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Abstract

The thesis investigates the role of independent component analysis in the set-
ting of virtual environments, with the purpose of finding properties that reflect
human context. A general framework for performing unsupervised classifica-
tion with ICA is presented in extension to the latent semantic indexing model.
Evidence is found that the separation by independence presents a hierarchical
structure that relates to context in a human sense. Furthermore, introducing
multiple media modalities, a combined structure was found to reflect context
description at multiple levels. Different ICA algorithms were compared to in-
vestigate computational differences and separation results. The ICA properties
were finally implemented in a chat room analysis tool and briefly investigated
for visualization of search engines results.





Abstract (Danish)

Afhandlingen undersøger independent component analysis (ICA) i virtuelle
verdener, med det formål at finde egenskaber der reflekterer menneskelige for-
ståelse. På baggrund af ICA bliver en generel metode præsenteret til, at udføre
”unsupervised” klassifikation, der er en udvidelse af ”latent semantic indexing”
modellen. Det blev fundet at uafhængighed reflektere en menneskelig naturlig
måde at separere på, og at metoden viser en hierarkisk opdeling. Ved endvidere
at introducere flere medietyper, blev en samlet struktur fundet, der beskrev ind-
holdet på flere niveauer. Forskellige ICA algoritmer blev undersøgt mht. bereg-
ningskompleksitet og separationsresultater. ICA egenskaberne blev til sidst im-
plementeret i et chat rums analyse værktøj, og kort undersøgt i henholdt til
visualisering at Internet søgemaskineresultater.
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Nomenclature
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”I was sitting writing at my text book, but the work did not progress;
my thoughts were elsewhere. I turned my chair to the fire, and
dozed. Again the atoms were gamboling before my eyes. This time
the smaller groups kept modestly in the background. My mental
eye, rendered more acute by repeated visions of this kind, could
now distinguish larger structures of manifold conformations; long
rows, sometimes more closely fitted together; all twisting and turn-
ing in snake-like motion. But look! What was that? One of the
snakes had seized hold of its own tail, and the form whirled mock-
ingly before my eyes. As if by a flash of lightning I woke;... I spent
the rest of the night working out the consequences of the hypothe-
sis. Let us learn to dream, gentlemen, and then perhaps we shall
learn the truth.”

- August Kekule von Stradonitz year 1858
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C H A P T E R 1

Introduction

Advancements in the last century in computer processing power, network and
storage capabilities have given rise to massive shared virtual environments. Ac-
cordingly the amount of data has in the recent years grown beyond the capa-
bility of traditional data handling methods. To for example, overlook, handle
and find data, tools are needed as context navigators and interpreters. Soft-
ware agents have been envisioned for handling these tasks, and thus to roam
the virtual worlds for the purpose of serving man. In contrast to our physical
world, no one set of underlying laws define the virtual, but it is a combination
of many different ontologies and media modalities. It is therefore no simple
task when defining a software agent. In general it has to have properties of be-
ing autonomous, very adaptive, and most importantly to fulfill the purpose of
its creators, i.e. to acknowledge what defines human context. Statistical meth-
ods has until recently not been applicable in a practical sense when handling
these massive amounts of data. Through the development in computer power
and the growing user demand for more powerful and complex methods, statis-
tical methods have become tractable. A primary problem to be looked at is how
statistics can define rules that reveal context in a human sense[82].

Recent research has suggested that imposing independenceis a good criteria in
unsupervised separation. In for example, sound and image separation, obtain-
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ing independence captures important information of the generating sources, see
e.g. [19, 34]. Furthermore, in regards to the human brain, the independence
paradigm is observed in the primary visual cortex of the receptive fields that
resembles edge like filters. Hence, the same result is found when constraining
the criteria of independence between small patches of natural images[86, 6].

The notion of independence is not easy to explain. By definition, we think of
independence as the natural criteria to reduce redundancy in a system. Hence in
order to obtain the best statistical independent separation, the separation must
be done so as to minimize the redundancy. Also, in physics terms one must
minimize the marginal entropies of the observations[12], where the entropy is
a measure of how uncertain a grouping is.

In separating multimedia, the context can be explained on different levels of
description regarding the general notion of human context. The image in figure
1.11, can be described for example by color as being overall cold with hot spots
or by accompanying text as science fiction and surrealism. Furthermore com-
bining the two gives mutual added information, as what must be assumed to be
closer to what humans acknowledge when a media is observed.

In this thesis we investigate the properties of independency with regards to
multiple types of media and employ the independent component analysisal-
gorithm. In that regard, different algorithms are used and compared. Extract-
ing features from different media modalities we extend the vector space model
[91] and latent semantic indexing[25] framework to ICA classification. ICA
proves to describe the grouping structure better and finds context in a human
sense. Combining multimedia furthermore show to improve the unsupervised
classification, and find a hierarchical context taxonomy towards the used media
modalities.

Finally the ICA algorithm is implemented in a chat room and a search engine
visualization setting, to demonstrate its online capabilities for use with software
agents.

1The image was retrieved on the Internet WWW, from http://www.ikolenda.demon.co.uk/.
However coincidence with author name, there are no direct family connection.
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Figure 1.1 Art work by Ian Kolenda, titled Rebirth Of The New Adam.

Reading guide

The contents of this thesis are roughly divided into four parts between chapter
2 to 5. Readers that are familiar with the topic of chapter 2 or 3 can skip over
them as they are largely reviews. The main research contributions in this thesis
are found in chapters 4 and 5, together with papers described in appendixB.

Chapter 2 We start by outlining the general framework of the virtual worlds
and software agents using the Internet as a reference point. The ever
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evolving structure and ontologies of the virtual worlds makes properties
of software agents hard to define, and so tools reflecting human context
become our prime objective, thus the focus on independent component
analysis.

Chapter 3 The ICA model and algorithm is presented in the form of a maxi-
mum likelihood, mean field and a dynamic ICA model by Molgedey and
Schuster. We further look at BIC for model selection, and PCA as general
preprocessing tools in multimedia applications.

Chapter 4 The chapter is divided in two parts. At first ICA is used directly
on the raw sound and images. We compare ICA algorithms and dis-
cuss positive constraints. The second part describes the ICA classifica-
tion framework and application with text and images, individually and in
combination.

Chapter 5 Exploiting the ICA properties, separation is done both in the con-
text of chat rooms, and for classifying and visualizing search engine re-
sults.
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Modeling virtual
environments

Virtual environments are computer generated cyperspaces or virtual spaces,
only existing trough symbolic representation of data in different media. The
purpose of the virtual environments (VE) are to share, store or process data in
the sense of a meaningful human context.

In this chapter we look at what the virtual environments consist of and who
inhabits them. We will in general reference the Internet, given that it is the
largest and most rapidly expanding shared virtual environment today. Since it
truly started in 1987 with 28,000 hosts [99], it has grown to over 160 million
today [21]. Each host contains numerous services and web pages holding many
independent contexts.

2.1 Structure and Ontologies of the Internet

The Internet is a network of computers that either provide and/or access in-
formation. The network communication protocol is Transmission Control Pro-
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tocol/Internet Protocol(TCP/IP) and with this the Internet offers a number of
services, e.g.

� Telnet, for accessing and exploiting other computers.

� File Transfer Protocol (FTP), for the up or downloading of files.

� Internet Relay Chat (IRC), lets users communicate through text online,
giving simultaneous multiuser environments.

� Electronic mail (e-mail), gives access to send/recive mail messages and
join discussion groups.

� World Wide Web (WWW or The Web), the fastest growing service that
largely communicates using hypertext pages.

In many aspects the Internet is evolving in the same way as an ecosystem in
the physical world about nature[18]. It has started out in its basic form by
just being able to send simple one character messages, and grew into hypertext
pages. As we see and envision it today, there are endless possibilities in its
use. The structure of the Internet is changing all the time. No one person
or company has the influence to change it into something that would just stay
static for a reasonable short time frame. When new needs arise, new structure
and ontologies are developed. If they prove to be of added value then they
stay as a part of the virtual environment of the Internet. As such, we can see
how some things have been further improved and other simply disappeared.
Two good examples of this are hypertext modeling languageHTML and virtual
reality modeling languageVRML on WWW. A basic homepage is structured
in HTML and since the need for home pages has grown exponentially, the need
for more advanced features has lead to many improved versions. In contrast to
this VRML has not been an success. VRML was meant to be the equivalent
3-dimensional version of HTML. Many interesting features were added in a
second version, in the form of movable and interactive objects. This gave the
possibility for multiuser environments, where users could project themselves
into the virtual environment in the form of for example, an avatar that could
roam the virtual environment. However the 3D homepages never became a
success and VRML is only used to a limited extent today. The reasons for this
are many, but basically it was not a structure that most people could use in
practice, other alternatives were better and so the strongest win. The Internet is
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therefore made up of many different and changing structures, which also makes
the life of software agents difficult, as we shall see in the next section.

The structures of data and communication that the Internet services use are de-
scribed by their ontologies. The word ontology is used in many different scien-
tific communities and the meaning of the word is therefore somewhat ambigu-
ous[33]. The philosophically meaning of the word ontologosis a neologism
meaning ”to reason about being” and so the dictionary of Merriam-Webster[47]
defines ontology as,

Ontology: ”particular theory about the nature of being or the
kinds of existents”.

In our discussion ontology refers to a particular definition of a structure, e.g. a
web page is implemented by the ontology of HTML and in short, we describe
HTML as being the ontology of the web page.

The ontologies of the services provided by the Internet are basically designed
either for human or computer to interpret. A computer displaying a WWW
HTML page does not know the ”meaning” of its context for e.g. assisting search
engines or roaming software agents. As the Internet has grown and new user-
needs have evolved this has become an issue. Handling of large amounts of
data for more complex tasks is needed, and so ontologies that hold information
for both human and computer are needed.

One answer to this seems to lie in e.g.extended markup language(XML) which
defines an ontology where the human semantics can be labeled with machine
understandable tags. The tags are not predefined, so XML basically provide
the foundation for higher level ontologies to specify these, depending on the
more specific purpose. The XML ontology is proposed by The World Wide
Web Consortium (W3C) [23] which has played a major role in developing for
example, HTML. Examples of extensions to XML are,

� The Semantic Web[8], a new upcoming general extension to the world
wide web, where information is given well defined meaning in the sense
of both humans and computers.

� Resource Description Framework (RDF), providing a lightweight ontol-
ogy system to support the exchange of knowledge on the Web. Appli-
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cations include grouping and managing of news, software, photos and
events, with relation to the user.

� Scalable Vector Graphics (SVG), a language for describing 2-D graph-
ics. It holds basic forms, filtering effects, and scripting for dynamic and
interactive objects.

At last we should also mention another likewise development in moving picture
experts group(MPEG) research, that we will refer to in chapter 4. MPEG has
been used for many years in digital video and audio compression, and lately
more extensive on the Internet. As a part of a new upcoming version 7, it is
intended to hold the video in a structure much like that of XML’s ontology.

2.2 Software agents

The history of software agents started roughly around 1980, and became a real
buzzword in both the popular computing press and the artificial intelligence
community around 1994 [79]. The birth of the Internet had an exploding ef-
fect on this fairly new area, and the word agent is today used and misused in
respect to many types of applications. A new community has evolved with its
own journals, books and conferences. Some of the ongoing conferences are
Agent-Oriented Information Systems (AOIS), Autonomous Agents (AA) and
International Joint Conference on Artificial Intelligence (IJCAI). In all, more
than two hundred conferences and workshops have been held the last couple
of years. Among the largest journals focusing on software agents, are Artifi-
cial Intelligence from Elsevier Science, Autonomous Agents and Multi-Agent
Systems from Kluwer Academic Publishers and Knowledge and Information
Systems (KAIS) from Springer-Verlag.

Software agents, or just agents as we will refer to them in short, are used in
numerous areas and it can therefore be hard to define a direct meaning of the
word[103]. In the following we will give a brief overview of where we en-
counter agents today and what general properties they consists of. For current
developments we point to [28, 32, 90].
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2.2.1 Agent properties

Defining what an agent is in the software agent community is just as difficult
as it is for the artificial intelligence community to define intelligence. In the
literature we find three main communities that have an active interest in the
field: computer science, artificial intelligence, and artificial life. Each group or
community has its own perspective of an agent and its defining properties.

Computer science hold people that emerge from software application groups.
They represent the largest group, with a foundation in computer programming
and engineering. Most working software agents that are on the market to-
day have been developed from computer science. Computer science looks at
agents as being anything from a relatively simple program, to a fully grown
autonomous application. They define the properties of an agent by the task it
fulfills, e.g. an e-mail agentthus handles incoming e-mail.

The artificial intelligence (AI) community is more concerned with the aspects
of science rather then commercial interests. They define an agent to be able
to solve complex tasks, and explain its properties by its ”mental” behavior in
doing so, e.g. by an agents knowledge, belief, intention and obligation.

The last of the three groups is the artificial life (ALife). ALife use bottom-up
studies commonly associated with living organisms. Agent properties are asso-
ciated with self-replication, evolution, adaptation, self-organization, parasitism,
competition, cooperation and social network formation.

The different perspective of the three overall groups adds noise to the word
agent. Over the last decade, some consensus as to the general properties of
an agent have developed. A collection of the most general properties from the
agent community literature is listed below,

Autonomous Operate without the direct control of humans or other agents.
They must have at least partial control over their own actions and internal
state.

