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Abstract

Contrary to many other deformable models Active

Shape Models (ASM) represents a general way of per-

forming non-rigid object segmentation. Shape varia-

tion is extracted from a training set by applying prin-

cipal component analysis to point distribution models,

rather than hand crafting a priori knowledge into the

model.

In this paper we investigate di�erent properties of

ASM. Topics treated are the generation of plausible

shapes, tangent space transformation and model to

image �tting assisted by statistical models of gray level

variation in the training set. Finally a method for au-

tomatic initialization and a comparison of four model

to image �tting methods are presented. The initializa-

tion part indicates that completely automatic segmen-

tation could be done by ASMs. The comparison part

shows an improved �t for model to image �t methods

based on gray level variation in the training set.

Keywords: Deformable Models, Active Shape Mod-

els, Snakes, Principal Component Analysis, Statisti-

cal Models of Gray Level Variation, Model Initializa-

tion.

1 Introduction

In the �eld of non-rigid object segmentation the group

called Deformable Models has achieved much atten-

tion. These models has proven e�cient in many ap-

plications: object segmentation, appearance interpre-

tation, motion tracking etc.

A deformable model can be characterized as a model,

which under an implicit or explicit optimization cri-

�c937189, mikkel@znail.dk

terion, deforms the shape to match a known object

in a given image. For a general review of the most

commonly used models refer to [10, 9]. One of the

earliest and most popular deformable model, Snakes,

is proposed by Kass, Witkin and Terzopoulos [2].

Jain et al. [8, 10] classi�es deformable models as ei-

ther being free form or parametric where the �rst

denotes model probability dependent on local con-

straints on the shape1 and latter global shape con-

straints. By building a statistical model of the global

shape variation from a training set, Active Shape

Models (ASM) [6] quali�es in being a parametric de-

formable model. The model is called a Point Dis-

tribution Model (PDM). In this way the object seg-

mentation can verify the detected shape against the

PDM and thus only allowing shape variation consis-

tent with the training set. This kind of shape vari-

ability inside the same object class can for example

be found in medical imaging.

As an extension to the basic ASM this paper investi-

gates di�erent properties of the model. Most of this

are inspired from work done by Cootes et al. [3, 6, 15].

The actual implementation is written in C++ as a

plug-in to the windows-based deformable template

framework, DMT.

2 Active Shape Models

The Active Shape Model represents a parametric de-

formable model where a statistical model of the global

shape variation from a training set is built. This

model, called the point distribution model (PDM),

is then used to �t a model (or template) to unseen

occurrences of the object earlier annotated in the

training set. We will brie�y describe the construc-

1Such as Snakes [2].
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tion of the PDM using a principal component analy-

sis (PCA). For a more detailed description of ASMs

refer to [6, 15].

The shape itself is represented as an n-point polygon

in images coordinates:

X = (x1; y1; :::; xn�1; yn�1; xn; yn)
T (1)

To measure the true shape variation the shape X is

transformed into a normalized frame of reference with

respect to the pose parameters: tx; ty (translation), s

(scaling) and � (rotation).

x = Ttx;ty;s;�(X) (2)

The mean shape in this aligned domain is given as:

x =
1

m

mX
i=1

xi (3)

And the deviation of each shape from the mean shape:

dxi = xi � x (4)

The estimate of the covariance matrix can now be

written as:

� =
1

m

mX
i=1

dxidx
T
i

(5)

The principal axis of the 2nth dimensional point cloud

are now given as the eigenvectors of the covariance

matrix pi. If the i
th eigenvalue is denoted �i, the

following identity holds true:

�p
i
= �ipi (6)

The matrix P are then built from each eigenvector or-

dered in descending order of the corresponding eigen-

values.

P =

2
66664
p1 : : : p2n

3
77775

(7)

A shape instance can then be generated by deforming

the mean shape by a linear combination of eigenvec-

tors:

x = x+Pb (8)

The 2nth dimensional shape space is their by spanned

using it's principal axis, i.e. the dimensions are or-

dered according to their level of shape variance ex-

planation.

This results in a very convenient way to compare a

candidate shape x0, to the training set by perform-

ing the orthogonal transformation into b-parameter

space and evaluating the shape probability.

