gnn , [ ] , Y ( n − 1 , : ) , U( n − 1 , : ) , Y POS ) ;

end
75 U( n , : ) = U n ;

Y ( n , : ) = p l a n t ( ’ a c t u a t e ’ , U( n ) ) ;
% get p o s i t i o n on path ( to check for end of s imulat ion )
s = Y ( n , 1 ) ;
n = n + 1 ;

80 end
N = n − 1 ;
f p r i n t f ( ’ \ r \ r ’ ) ;
i f ( c l e a r y p o s = = 1 )

c l e a r Y POS ; % Clean up Y POS
85 end

i f ( narg in > 2 ) & ( d o p l o t > 0 )
i f 0 ,

90 n p l o t s = 2 ;
i f d o d e r i v = = 1 ,

n p l o t s = n p l o t s + 1 ;
end

95 % number of s imulat ion step to plot
N max = 7 0 0 ;
N max = min ( N max , N ) ; % l i m i t to N
n = 1 : N max ;
yrow = 2 ; % row in y−matirx to plot

100 yrow2 = 3 ; % row in y−matirx to plot

s u b p l o t ( n p l o t s , 1 , 1 ) ;
p l o t y y ( n , Y ( 1 : N max , yrow ) , n , Y ( 1 : N max , yrow2 ) / pi ) ;
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l e g e n d ( ’ d ’ , 0 ) ;
105

s u b p l o t ( n p l o t s , 1 , 2 ) ;
p l o t ( n ,U( 1 : N max ) ) ;
l e g e n d ( ’ u ’ , 0 ) ;

110 i f d o d e r i v = = 1 ,
s u b p l o t ( n p l o t s , 1 , 3 ) ;
p l o t ( n ,YD ( 1 : N max , : ) ) ;
l e g e n d ( ’ dy ’ , 0 ) ;

end
115 e l s e

p l a n t ( ’ p l o t ’ ) ;
end
drawnow ;

end

A.2.6 lagnnout.m

f u n c t i o n [ l a gnn , U new , YD ] = l a g n n o u t ( l a gnn , R , Y , U , YPOS )
% LAGNNOUT Feed reference to lag−network and get NN output
%
% [ LAGNN , U NEW ] = LAGNNOUT ( LAGNN , R , Y , U )

5 % lagnn i s a c e l l a r ray contain ing the lag network and the NN
% weights . The updated lagnn i s output to lagnn new .
% R i s the reference ; U i s the current NN output and Y the
% current plant output to be fed into the lag network .
% U new i s the r e s u l t i n g NN output .

10 %
% ### ###### #######
% − −−R−−−# #−−# # # #
% #L # # #−−−# #
% /−−Y−−#A#−−# NN # | # P lant#−−−−−Y−−

15 % | #G# # #−∗−# # |
% | / −U−# #−−# # | # # |
% | | ### ###### | ####### |
% | | | |
% | \−−−−−−−−−−−−−−−/ |

20 % \−−−−−−−−−−−−−−−−−−−−−−−−−−−−/
%
% lagnn . R i s a vector contain ing the lag network for the
% references . s i z e ( lagnn . R ) = n R∗ s i z e ( R ) where n R i s the number
% of references to keep in the lag network . E q u i v i a l e n t l y for

25 % lagnn .U and lagnn . Y contain ing the cont ro l and plant output lag
% network .
% lagnn .W1 and lagnn .W2 contain the weights of the neural
% network . See nnout for d e t a i l s .
%

30 % [ LAGNN , U NEW , YD ] = LAGNNOUT ( LAGNN , R , Y , U )
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% Also returns the p a r t i a l d e r i v a t i v e s of the neural network
% outputs with re spec t to the neural network inputs .
%
% [ LAGNN , U NEW ] = LAGNNOUT ( LAGNN , R , Y , U , YPOS )

35 % The opt ional YPOS parameter s p e c i f i e s the p o s i t i o n s of Y to
% use . I f the plant output Y i s of s i z e 1 x4 then YPOS = [ 2 3 ] w i l l
% ensure that only the 2 nd and 2 rd element in Y w i l l be stored in
% the lag network and hence fed to the neural network .

40

debug = 0 ;
i f not ( debug )

% shape the plant output s i g n a l
45 i f ( n a r g i n > 4 ) ,

Y=Y ( YPOS ) ;
end
% update the lag network :
l a g n n . R= [R l a g n n . R ( ( s i z e ( R , 2 ) + 1 ) : end ) ] ;

50 i f ( n a r g i n > 2 ) ,
l a g n n .U= [U l a g n n .U( ( s i z e (U, 2 ) + 1 ) : end ) ] ;

end
i f ( n a r g i n > 3 ) ,

l a g n n . Y = [ Y l a g n n . Y ( ( s i z e ( Y , 2 ) + 1 ) : end ) ] ;
55 end

% get the nn output
U new = nnout ( [ l a g n n . R l a g n n . Y l a g n n .U] ’ , l a g n n .W1, l a g n n .W2 ) ;
i f na rgout > 2 ,

60 YD = n n d e r i v ( [ l a g n n . R l a g n n . Y l a g n n .U] ’ , l a g n n .W1, l a g n n .W2 ) ;
end

e l s e
% debug
U new = R ;

65 U new = 0 ;
end

A.2.7 nnout.m

f u n c t i o n Y = nnout ( X , W1, W2 )
% NNOUT Ca l cu la te neural network output
%
% Y = NNOUT ( X , W1, W2 ) Returns in Y the outputs of a neural

5 % network with s i z e ( W1, 1 ) = s i z e ( W2, 2 ) − 1 hidden u n i t s with a
% tanh a c t i v a t i o n funtion . The network input i s given by X and W1
% and W2 are the network weights and o f f s e t s .
%
% W1( : , 1 ) are the o f f s e t s of the hidden uni t inputs and l i k e w i s e

10 % W2( : , 1 ) are the o f f s e t s of the output u n i t s .
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%
% The ouput i s c a l c u l a t e d corresponding to
% Z = tanh ( W1 ∗ [ 1 ; X ] ) ;
% Y = W2 ∗ [ 1 ; Z ] ;

15 % where Z are the hidden u n i t s .
%
% X : inputs n x ∗ 1
% W1 : 1 s t l a y e r weights n z ∗ ( n x + 1 )
% Z : hidden l a y e r u n i t s input n z ∗ 1

20 % W2 : 2 nd l a y e r weights n y ∗ ( n z + 1 )
% Y : output ( s ) n y ∗ 1

Y = W2 ∗ [ 1 ; tanh ( W1 ∗ [ 1 ; X ] ) ] ;

A.2.8 plant.m

f u n c t i o n r e s u l t = p l a n t ( a c t i o n , i npu t )
% PLANT Simulate plant
%
% RESULT = PLANT ( ACTION , INPUT ) S imulates the plant . ac t ion