Responsive Observe the surroundings and act accordingly on changes.

Proactive Be able to see opportunities as they arise or by themselves initiate
one.



10 Modeling virtual environments

Social Contact other agents or humans when necessary.

Cooperate Mediate on communication with other agents.

Learn Adapt to the surroundings and internal states.

Mobility Exist in different surroundings.

Interfacing Man-machine interfacing.

The properties arise from the individual aims that the people in the agent com-
munity have taken. Specific agent development is therefore usually based on
only a few of the properties. A deeper discussion of the topic can be found in
[78, 51, 103, 98].

2.2.2 Multi-agent system

Multi-agent systems interconnect separately developed agents. In doing so
larger tasks can be solved, e.g. by parallelization or better resource distribu-
tion. This has however not been explored very much. In [79] this point has
been criticized for the lack of interest by the agent community. Given the short
lifespan of the community and the Internet, we suspect that this kind of de-
velopment has not been ready to evolve. This might although soon change in
the years to come, with the introduction of XML based ontologies creating a
common based environment for agents.

2.2.3 Agents today

Various agents are being used everyday. In the following we list a variety of
agents that more or less live up to the properties of a software agent. It can
easily be argued that some of the listed agents are simple programs, and should
not belong there. However, given the loose definition of an agent, the list reflects
more or less the point in development that we are at today. We expect that these
agents will be the building blocks of more complex agents yet to come.

Virus Traditionally the computer virus has not been viewed upon as an agent,
but given its autonomous nature and mobility its can be regarded as such.
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Generally virus agents have some kind of destructive nature or enable
a remote user to get access to a secure computer system. They usually
spread very fast in order to survive, and some even have the ability to
mutate over time in order not to get detected. Lately viruses with good
intention have also been constructed. One examples of this is the Cheese
Worm that makes its way around the web, checking computers for vul-
nerabilities and closing them if any are found[67]. Another virus called
Noped checks computers for child pornography, and informs specified
government agencies if any are found[26].

Help agent When looking for information, help agents can guide the way. The
best known help agent is probably Microsofts Clippy in their MS-Office
products. It helps the user via a common language text interface to look
up answers in the online help[102]. Another help agent application is
the help desk for e-mails. Support hotlines usually have to answer to the
same questions again and again. This can be done by an agent or the
agent can forward it to a human supporter if the answer is not known. An
overview is given in[69]. Help agents are also more and more common in
chat rooms, where they are called bots. They can help novice chat users
and make sure that the chat stays active. The chat bot Poptoesen at the
Jubii[17] chat room is one example of this.

Personal interest As a background agent these agents search for general in-
formation of interest for the user. Usually the agents are connected to a
specific database as with the home buying agent from Nybolig[81] that
alerts the user by e-mail when a purchase of interest is available. When
surfing on the WWW the Surf Safari helps by predicting what pages are
of interest. This is done by background searching the WWW and com-
paring results with the user’s fields of interest[49].

Entertainment Computer game agents have in principle always been used in
more or less sophisticated ways. A game like The Sims simulates an
family of autonomous figures that the user can interact with. When left
alone the family members (agents) go about their own business[75]. The
need for human-like agents is also needed in the movie industry. Lately,
more and more computer animated movies are produced, and movies like
Final Fantasy: The Spirits Within was able to produce very realistic
movements of the animated characters[85].

e-Commerce The introduction of the Internet has resulted in a new way of
business called e-Commerce. In e-Commerce people can for example,
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buy directly on the WWW from their homes. In doing so, the behavior of
the buyer can be traced by software agents that can exploit this to assist.
One example of this is Amazone.com, one of the biggest Internet outlets
which generally deals with books, music and films[45]. Likewise, people
at the Pioneer Investment homepage can be guided by an agent on how
to invest and in what[48].

2.2.4 Defining an agent

As stated in the previous sections we are not able to get a clear picture of what
defining properties an agent should have. It is however clear that it ultimately
should be a tool for humans. The agent or the multi-agent system, must there-
fore be able to handle both the human context paradigm and the often vast
amount of high dimensional data in the virtual environments.

When speculating about an agent’s most advanced form, it should be able to
adopt to any given task. This calls for adaptiveness, like we see in living organ-
isms. Also, agents should be able to form communities in order to solve larger
tasks and parallel tasks. This is in principle what the artificial intelligence and
artificial life community are trying to solve from their own perspective[29, 95].
As the software agent community evolves together with the virtual environ-
ments, we suspect that agents will evolve into virtual living and intelligent en-
tities. In order to serve humans they need to learn reasoning and meaning in
a human context. We will not speculate on the possibility that software agents
can evolve further than humans1, or if they will become conscience at some
point, since this is long past the topic of this thesis.

Thus, as presented in the introduction, we aim to investigate the use of the inde-
pendency criteria for the use in VE tools, given that it should reflect separation
properties natural in a human sense. For this we use independent component
analysis. We therefore turn our attention to the ICA algorithm in the next chap-
ter, regarding its properties and framework.

1It is not clear in what regards the human paradigm is optimal.
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Independent component
analysis

Achieving blind source separation(BSS) with independent component analysis
(ICA) is a fairly new and fast growing field. In BSS the word blind refers to
the fact that we do not know how the the signals were mixed or how they were
generated. As such, the separation is in principal impossible. Allowing some
relatively indirect and general constrains, we however still hold the term BSS
valid, and separate under these conditions.

A classic problem in BSS is the cocktail party problem, as shown in figure3.1.
The objective is to sample a mixture of spoken voices, with a given number of
microphones - the observations, and then separate each voice into a separate
speaker channel - the sources. The BSS is unsupervised and thought of as
a black box method. In this we encounter many problems, e.g. time delay
between microphones, echo, amplitude difference, voice order in speaker and
underdetermined mixture signal.

At seminar work in 1986, Herault and Jutten pursued the idea that the sepa-
ration could be done by reducing redundancy between signals, in a artificial
neural network like architecture. This approach initially lead to what is known
as independent component analysis today. The fundamental research involved
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BSS

Voice 1

Voice 2

Voice 3

Voice 7

Figure 3.1 The figure illustrates the cocktail party problem. Seven people are
talking and the BSS task is to separate each of the speakers voices, without
knowledge of the mixing or generation of the voices.

only a handful of researchers up until 1995. It was not until then, when Bell
and Sejnowski [7] published a relatively simple approach to the problem named
infomax, that many became aware of the potential of ICA. Since then a whole
community has evolved around ICA, centralized around some large research
groups1 and its own ongoing conference, International Conference on indepen-
dent component analysis and blind signal separation[80]. ICA is used today
in many different applications, e.g. medical signal analysis, sound separation,
image processing, dimension reduction, coding and text analysis.

In ICA the general idea is to separate the signals, assuming that the original
underlying source signals are mutually independently distributed. Due to the
field’s relatively young age, the distinction between BSS and ICA is not fully
clear. When regarding ICA, the basic framework for most researchers has been
to assume that the mixing is instantaneous and linear, as in infomax. ICA is
often described as an extension to PCA, that uncorrelates the signals for higher
order moments and produces a non-orthogonal basis. More complex models
assume for example, noisy mixtures[72, 34], nontrivial source distributions[52,
97], convolutive mixtures[4, 63], time dependency, underdetermind sources[68,
41], mixture and classification of independent component[64, 57]. A general
introduction and overview can be found in [62].

In the following we will look at the properties of ICA, and present the ICA

1e.g. at Computational Neuroscience Lab lead by Terry Sejnowskis[22], Laboratory of Com-
puter and Information Science at Helsinki University of Technology lead by professor E. Oja[38]
and TSI Department Signal-Images lead by J. Cardoso[94]
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algorithms used in this text. Finally we address the topics of preprocessing
with PCA, and model selection using the Bayesian information criterion.

3.1 Model

The general model for ICA is that the sources are generated through a linear ba-
sis transformation, where additive noise can be present. In this text we consider
the model to be,

X = AS+ �; Xm;n =

NkX
k=1

Am;kSk;n + �m;n; (3.1)

where X is the matrix holding the Nm mixed or observed signals in each row
with N samples, A is the Nm � Nk basis transformation or mixing matrix,
and S is the matrix holding the Nk independent source signals in rows of N
samples. The noise is added by the Nm �N matrix � that is generally defined
to be Gaussian or fully neglected.

3.2 Properties of ICA

Independent sources

The fundamental principle in ICA is that the sources are independent of each
other. By this we mean that they are statistically independent, thus the joint
probability of a given multivariate sample s = [s1; s2; :::; sNk

]> is therefore
equal to the product of its marginal distributions as,

ps(s) =

NkY
k=1

ps(sk): (3.2)

In terms of optimization, the ICA algorithm can therefore directly or indirectly
be defined as minimizing the Kullback-Leibler (KL) divergence between the
estimated joint distribution and the product of the marginal,

KL(p̂s(s)jj�p̂s(sk)) =
Z 1

�1

p̂s(s) log
p̂s(s)Q

Nk

k=1
p̂s(sk)

ds: (3.3)
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The KL divergence measures the distance between two probability distribu-
tions, and becomes zero when the distributions are equal. However it should be
noted that the KL divergence is not symmetrical.

The KL divergence can only rarely be solved analytically. In infomax[7] the
mutual entropy of the estimated sources is maximized. That essentially is equiv-
alent to minimizing eq. (3.3) when employing a non-linear function2. In [19]
and [2] the KL divergence was estimated using Gram-Charlier or Edgeworth
expansion of moments.

Since ICA is an unsupervised algorithm, the estimated sources will converge to
a false optimum if the true sources are not independent.

Higher order moments

Independence can also be expressed directly in terms of moments. If the signals
are uncorrelated for all moments, including the higher order moments, then
they are considered independent[4]. A signal sa = [sa1 ; sa2 ; :::; saN ] and sb =
[sb1 ; sb2 ; :::; sbN ] are independent if,

Ec[s
p

a � sqb ] = Ec[s
p

a] �Ec[s
q

b
]; 8p; q > 0; (3.4)

where Ec[s
m] = E[(s � �)m] with � being the mean over N samples. It has

although been shown in [12] that it is sufficient to achieve independence by es-
timating no more than fourth order moments. In the often assumed case, where
the source signals have zero mean and the source distributions are symmetric
around zero, only the second and fourth order moments are left to find. The
second order moments can be found using e.g. principal component analysis,
thus ICA amounts to finding the fourth order, that is equivalent to a rotation
basis[44].

Gaussian distributed signals only hold unique moments up to the second order,
where higher order moments can be described by these. As such, ICA algo-
rithms cannot separate Gaussian signals from each other, given that information
on the higher order moments is missing[19].

2The non-linear function is called a squashing function and amounts to being the c.d.f. of the
sources.
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Figure 3.2 Distributions from signals with different kurtosis: [��] A sub
Gaussian signal have negative kurtosis, and can generally be described as
being more uniformly distributed compared to Gaussian signals. [��] A super
Gaussian signal is characterized as a heavy tailed and typically a sparse signal
that is mostly distributed around zero. Speech signals are typically super
Gaussian. [�] A Gaussian signal. The kurtosis are respectively �1:3, 12:4
and 0:0.

The fourth order moment can be expressed as the signal’s kurtosis 
, and de-
scribes the ”top-steep-ness” of a signal s = [s1; s2; :::; sNN

],


 =
E[(s� �)4]

(�2)2
� 3; (3.5)

where � and �2 are respectively the mean and variance over the signal samples.
The kurtosis becomes zero in the case of a Gaussian signal, positive in the case
of a super Gaussian signal and negative in the case of a sub Gaussian signal, as
shown in figure 3.2. Thus, Nk�1 signals need to have a kurtosis different from
zero for the separation to be possible [65].
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Source probability distribution

Recovering the source signals involves more or less directly the source signals
probability distributions. Many different approaches have been used, ranging
from fully parameterized to static functions. Surprisingly, the latter has proved
to be remarkably robust, even with large deviations from the true distribution.
In infomax the sources cumulative density functions are needed, as in the equiv-
alent maximum likelihood (ML) case that we discuss later. It was suggested in
[7] that a simple monotonically growing function is sufficient to estimate the
c.d.f., and that it is merely used to bound the parameters. This does though,
limit the source signals to be either sub- or super-Gaussian, if the algorithm
does not take this into account, e.g. as in the extended infomax[65]. In the
case of zero mean probability distributions, the error made by not matching the
source distributions (if not too gross) results in merely a scaling of the estimated
signals[11].

Expecting e.g. more skew or fully positive source distributions, as implemented
in [52, 97], can be a vital criteria in order to e.g. avoid anti-correlated compo-
nents, as we shall look at later regarding images and text analysis. The basic
properties of the underlying source distributions need therefore to be respected,
although it might not make the optimization of the ICA algorithm unstable.

Mixing matrix

The mixing matrix in eq. (3.1) can be thought of as being a non-orthogonal
transformation basis. The columns in A are linearly independent and must
have full rank. The matrix can at best be recovered from the true mixing matrix
up to a scaling and permutation of the matrix rows. We think of the mixing
matrix as,

A = eA��; (3.6)

where � is a Nk �Nk diagonal matrix containing the scaling (including pos-
sible sign), and � is a Nk � Nk permutation matrix that interchanges rows,
having one unique element in each row set to one and the rest zero. The eA
matrix is the original Nm � Nk mixing matrix that we cannot recover without
further information.

