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Abstract

In this paper, we present a general approach towards

image segmentation using the deformable model Ac-

tive Appearance Model (AAM) as proposed by Cootes

et al. A priori knowledge is learned through obser-

vation of shape and texture variation in a training

set and is used to obtain a compact object class de-

scription, which can be used to rapidly search images

for new object instances. An overview of the the-

ory behind AAMs is given followed by an improved

initialization scheme, thus making the AAMs fully

automated. Finally, two cases are presented. It is

demonstrated that AAMs can successfully segment

bone structures in radiographs of human hands and

structures of the human heart in 2D extracts of 4D

cardiovascular magnetic resonance images. The ob-

served mean point location accuracy was 1.0 and 1.3

pixels, respectively.

Keywords: Deformable Models, Snakes, Principal

Component Analysis, Shape Analysis, Non-Rigid Ob-

ject Segmentation, Initialization, Metacarpal Radio-

graphs, Cardiovascular Magnetic Resonance Imaging.

1 Introduction

In recent years, the model-based approach towards

image interpretation named deformable models has

proven very successful. This is especially true in the

case of images containing objects with large variabil-

ity.

Among the earliest and most well known deformable

models is the Active Contour Model � known as

Snakes proposed by Kass et al. [17]. Snakes rep-

resent objects as a set of outline landmarks upon

which a correlation structure is forced to constrain

local shape changes. In order to improve speci�city,
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many attempts at hand crafting a priori knowledge

into a deformable model have been carried out. These

include Yuille's et al. [25] parameterization of a hu-

man eye using ellipsis and arcs.

In a more general approach, while preserving speci-

�city Cootes et al. [7] proposed the Active Shape

Models (ASM) where shape variability is learned

through observation. In practice this is accomplished

by a training set of annotated examples followed by

a Procrustes analysis combined with a principal com-

ponent analysis.

A direct extension of the ASM approach has lead to

the Active Appearance Models [3]. Besides shape in-

formation, the textual information, i.e. the pixel in-

tensities across the object, is included into the model.

AAMs has been further developed in [5, 9, 6].

Quite similar to AAMs and developed in parallel here-

with, Sclaro� & Isidoro suggested the Active Blob ap-

proach [20, 15]. Active Blobs is a real-time tracking

technique, which captures shape and textual infor-

mation from a prototype image using a �nite element

model (FEM) to model shape variation. Compared to

AAMs, Active Blobs deform a static texture, whereas

AAMs change both texture and shape during the op-

timization.

For further information on deformable models, refer

to the surveys given in [16, 18].

2 Active Appearance Models

Below we describe the outline of the Active Appear-

ance Model approach. AAMs distinguish themselves

in the sense that segmentation can be carried out us-

ing the approach as a black box. We need only pro-

vide with domain knowledge in the form of a training

set annotated by specialists (e.g. radiologists etc.).

Described is the training of the model, the modelling
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of shape and texture variation and the optimization

of the model. Finally, an improved method for auto-

mated initialization of AAMs is devised.

For a commented pictorial elaboration on the sections

below � including the alignment process � refer to

appendix A.

2.1 Shape & Landmarks

The �rst matter to clarify is: What do we actually

understand by the term shape? This paper will adapt

the de�nition by D.G. Kendall [8]:

De�nition 1: Shape is all the geometri-

cal information that remains when location,

scale and rotational e�ects are �ltered out

from an object.

The next question that naturally arises is: How

should one describe a shape? In everyday conversa-

tion unknown shapes are often described by referring

to well-known shapes � e.g. "Italy has the shape of a

boot". Such descriptions can obviously not be utilized

in an algorithmic framework.

One way of representing shape is by locating a �nite

number of points on the outline. Consequently the

concept of a landmark is adapted [8]:

De�nition 2: A landmark is a point of

correspondence on each object that matches

between and within populations.

A mathematical representation of an n-point shape in

k dimensions could be concatenating each dimension

in a kn-vector. The vector representation for planar

shapes would then be:

x = (x1; x2; : : : ; xn; y1; y2; : : : ; yn)
T (1)

Notice that the above representation does not contain

any explicit information about the point connectivity.

2.2 Shape Formulation

A classical statistical method for dealing with re-

dundancy in multivariate data � such as shapes � is

the linear orthogonal transformation; principal com-

ponent analysis (PCA).