5 % s p e c i f i e s the act ion to be taken and can be one of the fol lowing :
% o ’ i n i t ’ I n i t i a l i s e plant . The must be c a l l e d before using
% ’ measure ’ or ’ actuate ’ . No input nor return value .
% o ’ savestate ’ Returns the current s t a t e in RESULT .
% o ’ r e s t o r e s t a t e ’ Restores the s t a t e from the value passed in

10 % INPUT , which in turn should be obtained by an ( e a r l i e r ) c a l l to
% ’ savestate ’
% o ’ measure ’ Returns in RESULT the current measurement . Th i s does
% not a f f e c t the plant ’ s s t a t e .
% o ’ acutate ’ Takes INPUT as the cont ro l s i g n a l ( s ) to the plant and

15 % acutates the plant . P lant s t a t e s w i l l be updated accord ing ly
% and the plant output w i l l be returned in RESULT .
% o ’ outputcount ’ / ’ inputcount ’ return in RESULT the number of
% output and input s i g n a l s r e s p e c t i v e l y .
% o ’ plot ’ ( i f defined ) w i l l take plant s p e c i f i c data as INPUT and

20 % plot i t .
%
% When s imulat ing the plant , f i r s t c a l l ’ i n i t ’ and then use
% ’ actuate ’ . ’ savestate ’ and ’ r e s t o r e s t a t e ’ ( i f implemented ) allow
% simulat ion to go back in time , i f necces sa ry .

25 %
% Severa l g lobal v a r i a b l e s are maintained , a l l with names s t a r t i n g
% with ’ plant ’ . The should be considered p r i v a t e to the funct ion
% and be l e f t unaltered .
%

30 % Thi s implementation s imula te s a car with one t r a i l e r . I t uses an
% ( s , d ) coordinate system ( see SD2XY ) .
% The kinematic equations are :
% s ’ = v0 ( cos ( theta ) ) / ( 1 − curv ( s ) d )
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% d ’ = v0 s i n ( theta )
35 % theta ’ = v0 [ ( tan ( alpha 1 ) ) / l 1 −

% ( curv ( s ) cos ( theta ) )
% / ( 1 − curv ( s ) d ) ]
% alpha 1 ’ = v0 1 / ( cos ( alpha 1 ) ) ∗
% [ tan ( alpha 2 ) / l 2 − s i n ( alpha 1 ) / l 1 ]

40 % alpha 2 ’ = u
% where
% theta = alpha 0 − t h e t a t
% theta i s the angle between the v e h i c l e and the curve tangent
% t h e t a t i s the angle of the tangent r e l a t i v e to the c a r t e s i a n

45 % coordinate system
% alpha 0 i s the angle of the v e h i c l e r e l a t i v e to the the
% c a r t e s i a n coordinate system

g l o b a l p l a n t V 2 p l a n t S p l an tD p l a n t T h e t a p l a n t A p l a n t L
50 g l o b a l p l a n t T s p l an tU

g l o b a l p l a n t O p t i o n s
g l o b a l p l a n t S t o r e U p l a n t S t o r e Y

s w i t c h lower ( a c t i o n )
55 c a s e ’ i n i t ’

% i n i t i a l i s e bez ier path
b e z i e r i n i t ( 1 0 0 0 , 1 0 ) ;

r e v e r s i n g = 1 ;
60 % i n i t i a l i s e car and v e h i c l e v a r i a b l e s

i f n a r g i n > 1 ,
s c e n a r i o = i npu t ∗ 1 ;

e l s e
s c e n a r i o = 0 ;

65 end
% se t up s t a r t p o s i t i o n and or ienta t ion
p l a n t T h e t a = 0 ;
p l an tD = 0 ;
i f r e v e r s i n g = = 0 ,

70 p l a n t S = 0 ;
e l s e

p l a n t S = b e z i e r l e n g t h ; % reve r s i n g
end
p l a n t A = [ 0 0 ] ;

75 s w i t c h s c e n a r i o
c a s e 0
% ignore

c a s e 1
p l a n t T h e t a = p l a n t T h e t a + 0 . 2 ;

80 c a s e 2
p l a n t T h e t a = p l a n t T h e t a − 0 . 2 ;

c a s e 3
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p l a n t A ( 1 ) = − 0 . 2 ;
p l an tD = −1 ;

85 c a s e 4
p l a n t A ( 1 ) = 0 . 2 ;
p l an tD = 1 ;

o t h e r w i s e
warning ( ’ I n i t i a l i z a t i o n a rgument t o o l a r g e . I n g o r i n g . ’ ) ;

90 end
% set up add i t iona l v a r i a b l e s
i f r e v e r s i n g = = 0 ,

p l a n t V 2 = 1 . 4 ; % v e l o c i t y
e l s e

95 p l a n t V 2 = − 1 . 4 ; % v e l o c i t y ( we’ re re v e r s i ng )
end
p l a n t L = [ 2 ; 1 ] ; % length of v e h i c l e s

% check for VARIATATE . Th i s i s used to change the r e a l parameters
100 % by a r e l a t i v e value in order to check parameter v a r i a t i o n s .

g l o b a l VARIATE
i f s i z e ( VARIATE , 1 ) = = 1 ,

s w i t c h VARIATE . p a r a m e t e r ,
c a s e 1 ,

105 p l a n t L ( 1 ) = p l a n t L ( 1 ) ∗ VARIATE . c h a n g e ;
c a s e 2 ,

p l a n t L ( 2 ) = p l a n t L ( 2 ) ∗ VARIATE . c h a n g e ;
c a s e 3 ,

p l a n t V 2 = p l a n t V 2 ∗ VARIATE . c h a n g e ;
110 end

end

p l a n t T s = 0 . 5 ; % sampling period
p l a n t O p t i o n s = o d e s e t ( ’ MaxOrder ’ , 3 , . . .

115 ’ R e l T o l ’ , 1 e − 4 , . . .
’ AbsTol ’ , [ 1 e −6 1 e −6 1 e −6 1 e −6 1 e − 6 ] , . . .
’ R e f i n e ’ , 1 ) ; % options for ODE s o l v e r

% v a r i a b l e s to s to re plant input / output ( for post mortem
% p l o t t i n g )

120 p l a n t S t o r e Y = [ ] ;
p l a n t S t o r e U = [ ] ;

c a s e ’ s a v e s t a t e ’
r e s u l t = 0 ;

125 warning ( ’ s a v e s t a t e i s no t imp l emen t ed ’ ) ;

c a s e ’ r e s t o r e s t a t e ’
warning ( ’ r e s t o r e s t a t e i s no t imp l emen t ed ’ ) ;

130 c a s e ’ m e a s u r e ’
r e s u l t = [ p l a n t S p l an tD p l a n t T h e t a ] ;
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c a s e ’ a c t u a t e ’
% input conta ins the cont ro l

135 p l an tU = i npu t ;
% solve d i f f e r e n t i a l equations
y0 = [ p l a n t S ; p l an tD ; p l a n t T h e t a ; p l an tA ’ ] ;
i f 1 ,