The number of sources, hence columns inA, are generally not known and must
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Figure 3.3 The scatter plots form signals with different kurtosis in pairs, that
have been mixed linear. The arrows show the basis of the mixing matrix.
(a) Sub Gaussian signals gives a scatter plot that becomes more rectangular
on the edges. (b) Super Gaussian signals give a scatter plot that is mostly
distributed around zero and that has distinct tails. (c) Gaussian signals show
a oval scatter plot. In the sub and super Gaussian plots the edges and tails
align with the mixing matrix basis and so give evidence for separation, unlike
in the pure Gaussian signals. The distributions from which the signals were
drawn from are shown in figure 3.2.

be estimated. In the case where the number of sources and number of observed
signals are the same, the problem simplifies and the un-mixing matrix can be
found as the inverse of A. In the case where more observations are present
than sources, the mixing matrix does not have full rank, and is said to be under-
complete. The last case is where the number of observations are less than the
number of sources. The information for estimating the sources is therefore
underdetermined, and called the overcomplete case in regards to the mixing
matrix. Development in this field has not matured yet, but ICA algorithms have
been able to handle this under reasonable conditions, e.g. [68].
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Independence measure

Ensuring that an ICA algorithm has converged to independent source signals is
normally hard to determine if the sources are not known. Straightforward ap-
proaches give an estimate of the KL divergence [2], but drawing the histograms
of the source signals, which represent the joint and marginal probability distri-
butions, might also give evidence to the success of the separation [55].

We found that drawing the scatter plots for the signals in pairs was the most
reliable tool. In figure 3.3, scatter plots from signals drawn from the distribu-
tions presented in figure 3.2 are shown. In the case of sub- and super-Gaussian
signals we can recognize structure for the separation, as opposed to the Gaus-
sian scatter plot, where we cannot find the basis of the mixing proportions in
the plot. For Example in text analysis the signals are generally super Gaussian
distributed, and we therefore expect the signals to be scattered along the source
dimensions, i.e. axis of the scatter plot.

ICA approaches

There are largely two main approaches to ICA at the current date. One can be
traced back to a probabilistic framework, where we formulate our problem to
solve the maximum likelihood of the observed signals [72]. Here we also have
the infomax algorithm as the simplest case, but also being very robust. The
second approach is based on joint diagonalization[53], e.g. as in the Molgedey
and Schuster algorithm.

Other ICA-like algorithms exist, e.g. complexity pursuit [43], but we do not
regard them as true ICA algorithms unless the objective of independent sources
is present.

3.3 Probabilistic ICA

In probabilistic ICA we think of eq. (3.1) as being a generative model. The
source signals are latent variables and the mixed signals are the observations.
Both are described by their probability distributions. The noise is regarded
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as Gaussian distributed by � � N (0;�). The objective is hereby to find an
estimate of S, A and � for a given model M, where we know the number
of observation Nm and sources Nk, and we are given the mixed signals X,
sampled independently in time.

Using Bayes theorem the relationship between the probability distributions of
X and S can be inferred,

p(X;SjA;�) = p(SjX;A;�)p(XjA;�) (3.7)

and

p(X;SjA;�) = p(XjS;A;�)p(S): (3.8)

Eq. (3.7) is trivial, given that the mixed signals are generated from the mixing
matrix and noise. In eq. (3.8) we have that p(SjA;�) = p(S), since the true
sources are not dependent on the mixing matrix or the noise. Furthermore we
now can impose the constraint of independence from eq. (3.2) that p(S) =Q

Nk

k=1
p(Sk), where Sk is a row in the source matrix.

In the following we will look at two approaches to solve the probabilistic ICA,
either by directly maximizing the likelihood or by a mean field approach.

3.3.1 Maximum likelihood

In the maximum likelihood approach we marginalize over the latent variables.
This involves solving an integral that might not always be trivial and therefore
not attractive. In the following we formulate this approach based mainly on the
work of [72, 34, 11], and look closer at the special case with a square mixing
matrix and where no noise is present to derive the equivalent infomax solution.

The likelihood of the mixed signals is defined as the product over each multi-
variate sample distribution given the mixing matrix and noise covariance ma-
trix, p(XjA;�) =

Q
N

n=1
p(xnjA;�). Assuming that the source signals are

the latent variables, we can write the likelihood as the marginal distribution and
using eq. (3.8) we get,

p(XjA;�) =
Z

p(X;SjA;�)dS =

Z
p(XjS;A;�)

NkY
k=1

p(Sk) dS; (3.9)
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where we imposed the independence criteria on the source prior, with p(Sk) as
the probability distribution of the k’th source component. By p(XjS;A;�) =
p(AS + �jS;A;�), we have that A and S become constants by the condi-
tioning, and using the property of linear transformation between probability
functions3 we have,

p(XjA;�) =
Z

p(X�ASj�)
NkY
k=1

p(Sk) dS; (3.10)

where the probability p(�j�) is now the Gaussian noise function,

p(�) = (det 2��)�
N
2 e�

1
2
Tr �

>
�
�1
�: (3.11)

No noise case

In the special case when assuming that the mixing matrix is an invertible square
matrix and that no noise is present, we get the infomax solution as shown by
[72, 11].

If we assume that the covariance matrix� of the noise distribution has elements
that are infinitesimal small, the noise distribution becomes a delta function.
We also assume that the number of sources are equal to the number of mixed
signals, m = k. The mixing matrix is therefore square, and if it has full rank,
we can find the unmixing matrix W = A�1 as follows. The likelihood can be
written as,

p(XjA) =

Z NmY
m=1

Æm(X�AS)
NkY
k=1

p(Sk) dS; (3.12)

where the product over the delta function comes from the fact that it is the noise
function, thus independent between samples and channels. This integral can be
solved4, and writing it as the log likelihood we get,

log p(XjA) = N log detA�1 +

NkX
k=1

log p(Sk) (3.13)

3For x = ay + b the relation between the probability functions of x and y is px(x) =
1
jaj
py(

x�b
a

) where a and b are constants.
4For scalars we have

R
Æ(x� as)p(s) ds = 1

jaj
p(x=a) [72].
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Substituting and differentiating with respect to W we can obtain the gradient
for updating the unmixing matrix in an iterative optimization method,

@

@W
log p(XjA) =

@

@W
N log detW +

NkX
k=1

@ log p(Sk)

@Sk

@S>
k

@W
(3.14)

where �(Sk) = @

@Sk
log p(Sk), that we replace with a static sigmoid function.

Solving the derivative amounts to,

@

@W
log p(XjA) = N(W>)�1 +�(S)X> (3.15)

Choosing the function of� is not gravely important as pointed out in the above
section, and setting � = � tanh matches directly that of the infomax solu-
tion[7] to separate super-Gaussian signals. This implies a source distribution
P (s) = 1=� exp(� log cosh s). The source signals can hereafter be found as
S =WX.

In extension to the gradient in eq. (3.15), a remarkable improvement has been
done in terms of optimization by Amari[2], where the gradient is corrected in
each iteration to follow the natural gradient instead. The natural gradient takes
into account how the parameter space is conditioned locally. When optimizing,
the update with the natural gradient is found in [2] to be [ @

@W
log p(XjA)]W>W,

which also takes care of the matrix inversion in eq. (3.15).

3.3.2 Mean field

To avoid the often intractable integral in eq. (3.9) we can use mean field (MF).
In the mean field approximation (MF) we find the mean of the sources and their
covariance matrix, and use these to describe the sources, mixing matrix and the
noise covariance matrix, thus they describe the sufficient statistics of the model.
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Mixing matrix and noise covariance matrix

The derivative of the log likelihood can be formulated in the mean field sense
without the integral. As shown from appendix A.1 we can write,

@

@A
log p(XjA;�) = h @

@A
log p(XjS;A;�)ip(SjXA�) (3.16)

@

@�
log p(XjA;�) = h @

@�
log p(XjS;A;�)ip(SjXA�) (3.17)

where h�i is the posterior average over the sources, and will be implied in the
following when used. The log likelihood of the mixed signals conditioned on
the mixing matrix, the noise covariance matrix and the sources, was found in
the above section as the Gaussian distribution, thus from eq. (3.11) and (3.10)
we get,

p(XjS;A;�) = (det 2��)�
N
2 e�

1
2
Tr (X�AS)>��1 (X�AS): (3.18)

Evaluating the ML on the right hand side of eq. (3.16) and (3.17) w.r.t. either
the mixing matrix or the noise covariance matrix, and then setting them equal
to zero, amounts to a mean field solution,

A = XhSihSS>i�1 (3.19)

� =
1

N
h(X�AS)(X�AS)>i: (3.20)

In the case of i.i.d. noise, the noise covariance matrix simplify to a diagonal
matrix with elements �2 = 1

Nm
Tr�.

In [97] the mixing matrix is found through the maximum a posterior (MAP)
solution, having p(AjX;�) / p(XjA;�)p(A). Conditions on the mixing
matrix can hereby nicely be imposed through p(A), as e.g. positive mixing
coefficients.

Source signals

In the mean field solution we found that the mixing matrix and the noise covari-
ance matrix could be described by hSi and hSS>i, hence being the sufficient
statistics. Different approaches can be taken to find these, and following [34]
we will assume that,

hSi = bS ; hSS>i = bSbS> + �1; (3.21)
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where bS is the solution of the MAP estimate of the sources, and 1 is the Nk�Nk

identity matrix. Solving for the mixing matrix in eq. (3.20) the noise covariance
term vanishes when setting the derivative of the log likelihood to zero. In [34]
it is therefore argued that inserting � helps to ensure stability, if the source
covariance matrix is badly conditioned. Estimating the value of � can be done
in the low noise limit, based on a Gaussian approximation to the likelihood [34].
Other approaches in determining the sufficient statistics, e.g. variational, linear
response and adaptive TAP, has in general proved to give better estimates [97],
but outside of the scope of this writing.

In the MAP estimate we maximize w.r.t. the sources on the full conditioned
source distribution. Equating eq. (3.7) and (3.8) we get,

p(SjX;A;�) / p(XjS;A;�)p(S) = p(X�ASj�)
NkY
k=1

p(Sk): (3.22)

Inserting eq. (3.18) and introducing the log on both sides leads to the same form
as we saw in the ML case of eq. (3.13).

log p(SjX;A;�) / �1

2
Tr (X�AS)>��1 (X�AS) +

NkX
k=1

log p(Sk);

(3.23)
where we have omitted the log determinant term, given that it is not depen-
dent on the sources. Differentiating w.r.t. the sources, we identify �(Sk) =
@

@Sk
log p(Sk). Setting � = � tanh as before we get,

@

@S
log p(SjX;A;�) = ��1(A>X�A>AbS)� tanh(bS): (3.24)

This can be used directly an in iterative gradient optimization method, or as
proposed by [34], solve for the optimum when setting it to zero, and getting a
faster and more stable convergence.

Solving the full ICA problem then amounts to alternately updating of both the
mixing matrix and noise covariance matrix, and estimating the sources.

3.4 Molgedey and Schuster

The Molgedey and Schuster (MS) ICA algorithm is based on time delayed
decorrelation of the mixed signals, thus the signals need to be correlated in



26 Independent component analysis

time. The sources called dynamic components, are assumed to be Gaussian
distributed with unique autocorrelation functions, and so higher order moments
are not necessary for separation. The algorithm is based on the joint diagonal-
ization approach, and simply amounts to solving an eigenvalue problem of a
quotient matrix. The quotient matrix holds among other the mixed signals to a
given delay � , that is the only parameter to be specified.

In the joint diagonalization for ICA problems, the idea is to solve a series of
matrices to be diagonal under the constraint of independence, e.g. cumulant
matrices in Jade by Cardoso[13]. Given a set of M1; :::;ML rectangular real
matrices, we want to find a non-orthogonal matrix A that holds,

Ml = A�lA
�1; (3.25)

where l = 1; :::; L and each �l is a diagonal matrix corresponding to a given
Ml [53].

In the following we will derive the MS separation for a square mixing matrix.
We will look at finding the delay � , and finally write out its likelihood in order
to handle model selection.

3.4.1 Source separation

Let X be the matrix holding the mixed signals that are correlated in time. We
write a � time shifted matrix of the mixed signals asX� , that can either be cyclic
or truncated, depending on its border conditions. We now want to solve the
simultaneous eigenvalue problem of XX> and X�X

> by defining a quotient
matrix,

Q � X�X
>(XX>)�1: (3.26)

Having no noise and inserting eq. (3.1) with a square mixing matrix, we can
write

Q = AS�S
>A>(ASS>A>)�1: (3.27)

In the limit when the number of samples goes to infinity, we have that the cross-
correlation is equal to a diagonal matrix, given the sources are independent and
time correlated ergodic for,

lim
N!1

1

N
SS> = C0 ; lim

N!1

1

N
S�S

> = C� : (3.28)
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The crosscorrelation matrix of the sources and the time shifted crosscorrelation
matrix are written as C0 and C� respectively. Inserted into eq. (3.27) we get,

Q = AC�C
�1
0
A�1; (3.29)

where we identify the multiplication of C�C
�1
0

as a diagonal matrix. Solving
this eigenvalue problem, we get the mixing matrix directly,

Q = A�A�1; (3.30)

where � = C�C
�1
0

. The sources can then be found by S = A�1X.

