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Abstract. This paper presents a novel method for segmentation of car-
diac perfusion MRI. By performing complex analyses of variance and
clustering in an annotated training set off-line, the presented method
provides real-time segmentation in an on-line setting. This renders the
method feasible for e.g. analysis of large image databases or for live non-
rigid motion-compensation in modern MR scanners. Changes in image
intensity during the bolus passage is modelled by an Active Appearance
Model augmented with a cluster analysis of the training set and priors
on pose and shape. Preliminary validation of the method is carried out
using 250 MR perfusion images, acquired without breath-hold from five
subjects. Quantitative and qualitative results show high accuracy, given
the limited number of subjects.

1 Introduction

Within the last decade magnetic resonance imaging has been proven able to
assess myocardial perfusion in an accurate and safe manner, see e.g. [9]. While
scanning times have improved drastically, the amount of manual post-processing
remains to render the method prohibitive to clinical practice. A major part of
this manual labour is spent by marking up points of correspondence on the
myocardium, thus enabling compensation of any motion during a perfusion se-
quence. This paper present a novel approach aiming at replacing the tedious and
error prone labour with an automatic image analysis method, which provides a
structured way of collecting and applying expert knowledge given by medical
doctors into a learning-based framework.

The paper is organised as follows. Section 2 describes the data used for this
study. Section 3 begins by introducing the foundations of this work, namely
myocardial perfusion imaging and active appearance modelling, and concludes by
describing the proposed method. Section 4 presents a preliminary experimental
validation. Finally, Section 5 and 6 serve a discussion of the obtained results and
draw some concluding remarks.



2 Data Material

The data material comprises 250 myocardial perfusion, short-axis, magnetic res-
onance images (MRI). For each of five subjects, 50 sequential images were ac-
quired before, during and after the bolus of contrast. The used contrast agent
was gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Breath-hold
was not used and the time-gap between images was approximately three sec-
onds. Registration relative to the heart-cycle (end-diastole) was obtained using
ECG-triggered acquisition from a whole-body MR unit, Siemens Vision, operat-
ing at 1.5 T. We used an inversion recovery turbo-FLASH (fast low-angle shot)
MR-sequence. Matrix size was 128x128 pixels. Slice thickness was 10 mm. The
endocardial and epicardial contours of the left ventricle (LV) were annotated in
all images by manually placing 66 landmarks. To fix rotation around the LV
long-axis, the right ventricle (RV) was annotated using 12 landmarks.

3 Methods

3.1 Myocardial Perfusion Imaging

Developments in MR-technology during the past decade have made it possible to
acquire physiological information about dynamic processes in the human body.
As an example of such, myocardial perfusion imaging encompasses assessment of
myocardial perfusion at rest and during stress (e.g. pharmacological). By inject-
ing a bolus of contrast the myocardial perfusion mechanism can be quantified,
which is essential in ischemic heart diseases. As the contrast agent tags the
blood stream and amplifies the MR signal, areas of the myocardium served by
diseased arteries show a delayed and attenuated response. Acquisition is carried
out dynamically and registered to the heart cycle using ECG-triggering. Images
are typically acquired from one or more short-axis slices every n-th heartbeat,
trading through-plane resolution for temporal resolution. If the time-window
is sufficiently short (typically < 40 secs), breath-hold can be used to remove
respiration artefacts. Another source of unwanted variation is erroneous ECG-
triggering, giving an erroneous heart-phase and destroying trough-plane (z-axis)
correspondence, due to the long-axis movement of the LV during the heart cycle.

3.2 Active Appearance Models

Active Appearance Models (AAMs) [7, 4] were introduced as a method for seg-
mentation and interpretation of face images. This was carried out by building
models based on a set of annotated images without any ordering. By being a
generic approach, medical applications were soon to follow. These include seg-
mentation of knee cartilage MRI [6], short-axis cardiac MRI [11, 14], metacarpal
radiographs [15], diaphragm dome CT [1], echocardiogram time series [3], and
corpus callosum in brain MRI [13].