[T , Y ] = o d e 1 5 s ( @plantDif fM , [ 0 p l a n t T s ] , y0 , . . .
140 p l a n t O p t i o n s ) ;

e l s e
[T , Y ] = e u l e r o d e ( @plantDif fM , [ 0 p l a n t T s ] , y0 ) ;

end
% update s t a t e s

145 p l a n t S = Y ( end , 1 ) ;
p l an tD = Y ( end , 2 ) ;
p l a n t T h e t a = Y ( end , 3 ) ;
p l a n t A = Y ( end , 4 : 5 ) ;

%yd0 = plantDiffM ( 0 , y0 ) ; % DEBUG
150 %yde = plantDiffM ( 0 , Y( end , : ) ’ ) ; % DEBUG

%debug = [ y0 yd0 Y( end , : ) ’ yde ] % DEBUG

% return r e s u l t
r e s u l t = [ p l a n t S p l an tD p l a n t T h e t a p l a n t A . . .

155 b e z i e r c u r v a t u r e ( p l a n t S ) ] ;
% store cont ro l s i g n a l and outputs
n = s i z e ( p l a n t S t o r e U , 1 ) ;
p l a n t S t o r e U ( n + 1 , : ) = i npu t ;
p l a n t S t o r e Y ( n + 1 , : ) = r e s u l t ;

160

c a s e ’ o u t p u t c o u n t ’
r e s u l t = 6 ;

c a s e ’ i n p u t c o u n t ’
165 r e s u l t = 1 ;

c a s e ’ p l o t ’
% plot the car with t r a i l e r s and the path

170 i f narg in <2,
a n i m a t e = 0 ;

e l s e
a n i m a t e = ( i npu t ˜ = 0 ) ;

end
175

% wheel image
w i d t h = 1 ;
whee lY = [ 0 0 ]∗ wi d th ;
whee lX = [ − 0 . 2 0 . 2 ] ∗ wi d th ;

180 % car−image
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c a r l e n g t h = p l a n t L ( 2 ) ;
c a r Y = ( [ 0 1 1 0 . 4 5 0 . 5 0 . 5 5 0 0 ] − 0 . 5 ) ∗ w i d th ;
c a rX = ( [ 0 0 1 1 1 . 1 1 1 0 ] ) ∗ c a r l e n g t h ;

%t r a i l e r −image
185 t r a i l e r l e n g t h = p l a n t L ( 1 ) ;

t r a i l Y = ( [ 0 1 1 0 . 5 0 . 5 0 . 5 0 0 ] − 0 . 5 ) ∗ w i d t h ;
t r a i l X = ( [ 0 0 1 1 1 . 1 1 1 0 ] ) ∗ t r a i l e r l e n g t h ;

% new plot
190 newplot ;

s u b p l o t ( 1 , 1 , 1 ) ;
%subplot ( 4 , 1 , 1 ) ;

% plot path with f i xed aspect ra t ion ( to avoid d i s t o r t i o n )
195 S = b e z i e r l e n g t h ;

N = 2 0 0 ;
s = 0 : ( S /N) : S ;
[ x , y ] = b e z i e r x y ( s ) ;
p l o t ( x , y , ’ k− ’ ) ;

200 s e t ( gca , ’ D a t a A s p e c t R a t i o ’ , [ 1 1 1 ] , ’ P l o t B o x A s p e c t R a t i o ’ , . . .
[ 1 1 1 ] ) ;

% color c y c l e
c o l o r s = 5 ; max = 0 . 8 ; min = 0 ;

205 c o l o r c y c l e = [ . . .
( max : ( min−max ) / ( c o l o r s −1) : min ) ’ . . .
( max : ( min−max ) / ( c o l o r s −1) : min ) ’ . . .
ones ( c o l o r s , 1 ) . . .

] ;
210 c o l o r s = c o l o r s + 1 ;

c o l o r c y c l e = [ c o l o r c y c l e ; 0 0 0 ] ;

% plot car movement
s = p l a n t S t o r e Y ( : , 1 ) ’ ;

215 d = p l a n t S t o r e Y ( : , 2 ) ’ ;
t h = p l a n t S t o r e Y ( : , 3 ) ’ ;
a1 = p l a n t S t o r e Y ( : , 4 ) ’ ;
a2 = p l a n t S t o r e Y ( : , 5 ) ’ ;

% convert to c a r t e s i a n coordinate system
220 [ x , y ] = s d 2 x y ( s , d ) ; % coordinate

[ xd , yd ] = b e z i e r x y d ( s ) ; % get tangent
o l d w a r n = warning ( ’ o f f ’ ) ;
t h t = ( a t an ( yd . / xd ) ) . ∗ ( s i g n ( xd )≥ 0 ) + . . .

( pi + a t an ( yd . / xd ) ) . ∗ ( s i g n ( xd ) < 0 ) ; % tangent angle
225 warning ( o l d w a r n ) ;

a0 = t h + t h t ; % get absolute car angel
x1 = x + p l a n t L ( 1 )∗ co s ( a0 ) ;
y1 = y + p l a n t L ( 1 )∗ s i n ( a0 ) ;
a01 = a0 + a1 ;

136



A.2 Direct Neural Network Control

230 x2 = x1 + p l a n t L ( 2 )∗ co s ( a01 ) ;
y2 = y1 + p l a n t L ( 2 )∗ s i n ( a01 ) ;
a02 = a01 + a2 ;

% plot paths
235 hold on

i f 0 ,
p l o t ( x , y , ’ r ’ ) ;
p l o t ( x1 , y1 , ’ r−− ’ ) ;

e l s e
240 p l o t ( x , y , ’ k : ’ ) ;

p l o t ( x1 , y1 , ’ k ’ ) ;
end
hold o f f

245 % reduce dataset and plot v e h i c l e
i f ˜ an ima t e ,

i = 1 : 5 : s i z e ( s , 2 ) ;
e l s e

i = 1 : s i z e ( s , 2 ) ;
250 end

x = x ( i ) ;
y = y ( i ) ;
a0 = a0 ( i ) ;
x1 = x1 ( i ) ;

255 y1 = y1 ( i ) ;
a01 = a01 ( i ) ;
x2 = x2 ( i ) ;
y2 = y2 ( i ) ;
a02 = a02 ( i ) ;

260

% pause

i f an ima t e ,
265 % animated plot

t r a i l e r h a n d l e = l i n e ( 0 , 0 , ’ Co lo r ’ , ’ k ’ ) ;
c a r h a n d l e = l i n e ( 0 , 0 , ’ Co lo r ’ , ’ k ’ ) ;
w h e e l h a n d l e = l i n e ( 0 , 0 , ’ Co lo r ’ , ’ k ’ ) ;
t e x t h a n d l e = t e x t ( 1 0 , − 1 0 , ’ ’ ) ;