A model instance is now de�ned by it's model vector

v, which consists of the pose and shape parameters.

v = ftx; ty; s; �;bg (9)

2.1 Choosing Modes of Variation

The primary goal of applying a principal component

analysis (PCA) to the training set is to reduce the

number of parameters in our model.2 In this way

the model parameters can be limited to only generate

shapes similar to the ones contained in the training

set.

By organizing the eigenvalues of the covariance ma-

trix from the training shapes in descending order, t

modes of variation can be chosen to explain V �100%

of the shape variation using:3

tX
i=1

�i � V

2nX
i=1

�i (10)

The remaining 2n�tmodes are then considered shape

noise. A suitable value for V could be 0:98; hence 98%

of the shape variation can be modelled.4

2.2 Alignment of Training Shapes

To obtain a frame of reference for the alignment of

shapes our previous work [16] translated all shapes

from their center of gravity to origo and scaled them

to unit scale, jxj = 1. In this way the corners of

a set of aligned rectangles with varying aspect ratio

forms a unit circle (see �g. 2, the unaligned shapes

2This approach has several other advantages: An analysis

of the major shape characteristics are often of great interest

and thus the PCA enables easy object discrimination based on

the training set.
3Since the variance of ith principal component equals �i [1].
4Our previous work was hard coded to use the �rst 5 modes

of variation.
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are shown on �g. 1). Due to this non-linearity the

PCA must use two parameters to span the shape

space: �1 = 99:6%, �2 = 0:4% even though varia-

tion only exists on one parameter (the aspect ratio).

A closer look on �gure 2 also shows that the overlaid

mean shape doesn't corresponds to an actual shape

in the training set. To avoid these non-linearities in

the aligned training set the shape can be transformed

into tangent space by scaling by 1=x:x [3, 4].

Figure 1: Training set of 100 unaligned arti�cially

generated rectangles containing 16 points each.

Figure 2: Point cloud from aligned rectangles sized to

unit scale, jxj = 1. The mean shape is fully shown.

The transformation into tangent space aligns all rect-

angles with corners on straight lines (see �g. 3) and

thus enabling modelling of the training set using only

linear displacements.

Notice how the mean shape is contained in the train-

ing set since the PCA now only uses one parameter,

�1 = 100% to model the change in aspect ratio.

In this way the distribution of b-parameters can be

kept more compact and non-linearities can be re-

duced. This leads to better and simpler models.

Figure 3: Point cloud from aligned rectangles sized

to unit scale, jxj = 1, and transformed into tangent

space. The mean shape is fully shown.

2.3 Generation of Plausible Shapes

In the process of matching a model to an unseen im-

age only plausible shapes compared to the training

set are of interest.

One way to determine this is to impose hard lim-

its on the shape parameters, b, under the model-

assumption that the b-parameters are independent

gaussian distributed with zero mean. Since the vari-

ance of ith principal component is �i � and 98% of

distribution of bi is covered in the range �3� � the

limits can be chosen as:

�3
p
�i � bi � 3

p
�i (11)

This was the approach used in the our previous work.

Due to the simple hypercube restriction it allows ev-

ery b-parameter simultaneously to take the value of

�3
p
�i which is highly unlikely.

To avoid this the b-parameters can be restricted to a

hyperellipsoid using the Mahalanobis distance.

D
2
m
=

tX
i=1

b
2
k

�k
� D

2
max

(12)

such that a Dm is smaller than a suitable Dmax cor-

responds to a plausible shape. As a suitable value for

Dmax, 3.0 could be used.

If the shape fails this test, b is rescaled to lie on the

closest point of the hyperellipsoid. This is illustrated

in the two-dimensional case in �gure 4.
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Figure 4: The e�ect of using the Mahalanobis dis-

tance in two dimensions. Shape B is valid, shape A

is considered illegal and rescaled to A'

b = b �
Dmax

Dm

(13)

If the shape class in question is separated in distinct

subclasses of which we need no discrimination5 more

complex methods must be used to model the distri-

bution of the b-parameters. One approach is to use a

approximation to the distribution through a mixture

of gaussians [4]. This approach can be used to rep-

resent any non-linear shape variations in the training

set and their by control the generation of plausible

shapes in a much more general way.

3 Model to Image Fit

Once the point distribution model has been built from

the training set; a functional is needed for evaluating

the �t of current shape model to the current (unseen)

image. That is the probability of a shape model iden-

ti�ed by it's shape and pose parameters v given an

image I; P (vjI).

