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Abstract

The Dedicated Aircraft Recovery Problem (DARP) involves decisions con-
cerning aircraft to flight assignments in situations where unforeseen events
have disrupted the existing flight schedule, e.g. bad weather causing flight
delays. The dedicated aircraft recovery problem aims to recover these flight
schedules through a series of reassignments of aircraft to flights, delaying of
flights and cancellations of flights.

This article describes an effective method to solve DARP. A heuristic is
implemented, which is able to generate feasible revised flight schedules of good
quality in less than 10 seconds when applied to real flight schedules with dis-
ruptions from British Airways. The heuristic is able to consider delays, can-
cellations and reassignments simultaneously and balance the trade-off between
these options. It is also demonstrated that different strategies can be applied
to prioritize these options when generating the revised flight schedules without
affecting the solution time required.
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1 Introduction

The Dedicated Aircraft Recovery Problem arises when unforeseen events have dis-
rupted an existing flight schedule, e.g. bad weather causing flights to be delayed.
In such a situation, the main goal for the airline is to restore or recover the flight
schedule as much as possible, i.e. minimize the number of cancellations and the
total delay. Similar recovery problems exist in other areas, for a introduction to
Disruption Management see [CHLLO1].

The work described here has been carried out partly in the DESCARTES project, a
project funded by the European Union, the Technical University of Denmark, British
Airways and Carmen Systems (see [DLTO01]). The Dedicated Aircraft Recovery
Problem (DARP) is the term used in this project to describe the problem briefly
described above. The word dedicated refers to the fact that a single resource is
considered, namely aircraft.

DARP has been given other names by different researchers and its precise defi-
nition varies accordingly. Examples include Flight Operations Decision Problem
(FODP), the Operational Daily Airline Scheduling Problem (ODASP), the Daily
Aircraft Routing and Scheduling Problem (DARSP), Airline Operations Control
Center Problem (AOCCP) and Airline Schedule Perturbation Problem (ASPP).
However, all these names basically refer to the same problem or aspects thereof.

Because of the differences in definition, a precise definition of DARP as considered
in this article is important: Given an original flight schedule and one or more dis-
ruptions, the Dedicated Aircraft Recovery Problem consists of changing the flight
assignments of the aircrafts in order to produce a feasible and more preferable re-
vised flight schedule. Changes can be delaying flights, cancelling flights, swapping
aircraft (either within the same fleet or between fleets) or use of standby aircraft.

The flight schedule includes all flights flown within a certain period of time by a given
fleet including the original departure and arrival times, the expected flight durations
and the tail assignments. Tail assignments refer to specific aircraft being assigned
to specific flights. The term swap means that two flights, originally designated to be
undertaken by two specific aircraft, are interchanged between these aircraft. This is
illustrated later in Figure 2.

1.1 Decision Costs

Central in DARP are the decision costs. These costs must reflect how preferable
each decision possibility is. Feasible solutions are compared by cost, and thus the
ability to quantify the quality of a solution is absolutely necessary.

Generally, the most common approach to quantifying decision costs is to estimate
the real costs associated with each decision possibility. As mentioned, 3 decision
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possibilities exist when solving DARP, namely delaying, cancelling and swapping.
If the actual costs of these decision possibilities are calculated, they would have to
include such factors as ill-will from customers, costs of customers missing down-line
flights, crew planning issues, etc. These costs and many others are important to
include, yet most of them are very difficult, if not impossible to estimate.

It may therefore be futile to base an objective function on real-world operating
costs when solving DARP. However, when viewing a computerized decision support
tool for recovery as a tool generating good feasible options the real-world cost of a
particular solution is not necessary in the generation phase, where the costs are used
to guide the search for good solutions. In addition, costs like ill-will are in addition to
the quantification itself also difficult to evaluate empirically since such an evaluation
requires contact with all disrupted passengers after the disrupted flight. We have
therefore instead concentrated on quantifying the preferability of the basic operating
principles that flight controllers adhere to.