Some practical problems arise from the fact that we are dealing with a lim-
ited number of samples N . We know that C� needs to be a diagonal matrix,
and this is only true if the matrix X�X

> is symmetric, given it must hold that
X�X

> = AC�A
> for real values ofA. We must therefore ensure thatX�X

>

is symmetric, thus the quotient matrix can be written as,

Qs =
1

2
(X�X

> +XX>� )(XX
>)�1: (3.31)

3.4.2 Determination of �

Experiments have shown that choosing the value of � has a crucial influence
on the separation. We might use a model selection approach with an exhaus-
tive search of the best delay � , as we describe in the next section. This proves
although too computational costly in order to preserve the otherwise fast prop-
erty of the MS algorithm. We therefore look closer at the problems around
determining � .

First we recognize the problem if � is not chosen such that the quotient matrix
becomes non trivial. In the case of over sampled mixed signals and e.g. setting
the value of � = 1 as is often seen, will result in an quotient matrix close to the
unit matrix. Likewise if the time shifted mixed signals are uncorrelated by e.g.
choosing a value of � that is too large, then the quotient matrix degenerates.
Choosing � with these considerations in mind is a reasonable task given a spe-
cific data set, and so we address the second problem that seem to have a great
impact. For the eigenvalue problem in eq. (3.30) to have a unique solution,
the eigenvalues in � must be unique. In figure 3.4 (top left) the eigenvalues
as a function of � are plotted, thus it becomes clear that there is a connection
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Figure 3.4 For the eigenvalue problem to have a unique solution, the eigen-
values themselves (top left) need to be unique . The autocorrelations of the
sources (bottom left) resemble the eigenvalues closely. A Bayesian scheme
(top right) for estimating the optimal lag value � is compared with a compu-
tationally much simpler approach (bottom right), where the � is chosen to be
equal to the lag of which provides the most widely distributed autocorrela-
tion function values of the sources (bottom left ). The best � for the Bayesian
approach was � = 169, and for the Æ-function � = 172 in this chat room
example.
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between the two. The data used in the figure is from a chat room experiment,
and is described in chapter 5 when separated for 4 sources. In eq. (3.30) we
have that � = C�C

�1
0

, meaning that the eigenvalues can be described by the
sources autocorrelation for a given � . In figure3.4 (bottom left) the autocorrela-
tion functions of the sources 
s;t =

P
N�t
n=1

snsn+t are plotted for t = 1 = � . A
close resemblance is observed between the eigenvalues and the autocorrelation
functions, thus the MS separation seem to succeed reasonably on the basis of
just one time shifted joint diagonalization. It was suggested in [104] that using
multiple time lags of � might improve the separation. In preliminary tests we
did however not find evidence of this, both when selecting a wide range e.g.
� 2 [1::N=2], or when hand picking multiple selected values of � .

Comparing the autocorrelations with the Bayes optimal model selection from
eq. (3.38) using BIC that we describe later, we observed a clear reduction in
probability when the autocorrelation of the sources were overlapping, as seen
in figure 3.4 (right top). Investigating this further, we formulated an objective
function Æ for identification of � , enforcing sources with autocorrelation values
which are as widely distributed as possible. For a specific value of � we have

Æ(�) =
K�1X
i=1

�����si+1
(�)� �si(�)�

1

K � 1

���� ; (3.32)

where �si+1
(�) > �si(�) are the sorted normalized autocorrelations �si(m) =


si(m)=
si(0). When comparing the selection according to Æ(�) and the Bayes
optimal model selection procedure it clearly showed similar behavior, as seen
in figure 3.4 (right bottom).

The procedure for determination of � thus consists of first estimating the sources
and associated normalized autocorrelation functions for a initial value, e.g.
� = 1. Second, select the � with the smallest Æ(�), and reestimate the ICA.
In principle this procedure is iterated until the value of � stabilizes, which in
experiments always was obtained in less than 5 iterations.
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3.4.3 Likelihood

The likelihood of the mixed signals can be written in the same framework as in
the ML setting.

p(XjA) =

Z NmY
m=1

Æm(X�AS)
NkY
k=1

p(Sk) dS: (3.33)

The sources are believed to be generated from filtered white Gaussian signals,
thus the source probability distribution is,

p(Sk) = (det 2��k)
� 1

2 e�
1
2
Tr S

>
�
�1
k
S; (3.34)

where the k source covariance matrix is estimated to be

�k = Toeplitz(
sk;0; :::; 
sk;N�1); (3.35)

having the autocorrelation function 
s;t =
P

N�t
n=1

snsn+t. Solving the integral
we can write the likelihood as,

p(XjA) = (detA�1)N
NkY
k=1

(det 2��k)
�N

2 e�
1
2
Tr S

>
�
�1
k S: (3.36)

3.5 PCA preprocessing

In order to comply with a number of issues that typically arise in multimedia
applications, we use principal component analysis (PCA) as means of prepro-
cessing, when dealing with zero mean signals. A general description of PCA
can be found in [10].

Dealing with samples fewer than observations, N < Nm, we face a so-called
ill-posed learning problem. This can be ”cured” without loss of generality by
the PCA projection onto a N dimensional subspace[59]. Thus we use the N

dimensional PCA as input to the ICA algorithm.

We often face under-complete mixing, hence where the number of sources are
less than the number of observations, Nk < Nm. Having a square ICA mixing
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matrix as in the case of the no noise ML or MS, we can use PCA for reducing
the dimension prior to the ICA. Choosing the Nk principal components (PC)
with the highest variance preserves the most information[10]. In the MS al-
gorithm this can be implemented directly into the solution as shown in [35].
By experience, when comparing results from ICA algorithms using PCA as di-
mension reduction, to algorithms that can handle the under-complete mixing by
themselves, we found no significant difference in results. Likewise, PCA also
tend to handle badly conditioned separations better, hence being more stable.

Finally PCA can be used as pre-whitening to the ICA. In PCA we recover the
second order moments and so naturally aid the ICA decomposition in getting
faster convergence when using the PCA solution as input to the ICA algorithm.

3.6 Model selection

To determine the optimal model in regards to e.g. ICA algorithm and hyper
parameters, we use a model selection method based on Bayes information cri-
terion (BIC). Bayes optimal decision rule under the 1=0 loss function leads to
the optimal model [89],

Mopt = argmax
M

p(MjX): (3.37)

Using Bayes rule, we find the probability of a specific model given the observed
data to be,

p(MjX) =
p(XjM)p(M)

p(X)
; (3.38)

The denominator functions as the normalizer p(X) =
P

NM
p(XjM)p(M).

The probability p(M) is the prior of the models and often assumed to be uni-
form distributed. We are therefore left to find the likelihood for the observed
signals given the specific models p(XjM).

In a true Bayes framework we need to integrate over all parameters in our model
to obtain the best generalizing solution[10]. For a particular choice of model,
e.g. a particular number of sources, we have

p(XjM) =

Z
p(X; �jM) d� =

Z
p(Xj�;M)p(�jM) d�; (3.39)
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where � hold the model parameters. Inferring elog, we have

p(XjM) =

Z
elog p(Xj�;M)+log p(�jM) d� =

Z
e�f(�) d�: (3.40)

We now consider a second order Taylor expansion of f(�) around ��, that holds
the parameters where the likelihood function has its maximum. Thus the gradi-
ent is zero, and we write,

f(�) � f(��) +
1

2
(� � ��)>H(� � ��); (3.41)

where H = @f
2

@�@�>
is the Hessian matrix. For large number of samples N ,

� is close to �� and so the likelihood is close to maximum. In this limited
Taylor expansion, parameters � that deviate away from the optimum �� makes
the likelihood drop rapidly, and will therefore not have much influence in the
integral of eq. (3.40). Thus we approximate the likelihood as,

p(XjM) � e�f(�
�
)

Z
e�

1
2
(����)>H(����) d�: (3.42)

The exponential in front of the integral is the likelihood with the optimal pa-
rameters, and the integral can be seen to have a Gaussian form. From [10] we
can now write the likelihood as,

p(XjM) � p(Xj��;M)p(��jM) (2�)
D
2 jHj� 1

2 ; (3.43)

where D is the number of free parameters. In the BIC estimate we only consider
the terms that contribute to the largest errors regarding number of samples N .
Neither the prior p(��jM), nor the term (2�)

D
2 are functions of N , and are

therefore neglected. The D � D Hessian holds a product over samples, that
we can factor out as jHj = ND j eHj. We hereby also neglect the remaining
determinant jeHj, thus not having to estimate the often computational tedious
Hessian matrix. The likelihood can finally be written as,

p(XjM) � p(Xj��;M)N�D
2 : (3.44)

As is general with model selection, the number of samples needs to be large.
The Taylor expansion will otherwise favor a wrong optimum, and the neglected
terms from eq. (3.42) has high influence on the likelihood. For a more detailed
discussion on BIC see e.g. [87].

We hereby identify the likelihood for a particular ICA model M with Gaussian
noise, as

p(Xj�;M) = p(XjA;�): (3.45)
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Using PCA preprocessing

In the case where we use PCA as preprocessing, the likelihood in eq. (3.45)
will factorize into to parts of what we respectively regard as signal and noise.
We use the PCA model introduced in [36, 76], where the signal space spanned
by the first Nk principal components has full covariance structure. The space
U spanned by the remaining Nm � Nk principal components are assumed to
be Gaussian noise and isotropic. The covariance matrix is thus diagonal, with
elements of �2U = (Nm � Nk)

�1
P

N

i=Nk+1
�2

ii
, where � is a matrix holding

the eigenvalues corresponding to the principal components. Given that the noise
and signal space are independent we can expand the likelihood from eq. (3.45)
to,

p(Xj�;M) = p(XjA;�)p(Uj�2U ) (3.46)

whereX = APCAZ, thus Z holds the Nk principal components and is the input
for the ICA algorithm. The distribution p(Uj�2U ) is set to be Gaussian, thus

p(Uj�2U ) = (2��2U )
�N(Nm�Nk)=2 e�N(Nm�Nk)=2 (3.47)





C H A P T E R 4

Multimedia separation

Virtual environments consists of many different media modalities. In the fol-
lowing chapter we look at how ICA separation can be applied on sound, text
and images.

In the first part of this chapter we investigate the independent source separation
on raw sound and images. Regarding sound, we compare the performance of the
PCA and ICA algorithms to get an idea of their separation properties. In image
separation we look at the case of independence between pixels or images. The
constraint of positive components and mixing is thereafter introduced, which
seem to correspond well with the human paradigm.

ICA classification is introduced in the second part of the chapter, when extend-
ing the latent semantic indexing[25] with text onto ICA, from features instead
of raw data. The ICA classification is further used on images using the same
framework, and finally in combination of both texts and images from HTML In-
ternet pages. In the ICA classification we investigate among other the grouping
structure of the independency criteria regarding number of classes.

The chapter is partly a summary of the two published articles [57] and [37],
both shortly described in appendix B.
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ICA algorithms

In the following we employ different ICA algorithms, as to investigate their
different properties. We will refer to them in short as follows,

ML ICA The maximum likelihood ICA algorithm with no noise and square
mixing matrix or equivalent the Infomax algorithm, described in section
3.3.1. The natural gradient and line search is used to aid the optimization.

MS ICA The Molgedey and Schuster ICA algorithm is non iterative, but re-
quires square mixing matrix and time correlated samples, thus is a dy-
namic ICA algorithm, described in section 3.4. In optimization the sym-
metric quotient matrix and automatic detection of � is used.

MF ICA The mean field ICA algorithm with non square mixing matrix and
noise model. The MAP solution to the source posterior is used here in
estimating the sufficient statistics, described in section3.3.2 and [34]. We
thank Lars K. Hansen for the use of his code.

positive MF ICA The positive mean field ICA imposes positive constraints on
the mixing coefficients and sources using the exponential distribution,
described in section 3.3.2 and [97]. The sufficient statistics are found
using adaptive TAP. We thank Pedro H. Sorensen and Ole Winther for
the use of their code.

Matlab code for the ICA algorithms can be found at http://isp.imm.dtu.dk/toolbox/
on the Internet.
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4.1 Source separation

Separating the raw data finds the underlying and generating components of the
data. Regarding sound, this could be the sound sources as of the peoples voices
in the cocktail party problem[7]. Dealing with images, this could be images
of face features in face recognition problems[5], or brain activation images in
functional magnetic resonance imaging studies[84].

4.1.1 Sound

Sound in a virtual environments are found in two forms as either music or sound
effects. However obvious the need for separations tasks are in the physical
world, we do not have many likewise parallels in the VE at the present time,
because focus has mainly been on images and text as in e.g. the Internet.

Separation of raw sound is although also interesting because of historical rea-
sons in the development of ICA methods. In the following we separate some
artificial mixed natural signals to recover the source signals using the linear
ICA model. In general these assumptions would not hold in the physical world
due to echo, noise, delay, and different kind of nonlinear effects. In such cases
more elaborate source separation is needed, as described e.g. in [3, 4, 24]. We
also demonstrate differences between PCA, Molgedey and Schuster ICA, and
maximum likelihood ICA algorithms in their separation.

