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Abstract

In this paper we will consider extensions of a series of Bayesian 2-D contextual classification pocedures pro-
posed by Owen [1], Hjort & Mohn [2] and Welch & Salter [3] and Haslett [4] to 3 spatial dimensions. It is evident
that compared to classical pixelwise classification further information can be obtained by taking into account the
spatial structure of image data. The 2-D algorithms mentioned above consist of basing the classification of a pixel
on the simultaneous distribution of the values of a pixel and its four nearest neighbours. This includes the speci-
fication of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class
variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms
to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3-D neighbours, and
generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D
algorithms are tested on a synthetic 3-D multivariate dataset.
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I. INTRODUCTION

W
HEN applying classical classification schemes in image analysis the spatial structure of
the datasets is neglected. This is non-satisfying, because further information obviously

can be drawn from the spatial arrangement of pixels, since neighbouring pixels tend to be of the
same class. We will refer to this type of information as contextual information.

Contextual information can be taken into account in a number of ways when performing
classification. One important way is to include (derived) features that hold information of the
neighbourhood of a given pixel, i.e. contextual features. Another way is introducing the spatial
nature directly in the algorithms. Several algorithms have been proposed in the 2-D case. In [5]
it is proposed simply to augment the feature vector with the average of the feature vector from
the four neighbouring pixels. In order to find the maximum a posteriori estimate in a Markov
random field model stochastic relaxation has been proposed in [6]. An approximation to the
maximum a posteriori estimate using iterated conditional modes was proposed in [7]. In [1],
[8], [4] a classification scheme for 2-D images that bases the actual classification of pixel on the
feature vectors of the pixel itself and those of the 4 nearest neighbours is introduced. In [4] it
is assumed that classes of the nearest neighbours of a pixel are conditionally independent given
the class of the center pixel, whereas in [1], [8] it is assumed that the pixel size is small relative
to the grains of the pattern under study, which leads to a vastly reduced set of possible class
configurations among a pixel and its four nearest neighbours.



In this article we will extend the algorithms proposed in [1], [8], [3], [4] to 3-D images, and
carry out a series of tests on a synthetic 3-D image.

II. M ETHODS

In this Section we will develop a 3-D contextual classification rule, specify a Gaussian dis-
tribution for the observed (and derived) features, and specify a prior distribution for the class
variable.

A. Construction of a Contextual Classification Rule

Suppose that a pixel is an observation from one of the classes (populations)�1; �2; : : : ; �k.
The classification of the observation depends on the vector of featuresX = (X1; X2; : : : ; Xp)

T

of that pixel. Furthermore, let us assume knowledge of the prior distribution of the classes, i.e.
the prior probabilities,P (C = �i) = pi, i = 0; 1; : : : ; k whereC is the class variable. This
distribution determines the probability with which an arbitrary feature vector has been generated
from a particular class.

We will denote the feature vector of the neighbouring pixelsXN , XS, XE, XW , XT ,
andXB for the north, south, east, west, top, and bottom pixel, respectively. The augmented
feature vector consisting of the features vectors for the neighbours of a pixel will be denoted
D� = (XT

N ;X
T
S ;X

T
E;X

T
W ;XT

T ;X
T
B)

T . The augmented feature vector consisting of the fea-
ture vector of a pixel itself and those of its neighbours will be denotedD = (XT ;DT

�)
T .

We obtain the Bayes solution for the case of equal losses by setting the discriminant score
equal to the maximum a posteriori probability. The posterior distribution for the class variable
becomes

f(��jd) = P (C=��jD=d) =
P (C = ��)P (D = d j C = ��)
kP
i=1

P (C = �i)P (D = d j C = �i)

=

P
a;b;c;d;e;f

p�P (D=d j C=(�� ; �a; �b; �c; �d; �e; �f))g(�a; �b; �c; �d; �e; �f j ��)

h(d)
(1)

whereh(d) is the unconditional density of the augmented feature vector,(a; b; c; d; e; f) is one
of the possiblek6 configurations of the class variables of the neighbouring pixels,C is the class
configuration corresponding to the augmented feature vectorD, andg(�a; �b; �c; �d; �e; �f j
��) is the probability of the configuration of the class variables of the neighbouring pixels given
that the center pixel has class��.