270 f o r n = 1 : s i z e ( x , 2 ) ,
s e t ( t e x t h a n d l e , ’ S t r i n g ’ , i n t 2 s t r ( n ) ) ;
t = c l o c k ;
r x = t r a i l X ∗ co s ( a0 ( n ) ) − t r a i l Y ∗ s i n ( a0 ( n ) ) + x ( n ) ;
r y = t r a i l X ∗ s i n ( a0 ( n ) ) + t r a i l Y ∗ co s ( a0 ( n ) ) + y ( n ) ;

275 s e t ( t r a i l e r h a n d l e , ’ XData ’ , r x ) ;
s e t ( t r a i l e r h a n d l e , ’ YData ’ , r y ) ;
r x = c a rX ∗ co s ( a01 ( n ) ) − c a r Y ∗ s i n ( a01 ( n ) ) + x1 ( n ) ;
r y = c a rX ∗ s i n ( a01 ( n ) ) + c a r Y ∗ co s ( a01 ( n ) ) + y1 ( n ) ;
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% rx = carX + x1 ( n ) ;
280 % ry = carY + y1 ( n ) ;

s e t ( w h e e l h a n d l e , ’ XData ’ , r x ) ;
s e t ( w h e e l h a n d l e , ’ YData ’ , r y ) ;
r x = whee lX ∗ co s ( a02 ( n ) ) − whee lY ∗ s i n ( a02 ( n ) ) + x2 ( n ) ;
r y = whee lX ∗ s i n ( a02 ( n ) ) + whee lY ∗ co s ( a02 ( n ) ) + y2 ( n ) ;

285 s e t ( c a r h a n d l e , ’ XData ’ , r x ) ;
s e t ( c a r h a n d l e , ’ YData ’ , r y ) ;
drawnow ;
w h i l e e t ime ( c lock , t ) < 0 . 5

;
290 end

end
end
f o r c o l o r c o u n t = 1 : c o l o r s

f o r n= c o l o r c o u n t : c o l o r s : s i z e ( x , 2 )
295 i f 0 ,

p l o t ( x ( n ) , y ( n ) , ’ bo ’ ) ;
p l o t ( x1 ( n ) , y1 ( n ) , ’ r o ’ ) ;
p l o t ( x2 ( n ) , y2 ( n ) , ’mo ’ ) ;

e l s e
300 r x = t r a i l X ∗ co s ( a0 ( n ) ) − t r a i l Y ∗ s i n ( a0 ( n ) ) + x ( n ) ;

r y = t r a i l X ∗ s i n ( a0 ( n ) ) + t r a i l Y ∗ co s ( a0 ( n ) ) + y ( n ) ;
l i n e ( rx , ry , ’ C o l o r ’ , c o l o r c y c l e ( mod ( n , c o l o r s ) + 1 , : ) ) ;
r x = c a rX ∗ co s ( a01 ( n ) ) − c a r Y ∗ s i n ( a01 ( n ) ) + x1 ( n ) ;
r y = c a rX ∗ s i n ( a01 ( n ) ) + c a r Y ∗ co s ( a01 ( n ) ) + y1 ( n ) ;

305 l i n e ( rx , ry , ’ C o l o r ’ , c o l o r c y c l e ( mod ( n , c o l o r s ) + 1 , : ) ) ;
r x = whee lX ∗ co s ( a02 ( n ) ) − whee lY ∗ s i n ( a02 ( n ) ) + x2 ( n ) ;
r y = whee lX ∗ s i n ( a02 ( n ) ) + whee lY ∗ co s ( a02 ( n ) ) + y2 ( n ) ;
l i n e ( rx , ry , ’ C o l o r ’ , c o l o r c y c l e ( mod ( n , c o l o r s ) + 1 , : ) ) ;

end
310 end

end

i f 0 ,
i t e r = 1 : s i z e ( p l a n t S t o r e Y , 1 ) ;

315 s = p l a n t S t o r e Y ( : , 1 ) ’ ;
d = p l a n t S t o r e Y ( : , 2 ) ’ ;
t h = p l a n t S t o r e Y ( : , 3 ) ’ ;
a1 = p l a n t S t o r e Y ( : , 4 ) ’ ;
a2 = p l a n t S t o r e Y ( : , 5 ) ’ ;

320 u = p l a n t S t o r e U ’ ;

f i g u r e
s u b p l o t ( 3 , 1 , 1 )
p l o t ( i t e r , d )

325 l e g e n d ( ’ d ’ , 0 )
s u b p l o t ( 3 , 1 , 2 )
p l o t ( i t e r , th , i t e r , a1 , i t e r , a2 )
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l e g en d ( ’ \ t h e t a ’ , ’ \ a l p h a 1 ’ , ’ \ a l p h a 2 ’ , 0 )
s u b p l o t ( 3 , 1 , 3 )

330 p l o t ( i t e r , u )
l e g en d ( ’ u ’ , 0 )

drawnow
f p r i n t f ( ’ p r e s s e n t e r ’ ) ;

335 pause
f p r i n t f ( ’ \ r \ r ’ ) ;

end

o t h e r w i s e
340 e r r o r ( ’ Unknown p l a n t a c t i o n ’ )

end

% sub−func t ions
345

f u n c t i o n dy = p l a n t D i f f M ( t , y ) ;
g l o b a l p l a n t V 2 p l an tU p l a n t L
c u r v = b e z i e r c u r v a t u r e 1 ( y ( 1 , : ) ) ;
c3omcd = co s ( y ( 3 , : ) ) . / 1 − c u r v . ∗ y ( 2 , : ) ;

350 c4 = co s ( y ( 4 , : ) ) ;
c5 = co s ( y ( 5 , : ) ) ;
v0 = p l a n t V 2 ∗ c4 . ∗ c5 ;
dy = [ . . .

v0∗ c3omcd ; . . .
355 v0∗ s i n ( y ( 3 , : ) ) ; . . .

p l a n t V 2 ∗ c5 . ∗ . . .
( s i n ( y ( 4 , : ) ) . / p l a n t L ( 1 ) − c u r v . ∗ c4 . ∗ c3omcd ) ; . . .

p l a n t V 2 ∗ ( s i n ( y ( 5 , : ) ) . / p l a n t L ( 2 ) − . . .
s i n ( y ( 4 , : ) ) . ∗ c5 . / p l a n t L ( 1 ) ) ; . . .