The present example deals with speech from 3 persons which are assumed sta-
tistically independent, and scaled to have variance one. The sampling frequency
of the signals is 11025Hz and each consist of 50000 samples. A linear instan-
taneous mixing with fixed known 3� 3 mixing matrix is deployed and enables
a quantitative evaluation of the ICA separation. The source and mixing signals
are shown in figure 4.1. In order to evaluate the results of the separation, we
consider a system matrix defined as

C = AW; (4.1)

where A is the true mixing matrix that we used to generate the mixed signals,
and W is the estimated unmixing matrix from the separation. If the separation
is successfully, the system matrix equals the identity matrix, w.r.t. scaling of the
estimated sources to have variance one and permutation of the unmixing matrix



38 Multimedia separation

x

x

x

s

s

s

NN

11

11

1

1

1

1

22

33 00

00

00

-1-1

-1-1

-1-1

Figure 4.1 (Left) The orginal source sound signals s = [s1; s2; s3]
> con-

sist of 50000 samples (N ) and are assumed to be statistically independent.
(Right) The mixture signals x = [x1;x2;x3]

> are linear instantaneous com-
binations of the source signals.

rows, to compensate for the unknowns described in eq. (3.6). We also plot the
residual error signal ei = si�bsi for signals i = 1::3, where s holds the original
sources and bs holds the estimated sources.

4.1.1.1 PCA

Principal component analysis is often used because it is simple and relatively
fast. Moreover it offers the possibility of reducing the number of sources by
ranking sources according to variance. See section3.5.

The result of the PCA separation is shown in figure 4.2 and the corresponding
system matrix in table 4.1. Obviously the result is poor when comparing esti-
mated sources to the original sources in figure 4.1. This is also confirmed by
inspecting the system matrix in table 4.1.



4.1 Source separation 39

e

e

e

bs

bs

bs

NN

1

1

11

1

22

33 00

00

00

0.62

0.62

0.62

-0.62

-0.62

-0.62

-1

-1

-1

Figure 4.2 Separated sound source signals using PCA. The right panels
shows error residual signals.

CPCA =

2
4 0:56 0:98 0:62

0:28 0:72 0:23
0:18 0:50 0:06

3
5

Table 4.1 System matrix for the PCA separation of sound signals.

4.1.1.2 MS ICA

The main advantage of the MS ICA algorithm is that it is non-iterative, and
consequently very fast. In figure 4.3 the estimated sound signals from the sep-
aration are shown. Comparison with original source signals in figure4.1 indi-
cates very good separation. The system matrix in table 4.2 and an additional
listening test also confirms this result.
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Figure 4.3 Separated sound source signals using Molgedey-Schuster ICA.
The right panels shows error residual signals.

CMS ICA =

2
4 1:00 0:02 0:03

0:02 1:00 �0:01
�0:03 �0:03 �1:00

3
5

Table 4.2 System matrix for the Molgedey-Schuster ICA separation of sound
signals.

4.1.1.3 ML ICA

The ML ICA or Infomax algorithm is very commonly used. Because of its
iterative nature it is much more time consuming than the Molgedey-Schuster
algorithm or PCA. In figure 4.3 and table 4.3 the results of the separation are
shown. Clearly, the system matrix is closer to the identity matrix than that of
Molgedey-Schuster at the expense of increased computational burden.
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Figure 4.4 Separated sound source signals using ML ICA. The right panels
shows error residual signals.

CML ICA =

2
4 1:00 �0:01 0:01

0:00 1:00 �0:01
0:01 0:01 1:00

3
5

Table 4.3 System matrix for the ML ICA separation of sound signals.

4.1.1.4 Summary

In table 4.4 we list the norm of the system matrix deviation from the identity
matrix as well as computation time.

PCA was out-performed by both ICA algorithms due to very restricted separa-
tion capabilities. Both ICA algorithms performed very well. The major differ-
ence is computation time, thus MS ICA was more than 200 times faster than
the ML ICA. The advantage of the ML ICA algorithm is that the system matrix
can be significantly closer to unity provided sufficient computation time. By
listening to the separated signals it was nearly impossible to tell the difference
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jC� Ij Comp. time (sec.)
PCA 1.21 0.25
MS ICA 0.05 0.25
ML ICA 22 iterations 0.05 56.10
ML ICA 56 iterations 0.01 152.18

Table 4.4 Norm of the system matrix deviation from the identity matrix and
computation time in seconds. MS ICA is the Molgedey-Schuster ICA, ML
ICA is the no noise maximum likelihood ICA for 22 and 56 iterations.

between the ICA results.

4.1.2 Image

Images in virtual environments are found in two forms as either natural images
or graphics, where the latter can be regarded as a close to noiseless special case
of natural images. From applications with natural images we know that ICA
finds interesting structures, hence source images, see e.g. [5, 84, 34, 40, 42, 66].
In the following we will look at how ICA can be applied to image signals using
either the pixel-independence or the image-independence assumption, and later
by also imposing a positive constraint on the mixing and sources.

To illustrate basic properties we first constructed a simple series of faces that
we regard as the mixed signals, described in figure4.5.

X

Figure 4.5 The mixed or observed image signals X consist of 6 images
with faces. Each 91 � 100 size image has been arranged into an vector of
N = 9100 pixels, thus X is a 6� 9100 matrix.

From the images in figure 4.5 we would like to extract the distinct features of
the faces as being the source images. In our simple example no noise is present
and so pixels align perfectly if the images were stacked on top of each other,
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when features are identical. This is done intentionally to illustrate the separated
properties more clearly.

4.1.2.1 PCA

First we look at the PCA solution, given it is a commonly used method in image
analysis. Figure 4.6 shows the result with the separated PC images in the top
row and its corresponding mixing proportions on the bottom row being the PCA
basis. From this we read that e.g. the first image in the X matrix is generated
from the first PC image component, subtracted by the second and finally added
some of the last PC component. Image features are not easily recognizable in
the PCA solution, except maybe the last image, as being the nose.
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Figure 4.6 Projecting the faces along the PCA axis using the SVD method,
four directions were enough to represent the six mixed image signals. The
upper row U shows the PC image components, where as the lower row V

shows the linear projection between the observed faces and the PC compo-
nents, thus the mixing proportions. Only 4 components are found since mouth
and eyebrows are anti-correlated when being up or down. Hence, they can be
represented in fewer components when placing some as positive and others
as negative.

4.1.2.2 ICA

Using the MS ICA algorithm we recognize the underlying mixing as being
under-complete from the PCA. This is given from the fact that the mouth and
eyebrows are either up or down, thus can be represented in the same component
since we use a symmetric model that holds both positive and negative mix-
ing. PCA is used as preprocessing for dimension reduction by using the PCA
solution from figure 4.6. The ICA separation can hereafter be achieved by in-
dependence between pixels when using the mixing matrix directly as X, or by
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independence between images using X> as input for the ICA algorithm.

In figure 4.7 we used the pixel-independence assumption, i.e., X is the signal
matrix. The estimated IC image components are shown in the top row and
associated mixing matrix in the bottom row. Unlike PCA in figure 4.6, MS
ICA does not mix eyebrows and mouths together, i.e. the separation is more
meaningful in regard to face features.
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Figure 4.7 Separating with the Molgedey Schuster ICA algorithm and im-
posing independence between pixels. The upper row shows the IC image
components and the lower row their linear projection between observations
and IC components in the form of the mixing matrix.
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Figure 4.8 Separating with the Molgedey Schuster ICA algorithm and im-
posing independence between images. The upper row shows the IC image
components and the lower row their linear projection between observations
and IC components.

Transposing the mixed signal matrix we impose the image-independence as-
sumption as shown in figure 4.8. The separated image features are not nearly
as meaningful in this case compared to the pixel independent ICA solution. Al-
though this is not always the case as discussed in [84], and should be determined
from case to case depending on the true source properties.
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4.1.2.3 Positive ICA

In the previous solutions we have accepted negative components and mixing,
thus the mouth and eyebrows could be present in the same component when
both are up or down. If we think of the underlying problem as the face consist-
ing of features that are added to the image, it might be more natural in a human
understandable sense. The mixing components can therefore not be negative,
thus the sources are likewise not negative. Imposing positive constraint on both
the mixing matrix and sources we used the positive MF ICA. The ICA separa-
tion was done with the image independence assumption and the result shown in
figure 4.9.

All the face features was separated nicely into 6 components, with the exception
of an underlying face repeating in each component the solution is very clear.
Components that are anti-correlated as the mouth or eyebrow component are
hereby avoided.
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Figure 4.9 Separating with the probabilistic mean field ICA algorithm
and imposing independence between images and positive mixing matrix and
sources. The upper row shows the IC image components and the lower row
their linear projection between observations and IC components.

4.1.2.4 Face data

Stepping back from this nicely constructed example, we now turn to real data
with images of faces as found in face recognition problems, see [5] for a detailed
discussion on the subject. We use the Yale Face Database1 that consists of
15 subjects posing in 11 different ways as described in figure4.10. Again we
look for source images that describe interesting facial parts as in the case of

1We thank Sebastian Seung at MIT for giving access to the data.
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the artificial face data, and compare results using different algorithms with 10
source components.

Figure 4.10 The face dataset consist of 15 subjects posing in 11 different
ways, thus giving categories of: center light, no glasses, sleepy, glasses, nor-
mal, surprised, happy, right light, wink, left light and sad. Each image is
50 � 60 pixels, thus giving a matrix X size 165 � 3000. Eyes and mouth
was center aligned by manual translocation to give the best possible overlap
between faces.

In figure 4.11 and 4.12 separation is done respectively by PCA and ML ICA.
In both cases the source distributions are assumed symmetric and with negative
mixing allowed. Facial image parts are recognized in both cases, but it is not all
clear what each component represent in a unique way. Anti-correlated compo-
nents are also recognized, e.g. in figure 4.12 of both image 3 and 4, where the
one side of a face (see figure 4.10 where one image category has intense light
from one side) is found together with the opposite part from under the eyes, and
vise versa.
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Figure 4.11 PCA separation. Pixels with a threshold at �20% of the mean
intensity was removed, thus to enhance the separation result more clearly.
Green intensity represent positive and red represent negative values.

Figure 4.12 ML ICA was done imposing independence between pixels. Pix-
els with a threshold at �20% of the mean intensity was removed, thus to
enhance the separation result more clearly. Green intensity represent positive
and red represent negative values.

In figure 4.13 the positive MF ICA separation was done. The result show clear
evidence of finding more clear and interesting facial parts as opposed to the
PCA or ML ICA.

Figure 4.13 Positive ICA separation was done imposing independence be-
tween pixels. Pixels with a threshold at below 40% intensity was removed,
thus to enhance the separation result more clearly.

Work done by [61] show that the positive or non-negative constraint is very
strong, and decomposing without the independence criteria holds similar re-
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sults. In figure 4.14 we separated using the non-negative matrix factorization
(NMF) [60] that decomposes the model holding only the criteria of positive
mixing and source matrix. Comparing the positive ICA and NMF result they
are very close to being identical.

Figure 4.14 NMF separation. Pixels with a threshold at below 40% intensity
was removed, thus to enhance the separation result more clearly. Images was
likewise ordered manually.

4.1.2.5 Summary

The separation result of images from the artificial and real face data seem highly
governed by constraining to positive separation. The positive ICA and NMF al-
gorithm both produced easy reconcilable face components as opposed to both
PCA and the ML ICA. The possibility of having simultaneous positive and neg-
ative components does not seem to correspond well with the underlying human
paradigm, thus producing anti-correlated components. In general we must as-
sume that this holds in many related image separation cases, and underlines the
importance of taking this aspect into account when choosing the ICA model in
regard to images.
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4.2 ICA classification

Opposed to the direct source separation presented in the previous section, we
now extract features from each media modality to form feature histograms for
each data sample. This approach has been used widely in text analysis in con-
nection with information retrieval through the vector space model[91]. State
of the art data mining tools are based on statistical pattern recognition, work-
ing from the relatively basic features such as e.g. term frequency histograms.
Since feature lists most often are high-dimensional and we typically have ac-
cess to rather limited labeled databases, representation becomes an important
issue. The problem of high dimensions has been approached with principal
component analysis, that in text mining is called latent semantic indexing[25].
Lately this has also been done regarding image retrieval and in the combined
image and text retrieval, using the LSI framework, see e.g. [83, 15, 100].

In this section we extend the LSI with ICA, thus to find a separation that align
the sources grouping structure, and to exploit that for classification. For the
purpose of text retrieval has ICA separation likewise been done in [50].

Performing unsupervised ICA classification we seek grouping structures that
explain meaningful context in a human sense. We thus investigate the role
of independency, and the independent context taxonomy that lives in different
levels, depending on the number of components. When comparing the classi-
fication to human made labels we look for the description level, as the number
of components that describe the classes best.

As for historical reasons, in respect to work published in [57] and the general
research on LSI, we describe the ICA classification framework using text. Later
we extract features from images for classification, and finally in combination of
both texts and images from HTML Internet pages.

4.2.1 Text

In text separation the data is presented in the form of terms2. We collect
the terms into frequency histograms as purposed in the vector space model
(VSM)[91]. The VSM presents a natural good distance measure between text

2A term is one word or a small set of words that present a meaning.
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samples, that we in general call documents. Using latent semantic indexing
(LSI)[25] trough PCA we approach the problem of high dimensions. To this
we apply the MF ICA algorithm, which is able to identify a low-dimensional
basis set in the face of high-dimensional noisy data. The major benefit of using
ICA is that the representation is better aligned with the content group structure
than LSI.