In our application for describing shape variation by

PCA � a shape of n points is considered one data

point in a 2n
th dimensional space.

In practice the PCA is performed as an eigenanalysis

of the covariance matrix of the shapes aligned w.r.t.

position, scale and rotation, i.e. the shape analysis is

performed on the true shapes according to the de�ni-

tion. As shape metric in the alignment the Procrustes

distance [13] is used. Other shape metrics such as the

Hausdor� distance [14] could also be considered.

Consequently it is assumed that the set of N shapes

constitutes some ellipsoid structure of which the cen-

troid � the mean shape � can be estimated as:

x =
1

N

NX
i=1

xi (2)

The maximum likelihood estimate of the covariance

matrix can thus be given as:

� =
1

N

NX
i=1

(xi � x)(xi � x)
T (3)

The principal axis of the 2n
th dimensional shape el-

lipsoid are now given as the eigenvectors, �s, of the

covariance matrix.

��s = �s��s (4)

A new shape instance can then be generated by de-

forming the mean shape by a linear combination of

eigenvectors, weighted by bs, also called the modal

deformation parameters.

x = x+�sbs (5)

Essentially, the point or nodal representation of shape

has now been transformed into amodal representation

where modes are ordered according to their deforma-

tion energy � i.e. the percentage of variation that

they explain.

What remains is to determine how many modes to

retain. This leads to a trade o� between the accu-

racy and the compactness of the model. However, it

is safe to consider small-scale variation as noise. It

can be shown that the variance across the axis corre-

sponding to the i
th eigenvalue equals the eigenvalue

itself, �i. Thus to retain p percent of the variation in

the training set, t modes can be chosen satisfying:

tX
i=1

�i �
p

100

2nX
i=1

�i (6)

2.3 Texture Formulation

Contrary to the prevalent understanding of the term

texture in the computer vision community, this con-

cept will be used somewhat di�erently below. The

main reason for this is that most literature on AAMs

uses this de�nition of texture, probably due to the
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close resemblance of some of the AAM techniques to

techniques in computer graphics.

In computer graphics, the term texture relates di-

rectly to the pixels mapped upon virtual 2D and 3D

surfaces. Thus, we derive the following de�nition:

De�nition 3: Texture is the pixel inten-

sities across the object in question (if neces-

sary after a suitable normalization).

A vector is chosen, as the mathematical representa-

tion of texture, where m denotes the number of pixel

samples over the object surface:

g = (g1; : : : ; gm)
T (7)

In the shape case, the data acquisition is straightfor-

ward because the landmarks in the shape vector con-

stitute the data itself. In the texture case one needs a

consistent method for collecting the texture informa-

tion between the landmarks, i.e. an image warping

function needs to be established. This can be done

in several ways. Here, a piece-wise a�ne warp based

on the Delaunay triangulation of the mean shape is

used. Another, theoretically better, approach might

be to use thin-plate splines as proposed by Bookstein

[1]. For details on the Delaunay triangulation and

image warping refer to [11, 21].

Following the warp sampling of pixels, a photometric

normalization of the g-vectors of the training set is

done to avoid the in�uence from global linear changes

in pixel intensities. Hereafter, the analysis is identical

to that of the shapes. Hence a compact PCA repre-

sentation is derived to deform the texture in a manner

similar to what is observed in the training set:

g = g+�gbg (8)

Where g is the mean texture; �g represents the eigen-

vectors of the covariance matrix and �nally bg are the

modal texture deformation parameters.

Notice that there will always be far more dimensions

in the samples than observations thus leading to rank

de�ciency in the covariance matrix. Hence, to ef-

�ciently compute the eigenvectors of the covariance

matrix one must reduce the problem through use of

the Eckart-Young theorem. Consult [5, 22] or a text-

book in statistics for the details.

2.3.1 Combined Model Formulation

To remove correlation between shape and texture

model parameters � and to make the model repre-

sentation more compact � a 3rd PCA is performed

on the shape and texture PCA scores of the training

set, b to obtain the combined model parameters, c:

b = Qc (9)

The PCA scores are easily obtained due to the linear

nature of the model:

b =

�
Wsbs

bg

�
=

�
Ws�

T

s
(x� x)

�
T

g
(g� g)

�
(10)

� where a suitable weighting between pixel distances

and pixel intensities is obtained through the diagonal

matrix Ws. An alternative approach is to perform

the two initial PCAs based on the correlation matrix

as opposed to the covariance matrix.

