
Master Thesis

Value-oriented XML Store

Jesper Tejlgaard Pedersen, c960709
The Technical University of Denmark

Kasper Bøgebjerg Pedersen
IT-University of Denmark

Supervisors:
Michael R. Hansen

Fritz Henglein

August 2002

1

Abstract

XML Store is a distributed value-oriented storage facility for storing XML docu-
ments. XML documents stored in XML Store can be accessed and manipulated
using the Document Value Model (DVM). This thesis illustrates that such a
storage facility can be constructed. The value-oriented programming model,
proposed have shown advantages over traditional imperative models for work-
ing with persisted and distributed XML document. These advantages are easy
caching and replication (as no coherence protocols are needed), lazy loading of
documents, transparent persistence and distribution and sharing of documents.

Acknowledgements

A few people have influenced this thesis and we are grateful for their contribu-
tions.

The guidance and advices (technical and non-technical) of our respective
supervisors Michael R. Hansen and Fritz Henglein have been skill full and very
important to the outcome of the thesis. Fritz Henglein provided the initial
inspiration for the thesis, which we are grateful for.

During the period of the thesis much time have been spent with the newly
graduated candidates Mikkel Fennestad, Tine Thorn and Anders Baumann.
We thank them for their inspiration and fruitful discussions of value-oriented
programming, manipulation and storage of Extensible Markup Language (XML)
documents and XML related technologies.

A special thanks goes to Brian Christensen for spending his vacation on
helping with setting up the report and to Thejs W. Jansen, Martin Skøtt, Petar
Kadijevic and Kinnie Bak Pedersen for reviewing of the different versions of the
thesis and giving valuable feedback.

1

Preface

This Master Thesis concerns the development and implementation of a value-
oriented Application Programming Interface (API), which is convenient for ac-
cess, manipulation and storage of XML documents in distributed environments.

The Master Thesis is the outcome of a project across Universities. It has
been written by Jesper Tejlgaard Pedersen from the Technical University of
Denmark (DTU) and Kasper Bøgebjerg Pedersen from the IT-University of
Copenhagen.

Michael R. Hansen from the Institute of Informatics and Mathematical Mod-
eling (IMM) at the Technical University of Denmark and Fritz Henglein from the
IT-University of Denmark has been supervising the thesis. Michael R. Hansen
has been the primary supervisor of Jesper Tejlgaard Pedersen, while Fritz Hen-
glein has been both the primary (and only) supervisor of Kasper Bøgebjerg
Pedersen and secondary supervisor Jesper Tejlgaard Pedersen.

The thesis has been started on the 1st of February 2002. It has been sub-
mitted by Jesper Tejlgaard Pedersen on the 31st of August. Kasper Bøgebjerg
Pedersen will continue working on and improving the thesis until his submission
on the 1st of November.

Readers of this thesis are assumed to have basic knowledge of object ori-
ented programming, distributed programming, operating systems and elemen-
tary computer architecture. Examples through out the thesis (and the source
code) is written in the programming language Java. Being able to read Java
code is thus essential for the reading of the thesis. Besides Java basic knowl-
edge of functional programming languages such as ML may provide a small
advantage.

The appendixes referred to through out the thesis can be found separately.
The thesis and source code is available on the web site:

http:www.it-c.dk/people/tejl/xmlstore

2

Contents

1 Introduction 6
1.1 Problem statement . 9

1.1.1 XML Store desiderata . 9
1.1.2 Limitation . 10

1.2 Flavor of the Document Value Model 10
1.3 Report guide . 11
1.4 Related work . 11
1.5 Conclusion . 13

2 Extensible Markup Language 15
2.1 XML documents as trees . 17
2.2 Programming with XML . 17

2.2.1 Document Object Model 18
2.2.2 Simple API for XML . 21
2.2.3 The Extensible Stylesheet Language 23

2.3 Persisting XML . 24
2.3.1 Flat files . 25
2.3.2 Relational Databases . 25
2.3.3 Native XML Databases 27

2.4 Summary . 27

3 Value-oriented programming 29
3.1 Value-oriented concepts . 30

3.1.1 Create . 30
3.1.2 Sharing . 31

3.2 Value-oriented trees . 32
3.3 Distributed concerns . 34

3.3.1 Value references . 34
3.4 Distribued advanteges . 35

4 The Document Value Model 37
4.1 Nodes - access to documents . 38
4.2 Mutable nodes . 41
4.3 Adding functionality . 44
4.4 Creation of documents . 46
4.5 Modification of documents . 48
4.6 Persistence of documents . 48
4.7 Symbolic names for documents 50

3

4.7.1 Names and name service 50
4.7.2 The DVM name service functionality 50

4.8 Utility library . 52
4.8.1 Access and modification 52
4.8.2 Building DVM representations 54
4.8.3 Summery . 55

5 XML Store architecture 57
5.1 Reference server . 59

5.1.1 Protocol . 61
5.1.2 Persistent hash table . 62

5.2 Disk . 62
5.2.1 Locating values . 63
5.2.2 Storable values . 65
5.2.3 Cells . 66
5.2.4 Performance issues . 66

5.3 Name server . 67
5.3.1 Central solution . 68

6 XML Store implementation 69
6.1 DVM core module . 70

6.1.1 Loading documents . 70
6.1.2 Saving documents . 74
6.1.3 Mutable nodes . 74
6.1.4 Child nodes . 75

6.2 Core disk module . 76
6.2.1 Disk Interface . 76
6.2.2 Log-structured file system 79
6.2.3 Streams . 79

6.3 Reference server module . 81

7 Evaluation of the Document Value Model. 83
7.1 Node counter . 83
7.2 Dictionary . 85

7.2.1 DOMDictionary - an imperative dictionary application . . 86
7.2.2 XMLStoreDictionary - a value-oriented dictionary appli-

cation . 91
7.2.3 Dictionary Extension . 96
7.2.4 Proposal for name service improvements 98
7.2.5 Summery . 100

7.3 Evaluation summery . 101

8 Experimental results 102
8.1 Cold start . 102

8.1.1 Disk initialization test . 103
8.1.2 Reference server initialization test 103
8.1.3 Summery . 104

8.2 Document retrieval . 104
8.2.1 XML Store . 105
8.2.2 Document Object Model implementations 106

4

8.2.3 Summery . 108
8.3 Document access . 108

8.3.1 Local access . 108
8.3.2 Several peers . 109
8.3.3 Summery . 110

8.4 Saving Documents . 110
8.4.1 Save functionality . 111
8.4.2 Disk access . 112
8.4.3 Summery . 113

8.5 Document modification . 113

9 Future works 114
9.1 Name Service . 114
9.2 Stream based API . 114
9.3 Distributed Garbage collection 114
9.4 Network communication . 115
9.5 Performance issues . 115
9.6 Querying XML documents . 115
9.7 Mobility . 116

A Property file 120

B Samples 122
B.1 FOLDOC Dictionary . 122

B.1.1 Dictionary DTD . 122
B.2 Source code . 123

C Source code 140

5

Chapter 1

Introduction

XML

The Extensible Markup Language (XML)[1] was designed by the W3 consortium
as a universal format for structuring and exchanging data on the Web. The need
for a standard became evident as the amount of data with different formats
exchanged on the web grew.

Data may differ in a number of ways: Data has a number of different forms,
everything from unstructured data stored in native file systems to highly struc-
tured data stored in relational databases. Furthermore many applications store
their data in some proprietary form (an obvious example is documents stored
with Microsoft Word). This poses problems when exchanging data.

Most data available on the web is semi-structured and as such does not fit
the strict data model of relational databases.

XML provides a standard format for representing semistructured data in a
platform-independent fashion. XML consists of two components:

1. A model for representing tree-structured data (XML Information Set[2]).

2. A linear syntax for representing the model.

Programming with XML documents

Several technologies for manipulating XML documents exists, the Document
Object Model (DOM)[3] and Simple API for XML (SAX)[4]. DOM is the of-
ficial proposal form W3C and treat documents as updateable objects. SAX
is as revealed by its name more simple, SAX provides an event driven model
for accessing XML documents. SAX is basically a lexer for XML documents.
Neither SAX nor DOM (level 1 and 2) specifies an API for accessing persistent
XML documents. Current DOM implementations let application programmers
manipulate an in-memory representation of XML documents and is often used
in combination with an XML parser.

No standard for persisting XML documents exists. Documents are usually
stored as flat files in the native file system or mapped to relational databases.

These issues enforces most XML applications to follow a certain process:

1. Read XML data from some external source, file system, network etc.

6

2. Parse data into an internal representation. In DOM, an in-memory ab-
stract syntax tree representing the XML Information Set.

3. Traverse and manipulate this representation. Manipulation may construct
new in-memory representations.

Chapter 2 explores shortcomings of current APIs for working with XML.

Distributed systems

Today’s world of computation is distributed. Systems in which multiple ma-
chines share common resources are widespread. The success of the Internet has
bred a need for almost all applications to communicate with the outside world.

Traditionally distributed systems have a client/server architecture[5], where
a central server offer a service to a number of clients. The server has to han-
dle many (simultaneous) client requests, therefore a client/server architecture
requires servers to be powerful. Furthermore, servers are “single points of
failures”, i.e. if the server fails the systems cannot be used. Examples of
client/server systems are web servers that handle requests for a (potentially)
large number of clients (web browsers).

In recent years distributed systems with peer-to-peer architecture have risen
in popularity, due to the popularity of file swapping systems such as Napster[6],
Gnutella[7] and Freenet[8]). The term peer, to have equal status, is used to
characterize participants in a decentralized distributed system, in which these
participants have equal status and all communication is symmetric. Such a
system have a peer-to-peer architecture. For such a system to function, each
peer must act as both client and server.

Common to peer-to-peer systems is that they

� have no centralized server architecture1

� address isues such as active replication and opportunistic replication (cach-
ing) to achieve fault tolerance, high availability, performance and resilience
against attacks[9].

� rely on cryptographic techniques to ensure authentication and enforce ac-
cess controls.

Peer-to-peer systems are more fault tolerant that client/server systems as
they eliminate the “single point of failure”. Further, a large number of peers can
crash or leave the system without destroying the whole system, this (potentially)
gives peer-to-peer systems a higher degree of availability.

Building distributed systems is considerably more complex than building
non-distributed applications. Application programmers need to handle dis-
tributed concerns as well as application logic. Applications programmers are
required to deal with issues as when and how to cache data and when to use
remote references.

Replication of data is central to distributed systems (especially in peer-to-
peer systems), in order to provide performance and fault tolerance.

1This does not apply to Napster.

7

Most distributed systems adopt an imperative programming model, one that
revolves around destructive updates of variables. In such systems keeping repli-
cated data consistent becomes complex, especially under transaction control.
Consistency of data is a general concern in systems where data are shared,
complex transaction mechanisms are introduced to help keep data valid.

Value-oriented programming

Value-oriented programming is programming with values and references to such,
as known from functional programming. A value describes an entity that cannot
be updated, instead updates have to be coded as construction of a new value.
Such a programming model is in contrast to the imperative programming model.

Problems with validity of data in distributed system can be traced back
to the destructive updates of the imperative programming model. In a value-
oriented programming model, one that considers values as immutable entities,
issues of validity become simple, since values are not updated. Updations are
performed by updating variable, which holds a reference to a value, with a
reference to another value. This can be done automically.

Value-oriented programming has advantages over the traditional imperative
model, when building distributed systems;

� Light weight replication and caching of values, as no coherence protocols
are needed.

� Automatic validity of data, as data cannot be destructively updated, it
cannot become invalid. Updating a variable that holds a reference to a
value can be done atomicly.

Distributed Value-oriented XML Store

XML documents (which are trees), can be treaded in a value-oriented fashion,
in contrast to the Document Object Model (DOM). Considering XML trees in
a value-oriented fashion means, considering the root of trees and all subtrees as
values. The root of a tree has references to its subtrees. References to values
can be made persistent and stored on disk. This allows:

� Storing XML documents “natively”, such that the tree structure is kept
and can be traversed on-disk (as opposed to only “left-to-right” preorder
traversal used when serializing XML documents).

� No parsing of documents from a serialized representation to an internal
representation is needed before processing.

� Sharing of XML tree nodes within and across documents.

The fact that XML documents can be traversed on-disk eliminates the need
to keep whole XML documents in-memory while processing.

The idea of a distributed value-oriented XML Store, is to build a storage
manager, that provides transparent distribution and persistence, for XML doc-
uments.

8

1.1 Problem statement

The main goal of this thesis is to prove that a value-oriented programming model
has several advantages over the more traditional imperative model when work-
ing with XML data in a distributed setting. We will provide a value-oriented
Application Programming Interface (API) for manipulating XML data, called
Document Value Model (DVM), and show how this API solves disadvantages
of current DOM implementations. We will prove this by building a distributed
value-oriented storage manager for XML documents, called XML Store, and
test it against conventional ways of working with XML documents.

The implementation of XML Store provided with this thesis is a prototype,
where emphasis has been put on identifying key concepts and designing a flexible
and extensible system. Building basic operations and extending these is used
as a general design principle.

We intend to evaluate the following;

1. Usability and adequacy of DVM in contrast to the Document Object
Model (DOM) and Simplified API for XML (SAX). We will illustrate
that even simple applications require complex solutions using DOM and
SAX, and illustrate how DVM gives more elegant and efficient code. This
will be evaluated through implementation of a running example - a dic-
tionary application that offers keyword search and functionality to insert
new words. We will refer to the example throughout the thesis. Other
sample applications will be implemented to evaluate the API.

2. Evaluate efficiency of the storage strategy, by conducting tests, which store
and access different documents.

1.1.1 XML Store desiderata

This section list desired properties of XML Store.

Decentralized The XML Store network should be a fully decentralized peer-
to-peer network.

Distributed persistence The XML Store must follow general requirements
for distributed file systems [5, p. 315-316]: transparency, scalability, effi-
ciency, replication, consistency, security and fault tolerance.

Efficient and transparent sharing of XML documents Sharing parts of
documents both within documents and across documents should be effi-
cient and transparent.

Convenient and adequate API The API provided by the XML Store must
offer operations that are convenient and adequate when working with
XML-data (e.g. operations similar to those offered by DOM[3]). The
API must be value-oriented.

Hide location and distribution Application programmers using XML Store
should be oblivious to the location of XML documents. That is documents
should, from application programmer perspective, be treated equally no
matter their location, be that in-memory, on-disk or across a network.

9

Lazy loading. XML documents must be loaded lazily (on request), to prevent
whole documents from being loaded into main memory.

No parsing and unparsing of XML documents. XML documents should
be stored natively in the XML Store to prevent excessive parsing and
unparsing.

Configurable. The XML Store architecture must be configurable and exten-
sible, in such a way that functionality such as caching and buffering can
be combined differently on each XML Store.

1.1.2 Limitation

The desiderata of mentioned in the previous section does not include all neces-
sary aspect of building XML Store. Additional aspect not necessary, but feasible
to implement using XML Store exist.

Mobility of data, distributed garbage collection, routing algorithms, secu-
rity threads and facilities for querying document stored in XML Store are not
addressed in this thesis.

A range of topics are described in the thesis, but have not been implemented.
These are implementing a optimistic locking functionality in the name server,
read and write buffering, asynchronous writes to disk and inlining of child nodes
when saving XML documents.

Some modules or single entities have not been implemented optimally. These
includes the name server and the representation of child nodes. The problems
with the implementations are analyzed and better solutions are proposed.

1.2 Flavor of the Document Value Model

This section gives a quick sample of the flavor of the Document Value Model
(DVM) provided with this thesis through a simple example.

The example creates and prints the following XML document, using DVM.

<greeting>Hello World!</greeting>

Creation of Nodes is done using a factory[10, p.87].

XMLStoreFactory factory = XMLStoreFactory.getInstance();

Node hello = factory.createCharDataNode("Hello World!");

Node greeting = factory.createElementNode("greeting", hello);

Traversing and printing the document to standard out is equally simple, retrieve
the element name (with getNodeValue()) then retrieve the value of its first
child, and print.

String tagName = greeting.getNodeValue();

System.out.println("<" + tagName + ">" +

greeting.getChildNodes().getNode(0).getNodeValue() +

"</" + tagName + ">";

Changing the greeting to say “Extensible Markup Language”, must be coded
by creating a new node, instead of destructively updating the original, as DVM
is value-oriented.

10

Node xml = factory.createCharDataNode("Extensible Markup Language");

greeting = factory.createElementNode(tagName, xml);

DVM offers utilities to do this more elegantly, however the basic principle is the
same. The full document value model is described in chapter 4.

1.3 Report guide

This section serves as a brief guide of the report. The report has the following
chapters:

Chapter 2 - Extensible Markup Language. provides background informa-
tion of the Extensible Markup Language (XML), presents different ap-
proaches for working with XML and states shortcoming of these.

Chapter 3 - Value-oriented programming. presents and defines the value-
oriented programming model, specifies how to work with trees using the
model. Describes value-oriented programming in a distributed environ-
ment.

Chapter 4 - The Document Value Model. presents a value-oriented API
for manipulating XML documents in a value-oriented fashion. The chapter
serves as a Document Value Model user guide.

Chapter 5 - XML Store architecture. Discusses design of a distributed XML
Store. Focus is on the design decisions made to build the prototype im-
plementation given with this thesis.

Chapter 6 - XML Store implementation. describes implementation details
of the XML Store prototype.

Chapter 7 - Evaluation of the Document Value Model. evaluates DVM
by building sample applications.

Chapter 8 - Experimental results. tests the implemented prototype of XML
Store.

Chapter 9 - Future works. presents issues for future research.

1.4 Related work

XML Technologies

As mentioned different technologies for manipulating XML data exists.

Document Object Model (DOM). The official specification from W3C for
an Application Programming Interface (API) for manipulating and ac-
cessing XML documents. DOM offers an imperative tree-oriented object
abstraction of XML documents. DOM is a platform and language inde-
pendent specification. Most DOM implementations build an in-memory
abstract syntax tree representing the XML Information Set, which can
then be accessed and manipulated.

11

DOM is a complex specification. It consists of three different levels (and
an unofficial level 0) each extends the specification from the previous level.
Level 0 is a vague API for accessing certain elements of an HTML docu-
ment (ECMAScript), Level 1 specifies a fundamental object model for a
document. Level 2 extends core functionality of level 1, and adds Views,
Events, Style, Traversal and Range. Level 3 adds access to entities, DTDs
and Schemes, XPath and load and save of documents [11, 12]. According
to W3C[13] DOM identifies:

� the interfaces and objects used to represent and manipulate docu-
ments.

� the semantics of these interfaces and objects - including both behavior
and attributes.

� the relationships and collaborations among these interfaces and ob-
jects.

Other APIs such as JDOM[14] offer Java programmers with a more con-
venient interface, which resembles DOM conceptually.

Simple API for XML (SAX). An original Java-only API which is now a de
facto standard[4]. SAX is a low-level event based API, and is mainly
used to process large XML documents, as it does not build any internal
representation of the document processed.

XSL Transformation (XSLT)[15]. A style sheet language for defining trans-
formations from one class of XML documents into another class of docu-
ments [11]. XSLT is a declarative language, i.e. you state what you want
not how you want it done.

XSLT can be implemented using DOM and SAX. This is done in Xalan-
Java, which is an application making XSLTs .

XQuery[16] is the official proposal for an XML query language. The ability to
query XML data becomes important as the amounts of XML documents
stored and exchanged increases. XQuery is

designed to be a small, easily implementable language in which
queries are concise and easily understood. It is also flexible
enough to query a broad spectrum of XML information sources,
including both databases and documents[16].

Storing XML

Using XML in real world applications, it is necessary to enable data to “survive”
the life of a single process and to allow data to be shared between multiple
processes. Therefore it is important to be able to persist XML data. A number
of different methods for persisting XML data exists, these are discussed further
in chapter 2

The simplest of these keep serialized versions of XML documents in a flat
files. This requires excessive need for serializing/unserializing documents, when
data is being manipulated.

12

Another method used is to keep XML data in relational databases, which
requires complex mappings from XML entities to database tables.

Currently many efforts focus at development of alternative XML storage
managers, most of these efforts revolves around Native XML Databases (NXD)
which are databases designed especially to store XML documents[17]. Native
XML Databases support XML query languages.

Peer-to-peer file systems

In recent years peer-to-peer file systems have risen in popularity, due to the
success of file-sharing systems such as Napster[6], Gnutella[7] and Freenet[8].

The first widely spread peer-to-peer file sharing system, Napster actually
uses a central server to store an index of available files in the systems. This
index stores filename and location (IP of machine) of the file. Users search
this index for filenames and obtains a location of the file, the file can then be
retrieved from the machine holding the file. As the process of locating files is
centralized, Napster cannot be considered a “pure” peer-to-peer system.

Gnutella has no centralized server storing locations of files. It is a completely
decentralized and peers rely on broadcast communication, when locating files.

Other peer-to-peer systems such as Freenet, PAST[18], CFS[19] and Dis-
tributed, value-oriented XML Store[9] provides location transparent storage of
data, with efficient location independent routing in a decentralized environment.
Routing is sending messages in a distributed network, from one network location
to another, until the destination location is reached.

1.5 Conclusion

This thesis presents value-oriented interface, the Document Value Model, and a
storage manager, XML Store, for distributed persistens of XML document.

The value-oriented Document Value Model (DVM) interface allows applica-
tions to create, access, modify and persist XML document. The DVM interface
resembles the object structure of DOM, except that all aspect of the interface is
value-oriented - any document modifications results in new documents, leaving
the former document unchanged, except for mutable nodes.

DVM is not as vast and complex interface Document Object Model (DOM).
Instead only the most basic (and needed) functionality is provided. More con-
venient functionality can be implemented by extending the interface or by in-
troducing utility functions. Within this thesis utility functionality have been
implemented.

Programming with DVM have considerable advantages compared to pro-
gramming with the imperative DOM interface. In contrast to DOM nodes can
be shared within and between documents in DVM, and persistence is location
and distribution transparent and therefore not necessary to consider when build-
ing applications. The need for transaction control are removed using DVM, since
updates are performed by a simple atomic set operation.

XML Store is build as a peer-2-peer network, in which single peers contain
no information of other peers. XML Store is thus highly flexible to new peers
joining the network.

13

Distributed lookup of documents is based on the IP Multicast communica-
tion. Using IP Multicast allows peers to contain no information on other peers.
It is however not reliable, a reliable multicast service can be build.

XML Store have the Document Value Model interface and therefore gain the
above described advantages of the interface.

The XML Store strategy for loading document enables handling of arbitrarily
large document. Memory usage is low as document are loaded lazily (on request)
and discarded again (from memory), when not used. This is transparent to
applications programmers, such that document location makes no difference in
applications, i.e. if documents reside in memory, on disk or across a network is
transparent.

XML documents are not only shared, when loaded into memory, all nodes
on disk or located on other peers may be transparently shared.

XML documents can be named using a name service functionality. This
service is a implemented as a central server solution, which lacks of a limitted
name space and no possibility to implement transaction control. More work are
required to provide a suitable name server.

XML Store and its Document Value Model have been evaluated through
implementation of simple applications, one counting nodes in an XML docu-
ment and the other implementing a dictionary application. These illustrated
the above mentioned advantages of value-oriented programming. Applications
better suited for illustrating the advantages with regards to sharing of docu-
ments could, however, have been choosen.

The XML Store performance have been evaluated through a number ex-
perimental tests. These tests illustrated advantages of the value-oriented pro-
gramming model. Modifying persisted documents and storing resulting new
documents are fast compared to simply storing the documents. This is an effect
of sharing. The simple caching strategy applied improves the performance of
XML Store greatly. The tests also illustrated high loading times for distributed
documents, which requires further work to improve the distributed load perfor-
mance.

We have shown value-oriented application programming interface eases devel-
opment of distributed applications compared to the imperative programming
model. The value-oriented programming model allows simple replication and
caching strategies, sharing of values, removes the need for transaction control
by provide atomic updates and provides transparent location and distribution
of values.

14

Chapter 2

Extensible Markup
Language

Extensible Markup Language (XML)[1] is a platform-independent language for
describing semistructured data such as documents (books), messages for inter-
change between different computers etc. XML is a markup language derived
from Standardized General Markup Language (SGML)[20], this means, it uses
tags to enclose text in a document. XML allows the definition of sub languages
through a number of of technologies and is thus often also called a metalan-
guage, that is, a language for defining languages. XML has a large number of
usage patterns:

1. Represent documents (that is conceptual “real” documents), such as books,
orders, customers etc.

2. Represent programming languages and protocols, (e.g Extensible Stylesheet
Language (XSL)[21], Simple Object Access Protocol (SOAP) [22]).

3. Represent the layout of documents, e.g. The Extensible HyperText Markup
Language (XHTML)[23], Scalable Vector Graphics (SVG) [24].

XML has found widespread acceptance with support from basically all major
software, operating system and database vendors. With increasing demand for
distributed systems it establishes a common, platform-independent way of ex-
changing data, including messages, between heterogeneous and loosely coupled
systems.

This presentation considers Minimal XML [25], which is a strict subset of
XML. Minimal XML is defined by the grammar in figure 2.1.

The basic construct of an XML document is the element. An XML document
contains one element, often called root element. An element is enclosed in tags,
defining the element’s name. The start tag consists of the element name enclosed
in < >. An element with name keyword thus has the start tag <keyword>. End
tags are prefixed with </ and their names must match the corresponding start
tag. The term content is used to describe the inside of an element (everything
in between the tags). Content may be a sequence of elements with optional
white spaces between elements, or a sequence of character data and character
references. Elements that are content of other elements are called sub elements,

15

document ::= WS* element WS*

element ::= STag content ETag

STag ::= ’<’ Name ’>’

ETag ::= ’</’ Name ’>’

content ::= (element | WS)* | (CharData | CharRef)*

Name ::= [^<>&/]+

CharData ::= [^<>&]

CharRef ::= ’&#’ [0-9]+ ’;’

WS ::= (#32 | #9 | #13 | #10)

Figure 2.1: Minimal XML grammar[25]

child elements or nested elements. Character data is plain text not including
’<’ ’>’ and ’&’. Character references are references to characters. Character
references may be used to refer to characters which cannot otherwise be written
e.g. ’<’ represents the reserved character ’¡’.

Minimal XML is as mentioned a subset of XML and does not include At-
tributes, CDATA Sections, Comments, Document Type Declarations, Empty-
Element Tags, Entity References, Mixed Contents, Predefined Entities, Process-
ing Instructions, Prolog and XML Declaration[25]. For a full definition of XML,
see the XML specification[1].

<dictionary>

...

<word>

<keyword>foo</keyword>

<desc>

<p>

<type>jargon</type>

/foo/ A sample name for absolutely anything,

especially programs and files ...