We apply the ICA separation to two public domain datasets: a subset of the
MED medical abstracts database and the CRAN set of aerodynamics abstracts.

4.2.1.1 Vector space representations

The vector space model is used for feature extraction and involves three steps:
Indexing, term weighting and a similarity measure [91]. Features are based on
single word statistics, hence, first we create a term set of all words occurring in
the database. This term set is screened for words that do not help to differentiate
documents in terms of relevance. This is called indexing. In this stop list we
find very frequent words like and, is and the. We also eliminate infrequent
words that occur only in a few documents. The use of term frequency within
a document to discriminate content bearing words from the function words has
been used for a long time [71]. Elimination of high frequency terms is necessary
as they can be very dominant in the term frequency histogram as shown in figure
4.15.

When the term set for the document collection has been determined, each docu-
ment can now be described with a vector. For document j the document vector
is dj = [w1j w2j � � � wNmj]

>, where Nm is the number of terms in the term
list, e.g. the union of content bearing words for all documents in the collection.
We will form the term-document matrix for convenience, given by

X =

2
6664

w11 w12 � � � w1N

w21 w22 � � � w2N

...
...

...
wNm1 wNm2 � � � wNmN

3
7775 (4.2)

where N is the number of documents in the database.

Determining the normalization of the weights is called term weighting. There
have been suggested a number of different term weighting strategies [92]. The
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Figure 4.15 Text mining is based on simple term frequency histograms. We
show a histogram prior to screening for high frequency words. Note that
common words like and, is and the totally dominate the histogram typically
without much bearing on the subsequent classification.

weights can be determined from single documents independent of the other
documents, or by using database wide statistical measures. The simplest term
weighting scheme is to use the raw term frequency value as weights for the
terms. If we assume that document length is not important for the classification,
this vector can be normalized to unit length,

wij =
fijP
Nm

i=1
fij

; (4.3)

where fij is the frequency of term i in document j. This however is not always
a good weighting scheme when e.g. dealing with Internet HTML pages. These
documents are often of very different sizes, thus terms in short documents will
get much higher weight than terms in long documents.

The document similarity measure is usually based on the inner product of the
document weight vectors, but other metrics can be argued for.

Figure 4.16 shows a normalized term-document matrix with function words
removed. The data used for visualization are the first 5 groups in the MED
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Figure 4.16 The figure shows 10 terms with the largest variance in the first
5 groups in the a document dataset. The columns are sorted by the group
numbers from (1) to (5). Some of the terms are clearly “keywords”.

data, which will be described later in this chapter. Only 10 terms with the
highest occurrence variance are shown.

4.2.1.2 Latent Semantic Indexing

All document classification methods that use single word statistics have well
known language related ambiguities: polysemy and synonomy [25]. Polysemy
refers to the problem of words have more than one meaning. An example of
this is the word jaguar which depending on context represents a sports car
or a cat. Synonomy is used to describe the fact that different words have the
similar meanings. An example of this are the words car and automobile.

Latent semantic indexing [25] is the PCA of the vector space model. The main
objective is to uncover hidden linear relations between histograms, by rotating
the vector space basis. If the major content differences form uncorrelated (or-
thogonal) combinations, LSI will find these. The technique used for this trans-
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formation is the well known singular value decomposition (SVD). With the use
of SVD the term-document matrix X is decomposed into singular values and
singular vectors, given by

X = T � L �D>; (4.4)

whereT is Nm�r, L is r�r,D is N�r, and r is the rank ofX. L is a diagonal
matrix of singular values and T and D hold the singular vectors for the terms
and documents respectively. The terms and documents have been transformed
to the same space with dimension r. The columns of T and D are orthogonal,
i.e., uncorrelated. IfX is full rank the dimension of the new space is N .

If the database is indeed composed from a few independent contents each char-
acterized by a class histogram, we would expect relatively few relevant singular
values, the remaining singular values being small and their directions represent-
ing noise. By omitting these directions in the term vector space we can improve
the signal to noise ratio and effectively reduce the dimensionality of the repre-
sentation. If the singular values are ordered by decreasing value, the reduced
model using the Np < r largest singular values, will have T as Nm �Np, L as
Np �Np, and D as N �Np.

The selection of the number of dimensions or Np is not trivial. The value of Np

should be large enough to hold the latent semantic structure of the database, but
at the same time we want it as small as possible to obtain the optimal signal to
noise ratio.

In figure 4.17 the ten largest principal components of theD �Lmatrix is shown
using the MED data. In the upper row of figure 4.18 we show scatter plots
of projections on PC2 vs. PC1 and PC2 vs. PC3, and note that the documents
(color coded according to class) fall in non-orthogonal rays emanating from
origo. This strongly suggests the use of a non-orthogonal algorithms as is ICA.
Decomposing the same data along the ICA basis is shown in the middle row of
figure 4.18.

4.2.1.3 Learning ICA text representations on the LSI space

As we typically operate with 1000+ words in the terms list and much fewer
documents, we face a so-called ill-posed learning problem. Using the PCA
as preprocessing, the problem can be “cured” without loss of generality[59], by
choosing the N largest principal components as input to the ICA algorithm. We
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Figure 4.17 The figure shows the ten first principal components of the D �L

matrix for the first 5 groups in the MED dataset. The columns are sorted by
the groups (1) to (5). The first components are clearly assigned to specific
groups in the dataset.

note that it often may be possible to further limit the dimensionality of the PCA
subspace, hence further reducing the histogram dimensionality of the remaining
problem, as described in section 3.5 for the under-complete case.

The LSI model is merely performing a PCA on top of the vector space model
and thus learning the ICA text representation can be viewed as a post-processing
step for the LSI model. Inserting the ICA decomposition into eq. (4.4) we
decompose the term-document matrix into,

X = T �A � S (4.5)

whereT holds the term eigenvectors of Nm�N ,A is the N�Nk IC document
projections on the PC basis and S is Nk � N thus holds the Nk separated
sources.

As shown in figure 4.18 the IC projections are not symmetrical around zero,
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Figure 4.18 Analysis of the MED set of medical abstracts, labeled in five
classes here coded in colors. The two upper panels show scatter plot of doc-
uments in the latent semantic or principal component basis. In the middle
panels we show the document location as seen through the ICA representa-
tion. Note that while the group structure is clearly visible in the PCA plots,
only in the ICA plots is the group structure aligned with independent compo-
nents. In the lower panels the result from passing the IC components through
softmax for classification. The diagonal is a simple classification decision
boundary.

as our ICA model imposes. We overcome this problem by changing the corre-
sponding sign in � of eq. 3.6 for components with negative mean. In regards
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Figure 4.19 The figure shows the IC components with 4 channels using first
5 groups in the MED dataset. The columns are sorted by the group numbers
from (1) to (5). The channel value is clearly related to the class number.

to scaling, each IC component is assume to have equal variance of one, thus to
classify relative to magnitude.

An example of the estimated source matrix is shown in figure 4.19 using the
MED data. The S matrix is normalized with softmax so the outputs can be
interpreted as the probability of a document belonging to each class. In this
case the unsupervised ICA is able to determine a group structure which very
closely coincide with the “human” labels 1,2,5 but lumping groups 3 & 4 in one
group. Interestingly running ICA with five or more component does not resolve
groups 3 and 4 but rather finds a independent mixture within class groups.

4.2.1.4 Classification based on independent components

To quantify the ability of the ICA to group documents we convert the separated
signal to “class probabilities” using the standard softmax [10] normalization on
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the recovered source signals,

�kn =
exp(Skn)P
Nk

1=k
exp(Skn)

; (4.6)

The estimated ICA class label for a given document or sample n, is identical
to the component number k with the highest probability �kn. This is the same
as assigning a given document to the IC component with which it forms the
smallest angle, i.e. distance.

Since the ICA classification is unsupervised we need to match classes when
comparing results with manual labels.

4.2.1.5 Keywords from context vectors

Finding characteristic keywords to describe the context in a given independent
component can be obtained by back projection of the documents to the original
vector histogram space. This amounts to projection onto the identity matrix
through the PCA and ICA bases. From eq. 4.5 we find that T �A is the basis
change where columns represent the weight of the terms in each output, see
figure 4.20. Depending on how many and their weight, we choose the keywords
above a specified threshold after normalizing, as in table4.5.

4.2.1.6 Text examples

We will illustrate the use of ICA in text mining on two public domain datasets
both available on the WWW [96]. The MED dataset has been known to produce
good results in most search and classification models and therefore serves as
a good starting point. The second dataset CRAN is a more complex set of
documents with overlapping class labels and less obvious group structure.

In general when constructing the histogram term-document matrix, words that
occurred in more than one document and was not present in a given list of stop
words, was chosen as a term word. The length of each document histogram (the
columns) was normalized to one to remove the effect of the document length.
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Figure 4.20 In analysis of the MED dataset keywords can be found by back
projection for a given component. Keywords above a specified threshold are
chosen as words that best describe the given components context.

When converting ICA recovered sources to classifications using eq.4.6 we also
matched the unsupervised ICA classes to the manual labels.

MED dataset results

The MED dataset is a commonly studied collection of medical abstracts. In
total it consists of 1033 abstracts, of which 30 labels has been applied to 696 of
the documents. For simplicity we here consider 124 abstracts associated with
the first five groups in the MED dataset. An 1159 terms were hereby used to
build the term-document matrix.

Brief outline of the MED abstract groups:
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C1 C2 C3 C4 C5 keywords
IC1 36 1 0 0 2 lens crystallin
IC2 1 15 22 23 24 cell lung tissue alveolar normal cancer

human

C1 C2 C3 C4 C5 keywords
IC1 36 0 0 0 0 lens crystallin
IC2 0 16 0 1 24 fatty acid blood glucose oxygen free

maternal plasma level tension newborn
IC3 1 0 22 22 2 cell lung tissue alveolar normal

C1 C2 C3 C4 C5 keywords
IC1 36 0 0 0 0 lens crystallin
IC2 0 16 0 1 0 oxygen tension blood cerebral pressure

arterial
IC3 1 0 22 21 2 cell lung tissue alveolar normal
IC4 0 0 0 1 24 fatty acid glucose blood free maternal

plasma newborn fat level

C1 C2 C3 C4 C5 keywords
IC1 35 0 0 0 0 lens crystallin
IC2 0 16 0 1 0 oxygen tension blood cerebral pressure

arterial
IC3 2 0 15 10 0 cells alveolar normal
IC4 0 0 7 12 2 cancer lung human cell growth tissue

found virus acid previous
IC5 0 0 0 0 24 fatty acid glucose blood free maternal

plasma newborn level fat

Table 4.5 Confusion matrix and keywords from classification of MED with 2
to 5 output IC components. The confusion matrix compares the classification
of the ICA algorithm to the labeled documents. Each IC component likewise
produced a set of keywords, that are ordered by the size of the projection
starting with the largest.
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Figure 4.21 The MED dataset of medical abstracts. The dataset consists
of 124 documents in five topics. The “source signals” recovered in the ICA
have been converted by a simple softmax classifier, and we have coded these
classes by different colors. From top to bottom we show scatterplots in the
principal component representation PC2 vs. PC1 and PC2 vs. PC3, with col-
ors indicating the classification proposed by the ICA with 2,3,4,5 independent
components respectively.
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C1 The crystalline lens in vertebrates, including humans.
C2 The relationship of blood and cerebrospinal fluid oxygen concentrations or partial

pressures. A method of interest is polarography.
C3 Electron microscopy of lung or bronchi.
C4 Tissue culture of lung or bronchial neoplasms.
C5 The crossing of fatty acids through the placental barrier. Normal fatty acid levels

in placenta and fetus.

In figure 4.18 we show scatterplots in the largest principal components and the
most variant independent components. While the distribution of documents
forms rather well-defined group structure in the PCA scatterplots, clearly the
ICA scatterplots are much better axis aligned. We conclude that the non-
orthogonal basis found by ICA better “explains” the group structure. To fur-
ther illustrate this finding we have converted the ICA solution to a pattern
recognition device by a simple heuristic. Normalizing the IC output values
through softmax, showed evidence that comparing the magnitude of the recov-
ered source signals produced a method for unsupervised classification.

In table 4.5 we show that this device is quite successful in recognizing the group
structure although the ICA training procedure is completely unsupervised. For
an ICA with three independent components two are recognized perfectly, and
three classes are lumped together. The four component ICA recognizes three
of the five classes almost perfectly and confuses the two classes 3 & 4. In-
specting the groups we found that the two classes indeed are on very similar
topics (they both concern medical documents on diseases of the human lungs),
and investigating classifications for five or more ICA component did not re-
solve the ambiguity between them. The ability of the ICA-classifier to identify
the context structure is further illustrated in figure4.21 where we show the PC
scatterplots color coded according to ICA classifications.

Finally, we inspect the components produced by ICA by backprojection using
the PCA basis. Thresholding the ICA histograms we find the salient terms for
the given component. These terms are keywords for the given topic as shown
in table 4.5.

CRAN dataset results

The CRAN dataset is a collection of aerodynamic abstracts. In total it consists
of 1398 abstracts with 225 different labels and some were labeled as belong-



62 Multimedia separation

ing to more than one group. Furthermore , inspecting the abstracts we found
a greater content class overlap, hence we expect discrimination to be much
harder. Because of the high number of classes some clusters were very small
and we selected five content classes with a total number of 138 documents. In
those groups the overlap were especially present in class 1 with 3 and class 2
with 5. A total of 1115 terms were used in the term-document matrix.