Now � using simple linear algebra � a complete model

instance including shape, x and texture, g, is gener-

ated using the c-model parameters.

x = x+�sW
�1

s
Qsc (11)

g = g +�gQgc (12)

Regarding the compression of the model parameters,

one should notice that the rank ofQ will never exceed

the number of examples in the training set.

Observe that another feasible method to obtain the

combined model is to concatenate both shape points

and texture information into one observation vector

from the start and then perform PCA on the correla-

tion matrix of these observations.

2.4 Optimization

In AAMs the search is treated as an optimization

problem in which the di�erence between the synthe-

sized object delivered by the AAM and an actual im-

age is to be minimized.

In this way by adjusting the AAM-parameters (c and

pose) the model can deform to �t the image in the

best possible way.

Though we have seen that the parameterization of the

object class in question can be compacted markedly

by the principal component analysis it is far from an

easy task to optimize the system. This is not only

computationally cumbersome but also theoretically

challenging � optimization theory-wise � since it is

not guaranteed that the search-hyperspace is smooth

and convex.

However, AAMs circumvent these potential problems

in a rather untraditional fashion. The key observation

is that each model search constitutes what we call a

prototype search � the search path and the optimal

model parameters are unique in each search where the

�nal model con�guration matches this con�guration.
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These prototype searches can be performed at model

building time; thus saving the computationally ex-

pensive high-dimensional optimization. Below is de-

scribed how to collect these prototype searches and

how to utilizes them into a run-time e�cient model

search of an image.

It should be noticed that the Active Blobs approach

is optimized using a method quite similar to that of

AAMs named di�erence decomposition as introduced

by Gleicher [12].

2.4.1 Solving Parameter Optimization O�-

line

It is proposed that the spatial pattern in �I can pre-

dict the needed adjustments in the model and pose

parameters to minimize the di�erence between the

synthesized object delivered by the AAM and an ac-

tual image, �I:

�I = Iimage � Imodel (13)

The simplest model we can arrive at constitutes a

linear relationship:

�c = R�I (14)

To determine a suitable R in equation (14), a set of

experiments are conducted, the results of which are

fed into a multivariate linear regression using prin-

cipal component regression due to the dimensional-

ity of the texture vectors. Each experiment displaces

the parameters in question by a known amount and

measuring the di�erence between the model and the

image-part covered by the model.
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Figure 1: Displacement plot for a series of y-pose pa-

rameter displacements. Actual displacement versus

model prediction. Error bars are 1 std.dev.

As evaluation of the assumption of a linear relation-

ship between the model and pose parameters and the

observed texture di�erences, �gure 1 shows the actual

and the mean predicted displacement from a number

of displacements. The error bars correspond to one

standard deviation.

Hence, the optimization is performed as a set of it-

erations, where the linear model, in each iteration,

predicts a set of changes in the pose and model pa-

rameters leading to a better model to image �t. Con-

vergence is declared when an error measure is below

a suitable threshold.

As error measure, we use the squared L2 norm of the

texture di�erence, j�gj2. To gain a higher degree of

robustness, one might consider using the Mahalanobis

distance or a robust norm such as the Lorentzian error

norm [20]. Fitness functions allowing for global non-

linear transformations such as the mutual information

[23, 24] measure might also be considered.

2.5 Initialization

The optimization scheme described above is inher-

ently sensitive to a good initialization. To accommo-

date this, we devise the following search-based scheme

thus making the use of AAMs fully automated. The

technique is somewhat inspired by the work of Cootes

et al. [9].

The fact that the AAMs are self-contained or gener-

ative is exploited in the initialization � i.e. they can

fully synthesize (near) photo-realistic objects of the

class that they represent with regard to shape and

textural appearance. Hence, the model, without any

additional data, is used to perform the initialization.

The idea is to use the inherent properties of the AAM-

optimization � i.e. convergence within some range

from the optimum. This is utilized to narrow an ex-

haustive search from a dense to sparse population of

the hyperspace spanned by pose- and c-parameters.

In other words, normal AAM-optimizations are per-

formed sparsely over the image using perturbations

of the model parameters.

This has proven to be both feasible and robust. A set

of relevant search con�guration ranges is established

and the sampling within this is done as sparsely as

possible.