</p>

...

</desc>

</word>

...

</dictionary>

Example 2.1: Sample XML document, root node dictionary. (“...” symbolizes
more text or more nodes

The XML supported by the prototype implementation supplied with this
thesis is Minimal XML plus attributes and mixed contents.

Attributes are name to value bindings. Each element may hold a number
of attributes. Attributes differ from sub elements in a number of ways.
Attributes are unique, that is the same attributes can only occur once in
the same element, attributes can not be nested and they may only hold
character data.

Mixed contents allows elements to contain character data, optionally inter-
spersed with child elements. [1]

16

Consider example 2.1, which shows XML representing the word “foo” in a
dictionary [26] (Appendix B defines and describes the dictionary). The example
illustrates an XML document that has six elements dictionary, word, keyword,
desc, p, and type. Elements keyword and desc are sub elements of word.

Example 2.1 does not contain any attributes, attributes are expressed like
<word keyword="foo"> .. </word>.

What is normally referred to as XML documents has two forms, a serialized
representation of some data, as just described, and an abstract model of the
document. The abstract model, is a model of labeled trees, and is defined as
XML Information Set[2], section 2.1 describes this model of XML documents.

Writing programs that use XML documents as a data source is done using
technologies developed for this purpose, section 2.2 describes and analyzes such
technologies. Considering XML documents as data sources for computer pro-
grams, documents may be stored on some external device, section 2.3, discusses
different approaches used to store XML documents.

2.1 XML documents as trees

As mentioned XML is a language for describing semistructured data. In this
context XML documents can be regarded as an abstract data type. The XML
Information Set specification [2] does this as it

... defines an abstract data set called the XML Information Set (In-
foset). Its purpose is to provide a consistent set of definitions for
use in other specifications that need to refer to the information in a
well-formed XML document.[2]

An XML-document to be well-formed when

1. It only contain one top-level element, this element name must be unique
(often called root element),

2. Tags are properly balanced,

3. Attribute names are unique and their values quoted.

The requirement of well-formedness basically just ensures that serialized
XML documents can be transformed into labeled trees [27, p.29].

Figure 2.2 illustrate the serialized XML document from example 2.1 as a
labeled tree.

The term ”XML documents” commonly refers to two components, either a
model of tree structured data or a serialized representation of this model. In
this report we consider XML documents to be a model of labeled ordered trees
(directed acyclic graphs (dags) when sharing of subtrees is considered), when
nothing else is noted.

2.2 Programming with XML

One of the reasons for the popularity of XML is the suite of related standardized
technologies used when programming with XML. Programming with XML is

17

dictionary

... word ...

keyword desc

foo p

type /foo/....s ...

jargon

Figure 2.2: Labeled tree representation of XML document. Root element
dictionary has child elements keyword and desc (... symbolizes more nodes)

writing programs that consider XML documents as a data source, i.e. programs
that access and manipulate XML documents. Programming with XML is done
using related technologies. The two main Application Programming Interfaces
(APIs) used to access XML documents are the Document Object Model (DOM)
[3] and Simple API for XML (SAX) [4].

This section will present the two distinctive different ways of working with
XML, and evaluate both. The APIs are evaluated by implementing a simple
dictionary that supports search for keywords and inserts of new words. De-
scription of dictionary, application and full source code resides in appendix B.
Besides DOM and SAX, we also consider the Extensible Stylesheet Language
(XSL) which is a programming language designed to transform one XML doc-
ument into other documents (that may be other XML documents).

DOM is described in section 2.2.1, SAX in section 2.2.2 and XSL in section
2.2.3.

2.2.1 Document Object Model

The Document Object Model (DOM) is a high level tree-oriented interface for
accessing and updating content, structure and style of documents, e.g. XML
documents, and is the official proposal from W3C. DOM is

[..] a platform- and language-neutral interface that will allow pro-
grams and scripts to dynamically access and update the content,
structure and style of documents.[3]

This means DOM is a language independent specification, for manipulating
XML documents.

18

DOM provides, as the name reveals, an object model of an XML document.
This object model introduces meaningful abstractions of XML constructs, such
as elements, attributes, text etc. and specifies operations for accessing and mod-
ifying the XML document. DOM is a large Application programming interface
(API), providing access to all parts of XML documents. This description of
DOM is an overview of programming with DOM and hence only covers the
basics. For full reference see the DOM specification [3].

To use the DOM interface, a serialized XML document must be parsed
into an internal representation of the document, referred to as the DOM tree.
The DOM tree an abstract representation of the XML document it models.
Although not part of the specification, DOM implementations1 require that the
entire XML document is parsed into memory. Once the document is in memory,
the DOM interface provides tree based access to nodes in the DOM tree and
methods for document manipulation.

The API consist of a number of interfaces, each representing part of an XML
document. The Node interface is central. Elements, text, attributes etc. are all
nodes. The Node interface provides general operations for manipulating nodes.
Although, these operations fulfill the need of every node type, the DOM interface
contains additional interfaces for each type. These interfaces provide their own
more convenient operations for accessing and manipulating documents. In the
Java implementation getting access to these sub operations requires a downcast
(from Node), since they are subtype of Node.

To illustrate and evaluate DOM a sample application is implemented. This
application is, as mentioned, a dictionary that supports (keyword) lookup and
inserts of new words (see B for description and full source code). The XML
document used is structured as the example shown in example 2.1. When im-
plementing keyword search, the following steps are carried out:

1. Parse the entire database (7.6 Mb XML document) and build a DOM tree.

2. Perform binary search on keywords (as these are sorted).

3. Build and return result (result may be “no match found”).

These steps are illustrated by code in example 2.2. Lines 2-6 parse and builds
an in-memory DOM tree. Line 8 performs binary search, which returns null on
unsuccessful searches. The binary search method is not shown here. The rest
of the code is spent building a result, on successful search the node representing
the found word must be cloned (line 12, importNode clones), as DOM does not
allow sharing of nodes. The node must be appended to a Document node and
returned (line 12-13). In case of unsuccessful searches a DOM tree correspond-
ing to "<word><keyword>No match found</keyword></word>" is created and
returned (lines 16-21).

Parsing a 7.6 MB document each time a search is performed takes time.
Several approaches can be used to speed up the search process (but they all
have to be implemented by application programmers). The most simple way to
speed up searches is to keep the entire DOM tree in memory, and only parse
it once (e.g. when the application starts). This would work, if the dictionary
is never updated or if not shared between several processes as in a distributed

1during this report we have tested the DOM implementation in J2SDK1.4 [28] package
org.w3c.dom

19

1 public Document keywordSearch (String keyword){

2 DocumentBuilderFactory factory =

3 DocumentBuilderFactory.newInstance ();

4 factory.setIgnoringElementContentWhitespace(true);

5 builder = factory.newDocumentBuilder ();

6 Document dict = builder.parse (new File(dictName)) ;

7

8 Node match = binarylookup (dict, keyword);

9

10 Document doc = builder.newDocument ();

11 if(match != null){

12 Node n = doc.importNode (match, true);

13 doc.appendChild(n);

14 return doc;

15 }

16 Node word = doc.createElement("word");

17 Node keyword = doc.createElement("keyword");

18 keyword.appendChild(doc.createTextNode("No match found");

19 word.appendChild(keyword);

20 doc.appendChild(word);

21 return doc;

22 }

Example 2.2: Code to find keyword in dictionary. Code is simplified for illus-
tration purposes, e.g. is free of imports and Exceptions

environment. Even so keeping a large dictionary in memory may not be feasible.
Another way to speed up searches would be to keep smaller files, (e.g a file for
each letter in the alphabet). These could then work as indexes, as the search
function then only has to parse the correct (and much smaller) file. The solution
requires work from the application programmer as code for choosing the correct
file must be implemented. This solution is also only temporary, when new words
may be inserted the size of each index file grows and the parse time increases.
A clever scheme for splitting index files when these grow to a certain size could
be implemented.

Inserts follow much the same path as search, that is

1. Parse and build the DOM tree,

2. Find the place to insert by performing a binary search of the keyword to
be inserted.

3. Insert the word, by building a DOM tree of the word to be inserted, and
insert it into the existing dictionary tree.

4. Unparse and write the dictionary (7.6 MB and growing) to disk.

No concurrency control on insert is implemented. Such must also be imple-
mented by the application programmer. This makes it difficult to build even
small applications (e.g. building this insert function for web use) using DOM.

To speed up the searches and inserts and to help with concurrency issues,
XML documents are often stored in a relational database system because those
provide, persistence management (automatic loading and saving from disk,
driven by data actual used) and concurrency control (transaction management)
(see section 2.3.2).

20

The above introduction and evaluation of working with DOM (using a cur-
rent implementation), lead to the following disadvantages of programming with
DOM.

� serial access to persisted XML documents only (“from left to right”) due
to XML documents being stored in serial fashion, unless indexes are im-
plemented by application programmers.

� severe main memory requirements since whole documents has to be read
into main memory before processing (including pieces never used).

� frequent serialization and deserialization processing of XML documents
(changes between serial and tree-oriented representation).

� no sharing of XML documents or parts of XML documents, leading to
expensive copying of parts of XML documents and the need for repeti-
tive (cumbersome to program and inefficient) update processing of cloned
nodes.

� fragile code due to the need for updating DOM-trees and carefully syn-
chronize/coordinate the order and nature of updates.

The main advantage of DOM is that the API is fairly straightforward and
natural to use given an understanding of object oriented programming. The
abstractions of nodes is natural and works well.

2.2.2 Simple API for XML

Shortcomings of DOM, particularly problems with processing arbitrarily large
XML documents, motivate application programmers to use other technologies.
One of these is Simple API for XML (SAX) [4], that can process large XML
documents. Compared to DOM, SAX provides a completely different approach,
for accessing XML documents. SAX provides a (low-level) token-oriented API
to XML documents.

This means that SAX basically works as a lexer/tokenized, allowing appli-
cation programmers to implement a series of callback functions that reacts to
events fired by a parser. SAX is stream based and does not build any internal
representation of the document. This makes SAX better for accessing large doc-
uments. SAX does not provide any means of updating XML documents, when
implementing updates application programmers are “on their own”

We also build the dictionary search function with SAX. Specifically the im-
plementing callbacks functions, means extending a DefaultHandler class and
implementing methods for different events, example 2.3 illustrates this.

The search handler maintains a variable state, which can be either KEYWORD
(the element is a keyword element), FOUND (the keyword is found) or FINISHED
(the keyword is found and the result has been processed). Each time a start tag,
end tag or character event is fired the search handler checks the state and takes
the appropriate action. Example 2.3 shows callback function startElement,
endElement and characters, implemented to search for a keyword in a dic-
tionary. Basically the examples maintains a state and takes appropriate action
correspondingly. The example searches by comparing keyword with appropriate
(characters that represent keywords in dictionary) characters read (lines 38-40),

21

1 private static class SearchHandler extends DefaultHandler{

2 ..

3 private StringBuffer result;

4 private int state;

5 private String keyword;

6

7 ..

8

9 public void startElement(String uri, String localName,

10 String qName , Attributes attributes){

11 switch (state){

12 case FINISHED : return;

13 case FOUND : result.append("<" + qName + ">"); return;

14 }

15

16 if(qName.equals("keyword"))

17 state = KEYWORD;

18 }

19

20 public void endElement(String uri, String localName,

21 String qName){

22 switch (state){

23 case FINISHED : return;

24 case FOUND:

25 result.append("</" + qName + ">");

26 if(qName.equals("word")){

27 state = FINISHED;

28 }

29 return;

30 }

31 if(qName.equals("keyword")) state = UNKNOWN;

32 }

33

34 public void characters(char [] ch, int start , int length){

35 switch (state){

36 case FINISHED : return;

37 case KEYWORD:

38 if(keyword.equalsIgnoreCase(String.valueOf(ch,

39 start,

40 length))){

41 state = FOUND;

42 result.append("<word>\n <keyword >");

43 result.append(ch, start , length);

44 }

45 break;

46 case FOUND:

47 result.append(ch, start , length);

48 }

49 }

50 }

Example 2.3: Part of search handler used to search for words in dictionary. The
code shows callback function startElement, endElement and characters. The
example is simplified for illustration purposes, ’..’ denotes missing code. Full
source code is found in appendix B.

when word is found a result is build using a StringBuffer (lines 13, 25, 42-43,
47).

This method is one often used in SAX applications. As the application logic

22

become more complex the number of possible states rise and the complexity of
the SAX application rise.

SAX development is more challenging and less intuitive than DOM develop-
ment, because the API does not provide functionality for accessing tree struc-
tured data.

SAX does not store document structure and content. If the document struc-
ture and content is needed while parsing the document, it must be kept by the
application programmer. To build a document representation is a tedious pro-
cess and most likely not related to the application logic tackled by the program-
mer. SAX is therefore not an intuitive choice if a tree-oriented representation
is needed.

The strength of the SAX is its ability to scan and parse gigabytes of XML
documents without reaching resource limits, because it does not create a rep-
resentation in memory of the data being parsed. Because of it’s design, SAX
implementations is generally faster and requires fewer resources than DOM.

2.2.3 The Extensible Stylesheet Language

Besides DOM and SAX, another popular approach to programming with XML,
is using the Extensible Stylesheet Language(XSL)[21].

XSL is made up of two parts.

1. XSL Transformations (XSLT) [15]

2. XSL Formatting Object (XSL-FO)

XSLT is a stylesheet language for defining transformations of XML doc-
uments into other XML documents. XSLT-FO is a language for specifying
low-level formatting of XML documents [11], and is not covered here.

XSLT is an XML language, i.e. a given XSLT stylesheet (program) is an
XML document. XSLT is a declarative language, you state what you want, but
not how you want it done. XSLT uses pattern matching and template rules to
perform transformations, as illustrated in example 2.4.

Template rules contains rules to be applied when specified nodes are matched.
Template rules identify the nodes to which they apply(they match) by us-
ing a pattern, e.g. the template rule <xsl:apply-templates match="/"> will
match the root node of any XML document, as the pattern ”/” match the root
node. Element <xsl:apply-templates/> recursively processes children of a
matched element, a pattern may be given to specify which children to match,
e.g. <xsl:apply-templates select="keyword"/> process all children match-
ing the pattern ”keyword”, that is any keyword element.

XSLT is typically used to transform XML documents, into an XHTML[23]
documents which can be rendered by (most) web browsers. The transformation
can either be done on clients (by web browsers), or by web servers (using e.g.
Apache Xalan [29]).

However XSLT can also be used to extract parts of XML documents and
restructured documents. XSLT can extract the needed data and possibly trans-
form it into a new structure.

That XSLT can extract (select) certain parts of an XML document, makes
an interesting case. Although it was never designed as a query language, its

23

ability to select and transform pieces from large XML documents makes it us-
able for querying [30, p.45] although it is not possible to express joins between
documents.

The term stylesheet, defined as a document that separates content and log-
ical structure from presentation [11], lacks something to fully define XSLT doc-
uments. The term XSLT program is perhaps more suited, because XSLT can,
as mentioned, express more than just that of a stylesheet.

Because of XSLT’s ability to perform queries, searches in the dictionary can
easily be performed. Example 2.4, is a XSLT program that selects and returns
word elements which have a keyword with character data content equal to foo.

1 <xsl:stylesheet>

2

3 <xsl:template match="/ dictionary">

4 <xsl:apply-templates select="word [./ keyword/text ()= foo]"/>

5 </xsl:template>

6

7 <xsl:template match="*">

8 <xsl:element name="{name (.)}">

9 <xsl:apply-templates />

10 </xsl:element>

11 </xsl:template>

12

13 </xsl:stylesheet>

Example 2.4: XSLT stylesheet that returns word foo in dictionary. The example
is simplified for illustration purposes

The example illustrate pattern matching and template rules. Line 3 is a
template that match the dictionary element (root element). Line 4 perform a
pattern match on templates that match word elements with a keyword element
with text content foo. Line 7 is a template that match anything and just return
the matched element.

The main strength of XSLT is that it is designed for performing transforma-
tions of XML documents. The declarative style of XSLT allows transformation
to be easily expressed.

XSLT can be implemented using different approaches. A straight forward
approach would be to implement XSLT on top of DOM2, that is, create a DOM
tree and traverse this document. This of course implies the problems regarding
memory, which was mentioned in 2.2.1.

2.3 Persisting XML

When building applications that use XML as a data source, it becomes nec-
essary to store the data. Real-world applications need data that survives the
application’s process and data that can be shared between processes. Persist-
ing XML documents means storing document, in some form, on some external
storage device.

2Xalan is a XSLT processor for transforming XML documents. It is build using SAX and
DOM [29]

24

When dealing with persisted XML documents a number of approaches are
used. XML documents can be stored in flat files described in section 2.3.1.
Relational Database Systems may be used to store XML documents, section
2.3.2. A new type of databases specifically designed to store XML documents
is emerging, these are called Native XML Databases (NXD) and is introduced
in section 2.3.3.

2.3.1 Flat files

Properly the simplest and most commonly used approach to persisting XML
documents is simply to store a serialized version of the XML document in a
flat file in the native file system of the operating system. This has the main
advantage that it is straightforward and simple. An XML application using flat
files to store XML documents, will typically follow a certain number of steps:

1. Read the document from the file

2. Parse the serialized representation of the document into some internal (in
memory) representation e.g. a DOM tree

3. Manipulate the data, by traversing and updating the in-memory repre-
sentation of the XML document. Updating may build a new in-memory
representation

4. Unparse (flatten) the updated XML document and write it to the file
system

These steps all have to be implemented by the application programmer and
have a number of obvious shortcomings. Parsing the whole document into an
in-memory representation naturally limits the size of documents. The approach
only supports serial access to the persisted data, that is, data is read in a stream.

Furthermore, all concurrency issues must be implemented by the application
programmer in a multi process environment, making it difficult to implement
even simple applications.

2.3.2 Relational Databases

One approach to store XML documents is to store the XML data in relational
database systems. Thereby issues such as concurrency control, scalability in
multi user environments, data integrity, transaction control and security are
maintained by the database.

Using a relational database for storing XML data requires a bidirectional
mapping from the XML data to database relations. Two distinctive mapping
techniques are table based mappings and object based mappings.

Table based mappings, maps an XML document to one table or to a set of
tables. Consider XML document and it’s mapping illustrated in figure 2.3

Table based mappings are simple but only work when document are highly
structured[31] and therefore only work with a limited subset of XML documents

The object based mapping are more complex, it models tree objects, and
then maps these to the database. The tree objects involved are specific to
the XML documents DTD, that is models the data in XML document and

25

<table>
<row>
<col1>info1</col1>
..
<coln>infon</coln>

</row>
<row>
<col1>info1</col1>
..
<coln>infon</coln>

</row>
</table>

table

col1 ... coln
---- --- ----
info1 infon
info1 infon

Figure 2.3: Table-based mapping

are not to be confused with DOM objects, that models the structure of XML
documents.[31]

Both mapping types are bidirectional. That is, they can be used to
transfer data both from XML documents to the database and from the database
to XML documents [31].

XML documents may be divided into data-centric and document-centric doc-
uments. Data-centric documents are well structured there for easy to map to
relational databases. Data-centric documents are often contain repeated struc-
tured and not likely to be targeted for the human reader. An example of
data-centric documents are XML RPC implementations such as SOAP [30].
Document-centric documents have irregular structure and can be considered as
real documents, that is some text with a logical structure e.g. the document
containing this thesis.

Using relational databases for storing XML data is in general feasible and
a good choice for data-centric documents and on the other hand a poor choice
for document-centered documents. This, among others, because they do not
preserve document order, processing instructions, etc.

In order to initialize the tables in the relation database, the logic structured
of the persisted XML data must be known prior to initialization. This require
the XML data to be logically described as by DTDs or XML Schemas.

Further, if needs arise for persisting XML data, which does not conform to
the existing tables, the database tables needs to be expanded and reinitialized
(using a new logic description). This results in inefficient execution times, and
relational databases are thus only feasible to use, when the XML data structure
is already known.

Another problem regarding the structure of XML data exists when XML doc-
uments contain mixed content3. Table-based mappings are not able to handle
such an object-based mapping efficiently. The structure of the XML documents
is thus required to be simple in relational databases.

In cases the structure of XML documents is irregular the result is either a
large number of columns filled with null values or a large number of tables [31].

3Mixed content occurs when element nodes contain both sub elements and text data

26

A large number of null values waste space and a large number of tables will lead
to slow read and write operations due to a larger number of joins needed for
each database query [30, p.31].

XML Enabled Databases

All major database vendors have implemented support for storing XML docu-
ments directly in the database. Such support makes a database an XML Enabled
Database (XED). XML Enable Databases typically adds functionality to a re-
lational database, which allows for retrieval and storage of XML data. This is
achieved using the existing functionality for the underlying relational database
and extensional bidirectional functionality for converting XML to relational data
and back. As such XEDs are just an extension of relational databases and there-
fore lacks of the same advantages and short comings (see 2.3.2).

2.3.3 Native XML Databases

The most recent advance in database technologies relating XML is Native XML
databases. Native XML databases (NXDs) are designed specifically for storing
XML documents. Like other databases, they support features such as concur-
rency control, scalability in multi-user environments, data integrity, transaction
control, security, query languages, etc. The difference is that their internal
model is specifically designed for persisting XML.

NXDs have the XML document as their fundamental unit. This means
that document order, processing instructions, comments, etc are preserved in
opposition to XEDs. For the same reason the existence of DTDs and XML
Schema’s are not an issue as well as irregularly structured XML documents are
easily stored (again in contrast to XEDs).

That the fundamental unit is the XML document, makes NXDs handle
queries for whole documents very fast and therefore useful for persisting docu-
ment-centric documents. Queries involving XML data spread out in several
documents have execution times worse than XEDs, since all the documents
must be retrieved fully into memory, in order to find the XML data. NXDs are
thus not a feasible solution for documents used in data-centric applications.

2.4 Summary

All of the described approaches have their shortcomings and advantages. A
better solution for persisting XML documents should aim at combining the
advantages and eliminate as many as possible of the shortcomings.

Persistences in flat files lacks of concurrency control in multi-user environ-
ments, transaction control, security etc. All these issues must be handled by
the application programmer. Databases on the other hand handle these auto-
matically.

The aim must therefore be to develop a simple API for persistence of XML
documents. The API is to give a tree-oriented view of XML data, e.g. a DOM
like API, but parsing/unparsing of whole documents should not be done in order
to avoid high processing times and lack of memory for huge documents. The
XML database being stored should be of arbitrary structure and DTDs or XML
Schemas should not be necessary.

27

Furthermore, aspects such as concurrency control, transaction control, secu-
rity etc. should be handled by the API. This should be transparent to applica-
tion programmers in order for him/her to focus on the XML documents.

28

Chapter 3

Value-oriented
programming

This chapter describes the basic concepts of value oriented programming and
put forth advantages of this programming model in a distributed environment.

Central to distributed systems are validity of data, replication and atomic
updates. A main concern in such systems is to keep data consistent after im-
perative updates. Upon failures the problem of partly updated data arise, this
problem becomes more complex in a distributed setting where data is repli-
cated on different machines. To ensure validity of data, complex transaction
mechanisms are necessary as imperative updates are not atomic “by nature”.
Transaction mechanisms provide atomicity as it ensures an all or nothing update
[5, ch. 12-13].

Replication is a key feature in distributed systems as it provides increased
performance, increased availability and fault tolerance [5, p.554]. Replication is
found throughout distributed systems, e.g. web browsers cache the content of
visited web sites, DNS servers replicate domain name to IP mappings to ensure
effectivty and highly available access, etc.

However replication of updateable data requires coherence protocols, to en-
sure up-to-date data. Such protocols limit the effectiveness of replication [5,
p.554]. Replication of immutable data is effective and trivial as no coherence
protocol is necessary. With this in mind we introduce a programming model
that revolves around immutable data. Such a programming model eases the
above mentioned problem of transaction control as data cannot be updated,
and offers, where applicable, a possibility to implement a simple light weight
transaction control.

The programming model is value-oriented programming. Value-oriented pro-
gramming is programming with values and value references. Values are im-
mutable entities, e.g, the value 5 will always be 5. Value references are refer-
ences to values and are values themselves. Value-oriented programming adopts
a share-and-create style (known from functional programming languages such
as ML).

First we describe the basic terminology and concepts of value-oriented pro-
gramming. Then working with trees an a value-oriented fashion is described in
section 3.2. We then describe the value-oriented programming model in con-

29

text of a distributed storage manager. Finally we put forth advantages of this
programming model over the traditional imperative model, when building dis-
tributed systems.

3.1 Value-oriented concepts

Programming with values may, for the purely imperative programmer, seem
alien and not very convenient. As the imperative paradigm revolves around as-
signment and hence modifying data, not being able to update data may seem like
a limitation in the programming model. The imperative programming model
has a copy-update style of data manipulation. This is illustrated by the following
example (using java syntax), creating a stack and adding two entries. The stack
is being updated twice, and the values 2 and 1 is copied on each each push call)

Stack s = new Stack();
s.push(2);
s.push(1);

Implementing the same example in a value-oriented context, may seem im-
possible as values cannot be updated. Another approach must be adopted.

3.1.1 Create

A value oriented version of the example above is done by creating new values,
in ML syntax, could look like;

val s = [];
val s = [2] :: s;
val s = [1] :: s;

In contrast to the imperative version nothing is updated. Each append (::)
creates a new list, leaving the “original” stack unchanged. A reference to the
value is bound to name s, three new values are created and their references are
bound three times (to the same name, hence the last binding will shadow the
first two).

It is not necessary to move to a functional programming language, to find
examples of value-oriented concepts. Java’s String API is value oriented (the
String class is final in Java and cannot by inherited). Strings in Java are treated
as immutable objects, that is all “modifying” methods will create a new String
object, leaving the “original” object unchanged. For example concat which
concatenates two String objects, by returning a third.

String l = "Val";
l = l.concat("ues");

This example concatenates two strings by creating a third, leaving both
”original” strings unchanged (but left as garbage). All methods in the String
interface manipulates String objects in this fashion.

30

3.1.2 Sharing

These examples illustrate the create part of the share-create style. The share
part is hidden from the programmer. Sharing means keeping only one copy
of the same value, and then using references to this value. Sharing values is
possible, because values are always boxed, that is referred to with a reference
(box). Figure 3.1 illustrates the difference between boxed and unboxed values.
In an unboxed representation the value is kept, and in a boxed representation
(only) a fixed sized reference (box) to the value is kept. We purposely leave it
unspecified where values and references are kept, as this may be in memory, on
disk or on a network. This is discussed further in section 3.3.

Unboxed representationUnboxed representation boxed representation

... ...