In general, these principles are to minimize the number of cancellations, the total
delay and to make as few swaps as possible. However, as will be demonstrated,
there is a clear trade-off between these 3 objectives and the quality of a solution
to DARP is ultimately a matter of preference. By focusing on the basic operating
principles, different solution strategies are easily applied that can accommodate
these preferences. One example is the trade-off between the number of swaps and
the total delay: Depending on the situation at hand, the number of swaps that
are acceptable varies. A strategy can thus be applied that attempts to recover the
flight schedule by making a minimum number of swaps while accepting a number
of delays. More examples are given in Section 7, where our heuristic is tested on
British Airways flight schedules.

2 Previous Work on DARP

A number of authors have worked on problems similar to DARP. Teodorovi¢ and
Gubernié¢ introduce a method of solving DARP that focuses on minimizing the total
passenger delay in [TG84|. Later Teodorovi¢ together with Stojkovi¢ introduces a
different model that aims to minimize the number of cancellations and the total
passenger delay. They attempt to do so by using lexicographic optimization and
present their work in [TS90]. In [JYKR93] Jarrah et al. introduce two separate
models that minimize delays and cancellations respectively. The models thus are
not able to consider the trade-off between cancelling and delaying. Yan and Yang
formulate a model in [YY96| that aims to minimise the period of time in which
the flight schedule is disrupted. In [CK97| Cao and Kanafani introduces the first
model which seemingly can consider delays and cancellations simultaneously while
solving problems of a realistic size. However, as it is demonstrated in [LS01b|, this
model contains several errors. Among other problems, the model does not prevent
non-existent aircraft from undertaking flights and in some instances, the model
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cannot associate correct costs with a decision possibility. Lastly, Argiiello et al.
demonstrate a heuristic approach to solving DARP in [ABY98| and in [ABY97].
None of the methods described briefly are able to solve realistic examples of DARP
effectively.

3 Motivation for Using Heuristics to Solve DARP

Dedicated aircraft recovery occurs every day in most airlines. It is done manually
with the assistance of various tools such as computer based graphical interfaces
that allow controllers easy access to information on the present situation. Among
controllers there is an outspoken wish for decision-support tools, tools that give
good solutions quickly. Such tools may in this case be built using methods based on
mathematical modelling to solve the DARP. However, there are a series of difficult
criteria to meet.

Firstly, a decision support tool to solve DARP has to be able to handle problems
of a realistic size, e.g. 50 airports, 100 aircraft and 500 flights. Secondly, a tool
preferably has to produce a result in less than 3 minutes. And finally, the must be
flexible, i.e. able to accommodate for new or modified restrictions frequently.

At the same time DARP is a very complex problem: The cost of a certain decision
depends on other decisions made earlier, e.g. the ready-time of an aircraft at a
given airport depends on whether the aircraft was delayed or reassigned earlier that
working day. This dependency along with a large solution space and integral decision
variables makes DARP a very difficult problem to solve.

Given all these factors, heuristics seem an obvious choice. Flight planners are mainly
interested in a good solution to DARP quickly and heuristics are often able to meet
this criteria. Similarly, new or modified restrictions are often relatively easy to
implement when using heuristics as opposed to algebraic representations of DARP.

4 Basic Heuristic Design

4.1 Definition of Network

As basis for the design of a DARP-heuristic, a network representation of the data
and problem is chosen. This representation is illustrated in Figure 1. The vertical
axis depicts the time of day. At each airport, the nodes on the left are called aircraft
nodes, because they represent aircraft. These nodes are placed at the point in time
when the aircraft is ready to depart. The nodes immediately to the right of the
aircraft nodes are flight nodes and they represent scheduled departures of flights.
Likewise, these are placed at the point in time when the flight is scheduled to depart.
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Figure 1. Underlying network to use with a DARP-heuristic.