If we furthermore assume that the density of the feature vector of the centerpixel is indepen-
dent of the classes of the neighbouring pixels, i.e.

P (D=d j C=(��; �a; �b; �c; �d; �e; �f )) =

P (D� = d� jX = x;C = (��; �a; �b; �c; �d; �e; �f))P (X =X j C = ��); (2)

we can rewrite Equation (1) to

f(��jd) =
p�P (X =X j C = ��)

h(d)
R�(D): (3)
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This is the posterior probability of the non-contextual rule multiplied byR�(D), which is a
contextual adjustment factor given by

R�(D) =
X

a;b;c;d;e;f

g(�a; �b; �c; �d; �e; �f j ��)P (D� = d� jX = x;C = (��; �a; �b; �c; �d; �e; �f))
(4)

Contextual information may come into the model in two ways, first in the spatial dependence
of the feature vectors (specification of the conditional distribution of the augmented feature
vector), and second in the specification of prior distribution of the class configurations,g.

B. Specification of a Gaussian distribution

Following the 2-D algorithm as specified by Hjort et al. [8] we assume that each feature vector
may be written as a sum of two terms, i.e.X = Y + �, where theY terms are independent
given the classes and model the class dependency of the feature vectors, i.e.

(Y j C = �i) 2 N(�i; (1� �)�) (5)

and(�T
s(1); : : : ; �

T
s(N)) is multinormal and model an autocorrelated noise term with

Ef�s(j)g = 0

Ef�s(j1)�
T
s(j2)

g = �ks(j1)�s(j2)k2�� (6)

s(j) refers to the spatial position of pixel numberj, andks(j1) � s(j2)k2 is the Euclidean
distance (i.e. the2-norm) between pixelsj1 andj2, N is the total number of pixels.

Alternative models for the correlogram include using the1-norm (i.e the city-block or Man-
hattan distance), or the1-norm.� is the autocorrelation between first-order neighbours, and�

is the proportion of the covariance matrix� that is due to autocorrelated noise.

Here we have chosen to use an isotropic autocorrelation function. However, the extension
to an anisotropic function is straightforward. In Figure 2 realisations of autocorrelated noise
patterns corresponding to using the three different norms in Equation (6) are shown.

Now it is possible to write the conditional distribution of the augmented feature vector given
that the classes are��, �a, �b, �c, �d, �e, and�f , respectively

D=

2
66666666664

X

XN

XS

XE

XW

XT

XB

3
77777777775

2 N7p

2
66666666664

2
66666666664

��

�a

�b

�c

�d

�e

�f

3
77777777775

;

2
66666666664

1������
� 1 
 � � � �
� 
 1 � � � �
� � � 1 
 � �
� � � 
 1 � �
� � � � � 1 

� � � � � 
 1

3
77777777775


�

3
77777777775

(7)

where
 denotes the Kronecker (tensor) product, and the definitions of�, �, and
 are given
in Table I for the different autocorrelation model mentioned above. Note, that all these models
are valid corellogram models [9], thus ensuring positive definiteness of the covariance matrix
in Equation (7).

From Equation (7) using a result from [10] we find that the conditional distribution of the
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augmented feature vector for the neighbour pixels only is multinormal with mean
2
666666664

�a

�b

�c

�d

�e

�f

3
777777775
+

2
666666664

��

��

��

��

��

��

3
777777775
�
�1(X���) =

2
666666664

�a+�(X���)
�b+�(X���)
�c+�(X���)
�d+�(X���)
�e+�(X���)
�f+�(X���)

3
777777775

(8)

and covariance matrixS� 
�, where

S� =

2
666666664

1��2 
��2 ���2 ���2 ���2 ���2


��2 1��2 ���2 ���2 ���2 ���2

���2 ���2 1��2 
��2 ���2 ���2

���2 ���2 
��2 1��2 ���2 ���2

���2 ���2 ���2 ���2 1��2 
��2

���2 ���2 ���2 ���2 
��2 1��2

3
777777775

(9)