Formally, AAMs establish a compact parameterisation of object variability,
as learned from a representative training set. The modelled object properties are



usually shape and pixel intensities. The latter is henceforward denoted texture.
From these quantities new images similar to the training set can be generated.
Objects are defined by marking up each example with points of correspondence
(i.e. landmarks) over the set either by hand, or by semi- to completely automated
methods. Using a learning-based optimisation strategy, AAMs can be rapidly
fitted to unseen images, thus providing image segmentation and analysis.

Variability is modelled by means of a Principal Component Analysis (PCA),
i.e. an eigen analysis of the dispersions of shape and texture. Let there be given
Q training examples for an object class, and let each example be represented
by a set of N landmark points and M texture samples. The shape examples are
aligned to a normalised common mean using a Generalised Procrustes Analysis.
The texture examples are warped into correspondence using a piece-wise affine
warp, normalised, and subsequently sampled from this shape-free reference. Typ-
ically, this geometrical reference frame is the Procrustes mean shape. Let s and t
denote a synthesised shape and texture and let s and t denote the corresponding
sample means. New instances are now generated by adjusting the PC scores, bs

and bt in

s = s + Φsbs , t = t + Φtbt (1)

where Φs and Φt are eigenvectors of the shape and texture dispersions estimated
from the training set. To obtain a combined shape and texture parameterisation,
c, the values of bs and bt over the training set are combined into

b =
[
Wsbs

bt

]
=

[
WsΦT

s (s− s)
ΦT

t (t− t)

]
. (2)

A suitable weighting between pixel distances and pixel intensities is carried out
through the diagonal matrix Ws. To recover any correlation between shape and
texture the two eigenspaces are usually coupled through a third PC transform

b = Φcc =
[
Φc,s

Φc,t

]
c (3)

obtaining the combined appearance model parameters, c, that generate new
object instances by

s = s + ΦsW−1
s Φc,sc , t = t + ΦtΦc,tc. (4)

The object instance, (s, t), is synthesised into an image by warping the pixel
intensities of t into the geometry of the shape s and applying the current pose
parameters p = [ tx ty s θ ]T where tx, ty and θ denotes in-plane translation and
rotation, and s denotes the shape size.

Given a suitable similarity measure the model is matched to an unseen image
using an iterative updating scheme based on a fixed Jacobian estimate [5] or a
principal component regression [4]. For further details on AAMs refer to [4–6].
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Fig. 1: First versus second principal component of 200 texture vectors from four per-
fusion sequences (left). Unsupervised classification result using five classes (right).

3.3 Modelling of Perfusion Time-series

Since perfusion MRI sequences differ in structure from the single-image oriented
AAMs, this section will discuss the issue of data modelling.

Treating each perfusion sequence as one observation (as in [10]) is not feasible
due to random fluctuations in pose and shape induced by the variation sources
mentioned in Section 3.1. However, texture variability – decoupled from changes
in shape and pose – can be modelled as one observation per sequence providing
a more specific model. Unfortunately, to model this behaviour properly, far more
training sequences would be required compared to taking each frame as an ob-
servation. Consequently, given the low number of sequences, we will treat each
image in a sequence as an observation. Circumventing the need for large training
sets unfortunately violates the basic assumption in AAMs, that the variation in
texture is well modelled by a multivariate Gaussian. Due to the radical changes
in intensity during contrast uptake this is clearly not the case. On a coarse level
we can split the sequence into i) pre-contrast arrival, ii) contrast agent entering
the RV, iii) LV, and iv) the myocardium.

Figure 1 (left) shows the two most significant texture parameters of the
texture model shown in Eq. (1), bt,1 versus bt,2, from the first four sequences in
the data set.1 Here it is verified that the expected clustering is very conspicuous.
Modelling this distribution of textures with a multivariate Gaussian gives rise
to several problems. Most problematic is that the resulting model is not very
specific and can easily generate textures that are not plausible to occur during
a perfusion bolus passage.