The arcs connecting the aircraft and flight nodes are essential to the representation
of the flight schedule. Such an arc represents that the particular aircraft is assigned
to undertake the flight to which it is connected. The heuristic modifies the flight

schedule by altering these assignments through swaps. A swap is illustrated in figure
2.
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Aircraft Flights Aircraft Flights
> Destination A
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Figure 2. A swap.

The network in Figure 1 is based on the network introduced in [CK97], however,
there are significant differences. The term flight link is used to describe a sequence
of flights performed by one aircraft. In Figure 1 an example of a flight link is the
sequence 2 - 2 — 6 — 6 — 10 — 11. In [CK97] it is assumed that a time horizon
of 3 aircraft to flight assignments in a link is sufficient to model DARP. However,
this assumption does not take into account that in short-haul operations there is
a well-defined working day: At the end of the day, aircraft will lay over at various
airports in order to carry out the planned early morning flights. It is therefore
of prime importance that the correct number of aircraft lay over at each airport.
In other words, a time horizon spanning the remaining part of the working day is
necessary if such layover restrictions are present in the problem.



To cater for the layover restrictions, each link terminates in a sink node, thus indi-
cating where the aircraft will lay over, e.g. aircraft 10 in Figure 1 ends its working
day at airport 3. This makes it possible to keep track of the number of aircraft
laying over at each particular airport.

Another feature in the underlying network is the cancellation aircraft node, e.g.
nodes 3 and 7 in figure 1. By default, all cancellation aircraft nodes are assigned to
the sink node. However, the cancellation aircraft can be assigned to any flight(s),
thereby representing a cancellation of these. If for example cancellation aircraft 3
were swapped with aircraft 2, then aircraft 2 would remain at airport 1 and flights
2 and 6 would be cancelled.

Finally, there are surplus aircraft. By default, these are connected by a forward arc
to the sink node. Consequently, if the surplus aircraft is not used, it remains at
the airport. Alternately, it can be assigned to a flight, thus keeping it from getting
cancelled or delayed.

4.2 Basic Parameters and Decision Variables

In the following, we formalize the components necessary to express the problem as a
mathematical programming problem. These components are variables, parameters
and index sets, and using these we are able to express the objective function used
to quantify the cons of a solution, which as mentioned is necessary in any heuristics
for the DARP-problem .

A set of nodes representing aircraft.
a = index for aircraft nodes.
F set of nodes representing flights.
f = index for flight nodes.
F, subset of F' consisting of candidate flights consid-
ered for aircraft a. If aircraft o is delayed beyond
the time horizon, F, is set to empty. In Figure 1,
F, could reasonably consist of flights {4, 5,6, 7} for
aircraft a = 4.
F, = dynamic set containing flights f that have been

cancelled.

ry = the revenue of flight f.

dey = the delay incurred if aircraft a is assigned to flight
f. dqy is calculated as needed and takes all rele-
vant previous assignments into consideration. dgy
is measured in minutes.

ay = delay cost multiplier associated with each flight f.

Bf = cancellation cost multiplier associated with can-
celling flight f.



The decision variable is:

. { 1 if aircraft a is assigned to flight f
af

0 otherwise

To interpretation of the decision variables, refer to Figure 1. Here z;; = 1 because
aircraft 1 is assigned to flight 1. Conversely, ;5 = 0 because aircraft 1 is not
assigned to flight 8.

4.3 Objective function

Given the network and the basic parameters and decision variables, the objective
function can be defined.

Objective = erf *Taf

a€A feF

—Z Z Oéf~DF'7“f'daf'.Taf
a€A feF\F,

=) Brerswag (1)
a€A feF,

The first component in the objective function is the total revenue. The second
component is the total cost of delays. The constant DF is the percentage of the
revenue 7y which is subtracted per minute delay of flight f. The third component
is the cost associated with cancellations.