C. Specification of a prior distribution for the OHM model

Following the 2-D procedure developed by Owen [1] and Hjort et al. [8] (The OHM model)
we assume that pixels in a scene are assigned populations by a stochastic process, we regard
a scene with pixels that have not been assigned populations. Following [1], as the first step in
the process we divide the scene by planes distributed by a stochastic process. Each pixel will
now be part of a region. If the size of the regions are large compared to the pixel size, it can
be assumed that on the borders between regions other patterns than theQ, R, andS patterns
shown in Figure 1 will occur with very small probability. Let the probability of a pixel being an
interior point bep. Furthermore, let the probability of a pixel being on a border parallel to two
of the coordinate axes beq, let the probability of a pixel being on a border parallel to only one
of the coordinate axes ber, and let the probability of a pixel being on a plane that is not paralel
to any of the coordinate axes bes = 1 � p � q � r. All other configurations are assumed to
occur with probability 0.

In the 2-D case Owen [1] employs a dividing mechanism devised in [11] that results in
the parametrisation of the probabilities of the three patterns in the 2-D model by a Poisson
field intensity. However, Hjort & Mohn [2] argue that the slightly parameter richer model of
estimating the pattern probalities directly results in a more model-robust classification.

As the second step we assign a population to each region independently, according to the
a priori probabilities for the populations. If two neighbouring regions are assigned the same
population we can delete the border between these regions.

By rotation we obtain six, twelve, and eight different CR2, CR3, and CR4 patterns, respec-
tively, i.e. we have6(k � 1) configurations for the CR2 pattern corresponding to the six orien-
tations and thek� 1 possibilities for the neighbour region class. Note that from the assumption
of the regions being larger than the pixel size we also have that the pixels within the ’cross’ in
the CR2, CR3, and CR4 cases that are different from the center pixel, all have the same class. In
all given the center pixel class we have1+6(k�1)+12(k�1)+8(k�1) = 26k�25 different
configurations. Which should be compared withk6 configurations if the assumption of region
size vs. pixel size was not applied. These patterns are assigned positive a priori probabilities,
while all other patterns are assigned the probability zero.

Under these assumptions we have the following expression for the probabilities, for each of
the possible patterns.
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CR1 :
g(��; ��; ��; ����; �� j ��) = p+ (q + r + s) � p�

CR2 :
g(�i; ��; ��; �� ; ��; �� j ��)= g(��; �i; ��; ��; ��; �� j ��)=
g(��; ��; �i; �� ; ��; �� j ��)= g(��; �� ; ��; �i; ��; �� j ��)=
g(��; ��; ��; �� ; �i; �� j ��)= g(��; �� ; ��; ��; ��; �i j ��)=

1
6
qpi

CR3 :
g(�i; �� ; �i; ��; ��; �� j ��)= g(�i; ��; ��; �i; ��; �� j ��)=
g(��; �i; �i; ��; ��; �� j ��)= g(��; �i; ��; �i; ��; �� j ��)=
g(�i; �� ; ��; ��; �i; �� j ��)= g(�i; ��; ��; �� ; ��; �i j ��)=
g(��; �i; ��; ��; �i; �� j ��)= g(��; �i; ��; �� ; ��; �i j ��)=
g(��; �� ; �i; ��; �i; �� j ��)= g(��; ��; �i; �� ; ��; �i j ��)=
g(��; �� ; ��; �i; �i; �� j ��)= g(��; ��; ��; �i; ��; �i j ��)=

1
12
rpi

CR4 :
g(�i; �� ; �i; ��; �i; �� j ��) = g(�i; ��; �i; �� ; ��; �i j ��) =
g(�i; �� ; ��; �i; �i; �� j ��) = g(�i; ��; ��; �i; ��; �i j ��) =
g(��; �i; �i; ��; �i; �� j ��) = g(��; �i; �i; �� ; ��; �i j ��) =
g(��; �i; ��; �i; �i; �� j ��) = g(��; �i; ��; �i; ��; �i j ��) =

1
8
spi

where� 6= i, and�; i = 1; : : : ; k.

In this way we have obtained a huge reduction in the number of terms in the contextual
classification rule.

D. Specification of a prior distribution for the WSH model

Alternatively, following the 2-D algorithms by Welch & Salter and Haslett [3], [4] (The WSH
model), we may assume independence between the class variables of the neighbours given the
center pixel class, i.e.

g(�a; �b; �c; �d; �e; �f j ��) = (10)

�(�aj��)�(�bj��)�(�cj��)�(�dj��)�(�ej��)�(�fj��):

Here�(�i j �j) = P (CA = �i j CB = �j), whereA andB are immediate neighbours, i.e. a
neighbour transition probability.