1 Since the signal variation of the LV and RV is very small prior to contrast arrival
and thus leading to little contrast, the standardisation of texture vectors normally
used in AAM would result in severe amplification of scanner noise. Hence, we have
only removed the texture mean in all models presented in this paper.



3.4 Adding Cluster Awareness

In order to model the distribution of textures above we propose an unsupervised
learning approach that models texture variation using an ensemble of linear
subspaces. Alternatively, these subspaces could have been given by an operator,
which identifies different phases of each bolus passage. However, to reduce, i)
the tedious burden of training set generation, and ii) inter- and intra-observer
variability, supervised learning was rejected. Further, since we believe that no
canonical number of subspaces exists, we would like to evaluate different ensem-
ble sizes, which would have been very tedious in the case of manual labelling.

Though machine learning literature offers an abundance of classification
methods, it is generally agreed upon that no silver bullet exists. We have cho-
sen a k-means classification [8] combined with a Monte Carlo simulation scheme
where several classifications are carried out, based on different initial random
class centres. The final classification is chosen using a minmax criterion, i.e. the
classification having the smallest maximum distance to the nearest class centre.

The obtained classification using five classes (k = 5) of the data set is shown
in Figure 1 (right). From this classification, a set of linear texture subspaces,
{Φt,i}k

i=1, is obtained directly by k separate texture PCAs. A corresponding
set of texture parameter update matrices, {Rt,i}k

i=1, is obtained following the
procedure in [5]. As changes in texture over the sequence is assumed to be
uncorrelated with shape, building a joint shape model, Φs, from all sequences
yields the best estimate of inter- and intra-subject shape variability. We call this
joint model a Cluster-aware AAM (CAAM).

Fitting a CAAM to unseen images now involves choosing the appropriate
texture subspace. As a reasonable choice for k is very low, model selection is
performed by exhaustively trying all models and selecting the model producing
the best fit, subject to a set of constraints given later in this paper. To increase
performance during model fitting, model selection could be accomplished by a
classification of the texture vector into the set of training classes.

To choose k prior knowledge can employed. However, being an optimisation
problem in one positive integer variable, we would prefer a data-driven method.
Here, the optimal k is estimated using cross-validation on the training set.

3.5 Estimating and Enforcing Pose and Shape Priors

The fact that changes in pose and shape are uncorrelated with the change of
texture is highly useful for initialising and constraining the model fitting process
in each frame. Further, it can validate the final segmentation results. Thus, if it
is possible to obtain reliable estimates of the shape and pose in a subpart of the
sequence these can be used in the remains of that sequence. This is the case in
the latter part of a bolus passage where the contrast agent has been washed out
of the RV and LV, only leaving the subtle changes stemming from the perfusion
mechanism in the myocardium. Hence, we propose to estimate prior distributions
of pose and shape from the latter part of a perfusion sequence of P frames.



Let κ, γ, Dmax denote a set of user-selectable constants controlling the influ-
ence of the priors. Then, let Σ denote the dispersion matrix of the pose parame-
ters and let σ denote the standard deviations of the shape parameters. How these
two quantities are estimated is treated in Appendix A. Further, let Ft denote
the t-th frame. Let the set of frames {Ft}S−1

t=1 denote the unstable period, and
the frames {Ft}P

t=S denote the stable period. Then, an algorithm for exploiting
these priors can be formulated as:

Algorithm 1 Sequence Prior Augmented AAM Search
Require: S, κ, γ, Dmax, Σ and σ
1: p = initialisation
2: bs = initialisation
3: for t = P down to S do
4: {pt,bs,t} = CAAM search started at {p,bs} in Ft

5: p = 1
P−t+1

∑P
j=t pj

∗)

6: bs = 1
P−t+1

∑P
j=t bs,j

∗)

7: end for
8: for t = S − 1 down to 1 do
9: {pt,bs,t} = Constrained CAAM search started at {p,bs} in Ft

(constrain using κ, γ, Dmax, Σ, bs, σ)
10: end for
∗)Notice that this is carried out most efficiently by using provisional means.
This circumvents the need for storing past observations when calculating the mean.