Consider the graph given in �gure 1, which demon-

strates that it should be safe to sample the y-

parameter with a frequency of at least 10 pixels. One

could also claim that as long the prediction preserves

the right sign it is only a matter of su�cient iteration.

To achieve sensitivity to pixel outliers we use the

variance of the square di�erence vector between the

model and the image as error measure:

efit = V [�g
2
] (15)

As in the optimization this could easily be improved
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by using more elaborate error measures. In pseudo-

code, the initialization scheme for detecting one ob-

ject per image is:

1. Set emin = 1 and m to a suitable low number

(we use m = 3)

2. Obtain application speci�c search ranges within

each parameter (e.g. �� � c1 � � etc.)

3. Populate the space spanned by the ranges � as

sparsely as the linear regression allows � by a set

of sampling vectors V = fv1; : : : ;vng.

4. For each vector in V

5. Do AAM optimization (max m iterations)

6. Calulate the �t, efit, as given by (15)

7. If efit < emin Then emin = efit, vfit = vn

8. End

The vector vfit will now hold the initial con�guration.

Notice that the application speci�c search ranges in

step 2 is merely a help to increase initialization time

and robustness than it is a requirement. If nothing

is known beforehand, step 2 is eliminated and an ex-

haustive search is performed.

This approach can be accelerated substantially by

searching in a multi-resolution (pyramidal) represen-

tation of the image.

3 Implementation

All experiments, illustrations etc. have been made us-

ing the Active Appearance Models Application Pro-

grammers Interface (AAM-API) developed in the

C++ language and based on the Windows NT plat-

form. This API will be released under the open source

initiative in Autumn 20001, which means that other

freely can download, use and elaborate on the AAM-

API.

The foundation for the AAM-API is the Intel Math

Kernel Library for fast MMX implementation of

BLAS, MS VisionSDK for image handling, Im-

ageMagick for image I/O and �nally DIVA for image

processing and matrix handling.

AAM-API performance compares to that of Cootes

et al. As an example, the MRI optimizations took

each 200 ms on average on a PII 350 MHz. Much

e�ort has been put into providing documentation and

educational features such as movies of the modes of

variation, model search etc.

Further info on AAMs, the AAM-API and full source

code documentation can be obtained at the AAM-

site.2

1Probably under the GNU Public License.
2http://www.imm.dtu.dk/�aam/

4 Experimental Results

Segmentation in medical images has always posed a

di�cult problem due to the special image modalities

(CT, MRI, PET etc.) and the large biological vari-

ability. To assess the performance of AAMs in such

environments, our implementation has been tested

upon radiographs of human hands and cardiac MRIs.

4.1 Radiographs of Metacarpals

Segmentation in radiographs (x-rays) pose a di�cult

problem due to large shape variability and inherent

ambiguity of radiographs. This forms a suitable chal-

lenge. Other attempts to perform segmentation in

radiographs include the work of E�ord [10], where

ASMs and other methods were used.

Twenty radiographs of the human hand were obtained

and three metacarpal bones were annotated using 50

points on each. The annotation of metacarpals 2,3

and 4 were concatenated into a 150-point model. To

incorporate a more substantial texture contrast into

the model, additional 150 points were placed along

the normal of each model point, thus arriving at a

300-point shape model. The texture model consisted

of approx. 10.000 pixels. Using 16 model param-

eters, 95% of the variation in the training set were

explained.

Automated initialization of the model followed by op-

timization reached a mean location accuracy of 0.98

pixels (point to associated border [2, 4]) when testing

on four unseen images with ground truth annotations.

The mean texture error was approx. 7 gray levels (in-

put images were in the byte range).

Examples of initialization and optimization are given

in the �gures 2-5. Notice a fairly good �t even in

the distal (upper) and proximal (lower) end of the

metacarpals where radiographs are rather ambiguous.

To asses the performance within points, the mean

point to point distance is plotted in �gure 6. Not

surprisingly, problems arise in the distal and proximal

end of the metacarpals due the large shape variability

and the ambiguous nature of radiographs in regions

of overlap.

4.2 Cardiac MRIs

Another application in medical imaging is locating

structures of 4D (space, time) cardiovascular mag-

netic resonance images. Temporal registration rel-

ative to the heart cycle has been done using ECG-

triggered image acquisition. The pixel depth was 8

bits.