360 p l an tU
] ;

f u n c t i o n [ T , Y ] = e u l e r o d e ( ode fun , t s p a n , y0 ) ,
% we’ l l assume , that tspan = [ 0 tend ] :

365 t e n d = t s p a n ( end ) ;
s t e p s = 400 ;
t s t e p = t e n d / s t e p s ;
y = y0 ;
f o r n = 1 : s t e p s ;

370 t = n∗ t s t e p ;
y = y + t s t e p ∗ f e v a l ( ode fun , t , y ) ;
T( n ) = t ;
Y ( n , : ) = y ’ ;

end
375 % we r e a l l y should add an entry for t = 0 . . .
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A.2.9 sd2xy.m

f u n c t i o n [ x , y ] = s d 2 x y ( s , d )
% SD2XY Convert path−r e l a t i v e coord inates into c a r t e s i a n coord .
%
% [X , Y ] = SD2XY ( S , D ) Converts the path−r e l a t i v e coord inates

5 % ( S ,D ) into the c a r t e s i a n coord inates ( X , Y ) . S i s the d i s tance
% along the path and D the perpendicu lar d i s tance to the path
% ( p o s i t i v e D correspond to r i g h t s ide of path ) .
% The path has to be i n i t i a l i s e d be BEZIERINIT .

10 debug = 0 ;

% find coordinate of s
[ x , y ] = b e z i e r x y ( s ) ;

15 % get tangent d i r e c t i o n
[ xd , yd ] = b e z i e r x y d ( s ) ;

% norm vector s q r t ( xd . ˆ 2 + yd . ˆ 2 ) = 1
l = s q r t ( xd . ˆ 2 + yd . ˆ 2 ) ;
xd = xd . / l ;

20 yd = yd . / l ;

x = x − d .∗ yd ;
y = y + d .∗ xd ;

A.2.10 bezierinit.m

f u n c t i o n b e z i e r i n i t ( N, o p t i o n )
% BEZIERINIT I n i t i a l i s e bez ier v a r i a b l e s
%
% BEZIERINIT w i l l i n i t i a l i s e the global v a r i a b l e s needed for the

5 % other bez ier func t ions to work . Data i s c a l c u l a t e d and stored to
% the f i l e ’ bez ier . mat ’ . I f i t e x i s t s upon funct ion c a l l , the f i l e
% w i l l be read ins tead of re−c a l c u l a t i o n .
%
% BEZIERINIT ( N ) The opt ional parameter N s p e c i f i e s the average

10 % points per bez ier s e c t i o n to c a l c u l a t e and d e f a u l t s to
% 1 0 0 0 . Higher N y i e l d higher p r e c i s i o n .
%
% NOTE : Current implementation w i l l not inc lude the l a s t point of
% the bez ier curve .

15

i f n a r g i n < 2 ,
c u r v e = 7 ;

e l s e
c u r v e = o p t i o n ;

20 end
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i f n a r g i n < 1 ,
N=1000 ;

end
25

c l e a r g l o b a l BEZIER X
c l e a r g l o b a l BEZIER Y
g l o b a l BEZIER X BEZIER Y
g l o b a l BEZIER S BEZIER T BEZIER DSDT

30

% bezier courve parameters
%
% Each row conta ins [ p o s i t i o n d e r i v a t i v e ] for the given curve
% point . X ( n , : ) and Y( n , : ) s p e c i f y the n ’ th curve point and

35 % d e r i v a t i v e at that point . Unit i s meters . Cur rent l y # 7 i s used
% for t r a i n i n g and # 9 for t e s t .
s w i t c h c u r v e

c a s e 1
X = [ 0 1 . 5 ; 2 0 ; 2 3 ] ;

40 Y = [ 0 . 5 1 . 5 ; 1 − 1 . 5 ; 0 0 ] ;
c a s e 2 % 45−degree l i n e
X = [ 0 1 ; 2 1 ] ;
Y = [ 0 1 ; 2 1 ] ;

c a s e 3 % c i r c l e
45 a = 1 . 6 7 5 ;

X = [ 0 a ; 1 0 ; 0 − a ; − 1 0 ; 0 a ] ;
Y = [ 0 0 ; 1 a ; 2 0 ; 1 − a ; 0 0 ] ;

c a s e 4 % S
X = [ − 1 . 5 1 ; − 1 1 ; 0 0 ; 0 0 ; 1 1 ; 1 . 5 1 ] ∗ 1 5 ;

50 Y = [ 0 1 ; . 5 1 ; . 5 − 2 ; − . 5 − 2 ; − . 5 1 ; 0 1 ] ∗ 1 5 ;
c a s e 5 % ’ soft ’ turn
X = [ 0 1 ; 2 1 ] ;
Y = [ 0 0 . 1 ; 0 − 0 . 1 ] ;

c a s e 6 % ’ hat ’
55 a = 1 6 . 7 5 ;

X = [ 0 a ; 1 0 0 ; 2 0 a ; 3 0 a ; 4 0 0 ; 5 0 a ] ;
Y = [ 0 0 ; 1 0 a ; 2 0 0 ; 2 0 0 ; 1 0 − a ; 0 0 ] ;

c a s e 7 % 4 times S ( used for t r a i n i n g )
a = 1 6 . 7 5 ; b= a / 2 ; c = a ∗ 2 ; d= a / 5 ;

60 X = [ − 4 0 d ; − 2 2 d ; − 2 0 0 ; − 2 0 0 ; − 1 8 d ] ;
Y = [ 2 0 0 ; 2 0 0 ; 18 −d ; 2 −d ; 0 0 ] ;
X = [ X ; 0 a ; 1 0 0 ; 1 0 0 ; 2 0 a ; 2 5 1 ; 3 0 b ; 3 5 0 ] ;
Y = [ Y ; 0 0 ; 1 0 a ; 2 0 a ; 3 0 0 ; 3 0 0 ; 3 0 0 ; 2 5 − b ] ;
X = [ X ; 3 5 0 ; 4 0 b ; 5 0 c ; 7 0 0 ; 9 0 c ] ;

65 Y = [ Y ; 1 5 − b ; 1 0 0 ; 1 0 0 ; 3 0 c ∗ 0 . 7 ; 5 0 0 ] ;
c a s e 8
X = [ 0 1 ; 1 9 2 ; 2 1 2 ; 3 8 2 ; 4 2 2 ; 6 0 2 ] ;
Y = [ 0 1 ; 1 9 2 ; 1 9 − 2 ; 2 − 2 ; 2 2 ; 2 0 2 ] ;

c a s e 9
70 a = 2 8 ; b = a / 2 ; c = b / 2 ;
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X = [ 0 0 ; 1 0 ; 2 0 a ] ;
Y = [ − 2 0 c ; − 1 0 a ; 2 0 a / 1 0 ] ;
X = [ X ; 3 5 c ; 4 0 0 ; 4 0 0 ; 3 5 − c ] ;
Y = [ Y ; 2 0 0 ; 1 5 − c ; 5 − c ; − 1 0 ] ;

75 X = [ X ; 2 5 − b ; 1 5 0 ; 1 5 b / 1 0 ] ;
Y = [ Y ; 3 0 ; −11 − b ; −20 − b ] ;

c a s e 1 0
a = 2 0 ; b = 4 0 ; c = 5 ;
X = [ 0 a ; 2 0 0 ; 2 3 c ] ;