Value
Unboxed

Boxed Value

Figure 3.1: Unboxed and boxed representation of a value. In unboxed represen-
tation the value is saved directly in the allocated slot. In boxed representation
the slot contains a reference to the actual value, which is saved else where.

References and the immutable nature of values enables an efficient sharing
scheme. When sharing values only one stored copy of a given value exists, so
when using the value several times, references to the single copy are used. This
can be done without any concern to updates of the value (as it is immutable).
Further it is possible to copy (cache) a value without any concern for coher-
ence (see section 3.3). This is an important property of why value-oriented
programming ought to be feasible in a distributed environment.

The following example creates three lists, where the third list is created by
sharing (as opposed to copying) the previous two lists.

val l1 = [1, 2, 3];
val l2 = [4, 5, 6];
val l3 = l1 @ l2; (* [1, 2, 3] @ [4, 5, 6] *)

Cells

Programming with immutable values will in certain applications and situations
result in extensive and complex code. Such situations occur when shared data
is updated frequently and updates must be immediately reflected on processes
sharing the value.

31

A programming model that differentiates between values and mutable ob-
jects, can take benefit from this. This can be done by differentiating between
references to immutable values and references to mutable data, i.e. reference
to frequently updated data. That way immutable values can still be cached
without concerns of validity.

To provide references to frequently updated values the programming model
introduces the concept of cells. Cells are references to data that may be up-
dated, that is unboxed data. Keeping unboxed data directly in a cell has the
disadvantage that the size of the data may change, i.e. cells cannot be fixed size.
Making Cells fixed size variables that can hold a reference to data, compromises
for this.

Cell references differ from box references as they offer the possibility to
update the reference to the value they refer. That is, they not only support
unboxing and boxing operations they also offer update operation. Figure 3.2
depicts a cell reference.

...

Value

Figure 3.2: A cell representation of a value. The cell holds a references to a
fixed sized slot. This slot holds a reference to the represented value. A cell is
updated by writing a new reference (to the updated value) in the fixed sized
slot.

3.2 Value-oriented trees

As XML documents are trees, as described in section 2.1, we describe how to
work with trees in a value-oriented context. This section illustrates how to work
with tree-structured data, using value-oriented programming. In value oriented
programming all nodes (elements and leaf nodes) are considered values, and
child references are value reference.

Consider again figure 3.3, it illustrates a tree representation of some XML
data. Subtrees can be shared. When a tree contains values (subtrees), which
already reside in another tree, these values are shared.

Figure 3.4 illustrates sharing of subtrees. The substree with root node type
is shared. Figure 3.4 also shows that when sharing values, a tree turns into
directed acyclic graphs (dags). As subtrees can be shared between an arbitrary
number of elements it becomes difficult to keep parents pointers, as each node
may have an arbitrarily number of parents.

32

<word>
<keyword>foo</keyword>
<desc>
<p>
<type>jargon</type>
/foo/ A sample name for
absolutely anything ...

</p>
</desc>

</word>

word

keyword desc

foo p

type /foo/....s ...

jargon

Figure 3.3: The left figure shows an example of XML data. The XML data have
no attributes. The right figure shows the corresponding tree representation.

word

keyword desc

foo p

type /foo/....

jargon

word

keyword desc

bar p

1. progr...

Figure 3.4: Sharing of subtrees, the element type is shared between the two
trees

DOM trees are modified imperatively by destructively updating the content
of an element, corresponding to only having cells. In value-oriented program-
ming every single element in a tree is an immutable value. This mean that up-
dating a tree will create a new tree, (typically) by sharing parts of the “orginal”
tree.

Consider figure 3.5, illustrating updating the keyword “bar” to “foo”. This
will create a new keyword element (keyword’) and a new word element (word’).
The word’ element shares non updated parts of the old tree (desc and p). If
no other is referring to the keyword element it becomes garbage. This also
illustrates that when modifying elements this way, sharing values can be done
without any concern for coherence protocols.

33

word

keyword desc

bar p

word’

keyword’

foo

Figure 3.5: “modifying” subtrees mean creating new trees. When e.g. the p
node is changed to p’ (a new subtree is created), witch propagates all the way
to the root node

3.3 Distributed concerns

This section describes the benefits of the value-oriented programming model, in
a distributed environment. Before these benefits can be discussed, certain aspect
of the programming model discussed above need to be addressed. The section
above discussed value-oriented programming in a general fashion, no distinction
was made between values in memory, on disk and on other computers. The view
provided to the application programmer should as well make no distinction of
the location of values, e.g. the location of values should be transparent to the
application programmer.

We have discussed boxed and unboxed representation of values in a general
fashion. Normally boxing and unboxing happens in memory from stack to heap
and from heap to stack, in a persistent context boxing is equal to saving values
and unboxing is equal to loading values1.

Value references are a necessary part of sharing data and thus a central part
of the value-oriented programming model. Value references must be able to be
persistent, such that a storage manager can save values and value references.

3.3.1 Value references

References to values may be an address of (or route to) the actual value or it
might be some other identifier. Location indepent value references are called
value references and location dependent value references are called locators.

In a distributed environment this distinction becomes more obvious (and
more important). If the reference holds the location of the actual value, we will
call such a reference a locator. A further distinction are made on locators. A
locator residing on the local machine (or process) is called a local locator, and

1When saving a value, a byte representation is saved on disk and a reference to the saved
bytes is returned. This is similar to making a value boxed. When loading a refeference is used
to retrieve a specific value. This is the process of unboxing a value.

34

must hold information of the value’s location on the given machine. A global
locator is a locator to a value residing on another machine (or process). Besides
holding information of the value location on the remote machine, the locator
must hold information of the machine’s address. Thus a global locator can be
thought of as a global address paired with a machine specific local locator.

However using locators as references has a number of shortcomings;

1. If values are moved, cached locators become obsolete.

2. Problems when buffering values in order to perform a single write on the
physical disk and the same problems arise when considering asynchronous
write (see section 5.2).

To make the design more general, location independent value references are
introduced. Location independent value references are:

.. universal (in the sense that the same references are used for refer-
ring to data in memory, on disk or on the net), location-independent
(they identify the data, not the location where the data are stored)
and nongenerative (the same data have the same value reference)[32]

Distinct values are mapped to distinct value references, this makes value ref-
erences immutable values them selves, they cannot be updated to referrer to a
different value.

Location indenpendent value references have the following properties:

1. A value reference is a function of the value, vr = f(v).

2. f must map to a domain of short strings; e.g. (0, 1)n, with n = 128

3. f must be effiencently computable.

4. f must minimize change of clashes, that is v 6= v′, but f(v) = f(v′).

5. f should be cryptographically strong, that is not vulnerable to brute force
attacks.

Candidates for f is content hashing functions. Content hash functions com-
pute a given hash value from the content of a given value. That is a given value
will always content hash to the same key. An example of a content hash function
is e.g Message Digest 5 (MD5) [33, p. 272].

To resolve values from value references a reference resolver can be used. A
reference resolver will, given a location independent value reference be able to
retrieve the actual value. An example of a simple reference resolver used in
an in-memory environment. Here the reference resolver may use a hash-table,
which maps references to values (or memory addresses of actual values).

3.4 Distribued advanteges

Introducing the above mentioned programming model will have the following
benifits to an imperative (traditional) model.

35

Easy replication implementing replication and caching becomes easy and ef-
fective as no coherence protocol are needed. Replication involves caching,
memorization and actual copying of values to ensure availability and per-
formance.

Sharing of values the value model also provides sharing of values. In contrast
to replication, sharing means only holding a single copy of a given value.
Values can be effectively shared as they are immutable and never become
invalid.

Atomic updates As all values are referred to by a reference and values them
selves are never updated. Cell updates means updatings a cell with a
value reference for the “new” value. Updating a value reference can be
done atomic. It is possible to implement a simple light weight transaction
control. As the “original” value never is changed, a rollback can be im-
plemented simply by changing the reference back to the “original” value.

36

Chapter 4

The Document Value Model

The Document Object Model (DOM) and the Simple API for XML (SAX)
described in sections 2.2.1 and 2.2.2 are widely used for accessing and modifying
XML documents. Using these application programming interfaces have a range
of shortcomings (described in the above mentioned sections).

The shortcomings of DOM are mainly a result of its imperative program-
ming model. The value-oriented programming model described in chapter 3
solves these shortcomings. The Document Value Model adopts this program-
ming model and the advantages, which it have compared to the imperative
programming model.

The DVM is a high level tree-oriented application programming interface
for well-formed XML documents. It provides an abstract model for represent-
ing XML document structures and specifies methods for creating, accessing,
modifying and persisting documents. The interface is value-oriented, entities in
the Document Value Model is thus considered a value.

As described in section 3.1 documents are modeled as directed acyclic graphs
(dag’s) in a value-oriented programing model. We will referrer to the document
structure as being tree oriented (trees are also dag’s).

XML documents are represented by nodes. No interface distinction is made
between element nodes and chardata nodes, that is Nodes represent either an
XML element or XML character data. Nodes representing XML elements may
have attributes and child nodes. Figure 4.1 illustrates a tree in the Document
Value Model representing an XML document.

The API consists of several interfaces for representing the entities of a doc-
ument and for specifying the functionality of the API. Any implementation of
DVM must implement these interfaces.

The central interface is Node. This interface represents the nodes in a doc-
ument. Access to XML documents is acquired through Node. The interface
MutNode is a subtype of Node, and represents mutable nodes. These are in-
troduced to model the cell references introduced in chapter 3. An interface
for creating nodes (XML documents), XMLStoreFactory, and an interface for
persisting XML Documents (load and save), XMLStore are also specified.

The API only contain the most basic functionality for working with XML
documents. Additional and more convenient functionality can be build using
the basic functionality.

Section 4.1 describes how Node and interfaces related to this interface, are

37

word

keyword desc

foo p

type /foo/....s ...

jargon

Figure 4.1: Graphical representation of the XML document from figure 3.3 in
the DVM. Ellipses denote element nodes and simple text denote character data
nodes. None of the element nodes contain attributes.

used to access documents. The following sections 4.2 and 4.3 describes the
mutable nodes, and a how the visitor interface [10, p.331] are used to add
functionality to nodes, without modifying their interfaces.

Section 4.4 describes the XMLStoreFactory interface for creating XML doc-
uments. Having described creation of documents section 4.5 explains how they
can be modified, when represented by Node’s. The persistence functionality
in XMLStore is described in section 4.6. Naming documents In section 4.8 is
presented a utility library with additional functionality to the basic API.

4.1 Nodes - access to documents

The Node interface is the primary data type of the Document Value Model.
This and the interfaces ChildNodes are the basic interface for representing XML
Documents.

XML elements and XML character data are both represented by the Node
interface. The interface contains functionality for accessing the data of the
element / character data it represents.

The interface ChildNodes is used to represent the sub elements of an XML
element. Attributes and their values are represented as character data using
Java’s String class. It is shown in figure 4.2.

Since the Node interface represents both XML elements and XML character
data a node type is used to determine if an element or character data is repre-
sented. The different values of type are respectively ELEMENT and CHARDATA.

Nodes have a node value, which have a different meaning according to node
type. In case the node type is ELEMENT, the node value is the tag name of the
represented element. In case the type is CHARDATA the value is the character
data.

Most of the methods in the interface have different meanings according to

38

� ��������� 	�
��
������

����������������� � � ���"!$#$%�#�#
�'&)('*�+�,'*-�.*/� �0� � ��!1#2%0#43

506�7�8 9:8 8 ;=< >@?$8 7�ACBD8 8 ;FEGBIHJ7.K L"8 ;M< ND62O0K L"8 ;M< NP6
5.B�QPQ.7PR18 A�STKTUV< WP<=8 XI; OMKMSTX.<�Y

Z/[��	 �.\ � � �$].] \ �.	D�
� �D^ � � �0� � �
�]�_ �2`�	 \ [� � a �=�M� �2b
	c� �C�M� � [��� � 	 Z �$d � a �C�M� �$b�e f

�g�� \ _@�']�_ �1d � & g�� \ _D��]"_ �$d

� � � ������	.
��
h�i'j k ����'���cl

\ ���2bI��g � � �c�
�]I_ � � ��]�_ ��e f

Figure 4.2: Node and ChildNodes interfaces.

the node type. Node interface is defined as

byte ELEMENT byte value used when Node represents an
XML element

byte CHARDATA byte value used when Node represents XML
character data.

bool isMutable() Returns true when node is mutable, else
false. (Section 4.2 describes mutable nodes).

byte getType() Returns the type of Node, either ELEMENT or
CHARDATA.

String getNodeValue() When nodes have type ELEMENT, the name
of the element is returned. When nodes
have type CHARDATA the character data is re-
turned.

String
getAttribute(String
name)

Returns the attribute with the given name.
Nodes of type CHARDATA returns null.

String[]
getAttributeNames()

Returns an array of attribute names. Node
of type CHARDATA return null.

ChildNodes
getChildNodes()

Returns children of Node. Nodes of type
CHARDATA returns an empty ChildNodes in-
stance.

The ChildNodes interface provides an abstraction of an ordered collection of
nodes. Nodes in ChildNodes are accessible via an integral index, starting from 0.

Methods in ChildNodes:

int getLength() Returns the number of nodes in the list.
Node getNode(int index) Returns node with index index.

39

Example 4.1 illustrates how the interfaces can be used to access information
in an XML document. The method void toHtml(Node node, Writer out)
writes a XML document representing a "word" node (see fig 4.2) to a character
stream as a Hyper Text Markup Language (HTML) representation of the word.
(HTML is a standard format for representing hypertext on the World Wide Web,
see the HTML homepage [34]) The method is invoked on the "word" node and
then call itself recursively on the children within the "word" XML document.

public void toHtml(Node node, Writer out){

switch (node.getType()){

case Node.ELEMENT:

if(node.getNodeValue().equals("word")){

out.write("<HTML><BODY>");

toHtml(node.getChildNodes().getNode(0));

toHtml(node.getChildNodes().getNode(1));

out.write("</HTML></BODY>");

}else if(node.getNodeValue().equals("keyword")){

out.write("");

toHtml(node.getChildNodes().getNode(0));

out.write("");

}

else if(node.getNodeValue().equals("p")){

out.write("<P>");

toHtml(node.getChildNodes().getNode(0));

out.write("<P>");

}

else {

ChildNodes children = node.getChildNodes();

for(int i = 0; i < children.getLength(); i++){

toHtml(children.getNode(i));

}

}

break;

case Node.CHARDATA:

out.write(node.getNodeValue());

}

}

Example 4.1: The method converts a fragment of an XML document represent-
ing, which represents a ‘word” element, to HTML.

The HTML code below is illustrates the "word" document representing
"foo". Tabs and line shifts are added in the illustration for the convenience
of the reader.

<HTML>

<BODY>

foo

<P>jargon</P>

<P>/foo/ ...</P>

</BODY>

</HTML>

40

� �������	��
���

������

� �������	��
���

������������

��������� �
!����" #$�����

Figure 4.3: The MutNode interface.

The example illustrates how data in XML documents are accessed in the
Document Value Model. Accessing data in value-oriented programming models
is conceptually not any different from accessing data in the imperative model.

In the value-oriented model described in chapter 3 child nodes are obtained
by using value references for the child nodes. In DVM this is hidden from
the application programmer to provide a more convenient and usable interface.
The child nodes are obtained through the method getChildNodes() and the
interface ChildNodes. Also if they must be loaded from storage before usage
(loading is tansparant).

The interface Node is used for representing both XML elements and character
data. The result is that Node methods have different meanings according to the
node type, and that casing on the node type might be performed often. (The
example shows casing by switch(node.getType())...). The solution would
be to introduce of sub interfaces representing elements and character data. Such
a solution may lead to excessive down casts, which are unsafe and slow.

4.2 Mutable nodes

In certain situations only programming with values can be cumbersome and
inflexible, as described in section 3.1. The introduction of cells in the value-
oriented programming model solved the problem.

Value references and thereby cells are not accessible when documents are
traversed (see section 4.1). Cells can thus not be acquired for child nodes during
traversal. As the Node interface does not allow modification (nodes are values)
some other mean of representing cells in the Document Value Model is necessary.

The interface MutNode is introduced to represent cells. This interface rep-
resents mutable nodes, that is nodes, who’s node value, attributes and children
may be changed. As mutable nodes also represents values the MutNode interface
inherits the Node interface. The interface is shown in figure 4.3.

Using mutable nodes the state of the node is updateable. The state is the

41

node value, the attributes and the children of the node.
Method definitions:

void setNodeState(Node
node)

The method takes a node as parameter rep-
resenting the new state of the mutable node.

Node getNodeState() The method returns an immutable node
representing the nodes state.

Mutable nodes are specially usable in situations where documents contain
mainly static data, but a small part of the document is frequently updated.
When data does not change frequently, mutable nodes should not even be con-
sidered, as all advantages of value-oriented programming are lost (see section
3.1). Different examples illustrates usage patterns of immutable nodes.

The dictionary example used through out the report can be extended to
contain information of most popular words, i.e. words requested most often. In
order to provide this information a counter can be attached to each word to keep
track of how many count have been performed for that particular word. The
structure of a word subtree is then modified as shown in figure 4.4 to contain
a ’count’ element node, which contains the ’request count’ in a character data
node.

word

keyword desc requests

foo p

type /foo/....s ...

jargon

12

Figure 4.4: The ’word’ nodes are modified to contain a search counter. The
character data node, which contains the count is mutable. This example shows
a subtree representing the word ’foo’ which have been found 12 times.

In this case it would be cumbersome to update the whole ’dictionary’ tree for
each successful search. Instead the character data node representing the search
count can be made mutable. Example 4.2 illustrates updation of the search
count. (The example is a slight modification of XMLStoreDictionary’s search
functionality given in appendix B).

Notice that down casting is necessary to invoke the setNodeState method of

42

public Node keywordSearch(String keyword){

loadDict();

Document doc = builder.newDocument();

if(binarySearch(keyword)){

NodeList nlst = ((Element)match).getElementsByTagName("count");

Element count = (Element)nlst.item(0);

int c = Integer.parseInt(count.getAttribute("value"));

count.setAttribute("value", c+"");

saveDict();

Node n = doc.importNode(match, true);

doc.appendChild(n);

dict = null;

return doc;

}

Node res = doc.createElement("word");

res.appendChild(doc.createTextNode("No match on keyword "

+ keyword));

doc.appendChild(res);

dict = null;

return doc;

}

Example 4.2: A request for a word is performed. The search is done by the
method binaryLookup, which is not shown. If the search succeeds the search
counter of the found word is incremented, and the subtree representing the word
is returned. Exception handling is purposely left out to keep code clean and
readable.

43

MutNode, which is expensive during performance. Since mutable nodes are not
to used thoughtlessly, but only in special cases, this is considered an acceptable
solution.

Invoking the methods getX() from the Node interface on mutable nodes
should be done with care. Consider a case where the methods getAttribute-
Names() and getAttribute(String name) are invoked on a mutable node.
In case another process invokes setNodeState(Node state) and change the
attributes in between these two calls problems might occur. Access to the
mutable nodes is thus safest through use of the method getNodeState().

Comparing with the value-oriented programming model introduced in chap-
ter 3 the setNodeState method corresponds to the updation of a cell reference.
The MutNode interface thus preserves the property, that updates are done atom-
ically.

4.3 Adding functionality

Application programmers may need additional functionality when working with
DVM. Using functional languages this can done elegantly with higher order
functions.

In object oriented languages functionality could be added by extending the
Node interface. This approach have two shortcomings:

� Expensive downcasts required to gain access to extended functionality.

� Many different interfaces, all with different added functionality may be
created, or the one additional interface might be populated with many
unrelated functions. In any case this makes code complex and inflexible

Applying the Visitor pattern ([10, p. 331]) allows functionality to be added
to nodes, without modifying the node interfaces. The visitor pattern provides
many of the advantages of higher order functions.

The Visitor pattern is introduced by the interface Visitor and the accept
method in the Node interface. The Visitor interface is shown in figure 4.5.

� �������	��
���
�� ���� ���

����� ����� ����� "!#%$ &'&)(+*-,.0/1�2��*�� ,
����� ����� ����� "!#3#546� (+*�,7.8/1�9�:*-� ,

Figure 4.5:

The accept method is already described in section 4.1. The visit methods
takes either an immutable node or mutable nodes as parameters. The code for
visiting a node is written within these methods.

When working with the visitor pattern two approaches for traversing the
object structures exist.

44

1. The traversal code is written in the accept method of the object type to
be traversed. This have the advantage that traversal code is only written
once.

2. The traversal code is written by the application programmer in the visit
methods. The advantage of this approach is greater flexibility, since the
traversal can be stopped within the visit methods.

The Document Value Model adopts the latter approach. This due to the fact
that document can be arbitrarily large and a whole traversal of such documents
might not be desirable.

Example 4.3 illustrates how to write a visitor for a Node. The example
illustrates the same as example 4.1. Code for the visit(DVMMutNode) method
is not illustrated as the visit methods in this case contains similar functionality.

public class HTMLVisitor extends Visitor{

private Writer out;

public HTMLVisitor(Writer out){this.out = out;}

public void visit(DVMImmNode node){

switch(node.getType()){

case Node.ELEMENT:

if(node.getNodeValue().equals("keyword")){

out.write("");

node.getChildNodes().getNode(0).accept(this);

out.write("");

}

else if(node.getNodeValue().equals("p")){

out.write("<p>");

node.getChildNodes().getNode(0).accept(this);

out.write("<p>");

}

else {

ChildNodes children = node.getChildNodes();

for(int i = 0; i < children.getLength(); i++){

children.getNode(i).accept(this);

}

}

break;

case Node.CHARDATA:

out.write(node.getNodeValue());

}

}

}

Example 4.3: A Visitor for printing ’word’ nodes into HTML factions. The
words (keyword) are written in bold and p elements are written as HTML
paragraphs. All other element are not converted to HTML but simply traversed
to reach the character data nodes. The value of these are simply written.

The visitor pattern allows for a flexible way of implementing additional func-
tionality to be performed on document trees. By letting the application pro-

45

grammer implement the traversal code, the flexibility is even improved. This
have the draw back though, that application programmers are to implement the
often same traversal code in each visit method in all Visitor implementations.

4.4 Creation of documents

To create new XML documents and modify existing documents functionality
for node creation is necessary. This functionality should not reveal the specific
implementation of the Document Value Model (DVM).

The Abstract Factory pattern [10, p.87] is used for specifying methods for
creating nodes, child nodes and instances of the XMLStore interface described in
section 4.6. The interface can be seen from figure 4.6. An additional interface,
Attribute, is introduced.

� �������	��
����
�� � ��� ����� �

�
�� ����� ����� � �"!
�#
%$&��� �'��� � �(!

)+*-,�./� 0��	��1�2�3�� 0��	4

5�687:9#;=< 9?>A@#;B7:C�;=< ;?DFEBGB9�HIG#;A< ;=J K%< 7�L M=N(OPJ DFE=G�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN?V	6W@�L S G�7	9�MBJ	>A@�L S G�DFE=G�9#XYOZJ DFEAG�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN?V	6W@�L S G�J DFE�G�9[OPJ DFE=G�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN?V	6W@�L S G�7	9�MBJ	>A@�L S G�DFE=G�9#X#V ;"< < 7�XPJ \�< < 7�L]"^#<I9`_ a�OPJ DFE�G�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN?V	6W@�L S G�J DFE�G�9bV ;�< < 7�XPJ \�< < 7�L]�^�< 9B_ a�OZJ DFEAG�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN?V ;�< < 7�XPJ \�< < 7�L]�^�< 9B_ a�OPJ DFE=G�9
5�687:9#;=< 9RQ�S 9�TU9(M?< DFEBGB9�H < ;(NFD�;�TU9RJ KR< 7�L MPN"OZJ DFEAG�9
5�687:9#;=< 9�cd^#< QFS 9(Te9(M�< DFEAGB9�H < ;PNRD�;RTf9�J K/< 7 L MbN�Vg6#@�L S G#7:9(M=J�>A@�L S�G�DFE�G�9�X[V�;?< < 7�XBJ \/< < 7�L]�^�< 9Y_ a�OPJ DFE�GR9
5�687:9#;=< 9�cd^#<�>A@�;�7:C�;"< ;�DFE=G�9�HIGb;"< ;=J K/< 7�L MPN�O:J DFE%G�9
5�687:9#;=< 9B\'< < 7�L]�^�< 9�HgM#;�Th9BJ K�< 7�L M�N�V8i8;BS ^�9�J K%< 7�L M=NbOPJ \/< < 7�L]=^�< 9
5�687:9#;=< 9?>A@�L S GBDFEBGR9�XPHgM�EAGB9(X�J DFE=G�9B_ a�OZJ	>j@BL S�G�DFE�G�9"X
5�687:9#;=< 9Bk?cUlRK%< E#7:9�HgM#;�Th9BJ K�<	7�L M`N#OPJ k�chlBK%< E�7�9

Figure 4.6: XMLStoreFactory and Attribute.

By using the Abstract Factory pattern for creation, the code of application
programmers will not become full of constructor calls for creating new instances.
This provide the advantage that the implementation of the DVM interface can
be exchanged with another implementation without affecting the existing DVM
applications.

The create methods are described as:

46

Node
createCharDataNode(String
value)

The method creates an immutable
node representing the character
data provided in the argument.

Node
createElementNode(String
value, Attribute[] attrs,
Node[] children)

Creates immutable element nodes,
given tag name, attributes and chil-
dren.

Node
createMutCharDataNode(String
value)

Create and return mutable node
representing character data.

Node
createMutElementNode(String
value, Attribute[] attrs,
Node[] children)]

Create and return a mutable node
representing an XML element.

Attribute
createAttribute(String
name, String value)

Creates an attribute, given name
and value.

XMLStore
createXMLStore(String name)

Creates an XMLStore instance,
given the name for the XML Store.

The Attribute interface is only used for the process of initializing nodes. It
represents the name and value of attributes.

String getValue() The method returns the value of the attribute.
String getName() The method returns the name of the attribute.

The following example illustrates the process of creating nodes. An XML
element with the tag name ”keyword” is created. The content of the element is
character data ”bar”.

Node barValue = factory.createCharDataNode("bar");

Node barKeyword = factory.createElementNode("keyword", barValue);

... // create rest of tree

Node word = factory.createElementNode("word",

new Node[]{ barKeyword, desc })

Example 4.4: createX() methods are used to create new nodes.

When creating new nodes or trees application programmers may use already
existing nodes, and thereby share nodes. Nodes can be shared within the same
document or between documents. As discussed in chapter 3 this can be done
without concern to validity of data and therefore without implementing complex
update protocols.