In both the second and third component of the objective function, the revenue ry
is used directly to measure the cost because it seems a natural way to prioritize the
flights. In principle this renders a and 3 unnecessary. However, a true revenue ry
is typically not calculated until several weeks after the flight has been flown — only
then the necessary data are available. A revenue r; calculated before the actual
flight can only be based on forecasts, e.g. the number and types of passengers, the
airports between which the flight is flown, the aircraft type carrying out the flight,
etc. Disruptions to the flight schedule may render these forecasts obsolete, which is
why « and [ are relevant. These can be assigned values which guides a heuristic to
find solutions that prioritize the flights according to the actual situation on hand.

4.4 Choice of Solution Neighborhood

Given the network representation of a schedule, a neighborhood can be defined. In
short, the neighborhood to a DARP solution consists of all those solutions that can
be reached by making 1 feasible swap between 2 different aircraft. By default, an
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aircraft can be assigned to any flight departing from the airport where the aircraft
is located. The size of this neighborhood is O(n?) where n is the number of flights.
2

Notice that the neighborhood size can be halved by utilizing that only %- different
neighbors exist.

4.5 Evaluating Solutions

The time it takes to explore a neighborhood depends heavily on how effectively
the objective value is calculated for each solution. A reasonable way of doing this
would be to track each aircraft through its link and calculate the contribution to the
objective value. Cancellations would also be included this way, because cancellation
aircraft are treated as a normal aircraft in this respect. In other words, each flight
would be considered once resulting in a complexity of O(n), where n is the number
of flights. It is possible, however, to reduce this complexity significantly by only
recalculating the cost of reassigned links.

Given the neighborhood size and the complexity of evaluating a single solution, the
overall complexity of evaluating all solutions in a neighborhood is O(n?) where n is
the number of flights. In practice, however, the observed complexity is significantly
smaller.

4.6 Creating Problem Instances

To test the heuristics, which have been implemented to solve DARP, 25 problem
instances were created using the generator outlined in Figure 3. Simply put, a link
is created for each aircraft by repeatedly selecting a destination airport at random
until the time horizon is exceeded. This limits the length of a link to a maximum
of 5 flights. The resulting problem instances are listed in Table 1.

It is important to notice that because airports are randomly selected, flights will not
be concentrated around a few airports like they would be in a hub-and-spoke system
— instead they will be more evenly distributed. Likewise, aircraft will typically not
travel back and forth between the same two airports. These 2 factors mean that the
generated flight schedules do not resemble real flight schedules. However, it seems
reasonable to assume that the complexity remains unchanged.

5 Choice of Heuristics

Several heuristics were implemented with the overall aim of finding that heuristic
among these, which was able produce the best results in 3 minutes or less. Initially,
various versions of a heuristic were implemented that had the possibility of escaping



procedure Test Instance Generator
repeat
Select an aircraft
Select an initial ready-time
Select airport randomly where aircraft will start
Decide if the aircraft is delayed
repeat
Select a destination airport randomly
Update time according to original ready-time
until extending the link will exceed time horizon
until the desired number of aircraft are in use
end

Figure 3. Test instance generator outline.

Instance  Number of Number of Number of

No. Airports Aircraft Flights
1 10 20 80
2 10 30 125
3 10 40 166
4 10 50 206
5 20 20 78
6 20 40 158
7 20 60 231
8 20 80 306
9 20 100 382

10 30 30 111
11 30 60 221
12 30 90 326
13 30 120 440
14 30 150 559
15 40 40 148
16 40 80 290
17 40 120 432
18 40 160 588
19 40 200 741
20 50 50 195
21 50 90 333
22 50 110 404
23 50 150 562
24 50 200 753

Table 1. Dimensions of the problem instances.

local optima, namely the Iterated Local Search (ILS) with a Variable Neighborhood
Search (VNS) incorporated. These methods are described in [Stii99] and [MH97]
respectively and our use of them is thoroughly described in [LSO01b]. A simple
Steepest Ascent Local Search (SALS) heuristic was also implemented along with
a repeated SALS (RSALS), which functions exactly like SALS but is repeated for
different initial solutions. Surprisingly, the SALS algorithms were most effective.