Given P (vjI) a general purpose optimization method

could be used to optimize v under the given con-

straint of plausible shapes. In practice however; this

isn't a simple optimization problem. Under the as-

sumption of a reasonable initialization of the model,

the Active Shape Models attacks the problem more

locally by using the image appearance around each

model point to calculate an independent movement

and �t quality. In this way the shape X can be trans-

formed into the locally optimal shape X0 and used in

an iterative optimization scheme [6, 15]. This scheme

substitutes an explict optimization criteria, P (vjI),
contrary to many other deformable models.

5For example due to a part of the object that only can reside

in discreet positions.

The area around each model point; e.g. the point

neighborhood is in this paper de�ned as a line normal

to the model boundary, also called a 1D pixel pro�le

(shown at �gure 5, 6). This requires a de�nition of

the connectivity of each model point. In �gure 5 this

is rather simple since this template consists of one

closed path. A little more book keeping is needed

when models consists of open and/or multiple paths.

Figure 5: A shape model with overlaid 1D pixel pro-

�les normal to the boundary.

3.1 Simple Edge Detection

A very simple assumption concerning the optimal

placement of our model points is to look for strong

image edges in the 1D pixel pro�les of the points. In

this way the points in the training set are all assumed

to lie on the strongest edges.

In the following we call this assumption concerning

the optimal model points placement an image match-

ing criteria.

Like [3] the derivative is approximated as a convolu-

tion of pixel pro�le with a [1 0 -1] kernel. If P denotes

the pixel pro�le the ith element of the derived pro�le

is:

gi = Pi+1 � Pi�1 (14)

Each model point is now moved to the position of

[max jmin](g) to form the optimal shape X0 depend-

ing on the a priori knowledge of edge orientation.

If the orientation is unknown the maximum absolute

value of g is used.

Since the 1D pixel pro�le is far from aligned to the

pixel-grid an interpolation method must be consid-

ered. In �gure 6 we observe the unpleasant stair cas-

ing of a nearest neighbor interpolation. To avoid this

bilinear interpolation of the pixel values are used at

the cost of a small performance penalty.

To estimate the goodness of �t, Cootes et al. pro-

pose the following error measure for this simple image

matching criteria [15]:
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Figure 6: Example of a pixel pro�le (thin line) us-

ing nearest neighbour sampling and the approximated

edge strength wedge (thick line) using [1 0 -1] convo-

lution.

E(v; I) = jX0 �Xj2 (15)

where X denotes the shape generated from the pose

and shape parameters in v and X0 denotes X �tted

to nearby strong edges in I.

We stress that this error measure implicitly demands

that all model points in the training set really are

placed on the strongest nearby edges and the edge

detector doesn't fail in the current image I due to

clutter, noise etc. Otherwise the error measure will

yield a false minimum.

3.2 Statistical Models from Gray

Level Variation

The strongest edge assumption above imposes severe

constraints on the types of images in the training set.

In general model points could lie on a secondary edge

or, more di�cult, on the border of a change in texture

etc.

By using the a priori knowledge in terms of pixel in-

formation in the training set we can build statisti-

cal models of the gray level variation around model

points and their by archive a more robust and general-

ized model �t in an unseen image. This has previously

been done successfully by many others [3, 5, 7, 15].

In the current work gray level models are built from

a 1D pixel pro�le normal to the actual model point,

although any area around the image point could be

considered.

Consider the model point p (1 � p � n) in the i
th

training image where k pixels are samples on the nor-

mal in an equal amount on each side. To make the

model less sensitive to global changes in intensity, the

derivative of the pixel pro�le is used:

g
0

pi
=

dPpi

dx
(16)

followed by a scale normalization:

gpi =
1P

k

j=1
jgpij j

g0
pi

(17)

If all pro�les for point i are assumed to be multi-

variate gaussian distributed and m denotes the total

number of training images6 the estimates of the mean

pro�le and the covariance matrix for the pth point is

then given as:

g
p
=

1

m

mX
i=1

gpi (18)

Sp =
1

m

mX
i=1

(gpi � g
p
)(gpi � g

p
)
T (19)

Their by we have a statistical model for the gray level

variation of each model point and can determine the

quality of a new pro�le, sp, as the probability that

this pro�le, sp, comes from the pth distribution. Max-

imizing this probability is equal to minimizing the

Mahalanobis distance of the sample from the mean:

f(sp) = (sp � g
p
)
TS�1

p
(sp � g

p
)
T (20)

In practice K pixels are sampled on the normal in the

unseen image (K > k). Then we extract a subrange

of k pixels, form the derivative, perform the normal-

ization and then evaluate the f(sp) term K�k times

to �nd the best �t.