Example 4.5 illustrates sharing in the DVM. The example continues example
4.4. A node with children fooValue and barValue is created. barValue is
shared.

Shared nodes is located on disk or on another machine in the network. Using
shared nodes versus non-shared nodes makes no difference to the application
programmer.

47

Node fooValue = factory.createCharDataNode("foo");

Node keywords = factory.createElementNode(

factory.createChildNodes(

new Node[]{fooValue, barValue}

)

);

Example 4.5: Creating Nodes using existing node, from example 4.4

4.5 Modification of documents

As described in chapter 3, the difference in value-oriented and imperative pro-
gramming style is the way data is manipulated.

Using the Document Value Model (DVM) modification of nodes are made
by creating new nodes.

New nodes are created by applying the createX methods from the XMLStore-
Factory interface. Node values, attributes and/or child nodes from the node
being modified can be reused when creating the new node.

Example 4.6 illustrates how modification is carried out. The content of a
”keyword” XML element is changed from ’bar’ to ’foo’.

Node fooKeyword = factory.createCharDataNode("foo");

Node desc = word.getChildNode().getNode(1);

word = factory.createElementNode("word",

new Node[]{fooKeyword, desc});

Example 4.6: Modifications in DVM are done by building new documents. Ex-
ample change keyword ”bar” to ”foo”, in node ”word”. The example Continues
code from example 4.4 and 4.5

As seen in the example this style of modifying new nodes (values) corre-
sponds to the style described in section 3.2 for modifying value-oriented trees
(directed acyclic graphs).

4.6 Persistence of documents

Working with XML documents implies loading and saving the documents. The
Document Value Model (DOM) does not specify such functionality1. This task
is left to the application programmer DOM.

When persisting XML documents the approaches often used by application
programmers, is to store the XML documents in flat files or databases. Section
2.3.1 describes these approaches and their disadvantages.

Persistence of XML document are location and distribution transparent in
the Document Value Model (DVM). The persistence functionality is provided
by the save and load methods of the XMLStore interface, which can be seen
from figure 4.7.

1The Document Value Model level 1 & 2 does not specify functionality for saving and
loading. Level 3 specifies such, but is currently only a working draft

48

� �������	��
���
��������������

��� �"! #%$�&')(#�* +,'�(�#.-�* /��0�1#23#�4 #65�#�&%7�#
��0 '��8(�$9! :�;	5	#<��=�23#�4 * />��0 16#�23#4 #65�#�&%7�#>-?* +@'%(A#
��0 '�'�B.1>CD$ &���=�#�* :D; 5FE &)G.-�*�/H��0�16#�23#A4 #�5�#6&)7�#
��IE &J(�$ &A��=�#�*9:�; 5FE &.G%K>! 23#�4 *L/�%0�16#�23#A4 #65�#�&%7�#>-�*M!�'�E�(
�5	#6I�E &)(�$ &A�%=�#*9:�; 5FE &)GNK�!M23#4 * /��0�1�#�23#�49#65	#<&%7M#6-�*M!�'�E�(

Figure 4.7: XMLStore interface.

ValueReference is an interface representing value references (defined in
chapter 3). The interface is described in chapter 5.2.

The methods save and load are defined as:

ValueReference save(Node
node)

Saves documents. node is the document
root node. A value reference for the per-
sisted document is returned.

Node load(ValueReference
ref)

Loads a document using the value ref-
erence ref.

Value reference are used to retrieve documents and returned when docu-
ments are stored. They are unique to saved document as required in section
3.1. The content of the value references is not accessible, not readable and not
(re)producible. The application programmer can therefore not produce value
references in order to retrieve documents from XMLStore.

Example 4.7 demonstrates loading a document and saving a document. It
is not shown how a value reference for the document is obtained (line 1). When
saving the modified document a new value reference is returned. For the sim-
plicity of the example the code modifying the dictionary is not shown, but just
represented by a”...”.

1 ValueReference ref = ...

2 Node dictionary = xmlstore.load(ref);

3 ...

4 Node newDictionary = ... //create or modify document

5 ValueReference newRef = xmlstore.save(newDictionary);

6

Example 4.7: The procedure of loading(, modifying) and saving a XML docu-
ment.

The use of value references when saving and loading XML documents, makes
the XMLStore interface provide a location and distribution transparent interface
for loading and saving documents. Location of documents and protocols for
distributed loading and saving is thus not of concern to the application program-
mer and full attention can therefore be paid to the manipulation of documents.

49

Further the application programmer is not affected by the movement of
documents. This imposes that mobility of documents can be implemented in
DVM with out any side effects on the application code.

Besides being location independent the interface does not reveal how docu-
ments are persisted, e.g. in flat files, in databases, in log structured storage. It
only provides the application programmer with a tree view of the XML docu-
ments.

Another advantage of the XMLStore interface is that documents does not
have to be loaded fully into memory, i.e. the interface does not specify methods
for parsing a whole document into memory, before access and manipulation of
the document can be made. Instead the interface allows for lazy loading and
thereby access and manipulation of arbitrarily sized documents.

4.7 Symbolic names for documents

To use the Document Value Model (DVM) to implement useful applications
XML documents must be associated with human readable names rather than
value references. Clients cannot share particular resources managed by a compu-
ter systems unless they can name them consistently. Thus, names facilitate
communication and sharing [5].

The entire world is not value-oriented, e.g new articles are published by (on-
line) newspapers and the weather forecast change. Consider newspapers pub-
lished on the Internet. The most recent version of the newspapers is normally re-
trieved by using a shared updateable name, such as http://www.politiken.dk.
To share documents using the Document Value Model we need to provide a name
service, which allows for retrieval of documents using human readable names.

Before describing a name service in the Document Value Model the concepts
of names and a name service is defined in section 4.7.1. Then the name service
functionality of Document Value Model is defined in section 4.7.2.

4.7.1 Names and name service

A name is a (preferable human readable) sequence of characters, which belongs
to a name space. A name space is a collection of valid names. Associations
between names and resources are called bindings. A name service contains zero
or more bindings. A name service must be able to create new bindings and
resolve names (i.e. look up resources given a name).

Names are said to be pure if they contain no location information. non-pure
names contain some degree of location information of the resource, which they
name. Addresses are names consisting entirely of location information.

Value references can regarded pure names, which are not human readable.
Locator are regarded addresses. Value references are as already described not
adequate for retrieving and storing XML documents in the Document Value
Model because they are not human readable.

4.7.2 The DVM name service functionality

In the Document Value Model (DVM) XML Documents may be associated with
human readable names by creating name to value reference bindings.

50

The name service functionality of the Document Value Model is contained
in the XMLStore interface. Using this functionality names are resolved (their
associated value reference looked up), new name to value reference bindings are
made and existing name to value reference bindings are rebound.

The name service functionality is provided by the methods lookup, bind
and rebind shown in figure 4.7. They are defined as:

void bind(String
name,
ValueReference ref)

Creates a binding between name and ref. The
binding is shared with all other peers within the
XML Store.

ValueReference
lookup(String name)

Resolves name, that is looks up a value reference.
If name does not exist null is returned.

void rebind(String
name,
ValueReference ref)

Updates a name-value references binding, i.e. af-
ter having invoked rebind(name,valref), name is
mapped to valref.

In the value-orientation programming model updates are performed atomi-
cally (see section 3.4). The rebind method thus provides atomic updates of the
name-value reference binding.

Example 4.8 illustrates how an XML document is retrieved by using a sym-
bolic human readable name. The example is an extension of example 4.7. The
XML document being loaded and saved is the FOLDOC dictionary (see ap-
pendix B). The document name is "FOLDOC".

ValueReference ref = xmlstore.lookup("FOLDOC");

Node dictionary = xmlstore.load(ref);

...

Node newDictionary = ... //create or modify document

ValueReference newRef = xmlstore.save(newDictionary);

xmlstore.rebind("FOLDOC", newRef);

Example 4.8: The XML document with the symbolic name "FOLDOC" is loaded,
modified and saved. First the symbolic name is resolved and next the obtained
value reference is used for loading the document. After saving the modified
document the symbolic name is updated with the new value reference.

The name service makes it possible to retrieve XML documents by using
human readable names in constrast to only using value references. Since value
references are location independent but uniquely identifies documents, a pure
name space is obtained, in which document names are independent from docu-
ment locations.

The name service functionality introduces an imperative aspect in DVM
due to the destructive update functionality of the rebind method. Each time
rebind is used a value reference is removed from the name service. Documents
obtained through the removed value references are thus not retrievable using
symbolic names. This is in contrast to the value-oriented model in which values
are never removed.

As the number of symbolic names in a name service increases it becomes
more difficult to come up with new document names. Application programmers

51

wanting to name their documents might thus choose names already used. This
makes the name service insufficient for storing huge amounts of bindings. A
more complex solution providing a more suitable name service functionality is
thus required.

4.8 Utility library

The Document Value Model interface only provide the most basic functionality
for accessing and manipulating XML documents. Writing applications using
this Application Programming Interface (API) might become tedious and in-
convenient.

A utility library containing extra functionality has been develop to improve
the usefulness of the Document Value Model (DVM).

The need for additional functionality could be solved in two different ap-
proaches. The first approach is to extend the existing DVM interfaces with
additional functionality. This has the shortcoming, that down casts are neces-
sary to acquire access to the additional functionality. The second approach is
the one adopted, that is write a utility library containing the additional func-
tionality. This has two advantages: 1) functionality is accessible without down
casts. 2) Existing interfaces can be used with new utility libraries.

The provided utility library has been implemented during development and
testing of a DVM prototype implementation. Only a subset of the most impor-
tant utilities are described. The functionality provided in the utility library can
be separated in two groups: methods for convenient access to and modification
of nodes and methods for building DVM representations from different XML
representations, e.g. from serialized XML documents.

The first group of methods (access and modification) are described in section
4.8.1 and the last group in section 4.8.2.

���������
	 �

�� ����� ����������� � ������� �� ��!�#" � �$�!�#%�� � �'&(" ����� � �)� �� ��*�!+,� �� ��-�
�� ����� ����������� � ��� ����� � ���� ��-�$.�� ����� � ���� ��/�$.�"(� �$�!�#%�� � �'&(" ����� � �)� �� ��*�!+,� ����� � ���� ��/��.
��� �$.!�01& ����� � �0�2��� �� ��/�#" � �#�!�$%�� � �#&(" �3��� � �4� �� ��-�$+,� �� ��*�
�� �*5� !6�������� � ���2�0� �� ��-�0" � �'�-�'%�� � �#& +(� �� ��-�
�*.87�9)����� � �)�� ��/�$.3�:�0��� � �)�� ��*�!.;�<����� � �)�� ��!�*.;" .�&��01&<� � �0&(" � �0�#=�&<��� � �'& +,� ����� � �)�� !���!.
�*=!�!& >?& &< � 9�7'&��*.3�2�0� �� ��/�$+,� >/& &<@� 9�7#&���A B
����C07;��� .0���0 ��!�*D�� �� ��!�#" �0 ��!�*E�� �� ��!�*+(� 9# � -� ���0�

Figure 4.8: DVMUtil interface

4.8.1 Access and modification

Access and modification of XML documents in the Document Value Model
(DVM) might become inconvenient, since only the most basic functionality is

52

provided. Specially the process of modifying nodes (by building new nodes)
might become tedious and inconvenient.

The class DVMUtil contains functionality for easing the process of access and
modification to XML documents. The class interface is shown in figure 4.8.

Method definitions:

Node replaceChild(Node n,
int index, Node child)

Returns a new node, created by replacing
child with n’s child node at index index.

ChildNodes
replaceChild(ChildNodes
children, int index, Node
n)

Returns new ChildNodes, created by re-
placing node at index in children with
node n.

Node insertChild(Node n,
int index, Node child)

Return a new node, created by adding
node child to index index in n’s child
nodes.

Node removeChild(Node n,
int index)

Returns a new node, created by removing
child node at index index in node n’s child
nodes.

ChildNodes
subChildNodes(ChildNodes
childNodes, in start, int
length)

Return a ChildNodes, which is a sub list of
childNodes. The sub list begins at index
start and ends at index start + length.

Attribute[]
getAttributes(Node n)

Returns an array of the attributes, associ-
ated to the node n.

boolean equals(Node node1,
Node node2)

The method checks equality of two nodes.
In order to be equal two nodes must have
the same type. For character data nodes,
the character data’s (i.e. node values)
must also be equal. For element nodes
equality is checked by

1. equality of the tag names (i.e. node
values).

2. equality of the attributes. The same
attributes must occur with in the
elements, and each attribute must
have the same value within the el-
ements.

3. equality of child nodes. Child nodes
must occur with the same order
in the elements. Their equality is
checked recursively.

(Another approach would be to test equal-
ity by comparing value references for the
nodes. This approach is however not ap-
plied.)

53

Example 4.9 shows insertion and removal using the methods described above.
The example is a modification of example 4.5.

word = DVMUtil.remove(word, 0);

word = DVMUtil.insert(word, 0, fooValue);

Example 4.9: Utility methods removeChild and insertChild makes DVM
more convenient to use. The difference from an imperative model, is that they
do not modify nodes, but return new nodes

Example 4.9 purposely illustrates removal and insertion using utility meth-
ods removeChild and insertChild. For the functionality performed, i.e. re-
placement of a node, the replaceChild method is more convenient. This is
illustrated in example 4.10.

word = DVMUtil.replaceChild(word, 0, foo);

Example 4.10: The method replaceChild provides functionality for replacing
child nodes.

The introduced utility methods improve the programming using DVM. Simi-
lar methods can be found in the Document Value Model’s interface. The seman-
tics of the interfaces however differ significantly, as destructive updates is not
performed in DVM. Instead the utility methods perform updates by creating
and returning new nodes.

4.8.2 Building DVM representations

While developing and testing the prototype implementation of XML Store func-
tionality for building XML documents persisted as flat files into a DVM repre-
sentation was necessary. Such functionality would be of general use, especially
when users of applications must write small XML documents.

The functionality is part of the utility library and implemented in the class
DVMBuilder. The class interface is shown in figure 4.9.

���������
	 � ����

��������������� � � ! ���
"�#%$'&�"(�*)+��,%� - &�.
�
��"
���������(����� �/� ! ����"0#%$1&�"1�)
��,2� 34��5 "
�
$6#7� �
� 8:94�<;=���*���<)(�

Figure 4.9: The interface of the class DVMBuilder.

54

The methods of the interface are described as:

Node
parse(InputSource
in)

Reads an XML document in serialized form, from
an InputSource and builds a DVM representation
of the document. The return value is the root node
of the DVM representation. The DVM document
consists of immutable nodes and is not saved.

ValueReference
unparse(InputSource
in)

Unparses an XML document in serialized format
to a persistent representation in the Document
Value Model (DVM). The DVM document consists
of immutable nodes is saved during unparsing. A
reference to the document’s root node is returned.

Example 4.11 illustrates how the unparse method is used to unparse an XML
document in serialized representation into a persistent DVM representation.

InputSource in = new InputSource(new FileReader(xmlFile));

XMLStore xmlstore = ... // initialize xmlstore if not already done

DVMBuilder builder = new DVMBuilder(xmlstore);

ValueReference ref = builder.unparse(in);

Example 4.11: DVMBuilder is used to unparse XML persisted in a flat file into
a persistent DVM representation. The method returns a reference to the root
node of the XML document.

The unparse method is specially useful in situations, where huge XML doc-
uments is persisted in flat files must be persisted in a DVM representation.
(Chapters 6 and 7 describes such a cases).

4.8.3 Summery

The introduced Document Value Model (DVM) has a value-oriented interface
for creating, accessing, modifying and persisting XML documents. DVM has
the following properties:

� DVM does not offer a vast and complex interface for working with XML
documents, only the most basic functionality is specified.

� The DVM functionality is extensible, either by inheritance, development
of utility libraries or by using the provided visitor pattern.

� DVM offer no destructive update operations on the Node interface. Mod-
ifications are either performed by creating new Node’s or by using the
MutNode interface, which corresponds to the using cells as described in
chapter 3.

� The interface allows for convenient traversal of document trees, since ref-
erences are not needed to retrieve child nodes.

� XML documents may be shared.

55

� Location and distribution of documents are transparent to the application
programmer.

� DVM allows for lazy loading of documents (on request). This prevents
loading whole documents into memory, when only a small selections are
needed. The advantage is clearly that huge documents can build, without
concerns of memory usage.

� In-memory nodes and on-disk nodes are treated equally by applications
programmers.

The DVM also have shortcomings. These are not due the value-oriented
programming model, but only to the interface design.

� The name service functionality does not allow multiple value reference to
be bound to the same name.

� The name service functionality introduces an imperative aspect into DVM.

56

Chapter 5

XML Store architecture

An implementation of the Document Value Model (DVM) described in chapter
4 is a storage manager that handle persistence and distribution. This chapter
discuss the design of such a storage manager, called XML Store.

XML Store is a value-oriented storage facility that transparently persists and
distributes XML documents. XML Store supplies the Document Value Model,
allowing application programmers to persist, access and manipulate XML doc-
uments stored in an XML Store (network).

XML Store is a peer-2-peer storage facility (as defined in section 1.5), the
term XML Store referrers to a peer-2-peer network. The term XML Store peer
referrers a single peer (computer) in the network. Each XML Store peer has
functionality to persist XML documents and to retrieve XML documents stored
in XML Store. Figure 5.1 illustrates an XML Store. No central servers exist
and each peer therefore acts both as a server and a client.

Peer

Peer

Peer

Peer

Peer

Figure 5.1: XML Store consists of XML Store peers. Each peer may communi-
cate with all other peers in the network.

To load documents stored in XML Store, peers use value references as de-
scribed in chapter 3. Value references to all nodes in any XML document exists,
as described in section 3.2. To load a document from another peer it’s location
in the network (ip and port) must be know. As described in section 3.3.1 value
reference are location independent. To resolve a value (node) from a value ref-
erence a locator is needed. Locators are as described in section 3.3.1 an address

57

of the actual value. The process of loading a document given a value reference
therefore includes retrieving a locator for the document (node). Retrieving a lo-
cator is done using a reference server. The reference server can conceptually be
thought of as a global hash table that contains value reference to locator map-
pings. The reference server is part of the peer-2-peer system, i.e. distributed
among XML Store peers. Communication with other reference server peers is
done using IP Multicast[5, p. 154] as described in section 5.1.

With a locator a connection to the peer holding the document can be made.
This connection is made using sockets.

XML Store peers have a layered architecture. They consist of a DVM layer
and a disk layer. Figure 5.2 depicts the layered structure of a peer. The disk
layer provides functionality for saving and retrieving data in the form of bytes
and is described in section 5.2.

DVMPeer

OS

Disk

Applications

Figure 5.2: Single peer layered architecture consisting of a DVM layer and a
Disk layer. Applications are build on top of the DVM layer.

To allow application programmers to give XML documents stored in XML
Store symbolic names, a name server functionality is necessary. The name server
maps symbolic names to value references, e.g. “dictionary” → “some 128 bit
location independent value reference”. The name server should also be part of
the peer-2-peer network, but is in the prototype implementation given with this
thesis, a simple insufficient client-server solution.

These concepts disk, DVM, reference server and name server, is the basic
parts of XML Store. The disk layer consists of two parts, the actual disk part
(handles loading and saving from physical disk) and a reference server part.
The reference server is integrated with the disk, the disk uses a reference server
when loading and saving. The name server is in the same way part of the DVM
layer. Application programmers use the DVM interface, parts of this include
binding, unbinding and looking up symbolic names, this is handled by the name
server. These issues are illustrated in figure 5.3 that illuterates steps involved
in retrieving a document from an XML Store.

The process of retrieving documents in XML Store involves several steps.

1. given a document name provided by the application programmer a value
reference to the document is looked up using a name server

2. loading the document using this reference involves:

58

1

2a

2

2b

Peer

Peer

Peer

Peer

Peer

document documentname

lookup

lookup

DVM Layer

locator

reference

load

Physical Disk (may be on another machine)

Application Layer

reference
server

OS Layer

nameserver

load

load

Disk Layer

Figure 5.3: Retrieving a document from XML Store. The value reference as-
sociated with a document name must be looked up using a name server. To
retrieve the document from the value a locator must be looked up using a ref-
erence server. Given a locator the actual document can be loaded. (Italic text
denotes actions.)

(a) using the value reference server to lookup a locator.

(b) using this locator loading the actual document.

(c) returning the loaded document

Documents are loaded lazily (to prevent whole documents from being loaded into
main memory), thus loading a document means loading the root node. When
child nodes are needed, these are loaded using the same process but starting at
point 2a.

The reference server is described in section 5.1. The disk functionality is de-
scribed in section 5.2. The name server is described in section 5.3. The DVM
interface described fully in chapter 4.

5.1 Reference server

The reference server provides a distributed service for mapping value references
to locators, needed to locate a value (node), in XML Store. The service is
basically a distributed hash table allowing key (value reference) to data (locator)
mappings.

The distributed hash table conform to these requirements:

Decentralized Scalability is a requirement (see section 1.1.1) and since cen-
tralized solutions introduces possible bottlenecks in distributed networks

59

(and therefore is not scalable), a decentralized peer-2-peer solution with
a network of reference server peers is preferable.

Flat network hierarchy All peers in the distributed reference server network
contribute on equal terms. They all have responsibility to persist map-
pings, and none of them is assigned any key role, with a greater responsi-
bility than others.

Stateless network peers A peer in the reference service network keeps no
explicit knowledge of other peers. This in order to conform with the
requirement that no XML Store peer keeps knowledge of any other peers
in an XML Store network. This makes it possible for peers to join a
network without the updating existing peers with its presence.

Persistent mappings Two properties of the XML Store requires persistent
mappings.

1. Mappings should survive the termination of processes. Mappings
residing in dynamic memory are not reproduceable after process ter-
mination. Persistent mappings are reproduceable.

2. It may not be feasible to keep all mapping in dynamic memory, as
the amount of key-data pairs can be large. In order not to take up
to much dynamic memory a persistent solution is preferable.

The reference service network is constructed, such that a part of each XML
Store peer is a reference service as illustrated in figure 5.4.

Peer

REF

Peer

REF
Peer

REF

Peer

REF

Peer

REF

Figure 5.4: The XML Store peer-2-peer network. Each XML Store peer contains
reference service functionality (denoted by REF). Communication between the
peers takes place in order to provide a distributed reference service.

A reference service peer is constructed as an API which is usable without
knowledge of XML Store peers. This way the functionality can be used by
other applications (although developed specifically to be used in the XML Store
network) and the implementation of XML Store peers and reference server peer
can change independently.

The reference server provides the basic functionality of a hash table (lookup,
bind).

60

Locator lookup(ValueReference vr) A locator is looked up
given the value reference
in the argument.

void bind(ValueReference vr, Locator
loc)

The given locator is bound
to the given value refer-
ence.

5.1.1 Protocol

Building a decentralized distributed hash table functionality requires interaction
between the participants in the network.

The reference service protocol is the protocol for performing a lookup and
bind in the distributed decentralized reference service network.

As described in section 5.1 reference service peers does not contain infor-
mation of other peers. The reference service protocol must thus be performed
without any knowledge of participating peers.

IP Multicast allows communication without knowledge of the participants in
the lookup service network. IP Multicast allows a sender to send IP packages
to a group of receivers, without knowing the identity of those receivers. Such a
group is called a multicast group and is specified by a Class D Internet address,
i.e. an Internet address used specifically for multicast groups [5, p.93]. Receivers
has to join the group using the same Class D Internet address. IP Multicast is
a build on top of the Internet Protocol (IP).

Using IP Multicast the following protocol is used to perform distributed
lookup:

1. The requested key (value reference) is looked up locally. If the key resides
on locally its associated data (locator) is returned.

2. If the key does not reside locally, a lookup request is sent to the multicast
group. The lookup request contains a lookup request id and the key. A
request id uniquely identifies the lookup request.

3. When a peer from the multicast group receives a lookup request, it checks
if it holds the key-data mapping. If it does, it replies directly to the lookup
peer having sent the request. (IP packages contain the sender IP, which
the peer extract and use to reply). The reply is a lookup answer which
contains the lookup request id and the requested data.

If the peer does not hold the key-data mapping no further actions is taken.
This will eventually lead to at timeout if no peer holds the key.

4. The requesting peer caches the mapping when it receives a reply.

As described above key-data mappings are always persisted locally when
being bound. The bind operation does not check if the key-data pair resides on
other reference service peers, before binding the value. It thus consists of one
operations:

1. The key-data mapping is persisted locally.

61

The bind functionality introduces a possibility that keys are bound to differ-
ent data, e.g. a key may be bound to two data on two different reference service
peers. However the reference server binds value reference to locator mappings,
which are used to resolve values. As there always exists only one value to a given
value reference (see section 3.3.1), this poses no problem. If a value reference is
bound to two different locators any one of these will can resolve the value.

IP Multicast is not a reliable service, that is no guarantee exist, that a mes-
sage reach all members of the multicast group. This might introduce faults in the
lookup service functionality. However a reliable multicast can be implemented
as described in Coulouris et al. [5, p. 439].

5.1.2 Persistent hash table

The reference service must be fault tolerant. As described in section 5.1 this is
achieved by persisting the key-data mappings.

A persistent hash table is used to map keys to data entries.

The persistent hash table keeps all mappings in both memory and persist them
on disk. New key-data mappings are written to disk, when performing bind
operations.

Keeping mappings in memory improves the lookup performance as disk is not
accessed. The disadvantage is, that large quantities of mappings may be kept
in memory. This property contradicts one of the reasons for using a persistent
mapping, i.e. the property that mappings should not take up to much memory
(see the reference server requirements in the introduction of section 5.1). More
sophisticated persistens mappings can be implemented using more advanced
mapping techniques.

5.2 Disk

The lowest layer in the XML Store architecture is the disk layer. The disk layer
handles actual persistence of values.

An XML Store disk manages low-level loading and saving of bytes. An
XML Store disk is a software representation of a physical disk. Thus creation
and deletion of disks can be done dynamically. (Since disks are actual areas of
static memory, storage area might be a more correct name for disks). Unlike
conventional disk (in e.g. an operation system) the disk layer has the following
properties.

No addressing When saving a value on disk, the client (application program-
mer) does not specify where the value should be located. That is, applica-
tion programmers cannot save values at a particular address. Instead the
disk will decide where values are saved and return a value reference. This
allows a simple storage strategy in which values are saved log-structured or
sequentially. Saving values log-structured does not require random write
access, as values always are saved at the end of the log [35]. Loading values
requires random read access, as loading is not necessarily done sequentially
but from random locations.