The model leads to a considerable simplification of the formula for the posterior distribution
of the center pixel class variable (Equation (1)) in the case of conditional independence of the
feature vectors given the class variables, i.e.� = 0 _ � = 0, � = � = 
 = 0 in Equation (7).

In the case of autocorrelated noise, however, an approximation is necessary (for computa-
tional reasons). In [8] it is suggested to approximate the matrixS� by a diagonal matrixS��
with equal diagonal elements having the same determinant asS�. Using this approximation
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the contextual adjustment factor from Equation (4) simplifies to

X
a

�(�aj��)P (XN=xN jX=x;C=(��; �a; �b; �c; �d; �e; �f ))

X
b

�(�bj��)P (XS=xS jX=x;C=(�� ; �a; �b; �c; �d; �e; �f))

X
c

�(�cj��)P (XE=xE jX=x;C=(�� ; �a; �b; �c; �d; �e; �f))

X
d

�(�dj��)P (XW =xW jX=x;C=(��; �a; �b; �c; �d; �e; �f))

X
e

�(�ej��)P (XT =xT jX=x;C=(�� ; �a; �b; �c; �d; �e; �f))

X
f

�(�fj��)P (XB=xB jX=x;C=(�� ; �a; �b; �c; �d; �e; �f));

where each of the sums are over all classes.

III. RESULTS

The procedures described above were tested on Monte Carlo simulated data; the results of
the evaluations are discussed below.

A. Simulation

In order to illustrate the power of this algorithm we will apply it to a two class 3-D synthetic
dataset. This dataset consists of a64 � 64 � 64 data volume with one variable at every pixel.
The data volume is generated by use of a (morphological) isotropic Potts model [12]. In Fig-
ures 3(a) and 3(h) horizontal (x-y) slice 32 and vertical (y-z) slice 32 of the volume are shown,
respectively.

The two classes are assigned mean values�1 and1. We will consider two cases. First,
the case of pure white noise, and second, the case of a mixture of white and autocorrelated
noise. Furthermore, we will consider a moderat noise level of unit standard deviation as well
as a high noise level of standard deviation two. In both cases we will compare the contextual
classifiers with a classical pixelwise linear classifier (e.g. [10]). In addition to this we will make
comparisons between the classifications using the 3-D algorithms with implementations where
contextual information is drawn only from 2-D (corresponding to the algorithms in [2], [4]), as
well as implementations where only 1-D context is used.

B. Classification Results

All classifications will be performed using the true parameters for mean values, variances, and
autocorrelations. The transition probabilities of the WSH models and the prior distribution of
the neighbourhood configurations of the OHM models are estimated by their relative occurences
in the simulated data volume. Maximum likelihood methods of discriminant analysis are of
course sensitive to the parameters of the fitted models. This is not considered a part of the
subject for this article. We intend to return to this topic in a forthcoming paper.
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B.1 Case 1: White noise

In this case we will degrade the data volume with independent, identically distributed Gaus-
sian noise, with standard deviations 1 and 2, respectively. In Figures 3(b), 3(c), 3(i), and 3(j)
degraded slices corresponding to Figures 3(a) and 3(h) are shown.

The misclassification rates for the classifications are shown in Table II. With respect to the
classifiers, OHM and WSH refers to the Owen-Hjort-Mohn and the Welch-Salter-Haslett meth-
ods, a prefix capital A denotes use of an autocorrelated noise model (i.e.� 6= 0 in Equation (6)),
whereas a missing capital A denotes the use of a white noise model only (i.e.� = 0). Finally,
The postfixn-D indicates the size of the context considered in the algorithm. For the 3-D al-
gorithms we use the north, east, south, west, top, and bottom neighbours as described in the
previous Section, for the 2-D algorithms we employ the north, east, south, and west neighbours
(as described in the original 2-D algorithms), and in the 1-D case we use the east and west
neighbours only.

