Dry Friction and Impact Dynamics in Railway Vehicles

Mark Hoffmann, Dan Erik Petersen

AbstractThis thesis develops a mathematical model of a Hbbills 311 freight wagon. Central to this model is the UIC double-link suspension which incorporates a parabolic leaf spring. The lateral and longitudinal dynamical model of the UIC suspension is based on theory by Jerzy Piotrowski. This model successfully takes into account damping due to dry friction in the suspension links.

Parameter identification for Piotrowski's model was performed in Warszaw, Poland, on real UIC double linkages. Two sets of parameters were used, the first emphasizing frequency-matching characteristics with the experimental setup, and the second matching theoretical geometric analysis of the suspension joints. Both were used in simulation.

The vertical dynamical model of the UIC suspension is discussed, and several models proposed. Results were generated with the implementation of a piecewise linear spring-damper system that takes into account the progressive characteristics of the parabolic spring as well as damping due to dry friction.

The wheelsets are constrained by guidance structures of the freight wagon, and the impacts involving these structures are modelled. Wheel-rail contact forces are calculated using the Shen-Hedrick-Elkins method and a wheel-rail contact geometry table (RSGEO) by Walter Kik.

The wheel profile is the S1002 profile, and the rail profile is the UIC60 profile. All modelling and simulation takes place on straight and level track with a fixed gauge of 1435 mm. Low frequency stability dynamics analysis is carried out. The model is implemented through C++ programming, accessed through the command line or a Java GUI, and results analyzed with MatLab.
KeywordsNonlinear dynamics, railway vehicle dynamics, dry friction, impact dynamics, differential succession
TypeMaster's thesis [Academic thesis]
Year2003
PublisherInformatics and Mathematical Modelling, Technical University of Denmark, DTU
AddressRichard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby
SeriesIMM-Thesis-2003-36
NoteSupervisor: Hans True
Electronic version(s)[pdf]
BibTeX data [bibtex]
IMM Group(s)Mathematical Physics