80 Y = [ 0 0 ; 2 0 b ; 5 0 b ] ;
c a s e 1 7 % 4 times S ( used for t r a i n i n g )

a = 1 6 . 7 5 ; b= a / 2 ; c = a ∗2 ;
X = [ 0 a ; 1 0 0 ; 1 0 0 ; 2 0 a ; 2 5 1 ; 3 0 b ; 3 5 0 ] ;
Y = [ 0 0 ; 1 0 a ; 2 0 a ; 3 0 0 ; 3 0 0 ; 3 0 0 ; 2 5 − b ] ;

85 X = [ X ; 3 5 0 ; 4 0 b ; 5 0 c ; 7 0 0 ; 9 0 c ] ;
Y = [ Y ; 1 5 − b ; 1 0 0 ; 1 0 0 ; 3 0 c ∗ 0 . 7 ; 5 0 0 ] ;

o t h e r w i s e % x−a x i s
X = [ 0 1 0 ; 2 0 1 0 ] ;
Y = [ 0 0 ; 0 0 ] ;

90 end

% check i f data saved to f i l e i s the same
t r y

95 l oad b e z i e r ;
end
% the 1 s t I F l i n e i s a path for the second when dimensions don ’ t
% agree . I t w i l l t r i g g e r the second I F .
i f sum ( s i z e ( BEZIER X ) ˜ = s i z e (X ) ) | . . .

100 sum ( s i z e ( BEZIER Y ) ˜ = s i z e ( Y ) ) ,
BEZIER X = rand ( s i z e (X ) ) ;
BEZIER Y = rand ( s i z e ( Y ) ) ;

end
i f sum ( sum ( BEZIER X ˜ = X ) ) | sum ( sum ( BEZIER Y ˜ = Y ) ) | . . .

105 ( s i z e ( BEZIER S , 2 ) ˜ = N)
% Data in f i l e d i f f e r s
% Ca l c u la te new curve data

% copy bez ier curve parameters and c l e a r old a r r a y s
110 BEZIER X = X ;

BEZIER Y = Y ;
c l e a r g l o b a l BEZIER S
c l e a r g l o b a l BEZIER T
c l e a r g l o b a l BEZIER DSDT

115 c l e a r g l o b a l BEZIER A
c l e a r g l o b a l BEZIER B
g l o b a l BEZIER A BEZIER B
g l o b a l BEZIER a BEZIER b
g l o b a l BEZIER S BEZIER T BEZIER DSDT
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120

s e c t i o n s = s i z e ( BEZIER X , 1 ) −1 ;
o p t i o n s = o p t i m s e t ;

% Cal cu la te t o t a l path length
125 S = 0 ;

f o r s e c t i o n = 1 : s e c t i o n s ,
% get bez ier curve parameters for t h i s s e c t i o n
x0 = BEZIER X ( s e c t i o n , 1 ) ;
xd0 = BEZIER X ( s e c t i o n , 2 ) ;

130 x1 = BEZIER X ( s e c t i o n + 1 , 1 ) ;
xd1 = BEZIER X ( s e c t i o n + 1 , 2 ) ;
y0 = BEZIER Y ( s e c t i o n , 1 ) ;
yd0 = BEZIER Y ( s e c t i o n , 2 ) ;
y1 = BEZIER Y ( s e c t i o n + 1 , 1 ) ;

135 yd1 = BEZIER Y ( s e c t i o n + 1 , 2 ) ;
BEZIER a = [ x0 xd0 ( 3 ∗ ( x1−x0 ) −(2∗ xd0 + xd1 ) ) . . .

( 2∗ ( x0−x1 ) + xd0 + xd1 ) ] ;
BEZIER b = [ y0 yd0 ( 3 ∗ ( y1−y0 ) −(2∗ yd0 + yd1 ) ) . . .

( 2∗ ( y0−y1 ) + yd0 + yd1 ) ] ;
140 BEZIER A ( s e c t i o n , : ) = BEZIER a ;

BEZIER B ( s e c t i o n , : ) = BEZIER b ;

s e c t i o n L e n g t h ( s e c t i o n ) = p a t h L e n g t h ( 1 ) ;
S = S + s e c t i o n L e n g t h ( s e c t i o n ) ;

145 end

% s t a r t with s e c t i o n 1
s e c t i o n = 1 ;

150 % get bez ier curve parameters for t h i s s e c t i o n
x0 = BEZIER X ( s e c t i o n , 1 ) ;
xd0 = BEZIER X ( s e c t i o n , 2 ) ;
x1 = BEZIER X ( s e c t i o n + 1 , 1 ) ;
xd1 = BEZIER X ( s e c t i o n + 1 , 2 ) ;

155 y0 = BEZIER Y ( s e c t i o n , 1 ) ;
yd0 = BEZIER Y ( s e c t i o n , 2 ) ;
y1 = BEZIER Y ( s e c t i o n + 1 , 1 ) ;
yd1 = BEZIER Y ( s e c t i o n + 1 , 2 ) ;
BEZIER a = [ x0 xd0 ( 3 ∗ ( x1−x0 ) −(2∗ xd0 + xd1 ) ) ( 2 ∗ ( x0−x1 ) + xd0 + xd1 ) ] ;

160 BEZIER b = [ y0 yd0 ( 3 ∗ ( y1−y0 ) −(2∗ yd0 + yd1 ) ) ( 2 ∗ ( y0−y1 ) + yd0 + yd1 ) ] ;
BEZIER A ( s e c t i o n , : ) = BEZIER a ;
BEZIER B ( s e c t i o n , : ) = BEZIER b ;

% Determine how often to update progress
165 nCount = f l o o r (N/ 1 0 0 ) ;

i f nCount = = 0 , nCount = 1 ; end

f o r n = 1 :N,
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i f mod ( n , nCount ) = = 0 ,
170 f p r i n t f ( [ ’ i n i t i a l i s i n g c o u r v e d a t a f o r s e g m e n t %d w i t h ’ . . .

’%d s t e p s : %3d%% done\ r ’ ] , . . .
s e c t i o n , N, round ( 1 0 0∗ ( n −1 ) / (N− 1 ) ) ) ;

end
% p o s i t i o n along segment

175 s =S ∗ ( n −1 ) / (N−1) ;
BEZIER S ( n ) = s ;
% check i f we entered the next s e c t i o n
i f ( s > sum ( s e c t i o n L e n g t h ( 1 : s e c t i o n ) ) ) & ( s e c t i o n < s e c t i o n s ) ,

s e c t i o n = s e c t i o n + 1 ;
180 % get bez ier curve parameters for t h i s s e c t i o n

x0 = BEZIER X ( s e c t i o n , 1 ) ;
xd0 = BEZIER X ( s e c t i o n , 2 ) ;
x1 = BEZIER X ( s e c t i o n + 1 , 1 ) ;
xd1 = BEZIER X ( s e c t i o n + 1 , 2 ) ;

185 y0 = BEZIER Y ( s e c t i o n , 1 ) ;
yd0 = BEZIER Y ( s e c t i o n , 2 ) ;
y1 = BEZIER Y ( s e c t i o n + 1 , 1 ) ;
yd1 = BEZIER Y ( s e c t i o n + 1 , 2 ) ;
BEZIER a = [ x0 xd0 ( 3 ∗ ( x1−x0 ) −(2∗ xd0 + xd1 ) ) . . .