Regarding the choice of K we stress the importance

of size-invariance both in the model �t and the gener-

ation of the gray level model. To achieve this the pro-

�le must be de�ned in terms of a number of samples,

K and a sample density (samples/pixel) estimated on

basis of the current template size. This enhancement

is neither implemented in our work, nor mentioned in

any of Cootes et al. descriptions of ASMs [3, 6, 15].

Figure 7 � 9 demonstrates on a synthetic data set

the di�erence between using the strongest edges and

a statistical model of gray level variation in the ASM

optimization process where the optimal shape doesn't

lie on the strongest edges.

As observed on �gure 8 the optimal shape doesn't lie

on the strongest edges due to the con�ict between the

6Assuming that each image contains one shape.
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Figure 7: Initial shape.

locally optimal point placements and the maximum

allowable shape variation7.

Figure 8: Optimization using maximum absolute

edges as image matching criteria.

3.3 Speci�c Statistical Models from

Gray Level Variation

As variations on the above section (3.2) consider three

alternatives to building the statistical model of gray

level variation concerning the type of pixel pro�les

used:

Type 1 Normal pixel pro�les (no derivation)

Type 2 Derived pixel pro�les using a [1 0 -1] convo-

lution.

7The training set in this case consist only of very subtle

shape variation.

Figure 9: Optimization using a statistical model of

gray level variation obtained from the training set as

image matching criteria.

Type 3 Derived pixel pro�les using convolution with

the derivative of a gaussian.

Type 1 uses the absolute pixels values and type 2 uses

a simple approximative derivation like the one used

in the previous section.

Since type 2 is very sensitive to noise a gaussian con-

volution is used to enhance the large scale trends of

the pro�le.

If g(x; �2) denotes a gaussian distribution with vari-

ance �2 and mean � = 0:

g(x; �
2
) =

1
p
2��2

e
�x

2

2�2 (21)

the pre-smoothing can then be expressed as:

L(x; �
2
) = I(x) � g(x; �2) (22)

To �nd the derivative of L(x; �2) the following iden-

tity is used:

@xL(x; �
2
) = (@xg(x; �

2
)) � I(x) (23)

The gaussian is then derived symbolic and thus avoid-

ing the discrete approximative derivative.

As error measures for the model to image �t of type

1-3 the sum of the minimum mahalanobis distances

for each point could be used.

E(v; I) =

nX
p=1

min( f(sp) 8 sp ) (24)
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In other words; we generate all pro�les for the p
th

point, calulates the mahalanobis distances and add

the minimum distance to the sum.

4 Initialization

To perform the initialization of Active Shape Models,

a search strategy [10, 11, 12, 13, 14] is applied. This

section follows the initialisation part by Fisker et al.

in [14].

The concept of the search strategy is to perform a

sparse search in the parameter space of v. In practice

the search is done by shifting di�erent con�gurations

of the template around the image I , and calculate the

posterior energy U(vjI) at each position. These con-

�gurations are de�ned as the search con�gurations.

The initial con�gurations are then extracted from the

calculated energies. The full initialization algorithm

can be summarized as:

1. Create relevant search con�gurations

(s1; �1; b1); : : : ; (sk; �k; bk) and let i = 1.

2. Calculate U(vijI) for the center of the template

(r; c) corresponding to each pixel, where vi =

(r; c; si; �i; bi).

3. i = i+ 1. Go to 2 if i � k.

4. Extract the initial con�gurations from the calcu-

lated values of U(vjI).

The actual choice and number of search con�gura-

tions (s1; �1; b1); : : : ; (sk; �k; bk) is determined by the

amount of variation in scale, orientation and shape

variation of the actual ASM combined with the over-

all demand for precise initialization.

The �nal step is to extract the initial con�gurations

from the calculated U(vjI). Based on the assump-

tion that only one object of interest is situated in the

search area, the initial con�guration is determined as

the global minima in posterior energy U(vjI).