62

No deletion Deleting stored values is not possible. Disk offer no support for
erasing values, because data may be (transparently) replicated, and then
“deleting a value” has no meaning. Further deleting values poses a danger
of dangling references when multiple references exists.

Thus disks can only be filled with values and consequently their space
limits will be reached (otherwise disks would represent infinite storage
units). The lack of support for deletion of values, result in that garbage-
collection is needed, to prevent disks from being filled with values no longer
reachable (live). Garbage-collection is beyond the scope of this thesis.

Sharing values As disks are used to store immutable values, values can be eas-
ily shared between disks. A given value must only be saved on disk once.
The second (and the following) times a client saves a given value nothing
is written on disk, but the reference to the existing value is returned.

Sharing is only interesting on a single peer. When multiple disks exists on
multiple computers, repeated distributed loadings of the same value is not
feasible, as a distributed loading degrades performance. Applying a proper
strategy for caching distributed loaded values improves the performance.

Configurable and extensible Disks can be configured arbitrarily and new
features can be added without modifying existing code. Disks may support
different features, such as buffering, caching, asynchronous read/write,
global accessibility (such that other disks can load values saved here) etc.
Each disk may have it own unique set of features, configured by the ap-
plication programmer. In Java this is implemented using the Decorator
pattern [10, p.175], such that disks can be created by combining different
disk and thereby add different features. Examples are

Disk d = new BufferedDisk(new CachedDisk(new LocalDisk());
or
Disk d = new CachedDisk(new GlobalDisk(new LocalDisk(),port));

This simple design also makes disk extensible as new features may be
added simply by writing new “decorators”. In the prototype implemen-
tation given with this report disk can be configured using a property file
(see appendix A).

These properties lead to this simple disk interface

save(value) : reference
load(reference) : value

This section covers how to locate (load) values saved on disk (section 5.2.1),
which types of value may be stored on disk (section 5.2.2) and finally discuss
some performance issues 5.2.4. The design and implementation of the disk API
is described in chapter 6.

5.2.1 Locating values

Locating values on disk is necessary in order to retrieved values saved. Locators
are as described in chapter 3 a description of the exact route to a value. A

63

local locator locates a value on a given disk, e.g. by offset and length. A
local locator is not enough to locate values in a distributed environment (or
even in an environment with multiple disks on the same computer) as they
hold no information about the disk. A global locator is needed. A global
locator is a local locator and a route to a disk e.g. ip, port, disk name. A
protocol for locating values could look like the protocol in figure 5.5 (using
Universal Resource Identifier (URI)[5, p.356] syntax). XML Store peers do not

xml : //ip : port/disk︸ ︷︷ ︸
route to disk

: offset : length︸ ︷︷ ︸
local locator︸ ︷︷ ︸

global locator

Figure 5.5: Simple Locator protocol

need any explicit knowledge of other peers because locators contain precise (and
independent) route information to values. The information needed to retrieve a
value is always found in the locator. Therefore a connection can be established
to the peer where the value resides. A using disk that only uses locators have
shortcomings. Such an architecture does not support mobility of values. If data
are moved from one physical location to another physical location the locator
becomes obsolete. Thus mobility of values cannot be supported only using
locators to reference values. A solution would be to put a forwarding locator at
the values old position, showing the new position. Two objections can be made
against this approach. First, disks would not save in a log-structured manner.
Second, when values are often moved, it would lead to long chains of locators,
which is difficult to maintain and not desirable.

Besides not supporting mobility of data, problems occur when not actually
writing values to the physical disk when the save operation is called (e.g. when
implementing write-buffering or asynchronous-write). When write-buffering is
considered, disks must buffer incoming values until actually writing a buffer of
values becomes feasible. However locators are (and can only be) created when
values are actually saved as they need to know the actual location on disk. Since
the save call should return a locator to the position of the value, not writing
values right away becomes difficult.

As already described value references are used when values are saved, and
these must first be looked up using the reference server to retrieve a locator.
Resolving a value from a value reference, is done using the reference server to
retrieve a locator as described in section 5.1.

Value references are built from the content of values (as described in section
3.3.1). Write-buffering (or asynchronous-write) is now easy, just compute and
return the value reference and write the value when feasible (e.g. the buffer is
full). Value references also enables mobility of values to be implemented, since
the value reference will not become invalid, if values are moved. As looking up
locators can be expensive, value references should cache looked up locators for
future value retrievals. When the cached locator becomes obsolete (if the value
is moved) a new must be looked up using the reference server.

Value reference offers other interesting possibilities, e.g. multiple locators
could exists for each value reference, this would enable schemes for loading from
peers located physically closest.

64

Computing value references

Value references are, as mentioned in section 3.3.1 content hashed values. Re-
quirements to the hash function is also listed in section 3.3.1.

In the prototype implementation, given with this report, MD5 is used. MD5
produces 128 bit digest. It is fast on 32-bit architectures. To find two messages
that have the same digests takes 264 operations. Finding a given message from a
digest takes 2128 operations [33, p.280]. However choosing other hash functions
e.g. SHA1 is as simple implementation issue.

5.2.2 Storable values

So far, data that can be stored (and loaded) from disk have been called values.
The sections describes what types of values may be stored on disk.

Values are, as described in chapter 3, immutable objects. The disk must
admit arbitrary sized values for input and output. This property implies that
values should be loaded/saved lazily, which leads to the concept of streams (or
infinite lists of values). Stream of values or value streams enable values to be
read lazily (on request). Value streams are compound values, consisting of either
bytes (data) or references to other values (value references). As the disks must
admit arbitrary sized input/output bytes are also returned in streams. Value
streams can be expressed like.

valuestream = bytes (valuereference bytes)*

where bytes is defined as

bytes = byte*

This regular expression shows that value streams consists of bytes followed by
a sequence of value references and bytes, which is repeated zero or more times.
Bytes are just data, consisting of zero or more bytes.

Value streams

Values are loaded using value streams. A value stream is as defined above
at stream (lazy list) of values, and is a value itself. That streams are values
contradicts the conventional (imperative) perception of streams, where data are
removed from the stream when retrieved. Value streams, however, act like lazy
lists in Haskell1, retrieving the first value from a given stream always returns
the same value. Therefore values streams must offer functionality to retrieve
the first value from the stream and the rest of the stream. Consider figure 5.6
which illustrates a value stream ”holding” the data ”foobar”. The value stream
consists of a byte stream (”fo”) and a reference to another value (that may
be located on another disk on another machine), an empty byte stream (this
is necessary in order to conform to the above grammar and a reference to yet
another value.

These properties of the data saved on disk enables disks to ”natively” store
tree-structured data, the following XML document could (with minor adjust-
ments) correspond to figure 5.6

1Haskell is a lazy functional programming language

65

a r

of

o b

Figure 5.6: value streams and references

<fo>
ob
<ar/>

</fo>

The disk interfaces do not introduce the notion of tree-structured data, disks
can also be used to persist non-tree-structured data. If the disk interface alone
should be used when working with XML, a lot of work would be left to the
application programmer. (A more convenient API for persisting XML data is
provided by the DVM layer, described in chapter 4).

5.2.3 Cells

As described in chapter 3 introducing updateable variables will extend the pro-
gramming model and give application programmers more flexibility. Such vari-
ables are called cells. The disk offers a possibility to differentiate between ref-
erences to values and references to cells, by introducing cell references, that
supports functionality to set (update) the value referred to. This means that
the value reference from the above grammar, is substituted with a reference,
that is:

reference = valuereference | cellreference

Cell references are designed such that they hold a reference to a value, the set
operation is called with another value reference to change the value in the cell.
Cells do not hold values as they must be fixed sized, which value references are.

References to cells cannot be content-hashed as the content may change.
Instead another scheme must be used, e.g. global unique id (guid), which may
be a random sequence of bytes or (just) a locator.

5.2.4 Performance issues

This sections presents different strategies for improving performance, taking
advantage of the value-oriented properties discussed in chapter 3.

Caching values can easily be implemented as values are immutable and co-
herence protocols are therefore not needed. Caching loaded values prevent these
from being loaded multiple times. Caching values can be introduced different
places in the system.

1. value streams can memorize bytes already read such that when retrieving
the same bytes multiple times they are only loaded from disk once.

66

2. value references can cache locators to prevent multiple lookups. When
mobility of values is considered this would require some simple protocol
for loading e.g. first using cached locators and then on fail (the value have
been moved), lookup a new locator.

3. disks may cache loaded value streams in memory, such that when load-
ing a value reference the cache is checked before any potential lookup is
performed.

4. disk may cache (replicate) loaded values on disk, such that future retrievals
does not require a remote load.

As mentioned such caching schemes can easily be implemented as values are
immutable. Cells do not offers these possibilities. If these are to be cached tradi-
tional caching protocols must be implemented. The prototype implementation
given with this thesis, simply does not cache cells.

Considering the disk layer is used by the DVM layer, saving a document
may be an expensive process as each node must be looked up. To prevent large
response times when saving documents, documents can be saved asynchronously,
such that calling save returns a value reference without saving anything, but
starts a background process that saves the value. This can also be implemented
without concern to coherence.

Another strategy for improving performance would be to in-line value streams,
so that a value reference is only created when value stream actually are larger
than value reference (128 bit). Such a strategy would improve performance as
fewer calls to reference server have to be made. This improvement is naturally
aimed a XML documents containing many, but small nodes.

5.3 Name server

The name service functionality of the Document Value Model interface is solved
by a name server.

The name server provides a distributed name service for creating and maintai-
ning bindings of human readable names to value references. XML Store peers
use the name server to associate names with documents and share this associa-
tion with other XML Store peers.

The name server functionality is similar to the reference server functionality.
It should optimally have the same properties as the reference server (see section
5.1). That is it should be build as a decentralized peer-2-peer solution with
a flat network hierarchy. The peers in the decentral name server network
should be stateless. Name to value reference bindings should be persisted.

Opposite the reference server the name server is of an imperative nature,
which poses problems in a decentral name server architecture.

A value reference can not be updated to referrer to a different value, as they
have an injective relation to they value they identify. A specific value references
can thus be mapped to different locators on different reference server peers, as
the locators all addresses the same value.

This is different to the name server. Names does not have an injective
relation to the value reference they identify. A name is therefore only bound one
value reference. This poses a consistency problem. When creating a new binding

67

the existence of the name must first be checked by performing a distributed look
up using IP Multicast (as in the reference server solution). As IP Multicast is
not reliable the look up might fail even though the name exists. The result
is an inconsistent state where the name is associated with two different value
references (on two different peers).

A second problem resides in the imperative rebind functionality, which the
reference server does not have. Since the location of document names are not
known a rebind must be performed by a IP Multicast as when performing a
lookup. Due to the missing reliability rebinds messages might not get delivered
at peers, which is not satisfying.

The update problems can be avoided by implementing the name service as
a central name server.

5.3.1 Central solution

The name service functionality in XML Store is implemented as a central solu-
tion.

A central name server contains all names in the name space (and their asso-
ciated value references) of the XML Store name service. XML Store peers look
up, bind and rebind names using the central name server.

Network communication between XML Store peers and the central name
server thus takes place each time name service functionality is invoked on peers.

A central name server unfortunately introduces a bottle neck and a “single
point of failure” in XML Store. The simple solution simplifices the update
problem (described above). Inconsistent states are avoided since bindings are
not spread on several locations as in a decentral name server.

Further the name server is not used as often as the reference server. The
bottle neck problem is thus non existing for small XML Store’s, that is XML
Store’s containing a small amount of peers, which makes the solution satisfying
for our prototype model.

68

Chapter 6

XML Store implementation

This chapter describes an implemented prototype of XML Store. It by no means
gives a detailed description of the code, but presents an overview of the imple-
mentation. Only the most relevant interfaces and classes and the most relevant
methods and fields are presented. For the interested reader the full source code
can be found in appendix C.

The prototype implementation of XML Store is configurable and extensible.
These properties are achieved by two means:

1. The implementation provides application with a flexibility of functionality,
i.e. individual objects can be configured with specific values and function-
ality can be added without modifying and recompiling the existing code.
An example given in section 5.2 shows how the decorator pattern [10,
p.175] can be used, such that capability/functionality can be added disks
in compositional manner.

2. The implemented functionality is separated into modules. A module is
a group of classes, providing well defined and related functionality. A
module provides an interface, through which its functionality is accessed.
Since functionality is enclosed in modules, implementations of functional-
ity can be replaced with a different implementation of the functionality,
by replacing the existing module with another module conforming to the
same interface. This makes the prototype implementation configurable
and flexible to changes.

An example of a module is the reference server. This functionality is
enclosed in a module, which conforms to the simple interface presented in
5.1. The actual implementation of the interface can be changed.

The layers presented in chapter 5, DVM layer and Disk layer, have a mod-
ularized structure. The DVM layer has two modules, a module supplying core
DVM functionality and a module supplying name server functionality. The Disk
layer has a similar structure as it has a module supplying core disk functionality
and a module supplying reference server functionality.

This chapter describes implementations of each module. Section 6.1 and
section 6.2 presents the core DVM functionality and the core disk functionality
respectively. Section 6.3 presents the reference server module. The name server

69

module is not described in this chapter as the implementation, as mentioned in
5.3.1, is a simple insufficient central server solution.

6.1 DVM core module

Applications access the XML Store solely through the DVM core module.
The DVM core module provides the functionality of the Document Value

Model (DVM) interface. To provide this functionality the module makes use
of the name server and the core disk module. It is implemented in the Java
package edu.it.dvm.

Among the java classes in the DVM core module DVMXMLStore is central.
The class implements the XMLStore interface and is thereby to give access to
name service functionality and persistence functionality.

Figure 6.1 illustrates how the DVMXMLStore hold references to a Disk instance
and a NameServer instance.

� �������	�
���
���������������

������ "!#�$��%	&!'(!*) !,+�!-�.�!
��% /���0�# 12/30*!
��% /�/546&87(#9$:��% &!*'(!) !;+<!5-3.:!
��=> -*0�#? 9/> 0
�+<!=*> -�0#? 9/�> 0

@*A�BDC�BFEGIH J3KML

N �
�O��6P����	QR���TSVU2
�O��W(���	Q����
N�X � P�YRS Z�� P�Y

[[V[\6]�^ �5_3�,�,`"�,� [ab]�^ �5�*�;�,`M�;�� �������	�
���
��c�d [fe � [c e _�g [hIe _g

Figure 6.1: DVMXMLStore, the class implementing XMLStore.

XML documents in DVM are represented by the Node and MutNode inter-
faces. The Node interface is implemented by DVMImmNode and DVMImmNodeProxy.
The first represents nodes created and residing in memory while the second rep-
resents nodes on disk. DVMMutNode represents mutable nodes. Figure 6.2 the
classes and their relations.

Document are loaded lazily. Such loading strategy can be implemented for
immutable nodes. Section 6.1.1 describes how lazy loading is implemented.
Ones having described lazy loading the procedure for saving nodes, can be de-
scribed. This is done in section 6.1.2. Section 6.1.3 describes the implementation
of mutable nodes. Finally section 6.1.4 describes the implementation of child
nodes. This is done because the data structure used for keeping child nodes
influence performance.

6.1.1 Loading documents

XML Store must be able to handle documents of arbitrary size. A loading
strategy where document are loaded fully into memory is therefore not applica-
ble. The applied loading strategy assures, that whole documents are not loaded

70

� �������	��
���

����� �������

�����������
�� � � !"�����

� �����#�	�
���

�$�"��

%'&�(�&$)*& !"+$� ,.-����

%0/2143�57643 + 3 � ,8-����

9.:�;�< =>< < ?A@ B"C�< ;DFE4< ?A@ G�:

9H�IJI;JK�< DALNM�@ O

P>Q ��
�,�R �S� ,#����R ��
��

� -#T�#�U,8-����

���0����VW
#R Q �#� ���	�F� ��X

��F�	�F� , Q ���#!
 P ��YZ� ���[� � �8X#\]

��^�� R ��!_�����Y�� / ^�� R �Z!"���0��Y

`0acb*dfe7ehg"ij4k `0acbldfe>emg"i�j0kZn$ofi�p�q `0acb>bsr8tug"i�j4k

Figure 6.2: Classes implementing Node and MutNode.

into memory. Instead they are loaded lazily. That is document content is only
loaded when being requested.

A lazy loading strategy for XML documents is implemented by loading im-
mutable nodes lazily. The class DVMImmNodeProxy implementing the Node in-
terface represents persisted immutable nodes. An instance of DVMImmNodeProxy
is a proxy for a persisted node. The proxy loads persisted node data the first
time the data is requested (through use of the node interface).

Proxies initially do not contain node data. Instead the data is loaded when
being accessed. In order to load the node data, the proxy instance contains 1)a
value reference to the data which is used to load the data.

In short the process of loading a node is described as:

� Loading a node with a given value reference returns a proxy object con-
taining the value reference.

� When a method is invoked on the proxy object, the requested node data
is loaded.

The five methods getType, getNodeValue, getAttribute, getAttribute-
Names and getChildNodes works accordingly:

71

getType If not already loaded, the method loads the node type
from disk and returns it. The type is kept in the proxy
node for future method invocations.

getNodeValue If not already loaded, the method loads the node value
from disk and returns it. The value is kept in the proxy
node for future method invocations.

getAttribute If not already loaded, the method loads all the node
attributes from disk and returns the relevant attribute
value (if the attribute exists). The attributes are kept
in the proxy node.

getAttributeNames If not already loaded, the method loads all the at-
tributes from disk and returns the attribute names.
The attributes are kept in the proxy node.

getChildNodes If not already loaded, the method loads information
of all the child nodes and create proxy instances for
the child nodes. This way the children are not fully
loaded, but only represented by proxies.

Using this load strategy only necessary node data is loaded into memory. That
child nodes are loaded lazily, means that child nodes not accessed is not loaded
from disk. Huge parts of a document (tree) might therefore not be loaded from
disk. This is illustrated in figure 6.3.

The above described lazy loading strategy is not enough for solving memory
problems. The following section describes how filled memory usage is avoided
by discarding data from memory.

Controlling memory usage

When an XML document is traversed the Document Value Model tree repre-
sentation of the document grows in memory. This is a consequence of the lazy
loading of child nodes. As more and more child nodes are loaded and their
data as well, memory usage increases. For huge XML documents this imposes
a problem, as traversing such document may fill up memory.

The strategy for minimizing memory usage is implemented by constructing
a FIFO list holding node proxies. When node proxies loads either node value,
attributes or child nodes, they register themselves in the list. If the queue is
full, a node proxy is removed from the list and the data of the node proxy is
discarded from memory.

When node proxies are removed from the queue and their data is discarded,
they are again only contains the value reference to the node data on a disk.
Node data must thus be loaded again, if a proxy node has been removed from
the queue.

Node proxies only register themselves in the queue the first time they load
either node value, attributes or child nodes. When a node proxy is in the
queue and more data is loaded, it does not register itself in the queue again.
Keeping memory usage down by implementing a FIFO list is a simple and
straight forward solution.

A short coming of the solution is the missing differentiation between pop-
ular and not popular data, i.e. data accessed frequently might be repeatedly
discarded from memory and loaded into memory if the queue is full. The same

72

data might therefore be loaded repeatedly.
A solution could be to implementation a strategy using a popularity degree

of data. Data less frequently accessed (and therefore less popular) is discarded
from memory before more popular data.

Summery

Using proxies representing persisted nodes allows for lazy loading of document
data. The lazy loading is even provided transparently to the application pro-
grammer. That is if documents are loaded fully or lazily is not revealed by the
XMLStore interface.

Controlling memory usage is a clear advantage to the application program-
mer. Application programmers do not have to consider documents sizes, when
implementing applications for accessing XML documents.

The implemented strategy does not consider node sizes. Even in situations,
where nodes represents a huge amount of persisted data, all data is loaded into
disk. Two possible cases for such situations exist:

1. Element nodes with a huge number of children. All references are loaded
and the same number of proxy objects are created. The dictionary docu-
ment used through out the report and presented in chapter 2 represents
such a case.

2. Node values may be huge (most likely to happen for character data nodes).
The whole value is loaded into memory. A stream based retrieval would
solve this problem. (Such is implemented in the disk layer but not prop-
agated to the DVM layer).

6.1.2 Saving documents

XML documents represented by the Document Value Model can be saved using
the XMLStore interface. The Document Value Model allows sharing of document
parts within XML document and between XML documents (as described in
chapter 3). This sharing must be kept intact when saving documents.

XML documents are saved in postorder traversal by saving one node at a
time. For nodes representing character data, the character data is saved on
disk. For nodes representing elements, the tag names, attributes and references
to the child nodes are saved.

Nodes are saved by using the disk module. This requires unparsing nodes
into value streams (defined in section 5.2.2), which are then written to disk.
How nodes are unparsed depends on the node types. When a node represents

1. character data, the corresponding value stream contains the character data
as a byte sequence.

2. an element, the corresponding value stream consists of a preceding byte
sequence followed by zero or more value references separated by empty
byte sequences (in order to follow the value stream definition in section
5.2.2). The preceding byte sequence contains the element name and the
attributes. The value references are references to the child elements.

73

Applying the recursive postorder traversal saving means that element chil-
dren are saved before the element itself. This is necessary in order to produce the
value references for the children. If nodes in a document, that is children of an el-
ement, have already been saved and are represented by either DVMImmNodeProxy
instances or DVMMutNode instances they are not unparsed and saved again. In-
stead their already existing value references / cell references are retrieved (from
the DVMImmNodeProxy/DVMMutNode instances) and used when saving the rele-
vant element.

The functionality for saving documents is encapsulated in the class Save-
Visitor implementing the Visitor interface.

Figure 6.4 illustrates how an XML document is transformed into value
streams.

That unparsing and saving is not performed for already saved nodes (rep-
resented by DVMImmNodeProxy or DVMMutNode instances) is a great advantage
since whole subtrees (having the nodes as roots) are not saved unparsed again.
This increases the performance when saving documents.

Saving documents by saving one node at a time makes it possible to support
sharing of arbitrary nodes (and subtrees) within and between documents per-
sisted on disk. The chosen strategy thus enables sharing of nodes as described
in section 3.2.

6.1.3 Mutable nodes

Sharing nodes within and between documents requires the state of mutable
nodes to be kept up to date.

Mutable nodes are represented by the class DVMMutNode, which implements
the MutNode interface. Both mutable nodes, which have not been saved, and
mutable nodes, which have been saved are represented by DVMMutNode.

Mutable which have not been saved resides solely in memory. When invoking
the getNodeState/setNodeState methods on such nodes, the node state kept
in memory is returned/set.

If the mutable node have been saved, getNodeState and setNodeState
does not just return/change the node state kept in memory. The methods
returns/changes the node state persisted on disk.

When DVMMutNode instances have been saved, they do not just contain a
value reference like DVMImmNodeProxy instances do. They contain cell references.
Changing a persisted nodes state is therefore done by saving the new node state
and set the cell reference to hold the value reference returned from saving.

That the node state of persisted mutable nodes is loaded and saved each
time getNodeState respectively setNodeState is called increases the proba-
bility, that the node state seen by the application program is consistent with
the persisted node state. No guarantees exist though, as this would require
transaction control due to the imperative nature of mutable nodes.

6.1.4 Child nodes

The data structure for keeping child nodes in memory affects worst case access
and insertion times.

Child nodes are kept in arrays. Each node representing an element has an
array of child nodes. The arrays are encapsulated in the interface ChildNodes.

74

Using arrays provides constant time for accessing an arbitrary node in the
array. Thereby arbitrary children of a node can be accessed in constant.

The draw back of arrays is time to add new elements. Time to add elements
in arrays are O(n), as a new array have to be created an all elements must be
copied, with the correct implementation this can be avoided.

6.2 Core disk module

The core disk module is the lowest level in the XML Store. The core disk module
provides functionality for writing data on the physical disk and providing access
to the data. As described in chapter 5, values can be stored and retrieved
from disk using value streams. Value that can be stored are either bytes or
references to values. The core disk module is implemented in the java package
edu.it.disk. The disk module uses the reference server module to lookup
locators.

Section 6.2.1 describes the API offered by the disk layers, that is which basic
operation the disk layer offers. Section 6.2.2 describes how the log-structured
filesystem is implemented and how values are loaded and saved on the physical
disk. Section 6.2.3 describes how value streams are implemented.

6.2.1 Disk Interface

This section describes the basic functionality offered by the disk layer. The API
described in is used by the DVM module to implement the tree structured API,
as described in section 6.1.

Creating value streams

Value streams can be obtained by loading references from disk, as we have just
shown. To fill disks with new data it must be possible to create value streams
from scratch. Four basic operations for creating value streams are offered. These
are

ValueStream mkEmpty();

ValueStream mkByteValue Stream(byte[] first, ValueStream rest);

ValueStream mkValRefValue Stream(ValueReference first, ValueStream rest);

ValueStream mkCellRefValue Stream(CellReference first, ValueStream rest);

Building a value stream equal to the one illustrated in figure 5.6 looks like

Value Stream ob = mkByteValueStream(new byte[]{’o’, ’b’}, mkEmpty());

Value Stream ar = mkByteValueStream(new byte[]{’a’, ’r’}, mkEmpty());

ValueReference obref = save(ob);

ValueReference arref = save(ar);

ValueStream vs = mkByteValueStream(new byte[]{’f’, ’o’},

mkValRefValueStream(obref,

mkByteValueStream(new byte[]{}, arref)

)

);

75

As value stream may be streams to disks, it is possible to create value streams
that include some value in-memory, some on disk and some on other computers.

The operations for creating value streams are basic, however with these
basic operations it is possible to create more complex (convenient) functions for
creating value streams.

Using value streams

Value Stream offer a simple API for retrieving values from streams. Value
Streams are as mentioned values them selves and acts differently than “tradi-
tional” imperative streams, where data is removed from the stream on retrieval.
Retrieving a value from a value stream will not remove this value from the
stream, to obtain the rest of the stream a separate method must be called or
the get method must return a pair consisting of the value and the rest of the
stream, this lead to these simple interfaces

public interface Value Stream{

ValuePair getNext();

}

public interface ValuePair{

Value first();

Value Stream rest();

}

This has a number of pragmatic disadvantages,

1. as it is necessary to differentiate between values returned form first()
which may be either bytes, a value reference or a cell reference (as ex-
pressed in the regular expression for value streams), an expensive and
unsafe downcast is required to get the proper type from Value.

2. Values may be very large, the interface does not offer any means of loading
values lazily. That is using the method first, the whole value is loaded.

The solution to 1) is to introduce type specific methods for retrieving bytes,
value reference and cells and a method to get the type of the next value. Solution
to 2) is to offer bulk read of bytes. This produces the following value stream
interface

public interface ValueStream{

/**

* @return the type of the first value in stream.