5.1 Steepest Ascent Local Search Heuristic

The ILS algorithms were able to find reasonably good solutions quickly — typically
within the first 10 seconds. Significantly better solutions were not found even in 24-
hour test runs and with a wide range of different parameter settings. This prompts
a number of questions concerning the search space structure and whether or not
other types of heuristics would be more effective.

A SALS algorithm quickly finds a local optimum. However, once it has reached such
an optimum, it is trapped. This is not a problem if the value of the local optimum is
close to the value of the global optimum which turned out to be the case, cf. Section
6 and 7.

5.2 Implementing the SALS Heuristic

The simplified program structure of the SALS algorithm is shown in Figure 4. There
are 3 main elements:

procedure Steepest Ascent Local Search (SALS)
Zqf = InitialSolution
repeat
z,,; = LocalSearch(zy)
To5 = AcceptanceCriterion(z,y, 77, ;)
until a better solution cannot be found
end SALS

Figure 4. Outline of a SALS procedure

InitialSolution: The initial solution is the original flight schedule including air-
craft ready-times, scheduled departures, original tail assignments and all de-
lays/cancellations. All these data are represented as illustrated in Figure 1.

LocalSearch: The local search procedure is initiated by a solution z,¢ in the form
of a flight schedule. A best improvement strategy is chosen so that all of the
neighbors to x,; are evaluated and the best solution x;,, among the neighbors
to 4y is used as a starting point for the next iteration.

AcceptanceCriterion: This procedure determines if the latest local search iteration
yields an improved solution. If so, it allows the algorithm to continue.
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5.3 Solution Quality of SALS

In Table 2 the results achieved by the SALS algorithm are reported. For the sake
of comparison, the column Best Result is introduced. This column refers to best
solution ever found for each problem instance and it should be noted that these are
not necessarily optimal. The best results have been found using the ILS-heuristic in
24-hour test runs with different parameter settings and in test runs where RSALS
was repeated 2000 times using different initial solutions.

Instance  Number of Best SALS Gap Time
No. Flights Result (in %) (in secs.)
1 80 264051 255213 3.35 0.09
2 125 402593 375699 6.68 0.12
3 166 614664 594911 3.21 0.50
4 206 690592 675224 2.23 0.90
5 78 201030 196291 2.36 0.03
6 158 508363 507043 0.26 0.26
7 231 814305 803711 1.30 0.63
8 306 1096463 1086028 0.95 1.29
9 382 1292384 1268061 1.88 3.16
10 111 376766 369218 2.00 0.02
11 221 782862 776675 0.79 0.34
12 326 1110793 1100121 0.96 1.12
13 440 1569761 1538055 2.02 2.62
14 559 1763103 1683127 4.54 6.77
15 148 437393 417642 4.52 0.07
16 290 963745 958332 0.56 0.57
17 432 1521328 1506960 0.94 1.70
18 588 1954775 1917987 1.88 5.19
19 741 2407012 2336639 2.92 12.15
20 195 612507 602827 1.58 0.15
21 333 1127078 1104572 2.00 0.63
22 404 1473042 1449719 1.58 0.85
23 562 1773247 1721653 2.91 4.05
24 753 2595359 2547788 1.83 9.42

Average gap between best solution and SALS: 2.22 (secs.) 2.11

Table 2. Querview of the SALS heuristic results

SALS is clearly very fast. In Table 2, it takes 2.11 seconds on average to find a local
optimum using SALS and never more than 13 seconds. It should be noted that the
best solutions found to the problem instances listed in Table 1 improved the revenue
in the original flight schedule by 59.0% on average given the parameters chosen. In
other words, SALS improves the revenue approximately 57% on average.