For the non-contextual classifier the classification rule should be a theshhold at 0, which for
the two values of the standard deviation,�, corresponds to1 �� and0:5 ��. Assuming normality,
this should result in misclassification rates of 15.866% and 30.854%, respectively. The obtained
results agree well with this. When compared with the contextual OHM 3-D classifier, we see
that the inclusion of spatial information results in a misclassification rate that for� = 1 is a
factor 15 lower and for� = 2 is a factor 3 lower. For the WSH 3-D model the misclassication
rates are also better, though not as good as for the OHM model. It is noteworthy that whereas
the OHM models increase their performance as more spatial dimensions are included, the mis-
classification rate does not decrease for the WSH model when going from 2-D to 3-D. Also,
where OHM 2-D and WSH 2-D performs equally well, the OHM model is superior in the 3-D
case.

Apart from the contextual methods performing significantly better in terms of misclassifica-
tions rates the original patterns are clearly discernible when comparing with the non-contextual
methods, as is shown in Figures 4 and 5. It should also be noted that the errors tend to occur
on the edges, and that the errors also tend to lump together in the directions where contextual
information is included (i.e. for the 1-D algorithms the errors frequently occur in east-west line
segments, whereas in the other directions they seem to occur more randomly).

B.2 Case 2: Autocorrelated and white noise

In this case we will degrade the data volume with independent, identically distributed Gaus-
sian noise and with autocorrelated Gaussian noise. The white noise and the autocorrelated noise
are independent and have equal variances. We will use autocorrelated noise with an autocor-
relation that decays exponentially with Euclidean distance. We will apply two cases of the
autocorrelation, namely the cases of autocorrelation in lag 1 being 0.4 and 0.6. Again we will
apply the algorithms to two cases with pixelwise standard deviations 1 and 2, respectively. In
Figures 3(d)-3(g) and 3(k)-3(n) the degraded slices corresponding to Figures 3(a) and 3(h) are
shown.

Again we see in Table II that misclassification rates for the non-contextual classifier are close
to what we would expect. With respect to the contextual methods we see the same pattern as for
the white noise only situation: The 2-D algorithms works equally well, whereas the extension
to 3-D increase the performance only for the OHM model. The lowest misclassification rates
are obtained for the (A)OHM 3-D classifiers. It should also be noted that for the WSH models
the inclusion of spatial autocorrelation in the noise model does not have an effect. For the OHM
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models the effect of including spatial autocorrelation in the noise model is hardly discernible.
Examples of the classification results on the slices shown in Figure 3 are shown in Figures 6, 7,
8, and 9.

With respect to the autocorrelated noise in the images it is clear that the relative improvement
of including the context in the classification is less. The neighbours hold less extra information
as is also noted in [4].

Finally is should be noted that for the high noise level and high noise autocorrelation as can
be seen in Figure 9 the contextual algorithms although performing better than the non contextual
method in terms of misclassification rates break down in the sense that the original patterns are
hard if not impossible to discern.

IV. CONCLUSION

We have described extensions of 2-D contextual classification algorithms by Owen, Hjort &
Mohn (OHM) and Welch, Salter & Haslett (WSH) based on the simulateneous distribution of a
pixel and its nearest neighbours to the 3-D case. The algorithms include contextual information
for each pixel by including the feature vector of that pixel as well as the feature vectors of the
6 nearest neighbouring pixels in the decision. A joint Gaussian distribution for these feature
vectors given the classes of the pixels has been specified. It is assumed that the noise can be
modelled as a sum of white noise and autocorrelated noise, where the autocorrelation function
is exponentially decaying with (Euclidean) distance. Furthermore, joint prior distributions of
the class variables of a pixel and its 6 nearest neighbours have been specified. In the OHM case
it is assumed that the pixel size is small relative to the region sizes in the image, thus vastly
decreasing the number of possible configurations to in principle four types. Whereas in the
WSH case we assume independence of the class variables of the neighbours given the center
pixel class.