*/

byte getValueType()

/**

* @throws Exception if(getType() != BYTES)

* @return all bytes until next valuereference

* (Possibly large, use method with care)

* and remainder of valuetream

*/

ByteArrayPair getBytes() throws DiskException;

76

/**

* @throws Exception, if(getType() != BYTES)

* @return max num bytes and the remainer

* of the value stream

*/

ByteArrayPair getBytes(int num) throws DiskException;

/**

* @throws Exception,

* if(!(getType() == VAL_REF || getType() == CELL))

* @return ValueReference and remainer of stream

*/

ValueReferencePair getValueReference() throws DiskException;

/**

* @throw Exception, if(getType() != CELL)

* @return Cell and remainer of stream

*/

CellReferencePair getCell() throws DiskException;

/**

* throw away first value either valuereference or all bytes

* @return rest of value streamf

*/

ValueStream skip()

}

The different Pair types all offer methods CorrectType first() and Value
Stream rest(). Method skip enables skipping the next value. With this inter-
face Retrieving (and printing) all bytes from a value stream can be done like
this:

public void printVS(Value Stream vs){

switch(vs.getType()){

case EMPTY:

/* stop recursion */

break;

case BYTES:

ByteArrayPair pair = vs.getBytes();

System.out.println(new String(pair.first());

printVS(pair.rest());

break;

case VAL_REF: case CELL:

ValueReferencePair pair = getValue StreamReference();

Value StreamReference vsr = pair.first();

printVS(vsr.get()); // or printVS(disk.load(vsr));

printVS(pair.rest());

}

}

As the printVS method does not modify cells it is not necessary to differ-
entiate between cells and value references. This is possible as cell references
are subtypes of value references. To get a value stream referred to by a value
reference, simply call method get from the value reference.

77

6.2.2 Log-structured file system

As mentioned in chapter 5 values are in a saved log structured fashion [35] on
disk. To represent a file system we use Java’s RandomAccesFile. RandomAccess-
File provides access to files. A cursor called the file pointer indicates the current
position in the file. When reading or writing the file pointer is incremented. The
file pointer can be moved to another position before each read or write proce-
dure. These properties makes RandomAccessFile suitable for simulating log
structured files. which provides functionality for reading and writing anywhere
in a given file.

Saving

Saving a value to the log structured file system is easy, simply save it at the
end of the log. This is easily implemented by always keeping a file pointer a the
end of the file. That way writing becomes efficient as no time is spend seeking
a place to write.

Loading

Loading values is done using a locator. Locators hold offset and length of values
to be loaded. Loading of a value is done by opening a stream for retrieving the
value. The stream starts at the specified offset and ends at the offset plus the
specified length.

In a distributed environment locators also hold ip number and port number
of the machine on which the value is located. Loading remote values is done
similar to loading local values, a stream to the remote machine is opened and
values are retrieved from here.

6.2.3 Streams

The streams used to access the underlying random access file are, as described
in section 5.2.2 value streams. These streams behave differently from imperative
streams that remove values as they are read. Value streams are values them-
selves. Calling a method for retrieving a value will successively return the same
value. Value streams use memorization of values to prevent unnecessary disk
traffic. Memorization in this context means that streams cache values read, such
that when retrieving a value a second time, it is not loaded from disk. Mem-
orization can easily be implemented as value are immutable and no coherence
protocols are needed.

In the prototype three different concrete value streams are used, their re-
lationship is depicted in figure 6.5. The class SimpleValueStream is used
when streams are created from values residing in memory, e.g. when nodes
are saved they are “flattened” into value stream (as described in section 6.1.2).
SimpleValueStreams are created using the create methods in the ValueStream-
Factory (The factory only returns SimpleValueStreams). The class DiskValue-
Stream reads from the random access file and the GlobalValueStream reads
values from other XML Store peers in the system.

DiskValueStream and GlobalValueStream are built on top of regular im-
perative streams. To implement these two, classes that extend Java’s Input-

78

Stream1 class are implemented, a RAFInputStream to provide access to a Random-
AccessFile and a SocketInputStream to provide access to another machine.
Extending Java’s InputStream has the advantage, that already implemented
functionality such as BufferedInputStream2 can be used easily. Figure 6.6
shows a class diagram of the imperative input streams used to build value
streams.

Loading values from a local disk is done using a DiskValueStream that use
a RAFInputStream to load values from the RandomAccessFile. The RAFInput-
Stream is given an offset and a length (supplided by a locator), and data between
offset and offset + length can be read using the RAFInputStream.

Loading values from a global disk is done using a GlobalValueStream that
use a SocketInputStream. The SocketInputStream is given an ip, port, disk
name, offset and length (supplied by a global locator). The ip, port and
diskname specifies the location of the disk where the value is located. The
offset and length specifies the location of the value on the disk, as explained
in section 5.2.1. The SocketInputStream makes a socket connection to the
disk specified by ip and port (the disk will be listening). When data is retrived
through the SocketInputStream (when it’s read method is called), it sends
a request to the disk (via a socket) to read (a certain amount of) data. The
disk reads the data from using and RAFInputStream a sends it back though the
network.

6.3 Reference server module

The functionality provided by the reference server module is a distributed service
for mapping value references to locators, as described in section 5.1. That is the
reference server is the reference resolver discussed in section 3.3.1.

The java package edu.it.disk.refserver contains the Reference server
module, which have the interface represented by ReferenceServer. The Refe-
renceServer interface provides two methods lookup and bind, which were
described in section 5.1.

The class GlobalReferenceServer implements ReferenceServer. Global-
ReferenceServer instances are responsibel for performing the reference service
protocol described in section 5.1.1.

A GlobalReferenceServer instance contains a reference to a LocalReferen-
ceServer instance. LocalReferenceServer acts as a local persistent hashtable
containing value reference to locator bindings.

GlobalReferenceServer instances also use a Communicator to perform all
distributed communication. The Communicator interface contains the two meth-
ods send and sendReceive, which are defined below. The class MulticastCom-
municator implements Communicator. GlobalReferenceServer actually con-
tain a MulticastCommunicator instance. MulticastCommunicator instances
sends messages to and receives messages from other MulticastCommunicator
instances. The distributed communication in reference server is thus fully en-
capsulated in MulticastCommunicator.

Figure 6.7 illustrates the interfaces and classes and their relations.
1InputStream represents an input stream of bytes. The class interface is imperative.
2BuffereredInputStream adds buffer functionality to another input stream.

79

Classes implementing Comunicator must implement two methods:

void send(byte[] msg) sends msg through the network. In case of
the MulticastCommunicator msg is send to all
subscribers of a specificed IP Multicast group,
as described in section 5.1.

int sendReceive(byte[]
msg, byte[] respons)

sends msg through the networks, waits for
respons (which is put into respons) and re-
turns the number of bytes in respons. The
MulticastCommunicator sends the msg to all
subscribers of a specifed IP Multicast group
and wait for respons from any subscriber,
when a respons is received all other responses
are ignored.

The reference service protocol implemented in GlobalReferenceServer, re-
quires a distributed lookup. This is performed using the sendReceive method
of the Communicator interface. The lookup request package have the structure:

ACTION | LENGTH | value reference

ACTION is a byte, which denotes the requested functionality. In the lookup
request package the byte denotes that a lookup is requested. LENGTH is the
length of the key to lookup, although unnessesary (as value references has a
fixed size) it is added to make the protocol general.

In turn the respons just includes the locator. The Communicator handles
protocol information about which port the respons shuld be send to and a
request id ensuring that requests get correct responses.

Bind are made only using the LocalReferenceServer since distribution of
mappings are not performed (as described in section 5.1).

80

word

keyword desc

The child elements of the “word” element is loaded. Only proxy objects are
retrieved for the child elements.

word

keyword desc

p

Figure 6.3: The “desc” elements child node is loaded. The dotted ellipses de-
notes proxy objects, who’s children is not yet loaded.<todo>p should be in
dotted circle</todo>

81

word

keyword desc

foo p

type /foo/....s ...

jargon

foo keyword _ jargon type _ /foo/ p _ _ desc _ word _ _

Figure 6.4: Unparsing nodes into value streams. Each node is unparsed and
saved to disk. The bottom figure illustrates the resulting sequence of value
streams (as they are saved to disk storage) when unparsing the XML docu-
ment from the top figure. ’—’ separates valuestreams, ’|’ combined with arrows
indicate references. The figure is a simplification made for illustration purpose.

� �������	��
����

������������	�������

��� �! �" #%$'&'" (%#��*)	+,#�&��- � .0/1$2&'" (�#��*)	+,#�&��

34" 506�&'" $2&�" (7#��*)	+,#8&��

Figure 6.5: Class diagram of value streams.

82

��������� � �
	���� ���� �����
��������� ������� �"!$#&%��'�

($)+*-, �/.10��2�"�435�/�
6

���1�7�8� 9 :�� ;"9 � �<�>= @?&�5A1?��<B"�4=5���'C
DFE�G�E$H I J'H KLE�M E-NPO'M Q�O�M

���1����� R !S� T>���2��UV0&�5./0&�<�W�535�1�$6

���1�7�8� � �
	��-� ���� �'�1�
DFE�G E>H I J
H KLE�M E-NPO�M Q$O1M

DFE�G E>H I J
H KLE�M E�X Y&QZO1M
��������� R !S� (>����[1!�6L)\#F#���]�]�*"R ^ �

�����7�8� � ��	���� ���� �����
_F`�ab`
c d e$c f g&hji'k lZk mon�`�p

�W!
#
%�����, �/.10��2���535�/�'6

Figure 6.6: Class diagram of imperative streams

����� �����	��
�������������

��� ����������� ���! �"�# ��$
��%�& '�(��*)+��& (

,�-/.�0!1 243�563�7 3�8	.�3�9�3!7;:�3!7 <=1 -�>�0�162?3�5@3A7B3A8�.�3�9�3�7;:C3�7

D E�F G!H;I@J�K�G
��L�M�N O;P N@M�P O Q@N;R�S�TUTVM���O@
�W!P SX�

��YCZ�'/(���)B�X& (
��YCZ�'/(�[�Z� �Z	&;)\Z�� & '?#

]_^X1 `�a .�0�b�` cd-/e_ef^�8�a .�0�` -�7

Figure 6.7: Class diagram of reference server

83

Chapter 7

Evaluation of the Document
Value Model.

XML Store provides the Document Value Model (DVM) interface presented
in chapter 4 for value-oriented storage, access and manipulation of Extensi-
ble Markup Language (XML) documents. The XML Store functionality must
be usable and adequate for working with XML documents and should provide
advantages compared to working with an imperative interface and imperative
functionality.

The value-oriented interface and functionality of XML Store is evaluated
through development of sample applications. Focus is on:

1. adequacy and usability, can applications be build easily and conveniently.

2. straightforward programming, can application programmers focus on ap-
plication logic or must other (external) considerations, such as memory
usage and concurrency, be considered.

The developed XML Store prototype implementation is used for building
the sample applications. In order to evaluate the value-oriented XML Store
functionality against imperative functionality sample applications has also been
developed using the Document Object Model (DOM) interface.

Two sample application topics are presented, a small application that count
nodes in an XML document, and the dictionary example used through out the
report in its full length.

The XML Store is evaluated in section 7.1 through the node counter appli-
cation. In section 7.2 evaluation is performed using the dictionary application.
Section 7.3 provides a summery of the evaluation.

7.1 Node counter

Small applications with simple functionality must be easy to implement. XML
Store’s usability for such small application is evaluated through a simple sample
application.

Node counter is an application, which count the number of nodes in an XML
document, i.e. the number of XML element and XML character data.

84

The Node counter application is implemented as a single Java class, Node-
Counter. The class contains the method public static int count(Node -
node). Given a node the method counts the number of nodes in the sub tree
represented by the node. The result is produced recursively as follows:

� The root node of the subtree represents character data: 1 is returned.

� The node (root node or not) represents an XML element: The node count
is produced by summarizing the node counts for the elements children. If
a child represents character data, the element node count is incremented
with 1. If a child represents an element the child’s node count is produced
by a recursive call of count and the current node count is increment with
the count of the child node.

The node counter application must be started with two arguments. The sec-
ond argument is the name of the XML document to count nodes in. The first
argument is the name of the XML Store which the XML document is loaded
from. The application can be seen below. To simplify the shown sample code,
exception handling and imports of necessary java packages are not included.

1 public class NodeCounter{

2 public static int count (Node node){

3 int nodes = 1;

4 ChildNodes children = node.getChildNodes ();

5 for(int i = 0; i < children.getLength (); i++){

6 Node child = children.getNode(i);

7 if(child.getType () == Node.CHARDATA)

8 nodes ++;

9 else

10 nodes += count (child);

11 }

12 return nodes;

13 }

14

15 public static void main(String [] args){

16 String storeName = args [0];

17 String docName = args [1];

18 XMLStoreFactory factory = XMLStoreFactory.getInstance ();

19 XMLStore xmlstore = factory.createXMLStore(storeName);

20 ValueReference ref = xmlstore.lookup(docName);

21 Node root = xmlstore.load(ref);

22 int nodes = count(root);

23

24 System.out.println("Document node count : " + nodes);

25 }

26 }

The application can be invoked from the command line through the call:

java -classpath xmlstore.jar NodeCounter myxmlstore mydoc

This example illustrates that a simple application, which count nodes, can
easily be implemented using the XML Store.

When counting nodes in an XML document the document structure is tra-
versed. The count method illustrates (in lines 4-6) how documents are traversed
without using value references to obtain child nodes. Value references are thus

85

only exposes when obtaining a document root node (as in lines 20-21). This
allows for convenient traversal of documents.

The example provides an advantage with regards to disk I/O. The value of
child nodes representing character is never loaded. This is due to the lines 7-8
and the lazy loading property of XML Store (see section 6.1.1). In line 7 the
node type is accessed (and thereby loaded lazily). A call of getType() only
enforce loading of the node type, i.e. the node value and possible attributes
and children are not loaded. If the child node represent character data the
node count is increased without invoking count on the child node (line 8). The
character data is thereby never loaded and load time is saved.

The document name (docName) used in the application is ’mydoc’. This
name contains no information of location. When using the name to retrieve
the root node in lines 20-21 no information of the location is revealed, because
location independent value reference are used. The example thereby shows, the
document location is not an issue, when using XML Store.

The location of nodes, i.e. in memory, on disk or on another peer is not an
issue, when invoking count. The example shows that no special code is written
to load nodes into memory (from disk or another XML Store peer) or to discard
nodes from memory. That is the count method can be used to process any
documents, with no regards to the document location. This is also a result of
the lazy loading strategy.

7.2 Dictionary

A dictionary is a

reference book containing an alphabetical list of words, with informa-
tion given for each word, usually including meaning, pronunciation and
etymology [36].

That is dictionaries are used to provide people with a joint understanding of
words by providing information for each word.

A project group makes a good scenario for illustrating the usability of a
specific dictionary. All members of a project group should have a joint under-
standing of the central terms used within the project. A dictionary containing
the central terms is therefore ideal for providing the joint understanding of cen-
tral terms.

The dictionary application is an application used to search words in a dic-
tionary and insert new words (and their definition) into the dictionary. The
application maintains the dictionary data in an XML document called the dic-
tionary document. The dictionary data is accessible from any location and the
data can be accessed by several applications.

That is the dictionary application should be build, such that several users
can start the application and use the same dictionary document. The location in
which the application is started should not matter. A user will thereby be able
to start the dictionary application from the office computer, the home computer
or any other computer.

Examples given through out the report is taken from or influenced by the
dictionary application. The structure of the dictionary document is presented
in appendix B. Words searched for or inserted into the dictionary are called

86

key words. It is worth recalling from appendix B, that word elements in the
dictionary document are sorted according to their keywords lexicographically
order.

The dictionary application itself has the following properties.

� searches are performed binary by comparing keywords.

� successful searches returns the word element, corresponding to the searched
keyword.

� unsuccessful searches returns

<word><keyword>No match on keyword</keyword></word>.

� inserts does not violate the alphabetic order of the dictionary.

� it is not possible to insert a word already defined in the dictionary docu-
ment.

The dictionary application has an interface, which contains methods for
searching a keyword and inserting a new keyword (plus definition) into the
dictionary document.

The XML Store is evaluated through implementing the dictionary sample ap-
plication. In order to examine the advantages of a value-oriented programming
style compared to an imperative programming style, the dictionary application
is also implemented using the Document Object Model (DOM) interface.

Section 7.2.1 presents the dictionary implemented using the DOM interface.
The following section, 7.2.2, presents the dictionary application implemented
using XML Store.

7.2.1 DOMDictionary - an imperative dictionary applica-
tion

Implementing the dictionary application using an imperative application pro-
gramming interface, makes it possible to evaluate the value-oriented program-
ming model introduced with XML Store against the imperative programming
model.

The Document Object Model (DOM) is one of the most commonly used
imperative application programming interfaces for accessing XML document
data. Section 2.2.1 describes parts of a dictionary application implemented
using DOM. The full dictionary application using DOM is presented within this
section and used for a detailed evaluation of the imperative programming model
and DOM.

DOMDictionary is a dictionary application implemented using the Docu-
ment Object Model interface for searching keywords and inserting new key-
words into the dictionary document. The dictionary document is a serialized
XML document stored in a flat file.

DOMDictionary follows the dictionary functionality principles stated above
(in the introduction to section 7.2). The application is implemented as a single
Java class, DOMDictionary.

The class contains a constructor, three private methods load, save and
binarySearch and the public methods keywordSearch and insert.

87

The constructor takes one argument, which is the file name (inclusive path)
of the dictionary document.

The methods loadDict and saveDict is used for saving and loading the
dictionary document. loadDict parses the dictionary document to a DOM rep-
resentation in memory. saveDict unparses the DOM representation in memory
and saves (overwrites) in the flat file containing the dictionary document.

The private method binarySearch is used by the methods keywordSearch
and insert to search for keywords in the dictionary document. The method
performs binary search on dictionary keywords. If the keyword is found the
method returns true and the private class variable match is updated with the
word element containing the keyword. Otherwise the method returns false.

keywordSearch is used to perform a keyword search. The method first loads
the dictionary document to retrieve the latest version of the document. There
after it invokes binarySearch to search the keyword. If the keyword exist the
result in match is returned. Otherwise a DOM document containing the message
’No match on keyword’ is returned.

The method insert is used to insert new keywords and their definition
into the dictionary document. The method takes as argument a DOM node
representing the word element with the new keyword and its definition. First
the dictionary document is loaded in order to retrieve the latest version of the
document. Thereafter the new keyword is searched in the dictionary. If it
already exist an exception is thrown. If not the new keyword is inserted and
the dictionary document is unparsed and written to storage.

The Java package javax.xml.transform and its sub packages are used to
unparse XML documents in DOM representation to a serialized representation
and write to output destination (standard output or a flat file). This is done
in lines 98-102 and lines 114-118 of the Java code seen below. Imports of java
packages and exception handling are omitted to simplify the code.

1 public class DOMDictionary{

2 private Document dict;

3 private DocumentBuilder builder;

4 private Transformer transformer;

5 private Node match;

6 private String dictName;

7

8

9 public DOMDictionary (String dictName){

10 this.dictName = dictName;

11 match = null;

12 System.setProperty(

13 "javax.xml.parsers.DocumentBuilderFactory",

14 "org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

15 DocumentBuilderFactory factory =

16 DocumentBuilderFactory.newInstance ();

17 factory.setIgnoringElementContentWhitespace(true);

18 builder = factory.newDocumentBuilder ();

19

20 TransformerFactory tFactory =

21 TransformerFactory.newInstance ();

22 transformer = tFactory.newTransformer ();

23 transformer.setOutputProperty(OutputKeys.ENCODING,

24 "iso -8859-1");

25 }

88

26

27 private boolean binarySearch (String word){

28 NodeList hws = dict.getElementsByTagName ("keyword");

29

30 int a = 0, b = hws.getLength () - 1;

31 while (a <= b){

32 int i = (a+b) / 2;

33 Node n = hws.item(i). getFirstChild ();

34 String s = n.getNodeValue ();

35 int res = s.compareToIgnoreCase (word);

36 if (res > 0){ // greater , search right

37 match = hws.item(i). getParentNode ();

38 b = i - 1;

39 }else if (res < 0){ // smaller , search left

40 match = hws.item(i). getParentNode ();

41 a = i + 1;

42 }else{ // found!

43 match = hws.item(i). getParentNode ();

44 return true;

45 }

46 }

47 return false;

48 }

49

50 public Node keywordSearch (String keyword){

51 loadDict ();

52 Document doc = builder.newDocument ();

53 if(binarySearch(keyword)){

54 Node n = doc.importNode (match, true);

55 doc.appendChild(n);

56 return doc;

57 }

58 Node res = doc.createElement("word");

59 Node kw = doc.createElement("keyword");

60 doc.appendChild(res);

61 res.appendChild(kw);

62 kw.appendChild(doc.createTextNode("No match on keyword "

63 + keyword));

64 return doc;

65 }

66

67 public void insert (Node word){

68 NodeList nws =

69 ((Element)word). getElementsByTagName ("keyword");

70 // only one keyword element exist within word

71 Node child = nws.item (0). getFirstChild ();

72 String keyword = child.getNodeValue ();

73

74 loadDict ();

75 if(binarySearch(keyword)){

76 // allready exists throw exception

77 throw new DictionaryException("Word exists !,

78 "nothing inserted");

79 }

80 Node parent = match.getParentNode ();

81 Node newNode = dict.importNode(word, true);

82 parent.insertBefore(newNode , match);

83

84 saveDict ();

85 }

86

87 private void loadDict (){

89

88 // concurrency control needed

89 // but not implemented

90 dict = builder.parse(new File(dictName)) ;

91 }

92

93 private void saveDict (){

94 /* concurrency control needed when saving but not

95 implemented , i.e. if Dictionary has been modified

96 by other processes saving should be aborted new

97 document loaded , and insertion tried again */

98 BufferedWriter bwrt =

99 new BufferedWriter(new FileWriter(dictName));

100 transformer.transform(new DOMSource(dict),

101 new StreamResult(bwrt));

102 bwrt.close ();

103 }

104

105 public static void main(String [] args){

106 if(args.length < 2){

107 System.err.println(

108 "Usage : java DOMDictionary < dictionary file>" +

109 "< keyword >");

110 System.exit (-1);

111 }

112 DOMDictionary dict = new DOMDictionary (args [0]);

113 Node doc = dict.keywordSearch (args [1]);

114 Source source = new DOMSource(doc);

115 TransformerFactory tFactory =

116 TransformerFactory.newInstance ();

117 Transformer transformer = tFactory.newTransformer ();

118 transformer.transform(source , new StreamResult(System.out));

119 }

120 }

The application is invoked from the command line with two arguments. The first
argument is the file name of the dictionary document. The second argument
is the keyword to search for. In the example below the dictionary document
resides in the directory with relative path dict and have file name foldoc.xml
The word searched for is foo.

java DOMDictionary dict/foldoc.xml foo

Coding with the imperative DOM interface provides an at first glance ac-
ceptable solution to a dictionary application. The DOM interface is itself easy
to use and paired with the Java package javax.xml.transform the DOMDic-
tionary application seems a good choice for a dictionary application.

The DOM interface is a convenient interface for document (tree) traversal
and retrieval of document data. Worth mentioning is the method getElements-
ByTagName(String tagName) which is invoked on a node. The method returns
a list of all element ancestors with the tag name tagName. The method is used
in lines 28 and 69.

The DOM interface and implementation never the less also contains a num-
ber of draw backs, which makes it unsuitable for implementing the dictionary
application.

Parser configuration. The dictionary document has a size of 7.6Mb, when
stored in a flat file. On the used PC’s (on the IT-University) Crimson,
Java’s default XML parser, was not able to handle XML documents of such

90

big sizes. To parse the document the Xerces parser [37] was used instead.
This required a specific parser configuration within the DOMDictionary
application. The parser configuration is made in lines 12-14. Choosing
parser is an element of distraction removing attention from the application
code.

Memory consumption. Commonly used DOM implementations parse XML
documents into memory. This put a natural restriction on the sizes an
XML document can have and therefore poses a problem when using the
DOMDictionary application. If enough new words are added to the dic-
tionary, the dictionary document will grow to a size not manageable in
memory.
A solution for the application programmer could be to separate the dictio-
nary document into several files, e.g. a file for each letter in the alphabet.
When searching and inserting keywords the correct file is first loaded. The
following example illustrates the loadDict method, when the file names
are ’a dictName’, ’b dictName’, ..., ’z dictName’.

87 private void loadDict (){

88 // concurrency control needed

89 // but not implemented

90 String fileName = keyword.substring (0,1) +

91 "_" + dictName;

92 dict = builder.parse(new File(dictName)) ;

93 }

The DOMDictionary solution is not a straight forward solution anymore,
since special care must be taken.

No sharing. XML data cannot be shared within or between XML documents.
This because every DOM node (representing XML data) has one and only
one parent node. That nodes have parent nodes are illustrated in lines 37,
39, 43 and 80.

Additionally every node belongs to a document node. The importNode
method in lines 54 and 81 illustrates how nodes are imported into a doc-
ument, and from then on belongs to the document.

Concurrency and transaction control. The imperative programming style
is a destructive style, in which updates are made by changing data. When
data is shared between several processes concurrency control is necessary,
to ensure that data is not updated by processes, while other processes
access or update the same data.

In imperative environment where several processes updates the same data,
transaction control is needed. Using transaction control ensures that up-
dates is not loosed. (With out transaction control processes can overwrite
updates made by other processes - such a situation is illustrated in section
7.2.2).

DOM implementations (including the used one) does not provide con-
currency control nor transaction control of files being loaded from and
saved to storage. Such control must be implemented by the application
programmer.

91

Concurrency control and transaction control is not implemented in the
DOMDictionary, but should have been provided in methods saveDict
and loadDict. The result is, that only one DOMDictionary application
instance can be allowed to access and update the dictionary document.

Transaction and concurrency control can also be introduced by storing
XML data in databases providing such controls instead of in flat files. For
both solutions the simplicity of the application is lost, and implementing
the DOMDictionary is not a straight forward job.

No location transparency. When loading the dictionary document the doc-
ument location must be provided within the file name. That is if the
dictionary document resides in a directory other than the Java Virtual
Machine working directory, the absolute or relative path must be a prefix
of the file name.

In the DOMDictionary the file name is provided as argument to the appli-
cation invocation. The example given above illustrates how the location
of the document is provided within the file name. Location transparency
is thereby not provided by DOM implementations.

No distribution transparency. Distribution transparency is not provided by
DOM implementations. It might be provided in some extend by the un-
derlying file system, such that actual location of data (files) on intra nets is
not revealed. E.g. the path /import/stud/home/tejl/dictionary.xml
in a Unix file system does not reveal, which machine the file is located at.
It may be a local machine or a network file system server.

