Plurality and Resemblance in fMRI Data Analysis



AbstractWe apply nine analytic methods employed currently in imaging neuroscience to simulated and actual BOLD fMRI signals and compare their performances under each signal type. Starting with baseline time series generated by a resting subject during a null hypothesis study, we compare method performance with embedded focal activity in these series of three different types whose magnitudes and time courses are simple, convolved with spatially varying hemodynamic responses, and highly spatially interactive. We then apply these same nine methods to BOLD fMRI time series from contralateral primary motor cortex and ipsilateral cerebellum collected during a sequential finger opposition study. Paired comparisons of results across methods include a voxel-specific concordance correlation coefficient for reproducibility and a resemblance measure that accommodates spatial autocorrelation of differences in activity surfaces. Receiver-operating characteristic curves show considerable model differences in ranges less than 10% significance level (false positives) and greater than 80% power (true positives). Concordance and resemblance measures reveal significant differences between activity surfaces in both data sets. These measures can assist researchers by identifying groups of models producing similar and dissimilar results, and thereby help to validate, consolidate, and simplify reports of statistical findings. A pluralistic strategy for fMRI data analysis can uncover invariant and highly interactive relationships between local activity foci and serve as a basis for further discovery of organizational principles of the brain. Results also suggest that a pluralistic empirical strategy coupled formally with substantive prior knowledge can help to uncover new brain-behavior relationships that may remain hidden if only a single method is employed.
TypeJournal paper [With referee]
JournalNeuroImage
Year1999    Month September    Vol. 10    No. 3    pp. 282-303
PublisherElsevier Science
BibTeX data [bibtex]
IMM Group(s)Intelligent Signal Processing