During CAAM search in the unstable period, pose and shape priors are used
to stabilise parameter updates by limiting the maximal update step. To simplify
notation, the time index t is omitted from this point on. Let Σij denote the
element in the i-th row and j-th column of Σ, and let pi denote the i-th element
of p. Pose parameter updates can now be constrained using the following simple
clamping approach:

δpi =
{

sign(δpi)κ
√

Σii if |δpi| > κ
√

Σii

δpj otherwise. (5)

The constant κ acts thus as a clamping constant given in units of standard
deviations of pose variation as estimated from the training sequences. In all
experiments we have used κ = 0.5. Likewise, we also exploit the prior knowledge
of shape variation, σ, (as obtained from the training set) in a similar clamping
approach,

bs,i =
{

bs,i + sign(bs,i − bs,i)γσi if |bs,i − bs,i| > γσi

bs,i otherwise,
(6)

where γ denotes the maximally accepted distance from the mean in units of
standard deviations. We have used γ = 3 in our experiments.

After ended CAAM search in the unstable period, pose prior enforcement is
determined by testing the Mahalanobis distance to the pose distribution:

{p,b} =
{ {p,b} if D2

max < (p− p)TΣ−1(p− p)
{p,b} otherwise

(7)



Fig. 2: Segmentation results before, during and after the bolus passage, k = 3.

Under the assumption of normal distributed pose parameters, we have chosen
to use Dmax = 3. Hence, implausible pose solutions are discarded and replaced
with the maximum likelihood of the prior; the mean configuration.

4 Experimental Results

To evaluate the proposed method a Cluster-aware AAM was built using four
sequences of 50 frames each. Our software was implemented in C++ (see [14])
and executed on a 1.2 GHz Athlon PC. The stable period was set manually as the
last 25 frames of each sequence, i.e. S = 26. Using hold-out evaluation the model
was tested on the remaining fifth sequence. The model was manually initialised
in the P -th frame. Table 1 shows segmentation results for five different values
of k. Double-mean landmark errors were calculated as the mean of all landmark
points (for both RV and LV) and the mean over all frames. Not surprisingly,
we found that the error was above average before and during the bolus passage.
Segmentation results for t = {1, 12, . . . , 17, 50} are shown in Figure 2.

Table 1: Segmentation Results for Different Values of k

k Pose rejects Pt.pt.1) [pixels] Pt.crv.2) [pixels] Time [sec]

1 3 2.19±0.35 1.33±0.19 0.5
2 3 2.26±0.41 1.38±0.20 0.7
3 0 1.81±0.38 1.03±0.15 1.2
4 2 2.13±0.60 1.19±0.17 1.5
5 0 2.13±0.49 1.24±0.18 1.8
1)Pt.pt. measures the Euclidean distance between corresponding landmarks of

the model and the ground truth. 2)Pt.crv. measures the shortest distance to
the ground truth curve in a neighbourhood of the corresponding landmark.

To hint the behaviour of the method given a large training set, contrary to
the four sequences used in the above, we have performed a leave-all-in evalu-



ation where a CAAM was built using all 250 images from the five sequences,
and the tested on the fifth sequence. Consequently, the model had a full repre-
sentation of the test sequence, except for the regularisation of the texture and
shape eigenspaces in an AAM [4]. The results given in Table 2 show a trend of
decreasing landmark error with increasing class numbers. Though being rather
positively biased, the results also hints the lower bound on the landmark error.