A disadvantage of the search strategy is the high com-

putational cost, but the computation time is signi�-

cantly reduced by a �lter interpretation of the poste-

rior function [12], such that the posterior probability

is calculated for the center of the �lter equal to each

pixel in the image by a correlation of the �lter and

the image I .

In this way all repeated calculations: pixel pro�le nor-

mal points, bilinear interpolation of the normals etc.

can be cached e�ciently and presumably signi�cant

decrease the computational cost. Since �lter convolu-

tions are highly optimized and often done in hardware

this will presumably overcome the penalty induced by

the fact that the area of interest around a model (i.e.

the point normals) are relatively sparse compared to

the total �lter size.

As a suitable alternative to �lter convolutions with

large kernels, Fisker et al. uses a Fourier space ap-

proach [13] in their seach strategy.

We notice that this linear �lter approach calls out for

a simple posterior estimator like the oriented edge

strength estimator.

4.1 Initialization using

Model to Image Fit Functions

As a posterior energy function for initialization of

ASMs; the model to image �t functions could be used.

With a future �lter representation in mind, the model

points are not moved along the pro�les. The poste-

rior estimate is thus only based on the �xed model

points.

4.1.1 Simple Edge Detection

Here the posterior energy is estimated as a sum of an

approximated edge strength in each model point in

the actual image:

U(vjI) =
nX

p=1

jpleft � prightj (25)

4.1.2 Statistical Models from Gray Level

Variation

Since the statistical models from gray level variation

captures image appearence from k pixels centred on

model point pro�le (from the training set), the pos-

terior are estimated as the mahalanobis distance of a

k pixels pro�le sp centered on the model point in the

actual image:

U(vjI) =
nX

p=1

f(sp) (26)

7



5 Experimental results

As a demonstration of the implementation at work,

this paper includes examples of autonomous initial-

ization of a metacarpal model on x-ray images and

segmentation of pork carcasses using the four di�er-

ent model to image �t types. This is not an exhaus-

tive veri�cation but rather a brief presentation of the

possibilities induced by the enhancements to the pre-

vious work.

5.1 Initialization in X-ray Images

From a set of 20 x-ray images with 20 di�erent human

hands an Active Shape Model of the metacarpal bones

(2-5) has been built. In the following we will consider

metacarpal 5 only.8

The model was trained on 20 images of metacarpal-5

bones annotated with 200 points each. The principal

component analysis reduced the number of parame-

ters from 400 to 14 modes of shape variation under a

98% variation constraint. The shape variation from

the �rst three modes was �1 = 32:2%, �2 = 25:7%,

�3 = 12:4%.

A model of gray level variation was then built from

the training set using 10 pixels on each side of each

model point.

The model was tested by presenting it with an un-

seen image and a marked subregion seen in �gure 11.

This region was then searched using the mean shape

calculated from the training set and the initialization

technique described.

The mean shape from the training set was chosen

as the only search con�guration (s; �; b) using The

Simple Edge Detection posterior energy from section

4.1.1. As mentioned earlier the initialization method

is based on the optimization of a posterior energy map

(see �g. 10) connected to the current shape (tem-

plate) and it's pose.

During the optimization 30 pixels on each side of each

model point were searched using type 2 as the image

matching criteria. A �xed number of 50 iterations

was used.

Notice that the mean shape on �g. 11 is very similar

to the actual occurrence of the metacarpal 5 bone;

hence a rather good initialization is gained. Only

the upper left part and the lower part of the bone

is noticeably o�. This is corrected nicely after opti-

8Roughly speaking the bone that connects the pinky �nger

to the wrist.

Figure 10: Posterior energy image, U(vjI). Gener-

ated by moving the template in the area shown in �g.

11.

Figure 11: Search region of the total bone image and

initial template placed using the posterior map seen

on �g. 10. The posterior image region is marked with

a white rectangle.

mization (see in �g. 12). The mean distance from

model points to associated border of a ground truth

annotation was 0.92 pixels.

To supplement the above experiment; the training set

was broken down into 12 training images and 9 im-

ages with ground truth annotations. Furthermore the

annotations were subsampled with factor of 4 yielding

50 model points on each shape. The remaining setup

was similar to the above. The shape variation from

the �rst three modes was �1 = 42:5%, �2 = 22:9%,

�3 = 10:1%. Initialisation, optimization and average

point to associated border measurements were then

performed. Results can be seen below.

In image 6 and 8 the initialization failed causing no

8



Figure 12: Optimized template using the initializa-

tion from �g. 11.

