The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method | Natalia J. Rezanova, David M. Ryan
| Abstract | The need to recover a train driver schedule occurs during major disruptions in the daily railway operations. Using data from the train driver schedule of the Danish passenger railway operator DSB S-tog A/S, a solution method to the Train Driver Recovery Problem (TDRP) is developed. The TDRP is formulated as a set partitioning problem. The LP relaxation of the set partitioning formulation of the TDRP possesses strong integer properties. The proposed model is therefore solved via the LP relaxation and Branch & Price. Starting with a small set of drivers and train tasks assigned to the drivers within a certain time period, the LP relaxation of the set partitioning model is solved with column generation. If a feasible solution is not found, further drivers are gradually added to the problem or the optimization time period is increased. Fractions are resolved with a constraint branching strategy using the depth-first search of the Branch & Bound tree. Preliminarily results are encouraging, showing that nearly all tested real-life instances produce integer solutions to the LP relaxation and solutions are found within a few seconds. | Type | Technical report | Year | 2006 | Publisher | Informatics and Mathematical Modelling, Technical University of Denmark, DTU | Address | Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby | Series | IMM-Technical Report-2006-24 | Electronic version(s) | [pdf] | BibTeX data | [bibtex] | IMM Group(s) | Operations Research |
|