If files are saved outside an intra net special code for distributed sav-
ing and loading of files are necessary when programming with the DOM
interface. Such code is not provided in the DOMDictionary application
since the simplicity and straight forward programming style would have
been ruined. The DOMDictionary application is therefore only capable of
accessing dictionary documents saved on an intra net.

7.2.2 XMLStoreDictionary - a value-oriented dictionary
application

Advantages of XML Store and the value-oriented programming model intro-
duced are illustrated through a sample application.

XMLStoreDictionary is a dictionary application implemented using XML
Store for searching keywords and inserting new keywords into a dictionary doc-
ument. The dictionary document is stored in the XML Store.

XMLStoreDictionary functionality is implemented, such that it fulfills the
dictionary functionality presented in the introduction of section 7.2.

Using an XML Store makes it possible to share the dictionary document be-
tween several processes. These processes will all be able to insert new keywords
into the dictionary document. Between two searches in a XMLStoreDictionary
application instance the document can be updated by another process. This
requires the document to be loaded for each search or insert, if it has been
changed.

92

The application is implemented as the single class XMLStoreDictionary.
The constructor initializes XMLStoreDictionary with an XMLStore instance
and loads a value reference for the dictionary document.

The binarySearch method provides similar functionality to the equivalent
binarySearch in the DOMDictionary application. It is used for both searching a
keyword in the dictionary document and searching the position in the dictionary
document where a new keyword should be inserted.

Recalling the dictionary documents structure, the root element is called
dictionary. This dictionary element contains lots of word elements, which each
contain a keyword.

The method is given a keyword as parameter. If the keyword is found the
method returns a non-negative integer. The keyword is contained within a word
element. The returned integer denotes the word elements child index within
the dictionary element (Recall the dictionary documents structure described in
chapter 2). E.g. if a small dictionary document contain 3 word elements sorted
lexicographically after their keywords respectively “bar”, “foe” and “foo”, a
search on “bar” will return the non-negative integer 0.

If a keyword is not found the method returns a negative integer. This in-
teger is used if inserting a word element with the keyword into the dictionary
document. The integer implicitly denotes the position in the dictionary element
where the new word element must be inserted. The position is calculated by
inverting the negative integer and subtracting one. That is if the above dictio-
nary document example is used and “ccc” is searched the returned value is -2.
The position is then calculated as: −2− 1 = 1. After inserting “ccc” the dictio-
nary contains 4 word elements still sorted lexicographically after their keywords,
respectively “bar”, “ccc”, “foe” and “foo”.

The method keywordSearch searches for the keyword given in the method
parameter. The method first loads the dictionary document if it has been
changed by another process. Thereafter a binary search is performed and if
the keyword is found, the word element containing the keyword is returned.

The method insert inserts a word element node into the dictionary. If
the keyword within the word element already exist in the dictionary document
nothing is inserted. Otherwise the word element is inserted and the modified
dictionary document is stored.

The XMLStoreDictionary example shown below is striped from imports of
Java packages, exception handling and standard in-/output code in order to
simplify the example.

1 public class XMLStoreDictionary{

2 private XMLStoreFactory factory;

3 private XMLStore xmlstore;

4 private Node dict = null;

5 private ChildNodes words = null;

6 private ValueReference ref = null;

7 private DocumentBuilder builder = null;

8

9 public XMLStoreDictionary (XMLStore xmlstore){

10 this.xmlstore = xmlstore;

11 this.factory = XMLStoreFactory.getInstance ();

12 this.ref = xmlstore.lookup("dictionary");

13 dict = xmlstore.load(ref);

14 }

93

15

16 private int binaryLookup(String word){

17 words = dict.getChildNodes ();

18 int lo = 0;

19 int hi = words.getLength ()-1;

20 int mid = 0;

21

22 while(lo <= hi) {

23 mid = (lo+hi)/2;

24 int compare = wordAtIndex(mid). compareToIgnoreCase(word);

25 if(compare == 0) return mid;

26 if(compare > 0) hi = mid -1;

27 else lo = mid +1;

28 }

29 return (-lo-1);

30 }

31

32 private String wordAtIndex(int mid){

33 Node keywordNode =

34 words.getNode(mid). getChildNodes (). getNode (0);

35 return

36 keywordNode.getChildNodes (). getNode (0). getNodeValue ();

37 }

38

39 public Node keywordSearch(String keyword){

40 ValueReference ref = xmlstore.lookup("dictionary");

41 if(!this.ref.equals(ref)){

42 dict = xmlstore.load(ref);

43 }

44 Node word;

45 int index = binaryLookup(keyword);

46 if(index >= 0){

47 word = dict.getChildNodes (). getNode(index);

48 }else{

49 Node kw = DVMUtil.createElement("keyword",

50 "No match on keyword " +

51 keyword);

52 word = factory.createElementNode("word", kw);

53 }

54 return word;

55 }

56

57 public void insert(Node word)throws DictionaryException{

58 ValueReference ref = xmlstore.lookup("dictionary");

59 if(!this.ref.equals(ref)){

60 dict = xmlstore.load(ref);

61 }

62

63 Node kw = word.getChildNodes (). getNode (0);

64 String keyword = kw.getChildNodes (). getNode (0). getNodeValue ();

65

66 int index = binaryLookup(keyword);

67 if(index >= 0) {

68 throw new DictionaryException("Word exists !, " +

69 "nothing inserted");

70 }

71

72 index = - index -1;

73 dict = DVMUtil.insertChild(dict, index , word);

74 ref = xmlstore.save(dict);

75 xmlstore.rebind("dictionary", ref);

76 }

94

77

78 public static void main(String [] args){

79 String storeName = "dictionary";

80 XMLStoreFactory factory = XMLStoreFactory.getInstance ();

81 XMLStore xmlstore = factory.createXMLStore(storeName);

82 XMLStoreDictionary dict = new XMLStoreDictionary(xmlstore);

83

84 do{

85 System.out.println("[Search 1, Insert 2, Exit 0]");

86 System.out.println("----------------------------");

87 ... // code performing search or insert depending on

88 ... // the above choice

89 ...

90 }while (true);

91 }

92 }

The XMLStoreDictionary application assumes that a dictionary document al-
ready exist and that the document name is dictionary (line 79). The applica-
tion is invoked from the prompt with:

java -classpath xmlstore.jar XMLStoreDictionary

The above example illustrates advantages of programming with the value
oriented model introduced in chapter 3 and the DVM interface presented in
chapter 4.

Sharing. Due to the value-oriented interface and functionality of XML Store,
XML data can be shared within documents and between documents. This
is illustrated in line 73 where a new word is inserted by creating a new
dictionary root node. The children of the old root node is shared with the
new root node. When saving the new root node only the inserted child
and the root node itself is saved. This is a clear advantage since expensive
copying and ineffective saving of the unmodified data is not necessary.

Sharing of nodes within the dictionary document exist. This is however
most likely limited to sharing of simple nodes, such as <link>...</link>.
An excessive amount of shared data within the dictionary document will
thus not exist.

No parsing/unparsing. Lines 13, 42, 60 and 74 shows how the dictionary
document is not parsed from and unparsed to a serialized representation
when being loaded from and saved to storage. Time for parsing / unpars-
ing documents is thus not necessary.

Memory consumption. XMLStoreDictionary is able to handle dictionary doc-
ument files of any size. This is due to the fact, that whole documents may
not reside in memory, but may reside partly in local storage and partly
distributed on other XML Store peers. Memory consumption is therefore
not a concern of application programmers using XML Store.

Location transparency. The lines 13, 42 and 60 showing loading and lines
74 showing saving of the dictionary document illustrates, how document
root node location is transparent to the application programmer. The
rest of the XMLStoreDictionary implementation no where reveals location

95

of dictionary data. By using XML Store location transparency is thus
achieved.

Not having to think of document location is a clear advantage in the XML-
StoreDictionary. The application can be started at any physical location
and used without providing location dependent document information.

This is also a general advantage when using XML Store. Data can thereby
be moved from one physical location to another, without the concern of
application programmers.

Distribution transparency. The dictionary root node may reside on another
XML Store peer. Lines 12-13 shows how the root node is loaded without
revealing if it resides locally or on another peer.

Parts of the dictionary document might reside on other XML Store peers.
No were in the implementation of XMLStoreDictionary have been written
code special for distributed environments.

This transparency of distribution is a clear advantage to application pro-
grammers, since applications becomes easier and more simple to write.

No concurrency control. XMLStoreDictionary does not contain any code
for concurrency control. Due to the value oriented programming model
where modifications are made by creating new documents, accessed doc-
ument data is never updated/changed. Document can thus be accessed
(read) by several processes without a need for concurrency control. Lines
73-74 to shows how modifications and saving are made, without any con-
currency related code.

The name service functionality in XML Store introduces updateable val-
ues (i.e. imperative values), which identify value references. Those values
are the names, used for naming documents. Updating the name to value
references bindings in the name service introduces a possibility that up-
dates might get lost. This is a shortcoming of the name service, which
could be solved by implementing concurrency control.

A small scenario illustrates the shortcoming of the name service in a situ-
ation in which a dictionary modification is lost. Two users A and B each
inserts a new word into the dictionary at the same time. The inserted
words are different.

1. The dictionary document loaded in the insert method is the same
for both XMLStoreDictionary applications.

2. The two different words are inserted dictionary document used within
each insert method.

3. Both new version of the dictionary is saved.

4. The dictionary document name is updated with the value reference
to the new dictionary document made by user A.

5. The dictionary document name is updated with the value reference
to the new dictionary document made by user B.

The value reference to the dictionary document made by user A can not
be retrieved anymore using the name service. The change made by A has

96

thereby been “lost” to other users. This a clear disadvantage of the name
server functionality. Unfortunately the name service interface does not
allow an implementation of concurrency control. A proposal for modified
name service functionality is presented in section 7.2.4.

Transaction control. In the value-oriented programming model documents
are never lost, because modifying and saving documents, does not delete
old documents. Implementing simple transaction control thus becomes
a simple task, because the process of roll back (retrieving the document
version before changes were made) can be implemented by updating a
variable (i.e. a cell or mutable node) containing a value reference for the
modified document, to contain the value reference for the old document.
XMLStoreDictionary does not illustrate transaction control.

The Document Value Model interface of XML Store does however also intro-
duce a shortcoming of the XMLStoreDictionary application (and other applica-
tions). The name service functionality of XML Store unfortunately introduces
an imperative element into the value oriented programming style. The imper-
ative element reside in the rebind method of the XMLStore interface. This
method destructively updates the value reference bound to the dictionary doc-
ument name. Using destructive methods in a multiple user environment requires
concurrency and transaction control in order not to loose changes.

A small scenario illustrates a situation in which a dictionary modification
is lost. Two users A and B each inserts a new word into the dictionary at the
same time. The inserted words are different.

1. The dictionary document loaded in the insert method is the same for
both XMLStoreDictionary applications.

2. The two different words are inserted dictionary document used within each
insert method.

3. Both new version of the dictionary is saved.

4. The dictionary document name is updated with the value reference to the
new dictionary document made by user A.

5. The dictionary document name is updated with the value reference to the
new dictionary document made by user B.

The value reference to the dictionary document made by user A can not be
retrieved anymore using the name service. The change made by A has thereby
been “lost” to other users. This a clear disadvantage of the name server func-
tionality and should be solved.

Besides the above problem with name service functionality the XMLStore-
Dictionary functionality have been fulfilled by using XML Store. The basic
Document Value Model interface has thus proved to be functional.

7.2.3 Dictionary Extension

The dictionary application is expanded to maintain a search count for each
keyword in the dictionary document. The search count is the number of time a
keyword has been searched with success.

97

The search count is introduced by changing the structure of the dictionary
document. Word elements are expanded to contain a third child element, an
XML element with the tag name count. This element have no children but a
single attribute named value. The attribute value contains the search count of
the keyword contained within the word element.

The search functionality of dictionary applications is modified to update
the search count each time a keyword has been searched and found. For the
DOMDictionary and the XMLStoreDictionary presented in sections 7.2.1 and
7.2.2 this requires an update of their respective keywordSearch methods.

The DOMDictionary keywordSearch method is modified such that if a bi-
nary search is successful the search counter to the found keyword is incremented
by one and the dictionary document is unparsed and saved to disk. This is il-
lustrated below.

50 public Node keywordSearch (String keyword){

51 loadDict ();

52 Document doc = builder.newDocument ();

53 if(binarySearch(keyword)){

54 NodeList nlst =

55 ((Element)match). getElementsByTagName("count");

56 Element count = (Element)nlst.item (0);

57 int c = Integer.parseInt(count.getAttribute("value"));

58 count.setAttribute("value", String.valueOf(c));

59 saveDict ();

60

61 Node n = doc.importNode (match, true);

62 doc.appendChild(n);

63 dict = null;

64 return doc;

65 }

66 Node res = doc.createElement("word");

67 res.appendChild(doc.createTextNode("No match on keyword " +

68 keyword));

69 doc.appendChild(res);

70 dict = null;

71 return doc;

72 }

The new implementation of the keywordSearch method in the DOMDictionary
is coded in a straight forward manner. The imperative DOM interface makes it
possible to change the attribute value of the count node by a simple setAttribute
method call. The disadvantage of using the DOM interface is clearly that the
whole document must be unparsed and saved to update the persisted dictionary
document.

In the XMLStoreDictionary the nodes holding the search count is imple-
mented by using mutable nodes. The keywordSearch method is updated to
modify the mutable nodes on successful searches.

39 public Node keywordSearch(String keyword){

40 ValueReference ref = xmlstore.lookup("dictionary");

41 if(!this.ref.equals(ref)){

42 dict = xmlstore.load(ref);

43 }

44 Node word;

45 int index = binaryLookup(keyword);

98

46 if(index >= 0){

47 word = dict.getChildNodes (). getNode(index);

48 MutNode count = (MutNode)word.getChildNodes (). getNode (2);

49 Node state = count.getNodeState ();

50 int c = Integer.parseInt(state.getAttribute("value"));

51 Attribute attr =

52 factory.createAttribute("value", String.valueOf(c));

53 state = factory.createElementNode("count",

54 new Attribute []{ attr });

55 count.setNodeState(state);

56 }else{

57 word = DVMUtil.createElement("word",

58 "No match on keyword " +

59 keyword);

60 }

61 return word;

62 }

This unparsing is required in the keywordSearch of DOMDictionary is in con-
trast to the modified keywordSearch method within the XMLStoreDictionary.
Updating the mutable “count” node requires creation of a new attribute, a new
(immutable) node state and setting the node state. This happens in lines 51-55.
The updating code therefore seems a bit more inconvenient.

The XMLStoreDictionary application implementation on the other hand
provides a considerable advantage. The dictionary document is not saved in
order to modify the “count” node. The change of state in the mutable node is
automatically saved, when setNodeState is invoked.

The setNodeState method is a destructive method of imperative nature.
Since XML Store does not provide transaction and concurrency control updates
of the increments may get lost. The search count is not considered critical data,
i.e. a few lost updates of a search count is tolerable. It can therefore be justified
to use mutable nodes for the task.

As using mutable nodes is equivalent to using cells simple transaction control
can be implemented. The dictionary extension pedoes not illustrate simple
transaction control.

7.2.4 Proposal for name service improvements

The evaluation of the Document Value Model in section 7.2.2 showed how doc-
ument updates can be lost. Such losses can be prevented by improving the
name service functionality and implementing simple concurrency control within
applications.

Concurrency control can be achieved by an approach called optimistic lock-
ing. Optimistic locking is based on the assumption, that the likelihood of two
processes’ accessing the same values are low. Transactions are therefore allowed
to proceed as if no problems exist. If conflicts arise one or more transactions are
aborted and must restarted. The drawback of optimistic locking is the risk of
starvation, where a process repeatedly have its transaction aborted and restarts.

Optimistic locking of values in the in the value oriented programming model
can be implemented as follows: A reference for the value val is kept in an
updateable variable upRef. A new value newval is created. Updating the value
and committing the change, are made by setting upRef to to contain the value
reference for newval, which is an atomic operation. Abortion of the update is
made by setting upRef back to the reference for val.

99

The bind and rebind methods in the name service is modified to implement
optimistic locking. In the central name service solution the optimistic locking
occurs at the central server.

The functionality of rebind is modified to the following:

void bind(String
name,
ValueReference ref)

Creates a binding between name and ref. The
binding is shared with all other peers within
the XML Store. If creation of the binding is
not possible because, the binding already exist a
ConcurrencyException is thrown

void rebind(String
name,
ValueReference
ref, ValueReference
oldref)

Updates a name-value references binding, i.e.
after having invoked rebind(name,valref,
oldvalref), name is no longer mapped to
oldvalref, by instead mapped to valref. If
updating is not possible (oldvalref does not
equal the actual reference bound to name), then
an ConcurrencyException is thrown.

In the central name server solution the consistency check (in case of rebind
the equality of oldref and the actual value reference bound to name is per-
formed at the central server.

Using the modified name service can be illustrated for the insert method
of XMLStoreDictionary as follows. The code method is simply modified, such
the insertion is tried repeatedly until a rebind is successfully performed. The
example have not been compiled and tested.

1 public void insert(Node word)throws DictionaryException{

2 ValueReference ref = xmlstore.lookup("dictionary");

3 if(!this.ref.equals(ref)){

4 dict = xmlstore.load(ref);

5 }

6

7 while(true){

8 Node kw = word.getChildNodes (). getNode (0);

9 String keyword =

10 kw.getChildNodes (). getNode (0). getNodeValue ();

11

12 int index = binaryLookup(keyword);

13 if(index >= 0) {

14 throw new DictionaryException("Word exists !,

15 nothing inserted ");

16 }

17

18 index = - index -1;

19 dict = DVMUtil.insertChild(dict, index , word);

20 ValueReference newRef = xmlstore.save(dict);

21 try{

22 xmlstore.rebind("dictionary", newRef , ref);

23 return;

24 }catch(ConcurrencyException e){

25 ref = xmlstore.lookup("dictionary");

26 dict = xmlstore.load(ref);

27 }

28 }

29 }

100

The improvement of the name service functionality can be used to implement
simple concurrency control and thereby eliminate the possibility of lost data.

7.2.5 Summery

A dictionary application has been implemented by using both an implementa-
tion of the Document Object Model (DOM) interface and by using the XML
Store implementation of the Document Value Model (DVM) interface. This
resulted in respectively the DOMDictionary application and the XMLStoreDic-
tionary application.

Both the DOMDictionary application and the XMLStoreDictionary has been
implemented in the most straight forward way. As consequence of this and the
similar document structure, which the two interfaces provide, the implementa-
tions have similar structures.

The functionality of the two applications are very different though. The
implementations of the DOMDictionary application showed that the DOM in-
terface does not allow for a straight forward and simple implementation of the
dictionary application. It was required for the application programmer to im-
plement concurrency control, transaction control and any distributed aspects or
to solve such issues by using database solutions for storing the dictionary data.

This were in contrast to the DVM interface of XML Store, which only showed
a flaw in the name server functionality. This flaw is serious enough though. A
simple correction of the name server functionality presented in 7.2.4 solves the
flaw.

Properties of the DOM interface and DVM interface of XML Store is revised
in the table below.

DVM DOM
Process arbitrarily large documents + -
Sharing of XML data + -
No parsing/unparsing before processing + -
Convenient interface which reflects semistructured
data

+ +

Location transparency + -
Distribution transparency + -
Simple transaction control is implementable + -
Concurrency control not necessary when sav-
ing/loading

+ -

The table shows that the XML Store provides a range of advantages compared
to the DOM interface.

A difference between the two interfaces not shown in the above table, is their
functionality. The DOM interface contains more functionality than the DVM in-
terface and is thus more convenient to use. The methods getElementsByTagName
and getFirstChild exemplifies this. The functionality of the DVM interface
could have been extended with such and similar methods, but focus has been
on developing an interface only providing the basic functionality.

The dictionary applications extended with search counters also showed a
considerable advantage of XML Store to the DOM interface. The mutable
nodes of the XML Store makes it possible to introduce an imperative element
into the value-oriented programming model. It is thereby possible to update a

101

single nodes without unparsing and saving the whole document as in DOM.

7.3 Evaluation summery

The node counter sample application and the dictionary applications DOMDic-
tionary and XMLStoreDictionary have been implemented in order to evaluate
the Document Value Model (DVM) interface of XML Store.

Implementing the node counter application illustrated that small simple ap-
plications can easily be build using XML Store. The node counter example
didn’t illustrate value-oriented aspect though.

These were illustrated in the XMLStoreDictionary, a dictionary application
implemented by using XML Store. A dictionary application, DOMDictionary,
were implemented by using the Domain object Model interface. The imple-
mentation of the dictionary application illustrated that in opposition to DOM,
the XML Store provides sharing of XML data, distribution transparency and
location

transparency. Memory consumption is of no concern to the application pro-
grammer and concurrency control is not necessary on simple load and save
functionality. The simple name service functionality does unfortunately solve
simple concurrency issues. A solution solving the problem has been presented
in section 7.2.4.

Applications better suited for illustrating value-oriented advantages could
have been chosen. The node counter does not illustrate sharing of values, and
the amount of sharing in the dictionary application does not illustrate, that
sharing is an advantage.

102

Chapter 8

Experimental results

The XML Store prototype implementation described in chapter 6 provides the
functionality of the Document Value Model (DVM) interface described in chap-
ter 4. The implementation must perform this functionality with a satisfying
performance in order to be usable.

The performance of the XML Store prototype implementation has been ex-
amined through experimental measurements. The focus has been on time con-
sumption, i.e. how fast is the different functionalities of the prototype imple-
mentation performed.

The performance of the prototype implementation have only been tested,
for functionality central to XML Store usage. Such functionality is initializing
XML Store and saving, modifying, retrieving and accessing documents.

Section 8.1 tests the performance of initializing new XML Store’s. The
performance of retrieving a document from an XML Store is examined in section
8.2. In section 8.3 the performance for accessing document content is examined.
Section 8.4 describes save performance and section 8.5 describes the performance
when modifying a document.

8.1 Cold start

Retrieval and persistence of documents using an XML Store requires the XML
Store to be initialized. Initialization time is not only influenced by the instan-
tiation of the XML Store, but also by existing files used for the initialization.

The cold start time of an XML Store is its initialization time.
During the execution time of a java virtual machine (JVM) XML Store’s

are only initialized fully once, i.e. the first time an XML Store is initialized.
Any following initializations will share instances, such as the reference server,
with the first initialized XML Store. These instances are therefore not initial-
ized again. A cold start is therefore only performed for the first XML Store
initialization within the same JVM.

Existing disk and reference server files are used when initializing an XML
Store. These files influence on the cold start are examined.

Section 8.1.1 examines the disk files influence on cold start and section 8.1.2
examines the reference server files influence.

103

8.1.1 Disk initialization test

The disk implementation is constructed such that the size of the disk file should
have no influence on the cold start performance.

The disk initialization test examines the influence of the disk file’s size on
cold start performance by measuring the initialization time of XML Store’s using
disk files of different sizes.

In order to examine the influence of the disk files size on cold start perfor-
mance the influence of the reference server file must be neglected. As described
in the following section (8.1.2), the reference server initialization is affected by
the number of value reference to locator mappings in the reference server file.
By keeping the number of mappings in the reference server file constant for all
disk file tests, the reference server files contributes with a constant factor to the
time measurements.

The disk initialization test is carried out as follows:

1. 10 XML Store’s with increasing disk file sizes, but equal number of map-
pings in the reference server files is created.

2. Using the created store files and reference server files the cold start time
is measured for each of the 10 XML Store’s.

The test confirmed that the disk file does not affect the cold start perfor-
mance. This is illustrated in figure 8.1, where it is seen that the cold start time
is more or less constant for increasing disk size.

The disk file is not parsed during initialization and the disk file size therefore
has no influence on the initialization. This is confirmed by the test.

8.1.2 Reference server initialization test

The number of value reference to locator mappings persisted in the reference
server file are expected to influence the cold start performance.

The reference server initialization test examines the impact of persisted value
reference to locator mappings on cold start performance. It is done by measuring
the initialization time of XML Store using reference server files of various sizes.

The test was carried out as follows:

1. 10 XML Store’s, all with the same disk file size, but increasing reference
server file sizes (increasing number of value reference to locator mappings)
were created.

2. The cold start time was measured for each of the 10 XML Store’s using
the created disk and reference server files.

The unambiguous result of the test showed (as expected), that the num-
ber of value reference to locator mappings greatly affect the cold start perfor-
mance. When the number of mappings increases, the cold start performance
time increases. The relation between the number of mappings and the cold start
performance time is linear. Figure 8.2 illustrates the test results.

During the reference server initialization the existing reference server file
(reference server) is parsed. The more mappings in the file, i.e. the bigger the
file, the longer parse time. This is confirmed by the test result.

104

400

420

440

460

480

500

520

540

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(m
se

cs
)

XMLStore disk file size (Mb)

XML Store cold start, node count fixed at 1000

cold start
cold start inclusiv document retrieval

Figure 8.1: Cold start measures: XML Store’s with a 1000 nodes, but increasing
disk file sizes were produced. With the same amount of nodes, the XML Store’s
also contained the same amount of mappings. The cold start time was measured
as a function of disk file size. The time measures were produced from an average
of 10 test runs.

8.1.3 Summery

The influence of a disk file and a reference server file on XML Store cold start
performance have been examined. The test results clearly shows that the disk
files size is of no influence on cold start performance, whereas the reference server
file has influence on cold start performance. The cold start time increases with
increasing number of value reference to locator mappings in the reference server
file.

This is not satisfying, as XML Store’s with a huge number of mappings
will have a low performance on cold start. A different strategy for loading the
reference server mappings is therefore needed.

8.2 Document retrieval

The strategy for document retrieval is fundamentally different in the imple-
mented XML Store compared to often used DOM implementations. This pro-
vides the XML Store with a performance advantage compared to the often used
DOM implementations when retrieving documents.

Retrieving an Extensible Markup Language (XML) document is retrieving
the root node of the document. Performance is evaluated by measuring the
retrieval time of documents.

The performance differences of document retrieval in XML Store and of-

105

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(m
se

cs
)

mappings

XML Store cold start, store size = 5Mb

cold start
cold start inclusiv document retrieval

Figure 8.2: Cold start measures: XML Store’s with a disk file size of 5 mega
bytes, but different number of mappings were produced. The cold start time
was measured as a function of the number of mappings. The time measures
were produced from an average of 10 test runs.

ten used DOM implementations are illustrated by evaluating performance of
document retrieval in both.