Image Average point to associated

border distance (pixels)

1 1.63955

2 2.07456

3 2.89751

4 7.24049

5 1.72735

6 86.66139 / 7.24290

7 3.18973

8 55.95096 / 3.06622

9 2.04075

Table 1: Average point to associated border distance

measurement for 9 optimizations of an automatic ini-

tialized Metacarpal 5 ASM.

convergence in the optimization. The improved val-

ues were archived by contracting the search area to

engulf only metacapal 5. The high value in image 4

was caused by poor optimization of the lower part

of the bone (at the wrist) where the x-ray is rather

di�use.

The above experiments has shown that even with only

one search con�guration and a simple posterior en-

ergy estimator the described search strategy succes-

fully enables automatic initialisation of Active Shape

Models.

Further experiments has shown that the subsampling

of model points has no signi�cant impact on the qual-

ity of the initialization and optimization. Thus fur-

ther work should concentrate on veri�ng that a larger

training set � that will lead to more shape �exibilty �

also will improve the quality of the initialization and

optimization.

5.2 Segmentation of Pork Carcasses

To stress the di�erence between the model to image

�t functions based on edge assumptions and model

to image �t functions based on gray level variation

in the training set we have applied the Active Shape

Model on a set of ten images of pork carcasses.

Figure 13: Point cloud from aligned pork carcasses.

The mean shape is fully shown.

The pork carcasses was marked with 83 points each,

in ten images, using the method proposed by Duta

et al. [17]. The principal component analysis re-

duced the number of parameters from 166 to 9 modes

of shape variation under a 98% variation constraint.

The shape variation from the �rst three modes was

�1 = 38:4%, �2 = 23:9%, �3 = 9:6%.

The aligned pork carcasses can be seen on �g. 13.

Figure 14: Initial pose and shape.

Our model was then presented to four unseen images

of pork carcasses containing a ground truth annota-

tion. Each of the four model to image �t functions:

9



max. abs. edge and type 1-3 was applied in turn

to measure the �nal quality of �t after optimization

using 50 iterations. Since the variance on the pose pa-

rameters in the training set was rather low, the mean

pose and shape was used as initial con�guration (see

�g. 14 and 15).

Figure 15: Optimized template using a type 2 model

to image �t function.

As seen on �gure 16 the �t error measured as the

mean pixel distance from point to associated border

is rather high. Even though we have a high distance

it is obvious that the model to image �t functions

based on gray level variation in the training set per-

forms signi�cantly better than the max. abs. edge �t

function. The outlier, type 3 in image F1103, was due

to poor initialization; the optimization did not con-

verge. A translation of the initial pose 20 pixels to

the left, converged resulting in an error of 2.82 pixels.

To investigate the model to image �t functions further

we suggest:

� Relax the hyperellipsoid b-parameter con-

straints. It was obvious that the relatively small

training set didn't contain enough shape varia-

tion to allow the shapes in the 4 new images,

or:

� Use a larger training set with more shape varia-

tion.

� Use a training set containing di�erences in the

global illumination. This will test the claimed

robustness of model to image �t functions: type

2 & 3.

Figure 16: Mean pixel distance from point to associ-

ated border in four unseen images for each of the four

model to image �t functions.

6 Conclusion

We have in this paper presented an investigation of

various properties of Active Shape Models and ex-

tended our original ASM implementation [16].

All of these has been implemented in a Windows-

based C++ deformable template framework and used

to produce illustrations and experimental results.

Topics treated were the choice of shape modes

based on variation constraints, generation of plausi-

ble shapes using a hyperellipsoidal restriction on the

b-parameters, compression of the b-parameter space

using tangent space transformation and model �tting

assisted by di�erent statistical models of gray level

variation in the training set.

This investigation has lead to a better understanding

of the Active Shape Models and to theoretical and

practical enhancements of the model in terms of per-

formance, robustness and �exibility. Further more

major parts of the original implementation has been

revised.

Concerning model to image �tting methods we con-

clude that gray level model �tting leads to an im-

proved �t compared to model �tting based on simple

edge assumptions.

Futher more a scheme for automatic initialization of

Active Shape Models based on model to image �t

functionals has been presented. Preliminary results

using only one search con�guration indicates that this

method could be su�cient to successfully initialize

Active Shape Models on a completely general and au-

tomatic basis.
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