190 ( 2∗ ( x0−x1 ) + xd0 + xd1 ) ] ;
BEZIER b = [ y0 yd0 ( 3 ∗ ( y1−y0 ) −(2∗ yd0 + yd1 ) ) . . .

( 2∗ ( y0−y1 ) + yd0 + yd1 ) ] ;
BEZIER A ( s e c t i o n , : ) = BEZIER a ;
BEZIER B ( s e c t i o n , : ) = BEZIER b ;

195 end
% find corresponding t
o l d w a r n = warning ( ’ o f f ’ ) ;
t 0 = ( s−sum ( s e c t i o n L e n g t h ( 1 : ( s e c t i o n − 1 ) ) ) ) / . . .

s e c t i o n L e n g t h ( s e c t i o n ) ;
200 t = f z e r o ( @ d i s t a n c e , t0 , o p t i o n s , . . .

s−sum ( s e c t i o n L e n g t h ( 1 : ( s e c t i o n − 1 ) ) ) ) ;
warning ( o l d w a r n ) ;
BEZIER T ( n ) = t + ( s e c t i o n − 1 ) ;
% est imate ds / dt

205 i f n = = 1 ,
e l s e i f n = = 2 ,

BEZIER DSDT ( n − 1 ) = . . .
( BEZIER S ( n−1)−BEZIER S ( n ) ) / ( BEZIER T ( n−1)−BEZIER T ( n ) ) ;

e l s e
210 BEZIER DSDT ( n − 1 ) = . . .

0 . 5 ∗ ( BEZIER S ( n−1)−BEZIER S ( n ) ) / . . .
( BEZIER T ( n−1)−BEZIER T ( n ) ) + . . .
0 . 5 ∗ ( BEZIER S ( n−1)−BEZIER S ( n − 2 ) ) / . . .
( BEZIER T ( n−1)−BEZIER T ( n − 2 ) ) ;

215 i f n = = N,
BEZIER DSDT ( n ) = ( BEZIER S ( n)−BEZIER S ( n − 1 ) ) / . . .

( BEZIER T ( n)−BEZIER T ( n − 1 ) ) ;
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end
end

220 end

% save v a r i a b l e s to f i l e
f p r i n t f ( ’ s a v i n g t o f i l e \ r ’ ) ;
s a v e b e z i e r BEZIER X BEZIER Y BEZIER A BEZIER B . . .

225 BEZIER S BEZIER T BEZIER DSDT

f p r i n t f ( [ ’ ’ . . .
’ \ r ’ ] ) ;

230 % do post clean−up
c l e a r g l o b a l BEZIER a
c l e a r g l o b a l BEZIER b

end

235

f u n c t i o n d= d i s t a n c e ( t , s )
d = p a t h L e n g t h ( t )− s ;

f u n c t i o n s = p a t h L e n g t h ( t )
240 s = quad ( @speed , 0 , t ) ;

f u n c t i o n sd = s p e e d ( t )
% we’ re using some global v a r i a b l e s here to speed th ings up
g l o b a l BEZIER a BEZIER b

245

sd = s q r t ( . . .
( BEZIER a ( 2 ) + BEZIER a ( 3 ) ∗ 2 ∗ t + BEZIER a ( 4 ) ∗ 3 ∗ t . ˆ 2 ) . ˆ 2 + . . .
( BEZIER b ( 2 ) + BEZIER b ( 3 ) ∗ 2 ∗ t + BEZIER b ( 4 ) ∗ 3 ∗ t . ˆ 2 ) . ˆ 2 . . .
) ;

A.2.11 bezierxy.m

f u n c t i o n [ x , y ] = b e z i e r x y ( s )
% BEZIERXY Ca l cu la te x − and y−coordinate of curve point
%
% [ X , Y ] = BEZIERXY ( S ) Returns in X the x−coordinate of the bez ier

5 % curve i n i t i a l i s e d by BEZ IER IN IT . S i s the d i s tance along the
% bez ier curve from the beginning of the curve to the point .

g l o b a l BEZIER S BEZIER T BEZIER DSDT
g l o b a l BEZIER A BEZIER B

10

% find the p o s i t i o n c l o s e s t to s in the a r r a y s :
% We assume BEZIER S ( 1 ) = 0 ;
N = s i z e ( BEZIER S , 2 ) ;
S = BEZIER S (N) ;
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15 n = round ( s / S ∗ (N−1 ) ) + 1 ;
l i m i t A t = n<1;
n = n .∗ (1 − l i m i t A t ) + l i m i t A t ;
l i m i t A t = n>N;
n = n .∗ (1 − l i m i t A t ) +N.∗ l i m i t A t ;

20

% get est imate for t
d s d t = BEZIER DSDT ( n ) ;
t = BEZIER T ( n ) + ( s − BEZIER S ( n ) ) . / d s d t ;

25 % get s e c t i o n and l i m i t
s e c t i o n = f l o o r ( t ) + 1 ;
l i m i t = 1 ;
l i m i t A t = s e c t i o n < l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;

30 l i m i t = s i z e ( BEZIER A , 1 ) ;
l i m i t A t = s e c t i o n > l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;

t = t −( s e c t i o n −1) ;
35 T = [ ones ( s i z e ( t ) ) ; t ; t . ˆ 2 ; t . ˆ 3 ] ;

x = sum ( BEZIER A ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;
y = sum ( BEZIER B ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;

A.2.12 bezierxyd.m

f u n c t i o n [ xd , yd ] = b e z i e r x y d ( s )
% BEZIERXYD Ca l cu la te d e r i v a t i v e of curve point
%
% [ XD,YD ] = BEZIERXY ( S ) Returns in XD and YD the tangent of the

5 % bezier curve i n i t i a l i s e d by BEZ IER IN IT . S i s the d i s tance along
% the bez ier curve from the beginning of the curve to the point . XD
% and YD are the d e r i v a t e s with re spec t to the parameter t , such
% that XD = dx ( t ) / dt and YD = dy ( t ) / dt , where t i s defined by
% s = \ i n t ˆ t 0 \ s q r t {x ’ ˆ 2 ( \ tau ) + y ’ ˆ 2 ( \ tau ) } d\ tau

10

g l o b a l BEZIER S BEZIER T BEZIER DSDT
g l o b a l BEZIER A BEZIER B

% find the p o s i t i o n c l o s e s t to s in the a r r a y s :
15 % We assume BEZIER S ( 1 ) = 0 ;