The performance behavior of document retrieval using XML Store is tested
in section 8.2.1. The performance behavior for a typically used DOM implemen-
tation is evaluated in section 8.2.2. Section 8.2.3 summarizes the test results.

8.2.1 XML Store

Loading an XML document from XML Store is done by a lazy loading strat-
egy, where XML elements and character data are loaded when needed. The
document retrieval performance is greatly affected by this strategy.

The document retrieval performance test is done by measuring the time it
takes to 1) use a name and the name service specified by the Document Value
Model (DVM) (see chapter 4) to lookup a value reference. 2) Use the value
reference to retrieve the document root node.

The test was carried by testing document retrieval on different documents.
The test documents were reused from the cold start test (see section 8.1). The
XML Store’s used in the cold start test all consists of one single document.
Document retrieval is therefore made by retrieving the single root node in the
XML Store.

The test results showed that document retrieval was not dependent on doc-
ument size nor the number of nodes in the document. This is illustrated by the
figures 8.1 and 8.2.

106

That document retrieval performance is not influenced by document size nor
node count is simple to explain. The implementation of XML Store is made such
that the content of root nodes are not loaded on document retrieval. Instead
a proxy node is returned for the root node (see section 6.1.1). Since returning
a proxy for the root node performs equally for all root nodes, the document
retrieval performance is unaffected by document content.

8.2.2 Document Object Model implementations

The upstart properties of the XML Store implementation are in contrast to the
upstart properties of the most used Document Object Model (DOM) implemen-
tations. The performance for document retrieval therefore behaves differently
in DOM implementations than in XML Store.

A test of the upstart performance of DOM implementations is therefore not
comparable to the cold start tests of the XML Store. But testing the upstart
performance in a DOM implementation will illustrate its different properties
compared to the XML Store properties.

The upstart of the Document Object Model implementation is the parsing
(or loading) of an Extensible Markup Language (XML) document. This test
examines upstart times of a DOM implementation, i.e. the parse times of XML
documents.

The test is not an actual test of DOM as this is an interface specification. It
is a test of the parser used for building (parsing) the serialized XML document.
The Xerces parser [37] was used for the test.

In the test parse times for two groups of XML documents is measured. The
first group of XML documents have a fixed number of nodes, while their size
varies. The size of an XML document is the disk space it uses in serialized
format. The second number of XML documents have a fixed size, while the
number of nodes varies.

A test is performed twice, once for each group of XML documents. Each
test is made by producing the retrieval time for each of 10 XML documents (of
the group).

The test result for the group of XML documents with fixed node count
shows, that the upstart time of the used DOM implementation increases as the
document size increases. The relation between document size and upstart time
is linear. The test results are illustrated in figure 8.3.

As the DOM implementation parses the whole XML document into memory,
the document retrieval time should increase with increasing document size and
the result is therefore not surprising.

The test result for the group of XML document with fixed size, shows a ten-
dency, that the upstart time of the used DOM implementation increases as the
node count increases. The upstart time also looks like it becomes asymptotically
linear for increasing node counts.

The results also show though, that for small node counts, the upstart time
is decreasing. The documents with a small amount of nodes is created by pro-
ducing greater data nodes with big amount of data. A possible explanation for
the decreasing upstart time, that the DOM implementation is slow in producing
such DOM nodes, that is nodes with large CDATA sections. The results are
illustrated in figure 8.4.

107

The asymptotically linearly increasing upstart time with increasing node
count can be explained by the nature of XML parsers. For each node in the
document a call back method in the parser is invoked (see section 2.2.2 for a
description of call back methods). As invocation of a method takes time, the
upstart time will increase with the number of call back method invocations,
and thereby with the number of nodes in the XML document. This explains
the asymptotically linear increasing upstart time.

The test results thereby show that upstart times of the used DOM imple-
mentation depends on both the document size and the number of nodes in the
document.

8.2.3 Summery

The document retrieval performance using the XML Store is not affected in any
away by the document size of number of nodes in the document. This is in con-
trast to the performance for document retrieval using a DOM implementation.
Here the document retrieval time increases both for increasing document size
and for increasing number of nodes.

8.3 Document access

Retrieval of XML documents from the XML Store load of whole documents.
Instead documents are loaded lazily (as needed). This affects performance when
accessing documents.

Document access using XML Store is retrieving node type, value, attributes
and children. The document access performance is evaluated by measuring the
time it takes to access document data.

XML documents can reside on any peer in the XML Store. They can reside
completely on the actual peer (the peer on which the keyword search is invoked)
or on several other peers. The access performance depends on where XML
documents are stored.

The document access performance is evaluated for an XML dictionary doc-
ument residing on the actual peer and an XML dictionary document residing
on several peers.

Section 8.3.1 evaluates document access performance, when the XML dic-
tionary resides on the actual peer. Section 8.3.2 evaluates the document access
performance for an XML dictionary residing on several peers. Section 8.3.3
gives a short summery of the evaluations.

8.3.1 Local access

Document access performance depends the load performance, i.e. the time it
takes to load document parts. Loading documents residing locally is expected
to be faster than loading document from other XML Store peers.

The access performance of documents stored locally, i.e. on the actual peer,
is evaluated by measuring the time it takes to access data in a document stored
locally.

The dictionary application presented in section 7.2 is used for the perfor-
mance testing. The test is made by storing the dictionary XML document on

108

the actual peer and measure the time needed for performing a keyword search in
the dictionary. (During a keyword search the dictionary application will access
data of the dictionary document). The keyword search is performed 10 times
for the same keyword (the keyword is ’foo’ and exists in the dictionary).

The test result clearly shows that the search time (or access time) is high
for the first search, but low for the following searches. This can be seen from
table 8.1.

search # Time
1 6232
2 2
3 5
4 2
5 2
6 2
7 2
8 16
9 3
10 4

Table 8.1: A keyword search were performed 10 times in a row using the XML-
StoreDictionary application. The dictionary is FOLDOC and the keyword were
’foo’. The dictionary file were resided on the XML Store peer on which the
keyword search were performed. The FOLDOC dictionary i 7.6 Mbytes

That the search time is much longer for the first keyword search is explained
by the lazy loading strategy used in the XML Store implementation. During the
keyword search in the dictionary lots of nodes are accessed. These nodes are all
loaded lazily, i.e. when being accessed the first time. Since they are all accessed
the first time during the first search, the access times and thereby search time
is a lot higher for the first search compared to the following searches.

This shows that access performance in the XML Store is low, when nodes
is being accessed the first time. In the prototype implementation nodes are
loaded on request, i.e. one node at a time. A possible improvement would be
to perform load buffering, thereby loading several nodes at a time.

8.3.2 Several peers

As mentioned in section 8.3.1 document access depends on where documents
are stored. Loading documents stored on other XML Store peers is expected to
require more time, than loading from local storage. The access performance of
documents stored on other peers is therefore expected to be lower compared to
documents stored on the actual peer.

The access performance of document stored on other peers, i.e. not on the
actual peer, is evaluated by measuring the time for accessing such documents
data.

As in section 8.3.1 the dictionary application presented in section 7.2 is used
for the evaluation. The dictionary XML document is stored on 3 XML Store
peers, i.e. on 3 different computers. Keyword search is performed from a fourth

109

XML Store peer having no dictionary document. This peer will therefore be
forced to load the document from the 3 other peers. (The keyword is again
’foo’). All XML Store peers resides on the same intranet.

The test result again shows, that the first search is takes more time, than
the following nine searches. The test also shows, that the search time for the
first search is higher, when loading the document from other peers, compared
to loading the document on from the actual peers storage. The test result is
shown in table 8.2.

search # Time
1 57807
2 4
3 3
4 2
5 5
6 3
7 4
8 18
9 4
10 2

Table 8.2: Keyword using the XMLStoreDictionary application. The FOLDOC
dictionary resided on each of 3 XML Store peers. The keyword search were per-
formed from a fourth peer not containing any parts of the FOLDOC dictionary.

Just as when performing a search on a dictionary document stored on the
actual peer, the search time is highest for the first search. This time the first
search only requires much more time, because the dictionary document is loaded
from other XML Store peers (see table 8.1 and table 8.2).

The relatively high loading time can not be considered satisfying. The solu-
tion to the problem might (as in section 8.3.1) be to implement techniques such
as buffered loading and in-lining (see section 5.2.4).

8.3.3 Summery

Documents are loaded lazily, when document data are being accessed. The
access performance therefore depends on load times.

The load time differs, when loading documents from the actual peer and
loading distributed from other peers. When loading from the actual peer, the
access performance is low but acceptable. When loading the document data
from other XML Store peers the access performance becomes very low. The
load performance might be improved by in-lining and load buffering.

8.4 Saving Documents

Saving XML documents is central to working with XML Store. Save perfor-
mance is therefore a central issue in the XML Store performance.

The save performance of the XML Store prototype implementation is eval-
uated by measuring the times needed for saving documents.

110

In the prototype implementation document save times are expected to de-
pend on the amount of data written to disk, i.e. the size of the document being
saved. The save times (or save performance) are on the other hand expected
to be unaffected by the data amount, already saved on disk (a property of log-
structured disk access - see The Design and Implementation of a Log-Structured
File System [35]).

Section 8.4.1 tests how save times are dependent of document sizes. Section
8.4.2 tests the save performance with regards to the amount of already save
data. Section 8.4.3 provides a summery of the save results.

8.4.1 Save functionality

The prototype implementation of XML Store provides simple save functionality
with no buffering, asynchronous saving or the like. The performance of such
simple functionality is most likely low.

In the prototype implementations values are written to disk, when the save
method is invoked on the values. The performance of this save functionality is
tested by measuring the save time for XML documents of different sizes.

The test is performed by creating 10 XML documents of different sizes. Each
XML document is saved in an empty XML Store, i.e. an XML Store containing
no documents, and the time needed for saving is measured.

The test results shows, that save times increase with increasing XML doc-
ument size. The relation between save time and document size is somewhat
linear. The results are illustrated by figure 8.5.

When saving values on request like in simple save functionality of the proto-
type implementation, the save time must be expected to increase for increasing
document sizes.

This is not satisfying for huge XML documents. A solution would be to
introduce buffered and asynchronous save functionality.

8.4.2 Disk access

Values are saved log-structured on disk and random access to the disk is there-
fore not necessary for saving values (ref). The disk access time is therefore to
be constant. The save time should therefore only be influenced by the amount
of saved data.

The disk save performance is tested by measuring the save time of the same
XML document in XML Store’s with different disk file sizes.

The test is performed by creating 10 XML Store’s with different disk file
sizes. The same XML document is saved in each of the XML Store’s and the
save time is measured.

The test results shows, that the save time increases with increasing disk file
size. This is illustrated in figure 8.6.

This result is in contradiction to the theory of log-structured save behavior,
in which save times should only be affected by the amount of saved data.

From the figure is also seen that the increase in save time from saving in an
empty XML Store to saving in an XML Store with disk file size of 12.5 Mb is
only approximately 200 Msecs. This increase is not tremendous and certainly
not a disaster.

111

The reason for the test result is not clear, but a possible explanation might
be found in the use of Java’s RandomAccessFile for writing data to disk. All
though log-structured save behavior can be simulated using this class interface,
the save performance achieved by using the class, might be affected by the
amount of already saved data. If strict log-structured behavior is needed another
implementation strategy might be needed.

8.4.3 Summery

The XML Store save performance is affected by the saved document sizes, such
that save times increase with increasing document size. Such save performance
can be improved by introducing asynchronous save functionality.

The save performance is however also affected by the amount of data already
saved on disk.

8.5 Document modification

The value oriented programming style provides the XML Store with a perfor-
mance advantage when modifying documents compared to modifying documents
in an imperative programming style.

Document modification in the XML Store is 1) changing the document 2)
saving the resulting new document. The performance of document modification
is tested by measuring the document modification time.

In the performance test the save time of the XML document being modified
is first measured. Thereafter a small XML subtree is inserted into the document
and the modification times are measured. These can be seen from table 8.3.

Document Size Save Time M Insert Time M Save Time Sum
5 Mb 132 Msec 19 Msec 3 Msec 22 Msec

Table 8.3: Modification of an XML document. The second column contains
the time for saving the whole XML document. The third to the fifth columns
contains the modification times, first the time to insert new XML data, secondly
the time to save the modified document and third the sum of the two.

The test results shows how document modification in XML Store is faster
than saving the whole document. This is a result of the share-create style used
in value oriented programming (see section 3.2). The not modified document
parts is thereby not saved again.

The test results also shows, that the most time consuming operation in the
modification is inserting the new XML subtree.

The XML prototype implementation represents child nodes as arrays. In-
sertion and removal of child nodes in such a representation becomes expensive
when the number of child nodes is high (see 6.1.4). The used document have
a root with 335 child nodes, and the inserted subtree is added as a child to
the root node. The insertion time therefore becomes relatively high. A dif-
ferent strategy for representing child nodes is needed in order to improve the
modification performance.

112

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(m
se

cs
)

XML file size (Mb)

DOM load time, node count fixed at 1000

Figure 8.3: The Document retrieval time, i.e. the time for retrieving a root
node of an XML document. The XML documents used for the measures had
the same amount of nodes, but different sizes (memory consumptions).

113

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(m
se

cs
)

Number of mappings

DOM load time, Doc size fixed at 5 Mb

Figure 8.4: The document retrieval time for XML documents of fixed sizes, i.e.
all 5 mega bytes, but different number of nodes.

114

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(m
se

cs
)

XML Document size (Mb)

Saving in empty XML Store

Figure 8.5: Save times for XML documents of increasing sizes.

115

60

80

100

120

140

160

180

200

220

240

260

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(m
se

cs
)

XMLStore size (Mb)

Saving in non-empty XML Store

Figure 8.6: Save times, when saving the same document in XML Store’s, with
different disk file.

116

Chapter 9

Future works

Some aspect were beyond the scope of this thesis. These were mentioned in
section 1.1.2 as limitations in the development of XML Store. Improvements
to existing functionality of XML Store must also be made. Future work will
have to address some of these limitations and improvements to provide a usable
XML Store.

9.1 Name Service

The evaluation of the name service have shown shortcomings in its functionality.
Improvements must be made in three areas:

The limited name space allowed by the service lowers the usability of the
name service. Implementing more advanced name service functionality will solve
this problem.

The second problem is the missing possibility to implement concurrency
control in methods for binding and rebinding. A solution to the problem have
been proposed and must be implemented.

The third and last improvement concerns the single point of failure problem
in centralized solutions. The name service should be implemented as a decentral
distributed service to eliminate the single point of failure problem.

9.2 Stream based API

The loading strategy described in section 6.1.1 is not satisfying for XML doc-
ument, which either contain XML elements with a huge number of children,
or XML character data, which are huge. As mentioned in the section (6.1.1 a
solution is to load child nodes and node value lazily, i.e. to introduce a stream
based solution.

9.3 Distributed Garbage collection

The current implementation of the XML Store disk layer only allows for sav-
ing documents. Deleting documents from disk storage is not possible. As a

117

consequence storage will gradually be filled up, possible with data not used.
Introducing some sort of distributed garbage collection solves the problem.

In Distributed Systems Concepts and Design[5] garbage collection of dis-
tributed objects is defined as:

The aim of a distributed garbage collector is to ensure that if a local or remote
reference to an object is still held anywhere in a set of distributed objects, then
the object itself will continue to exist, but as soon as no object any longer holds
a reference ot it, the object will be collected and the memory it uses recovered

This definition can be transfered to a value-oriented programming model by
exchanged ’object’ with ’value’. Implementing distributed garbage collection is
complicated task, but it has been done [38].

9.4 Network communication

The process of locating documents in XML Store relies on IP Multicast, which
is not completely reliable. Messages send on a network might therefore get
lost. IP Multicast should therefore be exchanged with a more reliable multicast
technique. If multicast techniques are satisfying at all if using XML Store as
a ’real’ Application Programming Interface is not known, As an example the
impact of the number of XML Store peers is not known. Further testing of the
multicast solution is thus required.

9.5 Performance issues

The performance tests carried out in chapter 8 revealed that save and load per-
formance could be improved. Section 5.2.4 describes strategies for improving
such performance. The ones not implemented are in-lining, asynchronous write
and read / write buffering. Implementing these are expected to have consider-
able influence on load and save performance.

The test of modification performance also revealed low performance, which
is due to the naive implementations of child nodes resulting in insertion (i.e.
inserting a child into a child nodes representation) times of O(n). Modifying
this is simple, but requires a modification of the ChildNodes interface

9.6 Querying XML documents

As increasing amounts of information are store, exchanged, and presented using
XML, the ability to intelligently query XML data sources becomes increasingly
important.... An XML query language must provide features for retrieving and
interpreting information from diverse sources of XML document[16].

Implementing a query language for XML Store is provides considerable ad-
vantages to application programmers, as it eases the process of extracting in-
formation from XML documents.

XQuery and XPath [39] are W3C standards for expressing database style
queries of XML documents. With XPath, a set of nodes can be selected based
on a regular path expression. XQuery is a query language using XPath to express
queries. XQuery could be implemented for querying documents in XML Store.

118

9.7 Mobility

The world is increasingly populated by small and portable computing devices,
including laptops, handheld devices such as personal digital assistants (PDAs),
mobile phones, etc.

If XML Store should be supported on such computing devices frequently
moving from one physical location to another, it must be able to support that
devices, which documents are stored on, change physical location.

XML Store and its Document Value Model interface has taken advantage of
the value oriented model by providing an interface in which document location
is transparent. (Document are loaded and saved using value references). The
Document Value Model thus supports an extension of the XML Store function-
ality to support mobility of devices (being XML Store peers) persisting XML
data.

119

Bibliography

[1] W3C team. Extensible markup language (xml) 1.0 (second edition).
http://www.w3.org/TR/REC-xml.

[2] The xml information set. http://www.w3.org/TR/xml-infoset/.

[3] W3C team. Document object model (dom) level 2 core specification.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/.

[4] Sax: Simple api for xml. http://www.saxproject.org/.

[5] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems
Concepts and Design. Addison-Wesley, 2001.

[6] Napster. http://www.napster.com/.

[7] The Gnutella protocol specification v0.4. http://www.gnutella.co.uk/-
library/pdf/gnutella protocol 0.4.pdf.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability, pages
46–66, 2000.

[9] Mikkel Fennestad Tine Thorn, Anders Baumann. A distributed value-
oriented xml store. Master’s thesis, IT University of Copenhagen, July
2002.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns Elements of Reusable Object-Oriented Software. Addison Wesley,
1999.

[11] Michael I. Schwartzbach Anders Møller. The xml revolution, technologies
for the future web. Anders Møller, Michael I. Schwartzbach.

[12] What does each dom level bring?
http://www.mozilla.org/docs/dom/reference/levels.html.

[13] http://www.w3.org/TR/1998/WD-DOM-19980720/cover.html.

[14] Jason Hunter and Brett McLaughlin. Jdom. http://www.jdom.org.

[15] Chapter 17 of the xml bible, second edition : xsl transformations.
http://www.ibiblio.org/xml/books/bible2/chap17.html#d1e495.

120

[16] Xquery 1.0: An xml query language. http://www.w3.org/TR/xquery/.

[17] Ronald Bourret. Xml and databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm, 2002.

[18] P. Druschel and A. Rowstron.

[19] Frank Dabek. A cooperative file system.
http://citeseer.nj.nec.com/dabek01cooperative.html.

[20] W3C. Overview of sgml resources. http://www.w3.org/MarkUp/SGML/.

[21] Xsl: Extensible stylesheet language. http://www.w3.org/Style/XSL/.

[22] Simple object access protocol (soap). http://www.w3.org/TR/SOAP/.

[23] The extensible hypertext markup language (xhtml).
http://www.w3.org/TR/xhtml1/.

[24] Scalable vector graphics (svg). http://www.w3.org/TR/SVG/.

[25] Minimal xml. http://www.docuverse.com/smldev/minxml.jsp.

[26] Foldoc: Free on-line dictionary of computing. http://www.foldoc.org.

[27] D. Suciu S. Abiteboul, P. Buneman. Data on the Web. Morgan Kaufmann,
2000.

[28] Javatm 2 platform, standard edition (j2setm).
http://java.sun.com/j2se/1.4/index.html.

[29] Xalan-java version 2.4.d1. http://xml.apache.org/xalan-j/index.html.

[30] Morten Primdahl. Querying the web
http://www.it-c.dk/∼morten/thesis/. Master’s thesis, IT-University of
Copenhagen, 2002.

[31] Ronald Bourret. Mapping dtds to databases. 2001.

[32] Fritz Henglein. Desiderata for an applicative persistent store manager (xml
store). unpublished, memo, 2001.

[33] William Stallings. Cryptography and Network Security: Principles and
Practice. Prentice Hall, second edition, 1998.

[34] W3C team. Hypertext markup language (html) home page.
http://www.w3.org/Markup.

[35] Mendel Rosenblum and John K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems, 10(1):26–52, 1992.

[36] Dictionary.com. http://www.dictionary.com.

[37] Xerces2 java parser readme. http://xml.apache.org/xerces2-j/index.html.

[38] Fabrice Le Fessant.

121

[39] Xml path language (xpath) version 1.0. http://www.w3.org/TR/xpath/.

[40] Peter Sestoft. Grammers and parsing with java.
http://www.dina.dk/∼sestoft/programmering/parsernotes.pdf, 01 1999.

[41] David Mertz. Lightweight xml libraries.
http://www-106.ibm.com/developerworks/library/x-tiplwt.html/.

[42] David Mertz. Xml matters: Transcending the limits of dom, sax, and xslt.
http://www-106.ibm.com/developerworks/xml/library/x-matters14.html.

[43] Bijan Parsia. Functional programming and xml.
http://www.xml.com/lpt/a/2001/02/14/functional.html.

[44] Feng Tian, David J. De Witt, Janjun Chen, and Chun Zhang. The design
and performance evaluation of alternative xml storage strategies. SIGMOD
Record, 31(1):5–10, March 2002.

[45] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, 1998.

[46] J. Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98–107, 1989.

[47] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. In Mobile Object Systems: Towards the Programmable
Internet, pages 49–64. Springer-Verlag: Heidelberg, Germany, 1997.

[48] Dennis M. Ritchie. The develpment of the c language.
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html, 1996.

[49] Xml: Proposed applications and industry initiatives. http://www.oasis-
open.org/cover/xml.html#applications.

[50] Dimitre Novatchev (dnovatchev@yahoo.com). The functional programming
language xslt - a proof through examples. 2001.

[51] Fritz Henglein. Xmlstore, specification and reference implementation of
core xml api. unpublished, memo, 2001.

122

Appendix A

Property file

Using XML Store requires initializations specific to disk functionality and net-
work functionality to be performed. Besides disk and network initializations the
implementation of the Document Value Model (DVM) must be chosen.

XML Store properties are values used for initializing an XML Store. The
properties are stated in a property file. Upon initialization of XML Store prop-
erties are read from the property file.

The properties files follow the syntax required when using the Java API to
access property files, that is the Java class java.util.Properties.

� Lines starting with ’#’ or ’!’ indicate comments and are therefore ignored.

� Every other non empty line contains a property. Property names contain
no spaces and are the first word within a line. They are separated from
their property value by ’=’, ’:’ or whitespaces. The property value is the
remaning line.

A more detailed syntax description of Java property files can be found in
the Java API [28]. This description surfice for the XML Store property file.

The XML Store properties are:

Factory. The factory class implementing the XMLStoreFactory interface. By
chosing this class the XML Store implementation is chosen.

DiskFactory The factory class needed to create disks.

Disk. The disk composition. Disks are separated by ’;’. The disk first disk is
considered the “outer disk”. Currently only GlobalDisk and LocalDisk
exist. Stating GlobalDisk is followed by a port number, which is used for
network communication.

Name server IP. IP address of the central name server.

NameServerPort. Port number which the central name server listens on.

Server IP. The IP Multicast address used by the reference server. This iden-
tifies the multicast group.

ReferenceServer port. The port number, which the reference server peer lis-
tens on.

123

Network timeout. Time out set when sending lookup requests using the name
server or reference server. If answers are not received within the value of
Network timeout, it is taken as the looked up key does not exist. The
time out is stated in milliseconds.

The following is an example of a property file:

Factory class used to create XMLStore objects and Node objects

Factory = edu.it.dvm.DVMXMLStoreFactory

#DISK INFORMATIONS:

#disk factory

DiskFactory = edu.it.disk.DiskFactory

#disk

Disk = GlobalDisk 1111; LocalDisk

SERVER INFORMATIONS:

#name server ip

Name_server_IP = 228.5.6.10

Port which the server is listening at:

NameServer_port = 2222

IP of the server

Server_IP = 228.5.6.7

Port which the ReferenceServer is listening at:

ReferenceServer_port = 2224

Network timeout

Network_timeout = 2000

The default property file is always to be named “xmlstore.properties” and to
be situated in the “etc” folder next to the xmlstore.jar file. Different property
files can be created. They must have the extension “.properties”.

124

Appendix B

Samples

B.1 FOLDOC Dictionary

The dictionary used for the evaluation of DOM, SAX and XSLT is the Free
On-line Dictionary of Computing (FOLDOC) dictionary [26], which contain
definitions for computing terms.

The dictionary source is available in a plain text file. This file has the
following properties.

� The words are sorted alphabetically.

� The words are unique, that is a word is not defined twice.

The file has been converted into serialized a XML representation still conforming
to the above properties. The XML structure is defined by a DTD presented
section B.1.1.

B.1.1 Dictionary DTD

<!ELEMENT dictionary (word+)>

<!ELEMENT word (keyword, desc?)>

<!ELEMENT keyword (#PCDATA)>

<!ELEMENT desc (p+)>

<!ENTITY %text "#PCDATA | type | link | ref">

<!ELEMENT p (%text;)* >

<!ELEMENT type (%text;)*>

<!ELEMENT link (%text;)*>

<!ELEMENT ref (%text;)*>

Each word (computing term) have a word element containing both the word
and its description. The word is put in a keyword (keyword) element and the
description in a desc element. The root element, called dictionary, contains
word elements. Example 2.1 presents a sample of the serialized representation,
only the word “foo” is shown.

125

B.2 Source code

Java applications using the serialized XML representation of the FOLDOC
dictionary have been build. These are SAXDictionary, DOMDictionary and
XSLDictionary. The serialized XML representation of FOLDOC have also
been saved in XML Store (as a Document Value Model) and an application,
XMLStoreDictionary, using this XML document have been developed. Node-
Counter is a simple application counting nodes in XML documents, which are
store in XML Store. The following pages contain source code for the sample
applications.

126

Appendix C

Source code

The source code for the XML Store implementation is presented on following
pages.

143