The ILS heuristics produced slightly better results than SALS in terms of revenue.
However, the speed with which SALS finds solutions makes it very attractive. With
respect to practical implementation at an airline, SALS would certainly be the most
well-suited algorithm to solve DARP. This holds in particular because for ILS there
is no apparent general correlation between the parameter settings and the quality
of solutions found. This makes the tuning of ILS very difficult.
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6 Analysis of the Search Space

The speed with which SALS found a good solution calls for a further analysis of the
nature of the solution space. It is unusual that a relatively simple SALS algorithm
finds very good solutions compared to customized heuristics that run for 24 hours
without getting trapped in local optima.
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Figure 5. Fitness landscapes for 5 of the problem instances listed in table 1.

In Figure 5 fitness landscapes have been made for 5 problem instances (refer to Table
1). The data for these fitness landscapes were generated using RSALS mentioned
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in section 5.

Each fitness landscape uses the best solution ever found for a particular problem
instance as a reference point. Technically this reference point is the point (0,0) in
each figure. All the other points represent other local optima found by RSALS. In
all, there are 2000 such local optima in each fitness landscape. For each of these
local optima the distance to the reference optimum is calculated. Here distance is
a simple count of the number of aircraft to flight assignments in the local optima,
which are different from the assignments in the reference optimum. This value is
plotted against the numerical difference in the corresponding objective values. The
result is a scatter diagram, which may show some correlation between the objective
values and the distances.

In all the fitness landscapes in Figure 5 there is a remarkably clear correlation: The
further the distance to the best solution ever found, the worse the objective values
get. To illustrate this, a linear fit has been made in all the fitness landscapes. This
fit does not explain so much of the observed variation. However, the tendency is
clear and statistically significant. This correlation gives a strong indication that the
solution space has a “hill-like” structure like that illustrated in Figure 6. Further-
more, the fact that SALS found such good revised flight schedules to all the problem
instances also indicates that many local optima are close to global optimum, hence
the wide “hill-top”. If the solution space structure indeed looks like that of Figure
6, increased computational time is not going to improve the results significantly
because better solutions do not exist once the “hill has been climbed”. This kind of
solution space structure is a strong argument for using SALS-like heuristics because
the local optima, which SALS will be trapped in, have values close to that of the
global optimum.

Objective Value

Global Optimum

\ Local Optimum

Decision Variable Combinations

Figure 6. Geometric fitness landscape as a function of all combinations of values
assigned to the decision variables

Notice that in each fitness landscape, the local optima seem to be grouped a certain
minimum distance from the reference point. In Figure 5(a) there are no local optima
with a distance of less than 20 to the reference optimum. A hypothesis explaining
this observation is that the common distance between all local optima is at least 20
in Figure 5(a). This hypothesis is supported by the fact that the minimum distance
to the reference optimum increases as the problem size increases: It seems reasonable
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that the common distance between local optima in large problems is greater than
that of small problems.

7 Testing the Heuristic on Real Problem Instances

As mentioned, the structure of the generated problem instances listed in Table 1 is
not realistic. However, the results achieved using these instances were very promis-
ing. British Airways (BA) made some of their flight data available for realistic
testing of the RSALS heuristic. These data were transformed to the network repre-
sentation described previously. At this prototype phase the rules implemented are
simplifications of the reality at British Airways.

More precisely, 10 BA flight schedules from November 2000 were extracted. Each
flight schedule consists of all the BA short-haul flights that should have been flown
a particular day including the associated tail assignments. On average, these test
instances had the following characteristics:

e 80 active aircraft
e 44 airports
e 340 flights

Each flight schedule was disrupted by randomly delaying approximately 20% of the
aircraft 30-240 minutes. The RSALS heuristic then attempts to improve the flight
schedules by delaying flights, swapping aircraft to flight assignments and cancelling
flights. The generated recovered flight schedule spans the remainder of the working
day and respects the following:

e Aircraft balance
— The number of aircraft originally intended to end in an airport must be
respected.
e Swap at base only
— Changes in tail assignments may only be made at the base airport (Lon-
don Heathrow airport (LHR) in the case of BA).
e Respect minimum turnaround time