An AAM has been built upon only four � spatially

and temporally corresponding � 2D slices of four dif-

ferent hearts. The endocardial and epicardial con-
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Figure 2: Model border after automated initialization

(cropped).

Figure 3: Optimized model border.

Figure 4: AAM after automated initialization

(cropped).

tour have been annotated using 30 points each. The

resolution of the 2D slices was 256x256 pixels result-

ing in a texture model of approx. 2600 pixels. The

combined PCA explains 84 % of the variation in the

Figure 5: Optimized AAM (cropped).

Figure 6: Mean point to point deviation from the

ground truth annotation of each metacarpal. Low lo-

cation accuracy is observed at the distal and proximal

ends.

training set using two model parameters.

The cardiac AAM was then used to search in a un-

seen image spatially and temporally similar to those

in the training set. The described initialization tech-

nique reached the result seen in �gures 7 and 9. A

�nal optimization reached a mean point accuracy of

1.7 pixels (point to associated border). The result

can be seen in �gures 8 and 10. The mean texture

error was approx. 11 gray levels. By incorporating a

model neighborhood similar to the metacarpal model

the mean point accuracy was increased to 1.3 pixels.

Future work on the cardiac AAM will include models

built upon extracts di�ering spatially and temporally,

thus leading to a somewhat uni�ed AAM of a larger

subspace from the original 4D. For a commented pic-

torial of the cardiac AAM, refer to appendix A.

AAM segmentation of 2D cardiac MRIs has previ-
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ously been done by Mitchell et al. [19]. A total of

102 images were used for the training set reaching a

mean point accuracy of approx. 1 pixel on the endo-

cardial and epicardial contour. Annotated structures

were the right ventricle and endocardial and epicar-

dial contours. The model was initialized manually.

Figure 7: Model border after automated initializa-

tion.

Figure 8: Optimized model border.

Figure 9: AAM after automated initialization

(cropped).

Figure 10: Optimized AAM (cropped).

Figure 11: Original image (cropped).

5 Discussion & Conclusions

In this paper we have presented the basic theory of

AAMs and devised a method providing su�cient ini-

tialization of AAMs.

The performance of AAMs has been assessed on two

di�erent image modalities - i.e. radiographs and mag-

netic resonance images reaching a mean point loca-

tion accuracy of 1.0 and 1.3 pixels, respectively. In

both cases the location accuracy was noteworthy in-

creased by adding a suitable neighborhood to the

outer contours of the model, thus enhancing textual

contrast.

In the MRI case, we have shown that even with a

training set as small as four examples, very good seg-

mentation results can be obtained. This leads to-

wards the straightforward assumption that the less

variation observed in the object class in question, the

smaller the training set one can allow. However �

more than four images would probably still be desir-

able.

The two cases stress the fact that the AAM approach

is a example of a general vision technique that capture

domain knowledge through observation. Contrary to

this the bulk part of model-based vision techniques

has hand crafted a priori knowledge by design and
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programming. Furthermore, we have experienced the

AAM approach to be data-driven (non-parametric),

self-contained and fast. We also notice that AAMs

extend to multivariate imaging and higher spatial di-

mensions - i.e. into 3D models etc.

More information on AAMs, papers, presentations,

movies of model searches etc. can be obtained at

the AAM-site at http://www.imm.dtu.dk/�aam/.

A more comprehensive treatment of the work of

M. B. Stegmann can be found in [22].
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A Illustrated Cardiac AAM

Figure 12: Point cloud of four unaligned heart cham-

ber annotations.

Figure 13: Point cloud of four aligned heart chamber

annotations with mean shape fully drawn.
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Figure 14: Correlation matrix of the four annotations.

Observe the obvious point correlations.

Figure 15: Delanay triangulation of the mean shape.

Figure 16: Point variation of the four annotations;

radius = �x + �y. Notice the large point variation to

the lower left.

Figure 17: The �rst eigenvector plotted as displace-

ment vectors. Notice that the large point variation

observed in �gure 16 is point variation along the con-

tour, which only contributes to a less compact model

contrary to explaining actual shape variation.

Figure 18: Mean shape and shape deformed by the

�rst eigenvector. Notice that this emphasizes the

point above; that a lot of the deformation energy does

not contribute to any actual shape changes.
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