Table 2: Leave-all-in Segmentation Results

k Pose rejects Pt.pt. [pixels] Pt.crv. [pixels] Time [sec]

1 0 1.80±1.20 0.89±0.52 0.8
2 1 1.70±1.17 0.89±0.65 1.0
3 1 1.30±0.80 0.67±0.37 1.7
4 0 1.50±0.93 0.77±0.40 1.9
5 0 1.13±0.46 0.61±0.24 2.5

5 Discussion

As observed in the previous section, the addition of cluster-awareness seems
to increase segmentation accuracy. However, as the set of training sequences is
very limited, conclusions would always remain premature and fragile. By design
cluster-awareness adds specificity in the texture, which is a very important prop-
erty for a generative model. In other words, the chance of synthesising implau-
sible images from a cardiac perfusion sequence is drastically reduced. However,
the cost turns up as a need for more training examples to reliably estimate a
cluster texture model.

Typically, cardiac perfusion images are acquired for several slices in the apex-
basal direction. An extension of our approach is straightforward to implement
by concatenating texture vectors to obtain one joint multi-slice texture model.

As touched upon earlier, a classification approach could be used instead of
a brute-force evaluation of all models. This would lead to a segmentation time
corresponding roughly to using one cluster. However, as the initial texture sample
is only close to the correct subspace, misclassification is likely to happen. This
would need to be dealt with, if a further increase in speed is required.

Compared to a recent approach to segmentation of perfusion cardiac MRI [12]
our method offers a 20 times speed-up. Unfortunately, the approach described
in [12] is restricted to breath-hold sequences, why a modification would be needed
to enable a comparable study using non breath-hold perfusion sequences. Seg-
mentation of perfusion MRI was also reported in [2] where a non-rigid transfor-
mation was used compared to our deformable approach.

To let our method generalise to new data, very few assumptions concerning
the data content have been made. Except for a few scalar parameters (which are
indices relating to the actual data), all values are estimated from training data,
rather than being hard-coded into a computer framework. We believe this to be
a very fruitful approach, as the method easily adapts to new expert knowledge



given by medical doctors. Knowledge, that typically already exists in the form
of hand-annotated training data from previous studies.

Finally, contrary to most other segmentation methods and due to the inherent
representation of texture vectors in AAMs, we mention that motion-compensated
images are directly obtained by projecting each texture vector in the shape-free
reference frame. Thereby a correspondence for each pixel over the complete per-
fusion sequence is obtained, ready to be fed into a perfusion model as e.g. [9]. In
future studies, we aim at validating our method on much larger data sets. As a
natural performance benchmark, we will compare estimated perfusion parame-
ters as obtained from automatic versus hand-segmented sequences.

6 Conclusion

We have described a novel, data-driven method for motion-compensation of car-
diac perfusion MRI. Preliminary validation of the method showed high segmenta-
tion accuracy, considering the small number of subjects available. We anticipate
a substantial increase in accuracy when more training data becomes available.
The running time of the method using a standard PC is below two seconds for a
50-frame perfusion sequence and can easily be sped up. Thus, the method pro-
vides means for segmentation in an on-line setting, e.g. analysis of large image
databases or for live motion-compensation in MR scanners.

References

1. R. Beichel, S. Mitchell, E. Sorantin, F. Leberl, A. Goshtasby, and M. Sonka. Shape-
and appearance-based segmentation of volumetric medical images. IEEE Interna-
tional Conference on Image Processing, 2:589–592, 2001.

2. L. M. Bidaut and J. P. Vallee. Automated registration of dynamic mr images for the
quantification of myocardial perfusion. Jour. Magn. Reson. Imaging, 13(4):648–
655, 2001.

3. J. G. Bosch, S. C. Mitchell, B. P. Lelieveldt, F. Nijland, O. Kamp, M. Sonka, and
J. H. Reiber. Fully automated endocardial contour detection in time sequences of
echocardiograms by three-dimensional active appearance models. Medical Imaging
2002: Image Processing, San Diego CA, SPIE, pages 452–462, 2002.

4. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In Proc.
European Conf. on Computer Vision, volume 2, pages 484–498. Springer, 1998.

5. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
Trans. on Pattern Recognition and Machine Intelligence, 23(6):681–685, 2001.

6. T. F. Cootes and C. J. Taylor. Statistical Models of Appearance for Computer
Vision. Tech. Report. Feb 2000, University of Manchester, 2000.