— There is a minimum turnaround at the base airport (60 mins.) and for
all outstations (30 mins.). Turnaround simply refers to minimum time
required between landing an aircraft and taking off again.

e Only make feasible swaps with respect to aircraft types
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— Aircraft can only be swapped if they are of the same type, except Boeing
757 and 767, which can be swapped.

e Only cancel here-and-back trips

— If cancellations are used, only pairs of trips are allowed to be cancelled,
e.g. from LHR to Stockholm and back again.

7.1 Reference Test Results

To illustrate the effectiveness of RSALS and the influence of the parameters involved,
the 10 problem instances described above have been improved using the following
reference parameters:

SwapCost 5000
CancellationCost 2.0 - flight revenue (£)

DelayCost ~ 0.025 (—1—) - flight revenue (£) - delay (min-
utes)

The Swap Cost does not represent the actual cost of swapping. It is a parameter
used to control the number of swaps made by the DARP heuristic. The objective
function does therefore in no way represent the actual costs of the revised flight
schedule.

The average values of the test results from the reference test instances for all 10
days are shown in Table 3 using total delay in minutes and number of cancellations
as key performance indicators. The delay is calculated over all flown flights, i.e.
the cancelled flights do not contribute to this indicator. The delay is reduced by
62.1% on average and 2 cancellations are introduced. The heuristic modifies the
lines of work of approximately 20 aircraft to recover the 16-17 lines of work that
were delayed; approximately 10 aircraft end in an airport different from the one
originally scheduled (end destination changes).

Delay No. of | No. of modified | End destination

(in mins.) | Canx. | lines of work changes
Before 5961.7 0 0 0
After 2258.9 2 20.4 10.2
Difference 3702.8 2 20.4 10.2

Table 3. Average values of the results over all 10 test instances.

On average it took the RSALS heuristic 6.07 seconds to find the revised flight
schedules. As mentioned, the RSALS heuristic is simply a repetition of the SALS
heuristic for different initial solutions. In the case of the BA-flight schedules, SALS
was repeated 5 times. Different initial solutions for the same flight schedule were
created by introducing one random swap before initiating SALS.
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7.2 Effects of Varying the Basic Parameters

In the following, the costs of the three basic options have been varied to illustrate the
flexibility of the DARP-heuristic. The reference test instance is shown in boldface
in all the following Tables.

7.2.1 Effect of Varying the Swap Cost

Swap Delay No. of | No. of modified | End destination | CPU time
cost | (in mins.) | canx. lines of work changes (in secs.)

2000 2003.8 0.8 29.3 14.6 9.38
5000 2258.9 1.6 20.4 10.2 6.07
15000 2792.7 5.3 10.8 3.6 3.83

Table 4. The effect of modifications to the swap costs.

Varying the swap cost has a significant impact on the type of revised flight schedule
generated by RSALS. In Table 4, a swap cost of 2000 (as opposed to 5000 in the
reference test instances) increases the number of modified lines of work and end
destination changes by 43.6% and 43.1% respectively. Lowering the swap cost cor-
responds to making changes in the flight schedule cheaper, thus the delay can be
reduced by 66.9% as opposed to 62.1% in the reference test instances. In addition,
a substantially smaller number of cancellations results.

As expected, increasing the swap cost has exactly the opposite effect. The number
of modified lines of work and end destination changes is reduced by 47.1% and
64.7% respectively. The increased cost of swapping limits the number of attractive
changes, thus the total delay is only reduced 53.2%. On average, 5.3 cancellations
are introduced corresponding to the fact that compared with retimings, cancellations
become more attractive.

Notice that the CPU time decreases with increased swap costs. This is to be ex-
pected: When swap costs are low, a larger number of changes in the flight plan are
attractive, thus more CPU time is required before no swaps are found that yield an
improved objective value.