Brief description of the CRAN abstracts groups:

C1 What are the structural and aeroelastic problems associated with flight of high
speed aircraft.

C2 How can the effect of the boundary-layer on wing pressure be calculated, and what
is its magnitude.

C3 What similarity laws must be obeyed when constructing aeroelastic models of
heated high speed aircraft.

C4 How can the aerodynamic performance of channel flow ground effect machines be
calculated.

C5 Summarizing theoretical and experimental work on the behaviour of a typical
aircraft structure in a noise environment is it possible to develop a design procedure.

To recognize possible group structure we show scatterplots for the first tree PC
and IC components in figure 4.22. Classes that overlap are marked both with a
dot and a circle having colors representing their classes. Comparing the CRAN
PC scatterplots with the MED in figure 4.18 it is clear that the CRAN data is
much more heterogeneous in contents. From figure 4.22 it is clear that ICA
has identified some group structure while not as convincingly so as in the MED
data. This is also borne out in figures 4.24 and 4.25 imaging the document
projection relations.

The classification confusion matrix is found in table4.6. If we focus on the three
source solution we find that ICA isolates class 1 and IC1, while the expected
overlap between class 2 and 5 is seen in IC2. Class 4 is placed in a component
overlapping with class 2 and 3 in IC3.

In table 4.7 we have illustrated the classification consistency among ICA’s with
different number of components. First we adapted a five component system and
we recorded the ICA class labels for each document. We next adapted ICA’s
with two, three, and four components and created class labels. The confusion
matrices show that although the ICA “unsupervised” labels are only in partial
agreement with the manual labels they are indeed consistent and they show a
taxonomy with hierarchical structure similar to the MED data.
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Figure 4.22 Analysis of the CRAN set labeled in five classes here coded in
colors. The two upper panels show scatterplot of documents in the Latent
Semantic or Principal Component basis. In the middle panels we show the
document location as seen through the ICA representation. Note that while
the group structure is clearly visible in the PCA plots, only in the ICA plots is
the group structure aligned with independent components. In the lower panels
the result from putting the IC components through softmax for classification.
The diagonal line shows the decision boundary.
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Figure 4.23 The CRAN dataset of aerodynamic abstracts. The dataset con-
sists of 138 documents in five topics. The “source signals” recovered in the
ICA has been converted to a simple classifier, and we have coded these classes
by different colors. From top to bottom we show scatterplots in the princi-
pal component representation 1 vs. 2 and 3 vs. 2., with colors signifying
the classification proposed by the ICA with 2,3,4,5 independent components
respectively.
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C1 C2 C3 C4 C5 keywords
IC1 23 0 12 7 0 flutter panel
IC2 2 25 6 26 37 flow body pressure mach theory

C1 C2 C3 C4 C5 keywords
IC1 19 0 4 3 0 flutter panel
IC2 2 16 6 16 37 flow pressure body mach number shock

hypersonic
IC3 4 9 8 14 0 wing body

C1 C2 C3 C4 C5 keywords
IC1 17 0 3 3 0 flutter panel
IC2 2 13 6 11 34 flow pressure mach number hypersonic

shock heat layer body boundary transfer
IC3 5 0 9 0 1 wing thermal temperature stress

aerodynamic supersonic
IC4 1 12 0 19 3 wing body theory lift flow

C1 C2 C3 C4 C5 keywords
IC1 17 0 3 3 0 flutter panel
IC2 1 11 0 14 1 wing body lift theory
IC3 5 0 11 0 0 thermal wing temperature stress heat
IC4 0 7 1 12 24 flow body
IC5 2 7 3 4 12 mach pressure number heat

Table 4.6 Confusion matrix and keywords from classification of CRAN with
2 to 5 output IC components. The confusion matrix compares the classifica-
tion of the ICA algorithm to the labeled documents. Each IC component like-
wise produced a set of keywords, that are ordered by the size of the projection
starting with the largest.
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C1 C2 C3 C4 C5 keywords
IC1 23 5 13 0 1 flutter panel
IC2 0 22 3 44 27 flow body pressure mach theory number

C1 C2 C3 C4 C5 keywords
IC1 23 0 2 0 1 flutter panel
IC2 0 21 11 3 0 wing body
IC3 0 6 3 41 27 flow pressure body mach number shock

hypersonic

C1 C2 C3 C4 C5 keywords
IC1 23 0 0 0 0 flutter panel
IC2 0 26 0 7 1 wing body theory lift flow
IC3 0 0 13 0 2 wing thermal temperature stresses
IC4 0 1 3 37 25 flow pressure mach number hypersonic

shock heat layer body boundary transfer

C1 C2 C3 C4 C5 keywords
IC1 23 0 0 0 0 flutter panel
IC2 0 27 0 0 0 wing body lift theory
IC3 0 0 16 0 0 thermal wing temperature stress heat
IC4 0 0 0 44 0 flow body
IC5 0 0 0 0 28 mach pressure number heat

Table 4.7 Confusion matrix from classification of CRAN with 2 to 5 output
IC components. The confusion matrix compares the classification of the ICA
algorithm to the five ICA estimated classes.
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Figure 4.24 The figure shows the 10 first principal components of theD � L

matrix for the groups (1) to (5) and (1&3) and (2&5) in the CRAN dataset.
The columns are sorted by groups. Relations between principal components
and groups can be observed, e.g., the second principal component seems to
represent group (1) and (1&3).
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Figure 4.25 The figure shows the IC components after softmax using 4 chan-
nels in the CRAN dataset. The columns are sorted by group. Groups (1),
(1&3) and (5) clearly visible in the channels, but the other groups overlap.
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4.2.2 Image

The features we extract from images must be good distance measures to the
VSM, and so we keep the framework presented in the previous section on ICA
classification on text. We hereby seek to build a feature-image matrix as op-
posed to the term-document matrix. Work by [83, 15, 100] has investigated the
latent semantic indexing model using images in information retrieval for the
purpose of search, and found that it improves the result. As in the text separa-
tion we therefore use the ICA algorithm as an extension to LSI and hereby do
unsupervised classification on the images.

The features we use are the lowest level image features purposed by the MPEG-
7 standard, thus texture and color frequency histograms. MPEG-7 is an ISO/IEC
standard developed by Moving Picture Experts Group. The standard is for-
mally named Multimedia Content Description Interface, and quote ”aims to cre-
ate a standard for describing the multimedia content data that will support some
degree of interpretation of the information’s meaning, which can be passed
onto, or accessed by, a device or a computer code” [74], that likewise reflect our
goal. As such, the features used are color and texture, that we implement re-
spectively with HSV encoding and Gabor filters. To enhance sensitivity for the
overall shape as e.g. background, we divide each image into 4� 4 image parts,
as shown in figure 4.26. Thus the color and texture features are extracted from
each partial image and collected into one overall feature vector for each image,
hence a texture-image and color-image matrix. We found it crucial for the clas-
sification to add this shape information that represents a somewhat higher level
description of the image context.

4.2.2.1 Texture features

By definition a texture is a spatially extended pattern build by repeating sim-
ilar units called texels. Texture segmentation involves subdividing an image
into differently textured regions. We use a texture segmentation scheme that is
based on a filter-bank model, where the filters are derived from Gabor elemen-
tary functions. Any band-limited signal of finite duration can be represented by
a finite superposition of Gabor elementary functions[73]. The goal is to trans-
form texture differences into detectable filter output that describe the features.
Each filter is therefore constructed to reflect a specific texture frequency and
direction, that all together in the filter-bank describe the image textures.
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Figure 4.26 A typical image in the image collection that we are going to
separate. Each image is divided in 4 � 4 sub-images, thus to capture the
structure of the image.

A Gabor function can be described as a Gaussian function modulated by com-
plex sinusoids[27]. In 2-dimensions we write a symmetric Gabor filter as,

h(n;m) =
1

2��2
e
�

(n2+m2)

2�2 ej2�(Un+V m); (4.7)

where the center frequency f =
p
U2 + V 2 is to capture the repetition of the

texels in the direction of \ = tan�1(V=U), and the width of the function is
described by �. The output of a filtered image i is then given as the convolution,

o(n;m) = i(n;m) � h(n;m): (4.8)

The image texture feature for a given Gabor filter in the filter-bank is the energy
of the filtered output using quadrature[54],

wi =
1

Nnm

X
n;m

[RE o(n;m)]2 + [IM o(n;m)]2; (4.9)

where Nnm is the number of pixels in the partial image. The filter-bank we
use in the following is largely defined in [100] and experimentally shown to be
feasible. The Gabor filters are shown in figure 4.27 (left), and shows (right) the
Gabor filtered output on the image from figure 4.26.

Gabor elementary functions are often used for modeling the simple cells func-
tion in the primary visual cortex (V1) of the receptive fields in the brain. Their
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function are that of edge detectors [86], and in relation to this has ICA been
known likewise to produce edge detector filter images from natural images[6,
39]. This give some evidence that the Gabor filters are a reasonable choice.
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Figure 4.27 Gabor filters are used to extract the texture features. (Left) Fil-
ters representing four directions \ = [0; 1

4
�;

2
4
�;

3
4
�] and three frequencies

f = [0:50; 0:20; 0:13] are used in combination to a total of 12 filters. The
width of the filters are determined by � = 2. (Right) When running the
Gabor filters on e.g. the image from figure 4.26, we enhance directions and
resolution according to the given filter used.

One feature is found from each filter and normalized to sum to one. In total
each image is represented by 4� 4� 12 = 192 texture features.

4.2.2.2 Color features

In agreement with [100] we use the hue, saturation and value (HSV) color
representation for the color features. The HSV color space corresponds better
to how people experience color than e.g. the red, green and blue (RGB) color
space. In figure 4.283 the HSV color space is sketched. The ”true” color as we
think of e.g. red and yellow, is represented by the hue value on a color weel, and
is often described as the dominant wavelength. How much the hue dominates
is given by the saturation value. As the saturation goes from fully saturated
to un-saturated the color disappears until just gray tones are present. The last
color component is the value that describes the lightness–darkness of the color
space.

3The image is borrowed from the Matlab Image Processing Toolbox documentation.
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Figure 4.28 The HSV color space.

The color features we use are hereby given as the frequency histograms of the
three color channels of 16 bins each. In figure 4.29 the image from figure 4.26
is decomposed into each color channel to demonstrate there significance.
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Figure 4.29 Frequency histograms for each color channel (Hue, Saturation,
Value) are used as color features. From the image in figure 4.26 the intensity
map from each channel is shown respectively.

Each partial image produces hereby 3� 16 features that are normalized to sum
to one. In total each image is represented by 4�4�3�16 = 768 color features.
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4.2.2.3 HTML database

The image collection we investigate consist of images retrieved from the In-
ternet WWW. Three categories C1:::C3 on www.yahoo.com were chosen as
starting point for the retrieval:

C1 Aviation Business and Economy ! Transportation ! Aviation ! Pictures
C2 Travel Recreation ! Travel ! Photos
C3 Sports Recreation ! Sports ! Pictures

Simultaneously to downloading the images we retrieved neighboring text. The
text that were in an above or below paragraph or in the same table row were
accepted. Patches of WWW HTML were hereby collected. To ensure consis-
tency, the images were to be of no less than 72� 72 in height and width, stored
in the jpg image format, and some text had also to be attached. In all a total
of 292 images / texts were stored in the database, and features for color and
text were extracted. LSI was performed on each of the feature modalities as de-
scribed in the previous section about text separation. The ICA algorithm used
for classification was ML ICA with LSI as preprocessing.

Our attention in the following will be to look at how well the different media
modalities describe the data through the ICA classification, and for compari-
son between modalities. To quantify on the classification success for a given
media, we measure how well each component describe the labeled categories
C1; :::; C3. Except for the largest value in each row of the confusion matrix (in
the two component classification it is the two largest values) we count the other
values as miss-classification errors. The classification with the lowest error de-
scribe the categories best and thus the number of components equals the ICA
description level of the categories in the given data and media.

We now seek to use the ICA classification method on each of the image features,
and later in the next section on the joint features, including the text.

Image feature results

In table 4.8 the result from the ICA classification using texture and color fea-
tures is presented by 2 to 4 components. The best ICA description level for
color is 2 and for texture it is 3. The general evolving of the confusion matrices
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Figure 4.30 Images collected from the categories C1:Aviation, C2:Travel
and C3:Sports on www.yahoo.com.

when employing more and more IC components does only weakly suggests that
there is some underlying hierarchical structure as we saw it in the previous text
classifications. We do however find recognizable classes in general throughout
the classification e.g. as for the 4 IC component classification with color, where
the C3 mainly is divided in basketball and icehockey images.