7. G. J. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting face images using
active appearance models. In Proc. 3rd IEEE Int. Conf. on Automatic Face and
Gesture Recognition, pages 300–5. IEEE Comput. Soc, 1998.

8. E. Forgey. Cluster analysis of multivariate data. Biometrics, 21:768, 1965.
9. Henrik B. W. Larsson, Thomas Fritz-Hansen, Egill Rostrup, Lars Søndergaard,

Poul Ring, and Ole Henriksen. Myocardial perfusion modeling using MRI. Mag-
netic Resonance in Medicine, 35:716–726, 1996.



10. S. Mitchell, B. Lelieveldt, R. Geest, H. Bosch, J. Reiber, and M. Sonka. Time
continuous segmentation of cardiac MR image sequences using active appearance
motion models. In Medical Imaging 2001: Image Processing, San Diego CA, SPIE,
volume 1, pages 249–256. SPIE, 2001.

11. S. Mitchell, B. Lelieveldt, R. Geest, J. Schaap, J. Reiber, and M. Sonka. Segmen-
tation of cardiac MR images: An active appearance model approach. In Medical
Imaging 2000: Image Processing, San Diego CA, SPIE, volume 1. SPIE, 2000.

12. L. Spreeuwers and M. Breeuwer. Automatic detection of the myocardial boundaries
of the right and left ventricle in mr cardio perfusion scans. Proceedings of SPIE -
The International Society for Optical Engineering, 4322(3):1207–1217, 2001.

13. M. B. Stegmann and R. H. Davies. Automated analysis of corpora callosa. Techni-
cal Report IMM-REP-2003-02, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, http://www.imm.dtu.dk/∼mbs/, mar 2003.

14. M. B. Stegmann, B. K. Ersbøll, and R. Larsen. FAME – a flexible appearance
modelling environment. IEEE Trans. on Medical Imaging, 2003 (to appear).

15. M. B. Stegmann, R. Fisker, and B. K. Ersbøll. Extending and applying active
appearance models for automated, high precision segmentation in different image
modalities. In Proc. 12th Scandinavian Conference on Image Analysis - SCIA
2001, volume 1, pages 90–97, 2001.

A Estimation of Σ and σ

The dispersion matrix of the pose parameters, Σ, and the standard deviations of
the shape parameters, σ, can be estimated from the stable period. However, in
order to obtain more reliable estimates we propose to use the training sequences,
since much more samples are available. To avoid confusion of inter- and intra-
sequence variability, we filter out sequence-specific information (such as mean
shape size) prior to the estimation. Now, let R denote the number of sequences,
each containing P frames. Further, let ¯ denote the Hadamard, i.e. element-wise,
product. Then the estimation of Σ and σ can be specified as:

Algorithm 2 Estimation of Pose and Shape Variation
1: for i = 1 to R (for each training sequence) do

2: pt ← pt ¯ ( 1
s [ 1 1 1 s ]T) ∀ t Normalise pose w.r.t. mean size

3: pi = 1
P

∑P
t=1 pt Estimate pose mean

4: Σi = 1
P−1

∑P
t=1(pt − pi)(pt − pi)

T Estimate pose dispersion matrix

5: bs,i = 1
P

∑P
t=1 bs,t Estimate shape mean

6: σi =
√

1
P−1

∑P
t=1(bs,t − bs,i)¯ (bs,t − bs,i) Estimate shape std. dev.

7: end for
8: Σ = 1

R

∑R
i=1 Σi Calculate pooled estimate for all sequences

9: σ = 1
R

∑R
i=1 σi Calculate pooled estimate for all sequences

Further, to maintain simplicity, normalisation w.r.t. rotation has not been
included in the above algorithm. However, if sequences differ in orientation, this
should be taken into account when estimating tx and ty. Finally, during CAAM
search, appropriate normalisation and de-normalisation using the stable period
mean size (and orientation) must be carried out.