7.2.2 Effect of Varying the Cancellation Cost

As mentioned in Section 4.3, the cost of cancelling a flight is a factor of the projected
flight revenue. It is therefore expected that the number of cancellations made by the
heuristic increases with a decreasing cancellation factor (see Table 5). Note, however,
that the difference in delay minutes between solutions with many cancellations and
solutions with no cancellations is modest. It is also demonstrated, that it is possible
to effectively prohibit cancellations, if the cancellation factor is set to 10.0. The
CPU time required does not vary with a varying cancellation factor.
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Cancellation Delay No. of | No. of modified | End destination | CPU time
cost factor | (in mins.) | canx. lines of work changes (in secs.)
1.0 1833.2 5.6 17.5 7.6 5.64

2.0 2258.9 1.6 20.4 10.2 6.07

5.0 2577.6 0.4 20.8 10.6 5.97

10.0 2679.9 0.0 21.1 9.8 6.68

Table 5. The effect of modifications to the cancellation cost factor.

7.2.3 Effect of Varying the Delay Cost

Delay Delay No. of | No. of modified | End destination | CPU time
cost factor | (in mins.) | canx. lines of work changes (in secs.)
0.01 3676.8 0 13.2 5.3 3.64

0.025 2258.9 1.6 20.4 10.2 6.07

0.05 1540.7 6.4 21.0 10.8 6.95

Table 6. The effect of modifications to the delay cost factor.

The delay cost is a percentage of a flights revenue for every minute it is delayed.
Lowering this percentage corresponds to making delays more acceptable, which is
clearly seen in Table 6: With a delay cost factor of 1%, the total delay is only reduced
by 38.2% as opposed to 62.1% in the reference test instances. Conversely, a delay
cost factor of 5% reduces the delay by 74.2%. However, a large delay cost factor
also makes cancellations relatively more attractive, which is why 6.4 cancellations
are introduced in this case, thus again clearly illustrating the trade-off between the
two options.

7.2.4 Search Space Analysis of the BA Test Instances

In section 6, fitness landscapes were constructed, which indicate that the search
space has a hill-like structure that enables a SALS-heuristic to find good solutions.
To investigate if the BA test instances have the same type of structure, fitness
landscapes have been generated using the same method as before. The conclusion
is that in the BA test instances, the further the distance to the best solution ever
found, the worse the objective values get (see [LSO1a]). Furthermore, the average gap
between the best solutions and the reference test instance solutions is 2.99%. It is
therefore clear that in terms of using SALS-heuristics, the theoretical test instances
and the BA test instances are very similar. The best solutions ever found to each
of the BA test instances were again found using RSALS repeated 2000 times.
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8 Conclusion

This article demonstrates that the Dedicated Aircraft Recovery Problem (DARP)
can be solved effectively by a relatively simple SALS-heuristic using the underlying
network representation of the problem. On average, less than 10 seconds are required
to find a feasible revised flight schedule that includes all planned flights on a given
day. Furthermore, our method allows the necessary flexibility that flight controllers
need in terms of creating different types of revised flight schedules. Particularly, this
is demonstrated using real test instances from British Airways. In 10 such instances,
our method of solving DARP effectively decreased the total delay by introducing
swaps and cancellations. The effect of applying various strategies was also shown:
Depending on the situation at hand, the trade-off between delays, cancellations and
swaps can be adjusted and our SALS-heuristic can generate feasible revised flight
schedules that accommodate these trade-offs in less than 10 seconds on average.

Our work gives a strong indication that DARP is a relatively simple problem to solve
when represented as described. Hence, the future challenge lies in incorporating crew
and passenger considerations into a tool for integrated recovery of aircraft, crew, and
passengers, which is the ultimate goal of the Descartes project. The aircraft recovery
module of the current Descartes software is based in the ideas and observations of
the current paper.
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