A kernel version of multivariate alteration detection

Allan Aasbjerg Nielsen, Jacob Schack Vestergaard

AbstractBased on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations.
TypeConference paper [With referee]
ConferenceIEEE IGARSS
Year2013    Month July    pp. 3451-3454
AddressMelbourne, Victoria, Australia
Electronic version(s)[pdf]
Publication linkhttp://www.igarss2013.org/ShowRecording.asp?C=5567FAE6
BibTeX data [bibtex]
IMM Group(s)Image Analysis & Computer Graphics, Geoinformatics