N = s i z e ( BEZIER S , 2 ) ;
S = BEZIER S (N) ;
n = round ( s / S ∗ (N−1 ) ) + 1 ;
l i m i t A t = n<1;

20 n = n .∗ (1 − l i m i t A t ) + l i m i t A t ;
l i m i t A t = n>N;
n = n .∗ (1 − l i m i t A t ) +N.∗ l i m i t A t ;
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25 % get est imate for t
d s d t = BEZIER DSDT ( n ) ;
t = BEZIER T ( n ) + ( s − BEZIER S ( n ) ) . / d s d t ;

% get s e c t i o n and l i m i t
30 s e c t i o n = f l o o r ( t ) + 1 ;

l i m i t = 1 ;
l i m i t A t = s e c t i o n < l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;
l i m i t = s i z e ( BEZIER A , 1 ) ;

35 l i m i t A t = s e c t i o n > l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;

t = t −( s e c t i o n −1) ;
T = [ z e r o s ( s i z e ( t ) ) ; ones ( s i z e ( t ) ) ; 2 ∗ t ; 3 ∗ t . ˆ 2 ] ;

40

xd = sum ( BEZIER A ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;
yd = sum ( BEZIER B ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;

A.2.13 bezierxydd.m

f u n c t i o n [ xdd , ydd ] = b e z i e r x y d d ( s )
% BEZIERXYDD Ca l cu la te second d e r i v a t i v e of curve point
%
% [ XDD,YDD ] = BEZIERXY ( S ) Returns in XDD and YDD the second

5 % d e r i v a t i v e of the point on the bez ier curve i n i t i a l i s e d by
% BEZ IER IN IT . S s p e c i f i e s the point and i s the d i s tance along the
% bez ier curve from the beginning of the curve to the point . XDD
% and YDD are the d e r i v a t e s with re spec t to the parameter t , such
% that XD = dx ( t ) / dt and YD = dy ( t ) / dt , where t i s defined by

10 % s = \ i n t ˆ t 0 \ s q r t {x ’ ˆ 2 ( \ tau ) + y ’ ˆ 2 ( \ tau ) } d\ tau

g l o b a l BEZIER S BEZIER T BEZIER DSDT
g l o b a l BEZIER A BEZIER B

15 % find the p o s i t i o n c l o s e s t to s in the a r r a y s :
% We assume BEZIER S ( 1 ) = 0 ;
N = s i z e ( BEZIER S , 2 ) ;
S = BEZIER S (N) ;
n = round ( s / S ∗ (N−1 ) ) + 1 ;

20 l i m i t A t = n<1;
n = n .∗ (1 − l i m i t A t ) + l i m i t A t ;
l i m i t A t = n>N;
n = n .∗ (1 − l i m i t A t ) +N.∗ l i m i t A t ;

25 % get est imate for t
d s d t = BEZIER DSDT ( n ) ;
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t = BEZIER T ( n ) + ( s − BEZIER S ( n ) ) . / d s d t ;

% get s e c t i o n and l i m i t
30 s e c t i o n = f l o o r ( t ) + 1 ;

l i m i t = 1 ;
l i m i t A t = s e c t i o n < l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;
l i m i t = s i z e ( BEZIER A , 1 ) ;

35 l i m i t A t = s e c t i o n > l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;

t = t −( s e c t i o n −1) ;
T = [ z e r o s ( s i z e ( t ) ) ; z e r o s ( s i z e ( t ) ) ; 2 ∗ ones ( s i z e ( t ) ) ; 6 ∗ t ] ;

40

xdd = sum ( BEZIER A ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;
ydd = sum ( BEZIER B ( s e c t i o n , : ) . ∗ T ’ , 2 ) ’ ;

A.2.14 bezierlength.m

f u n c t i o n s = b e z i e r l e n g t h
% BEZIERLENGTH Return t o t a l length of bez ier path
%
% S = BEZIERLENGTH returns in S the t o t a l length of the bez ier

5 % path i n i t i a l i s e d by BEZIERINIT .

g l o b a l BEZIER S

s = BEZIER S ( end ) ;

A.2.15 beziercurvature.m

f u n c t i o n [ K ] = b e z i e r c u r v a t u r e ( s )
% BEZIERCURVATURE Ca l cu la te x − and y−coordinate of curve point
%
% [ K ] = BEZIERCURVATURE ( S ) Returns in K the curvature of the

5 % bezier path at d i s tance s from the s t a r t i n g point . The bez ier
% path must be i n i t i a l i s e d by BEZIERINIT .

g l o b a l BEZIER S BEZIER T BEZIER DSDT
g l o b a l BEZIER A BEZIER B

10

%[ xd , yd ] = bezierxyd ( s ) ;
%[ xdd , ydd ] = bezierxydd ( s ) ;

% f ind the p o s i t i o n c l o s e s t to s in the a r r a y s :
15 % We assume BEZIER S ( 1 ) = 0 ;

N = s i z e ( BEZIER S , 2 ) ;
S = BEZIER S (N) ;
n = round ( s / S ∗ (N−1 ) ) + 1 ;
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l i m i t A t = n<1;
20 n = n .∗ (1 − l i m i t A t ) + l i m i t A t ;

l i m i t A t = n>N;
n = n .∗ (1 − l i m i t A t ) +N.∗ l i m i t A t ;

25 % get est imate for t
d s d t = BEZIER DSDT ( n ) ;
t = BEZIER T ( n ) + ( s − BEZIER S ( n ) ) . / d s d t ;

% get s e c t i o n and l i m i t
30 s e c t i o n = f l o o r ( t ) + 1 ;

l i m i t = 1 ;
l i m i t A t = s e c t i o n < l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;
l i m i t = s i z e ( BEZIER A , 1 ) ;

35 l i m i t A t = s e c t i o n > l i m i t ;
s e c t i o n = s e c t i o n .∗ (1 − l i m i t A t ) + l i m i t .∗ l i m i t A t ;

t = t −( s e c t i o n −1) ;

40 s t = s i z e ( t ) ;
T = [ z e r o s ( s t ) ; ones ( s t ) ; 2 ∗ t ; 3 ∗ t . ˆ 2 ] ’ ;
xd = sum ( BEZIER A ( s e c t i o n , : ) . ∗ T , 2 ) ;
yd = sum ( BEZIER B ( s e c t i o n , : ) . ∗ T , 2 ) ;

45 T = [ z e r o s ( s t ) ; z e r o s ( s t ) ; 2 ∗ ones ( s t ) ; 6 ∗ t ] ’ ;
xdd = sum ( BEZIER A ( s e c t i o n , : ) . ∗ T , 2 ) ;
ydd = sum ( BEZIER B ( s e c t i o n , : ) . ∗ T , 2 ) ;

% c a l c u l a t e and return curvature
50

K = ( xd .∗ ydd−yd .∗ xdd ) . / ( ( xd . ˆ 2 + yd . ˆ 2 ) . ˆ 1 . 5 ) ;
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