The algorithm is tested on a synthetic two-class 3-D image. For moderate white noise levels
the misclassification rate is a factor 15 lower for the OHM 3-D algorithm than the rate obtained
using an ordinary linear pixelwise classifier. The relative improvement in misclassification rate
decreases with increasing noise level. For the WSH algorithms the extension to a 3-D context
from 2-D does not decrease the misclassification rates. In the case of a mixture of white and
autocorrelated noise the improvement in misclassification rate over the pixelwise method is a
factor 4 for moderate noise levels for the OHM 3-D model. In this case also the inclusion of
the extra spatial dimension from 2-D to 3-D does not decrease the misclassification rate for the
WSH models. Figures 4 and 6 give a good visual indication of the power of the algorithm. The
non-contextual classifier gives very noisy (speckled) classification results, where the contextual
methods and in particular the OHM 3-D algorithm gives well defined patterns.
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(a)
CR1

(b)
CR2

(c)
CR3

(d)
CR4

Fig. 1. Patterns in the model. Within the ’cross’, that represents the neighbourhood of a pixel, i.e. the six nearest
neighbours, it it is assumed that at most two classes are present, and that the only possible configurations are
these four types of ’crosses’.

(a)
2-norm

(b)
1-norm

(c)
1-norm

Fig. 2. 2-D Noise patterns corresponding to autocorrelation functions using (a) the2-norm (Euclidean), (b) the
1-norm (Manhattan), and (c) the1-norm. All three realization have an autocorrelation of 0.8 in for first-order
neighbours.

TABLE I
AUTOCORRELATIONS BETWEEN FIRST-ORDER(�), SECOND-ORDER(�), AND THIRD-ORDER(
)
NEIGHBOUR CORRESPONDING TO THREE DIFFERENT NORMS USED IN THE DEFINITION OF THE

AUTOCORRELATION MODEL.

� � 


1-norm �� �� �2�

2-norm �� �
p
2� �2�

1-norm �� �2� �2�
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TABLE II
MISCLASSIFICATION RATES FOR EACH OF THE COMBINATIONS BETWEEN CLASSIFIER AND NOISE LEVEL.

White noise Autocorrelated noise
� = 0:4 � = 0:6

� = 1 � = 2 � = 1 � = 2 � = 1 � = 2
Non-context 15.8 30.9 15.8 30.8 16.0 30.9
AOHM 3-D - - 3.6 17.9 5.9 21.2

OHM 3-D 1.1 10.6 3.7 18.0 6.0 21.3
AWSH 3-D - - 5.0 20.1 7.0 22.4

WSH 3-D 2.2 14.3 4.9 20.0 7.0 22.5
AOHM 2-D - - 4.9 19.9 7.0 22.5

OHM 2-D 2.2 14.4 4.9 20.0 7.0 22.6
AWSH 2-D - - 4.9 19.9 7.1 22.6

WSH 2-D 2.2 14.3 4.9 20.0 7.1 22.6
AOHM 1-D - - 7.5 23.2 9.1 24.8

OHM 1-D 5.1 20.1 7.4 23.1 9.0 24.9
AWSH 1-D - - 7.3 23.1 8.9 24.8

WSH 1-D 4.9 20.0 7.3 23.1 9.0 24.8

(a) Orig. (b) � = 1 (c) � = 2 (d) � = 1 (e)� = 2 (f) � = 1 (g) � = 2

(h) Orig. (i) � = 1 (j) � = 2 (k) � = 1 (l) � = 2 (m) � =

1

(n) � = 2

Fig. 3. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the original data volume, and the six
degraded sequences.
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(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 4. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 1.

(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 5. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 2.
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(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 6. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 1 and
autocorrelated noise with� = 0:4.

(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 7. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 2 and
autocorrelated noise with� = 0:4.
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(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 8. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 1 and
autocorrelated noise with� = 0:6.

(a)
Non-ctx

(b) 3-D
OHM

(c) 3-D
WSH

(d) 2-D
OHM

(e) 2-D
WSH

(f) 1-D
OHM

(g) 1-D
WSH

(h)
Non-ctx

(i) 3-D
OHM

(j) 3-D
WSH

(k) 2-D
OHM

(l) 2-D
WSH

(m) 1-D
OHM

(n) 1-D
WSH

Fig. 9. Horizontal (x-y) slice 32 (top) and vertical (y-z) slice 32 (bottom) of the classifed volumes using non-
contextual, 3-D OHM, 3-D WSH, 2-D OHM, 2-D WSH, 1-D OHM, and 1-D WSH in the case of� = 2 and
autocorrelated noise with� = 0:6.
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