74 Multimedia separation

C1 C2 C3

IC1 97 61 7
IC2 3 31 93

C1 C2 C3

IC1 95 90 5
IC2 5 2 95

C1 C2 C3

IC1 92 7 4
IC2 6 83 2
IC3 2 2 94

C1 C2 C3

IC1 85 70 3
IC3 2 2 73
IC2 13 20 24

C1 C2 C3

IC1 79 5 5
IC2 6 76 2
IC3 1 1 72
IC4 14 10 23

C1 C2 C3

IC1 75 65 3
IC2 12 24 6
IC3 8 3 50
IC4 5 0 41

Texture features Color features

Table 4.8 Confusion matrix from classification with 2 to 4 output IC com-
ponents using either texture or color features. The confusion matrix com-
pares the classification of the ICA algorithm to the categories C1:Aviation,
C2:Travel and C3:Sports. Texture class errors [41; 23; 44], and color class
errors [12; 114; 102].
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4.2.3 Combined media

In ICA classification using features in the form of an term-document matrix
or as feature-image matrix we used the same framework. We therefore seek
to combine the features by simply stacking the feature matrices on top of one
another. This has been investigated in [83, 15, 100] for information retrieval
using LSI. The combination shows improvements and so we seek to investigate
this further for the ICA classification.

The database we use is a collection of HTML patches, consisting of images and
surrounding text, that were specified in the last section4.2.2.3 together with the
model framework. A total of 1139 terms is used for the term-document matrix,
and so the full feature matrix is of size 2099 � 292 where all separate feature
modalities have vector length one for normalization purposes.

Text features results

At first we classify using only the term-document matrix for 2 to 5 components.
The result is shown in table 4.9 and recognizable structures are found, this
matches the findings from the previous section about text separation. The best
description level is found to be with 5 components. A hierarchical structure
is clear in this classification for 3 and more IC components. This is not all
surprising given the result previous on text classification, but also since text can
be regarded as describing the category labels, that also are man made.

Combined image and text features

Combining the three different modalities of texture, color and text can be done
using only two modalities or all in one combined feature matrix. We present
here the result of the all three combined, that also show the general trend from
the other combinations. Table 4.10 states the confusion matrix using 2 to 5 IC
components in the classification.

The classification with 2 to 4 components show a more clear grouping struc-
ture compared to using just one media. The classification where each modality
seem to be the most dominant improved collectable. In the 3 IC component sin-
gle modality classification the texture classification was best, but both text and
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C1 C2 C3

IC1 70 55 55
IC2 30 37 45

C1 C2 C3

IC1 100 92 0
IC2 0 0 55
IC3 0 0 45

C1 C2 C3

IC1 45 1 0
IC2 55 91 0
IC3 0 0 55
IC4 0 0 45

C1 C2 C3

IC1 80 1 0
IC2 19 0 0
IC3 1 91 0
IC4 0 0 55
IC5 0 0 45

Table 4.9 Confusion matrix from classification with 2 to 4 output IC com-
ponents using text. The confusion matrix compares the classification of the
ICA algorithm to the categoriesC1:Aviation,C2:Travel andC3:Sports. Text
class errors are [122; 92; 56; 2]

color modality prefers to divide the sports category in two, and they seem to
be the stronger parts. Thus even though the ICA classification seemingly does
something sensible when looking at the confusion matrix, the error is high since
it does not describe the categories well. For the 4 component classification no
single modality classification work good, but the combined did. The 2 compo-
nent classification had a lower error than the 4 component, but also has lesser
components than classes. The 4 component result is therefore the more inter-
esting in regard to classification of the categories, and seem to be a consensus
of the 3 media.

The ICA classification can be explained by backprojection of the independent
components. In table 4.11 we show the keywords belonging to the 4 component
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C1 C2 C3

IC1 100 92 0
IC2 0 0 100

C1 C2 C3

IC1 100 92 0
IC2 0 0 54
IC3 0 0 46

C1 C2 C3

IC1 92 2 0
IC2 5 90 0
IC3 0 0 55
IC4 0 0 45

C1 C2 C3

IC1 66 4 0
IC2 0 76 0
IC3 0 0 52
IC4 0 0 45
IC5 34 12 3

Table 4.10 Confusion matrix from classification with 2 to 5 output IC com-
ponents using text and image features. The confusion matrix compares the
classification of the ICA algorithm to the categories C1:Aviation, C2:Travel
and C3:Sports. Combined media class errors are [0; 92; 7; 19]

classification. The keywords somewhat underline the class categories and e.g.
verify that component 4 hold a ice hockey class in the sports category by the
word nhl.

4.2.4 Summary

ICA seem to identify the grouping structure in the feature data better than in the
LSI model. This we must assume is partially because ICA is not restricted to
an orthogonal basis as is LSI.
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IC components keywords
IC1 afb air wing overcast aluminum space boeing

photographer lockett airshow airplane
stratofortresses

IC2 view building dome park garden place fall
IC3 weight height position lbs born college
IC4 draft weight position lbs born height selected

round nhl

Table 4.11 Keywords from the 4 component ICA classification using all
three feature modalities.

Exploiting this property we can use ICA for unsupervised classification. Re-
garding text, the number of components seem to project a hierarchical structure
that correspond to human labeling, thus a human context taxonomy. Evidence
of this was present, but not all clear when using image features. The image
features used are low level - color and texture, thus describing context more in
general, as does text. As such, the description level of the data for each of the
media where different: color 2, texture 3 and text 5. We will therefore expect
this kind of ordering regarding most multimedia data sets. Another reason that
we do not see the grouping structure so clearly in image features is that clas-
sifying the data in more components than are natural present, does not comply
well with the independent ”ray” like classification that ICA exploits.

In combination of all three modalities - text, color and texture, the overall
grouping structure in the classification was strengthened. This presents evi-
dence that all modalities adds valuable information.

In regards to ICA algorithm, we used models with symmetric source probabil-
ity function, that in principal is not the natural choice giving the feature data is
strictly positive. From experience we do however find that ”flipping” the com-
ponents by changing component sign in general works fine, as opposed to the
results from separation of raw images. In the online chat room application pre-
sented in the next chapter 5, we did however experience anti-correlated compo-
nents from time to time. This present an interesting social point regarding chat
room behaviour, thus when a given semantic (vocabulary) is used, another is
definitely not.



C H A P T E R 5

Applications of ICA in virtual
environments

5.1 ICA in chat rooms

Internet chat rooms are getting more and more popular in various relations.
They define in principle their own contexts and often with a mixture of topics
at the same time. This is especially true for the cafe like chat rooms, where
no or little interference is present from a supervisor or moderator. Figure5.1
shows a small sample of such chat room. In spite of this anarchy, valuable in-
formation can be obtained from monitoring these activities. Information about
e.g. peoples general thoughts on the daily news and trends. Another purpose, is
that of presenting the chat users with the resent discussed topics in a chat room
before entering, or giving notice when a topic is being discussed for he/she to
participate.

Related research areas are found in topic detection and tracking[1] where gen-
erally news streams are analysed for the purpose of collecting overall reports.
In the chat room text streams we do however have topics mixed together with-
out clear beginnings and endings, and so separating with ICA seem the obvious
choice. Related work can be found in [9] that extends this framework in pro-
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<Zeno> shooby   hey but you were in school then.  :)
<Sharonelle> Zeno - oh, I don't recall exactly - just statements like that - over the past
few weeks.
<Miez> heyy seagate
<Recycle> denise: he deserved it for stealing os code in his early days
<Zeno> ok Sharonelle
<denise> LOL @ Recycle
<HaleyCNN> Join Book chat at 10am ET in #auditorium. Chat with Robert Ballard
author of "Eternal Darkness: A Personal History of Deep-Sea Exploration," after his
appearance on CNN Morning News at 9:30am ET.
<heartattackagain> Smith Jones....lol....We might have an operating system that
doesn't crash every thirty minits....lololol.....
<EdShore> Shooby, I don't believe you.  I've been doing this sine PET, TRS-80, and
PIRATES!  Don't tell me you've been CHATTING!  PROVE IT!
<Zeno> Recycle   LOL ethical and criminal laws are different for the business world
<_Seagate_> Recycle, thats what the technology business is all about.
<tribe> I heard a local radio talk show host saying last night that he has noticed
everytime this Elian issue slows down, something happens to either the family in
Miami or in Cuba to put it right back in the headlines. He mentioned the cousin's
hospitalization as just the latest saga
<Diogenes> If Bill Gates was in Silicon Valley never a word would you have ever
heard.
<Zeno> SJ  you may have been doing sine but i have been doing cosine.
<shooby> Smith Jones: Compuserve since, heck, 76?
<Zeno> i mean Smith Jones
<Recycle> rumor has it that he was even dumpster diving at school for code

Figure 5.1 The chat consists of a mixture of contributors discussing multiple
concurrent topics. The figure shows a small sample of the a CNN.com chat
room, April 5, 2000.

jection pursuit.

In the following we use the ICA text classification previously presented. The
Molgedey and Schuster ICA algorithm is especially attractive given the dy-
namic nature of chat data, and the minor model complexity for online purposes.
At first we look at a retrospective analysis of a whole day to illustrate the prin-
cipals, and secondly present the online WebChat Internet page.

5.1.1 Chat data

The dataset used to demonstrate the chat room analysis is generated from the
daily chat at CNN.com in channel #CNN. In this particular chat room daily
news topics are discussed by non-experts. A CNN moderator supervises the
chat to prevent non-acceptable contributions and for occasional comments. All
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Figure 5.2 The text analysis process is roughly divided into three phases:
Feature extraction and construction of the term histograms and the analysis
where the group structure is visualized and the dynamic components pre-
sented.

chat was logged in a period of 8.5 hours on April 5, 2000, generating a dataset
of 4900 lines with 128 different users chatting. The data set was cleaned
by removal of non-user generated text, all users names, stop words and non-
alphabetic characters. The remaining text was merged into one string and a
window of size 300 characters was used to segment the contiguous text in
pseudo-documents. The window was moved forward (without breaking words
apart), leaving an overlap of 50% between each window. Term histograms were
generated from each pseudo-document forming a 2495 � 1114 term-document
matrix. The general framework for ICA text classification was used as intro-
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duced in section 4.2.1, and the whole process is summarized in figure 5.2.
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Figure 5.3 The BIC approximation is used to calculate the most probable
number of components, that show to be 4 components. The log probabilities
are normalized by number of samples, thus providing a conservative estimate.
The zero components model corresponds to a white noise null hypothesis.

5.1.2 Retrospective analysis

In retrospective analysis of a whole day we use the full term-document matrix
as described above. We hereby use ICA classification to find the most indepen-
dent significant underlying topics, and use the Bayesian information criterion
to decide on the number of components, hence number of topics.

In figure 5.3 the posterior probability using BIC is plotted as a function of IC
components. The most probable model is 4 components. The resulting IC com-
ponents show both short and long time scale rhythms as seen in figure5.4 (top),
with their corresponding classification (bottom). A rejection group R was used
for samples where the largest probability was not above 0:2 of the others. The
keywords for the content of the topics spotted by the 4 IC components are:
The first topic is dominated by the CNN moderator and immediate responses
to these contributions, the second is a discussion on gun control, the third is
concerned with the Susan Smith killings and her mother who appeared live on
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Figure 5.4 The figure shows the ICA components (top) and the result of the
classification (bottom) of topic groups, as function of samples, that equal the
linear time during the 8.5 hours of chat.

CNN, and the fourth is an intense discussion of the Cuban boy Elian’s case.
Hence, topics of high current public interest at the present time. The CNN
moderators participated in the discussions, but also made announcements fre-
quently doing the day e.g about Susan Smiths mother appearing on CNN. Back
projecting the full chat line data (no overlapping) on the found ICA basis, we
count the number of lines each user participated with in the 4 topics, as shown
in figure 5.5. The first discussion is mainly dominated by one user (#20) that
turns out to be a CNN moderator, and this concurs nicely with the keywords.
In the other discussions more users are active and some participate in more that
one topic (as e.g. #2 and #117). Somewhat strangely one non-moderator user
(#40) is also indicated to be very active in the first topic. Although this user did
not do CNN announcements, other underlying topics are in the chat, that are
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keywords
Group 1 cnn join pm burden proof
Group 2 gun show
Group 3 susan smith mother children burden kill kid life proof
Group 4 people census elian state clinton government thing year good

father time

Table 5.1 Projecting the independent components found in figure 5.4 back
to the term (histogram) space produces a histogram for each IC component.
We select the terms with the highest backprojects to produce a few keywords
for each component. The first topic is dominated by the CNN moderator
and immeadiate responses to these contributions, the second is a discussion
on gun control, the third is concerned with the Susan Smith killings and her
mother who appeared live on CNN, and the fourth is an intense discussion of
the Cuban boy Elian’s case.
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Figure 5.5 For each topic class the number of chat lines are presented for
each user, represented by a number 1::128.

closer to this topic than the other three.
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Figure 5.6 The online WebChat programs monitors an ongoing chat room at
CNN in channel #NEWSCAFE. The current Internet address for WebChat
is http://base.imm.dtu.dk/webchat/index.htm.

5.1.3 WebChat

To present the user with the previous discussed topics before entering a char
room, we implemented an online version of the ICA chat analysis - WebChat.
The online version analysis the last 1000 chat lines of the CNN chat room
in channel #NEWSCAFE as seen in figure 5.6. The dynamic classification
is presented with keywords and number of topics are chosen using the BIC
approximation. In connection to each keyword is a weight underneath (and
the color gray-scaling of the keyword), that describes the specific keywords
significance in the topics. Clicking on the component classification graph links
the user to the collected chat lines belonging to the given topic.

Monitoring WebChat trough several hours, topics appeared and disappeared
continuously, as did the number of components vary depending on the discus-
sions.
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5.2 ICA in web search

Internet users ranked search in a survey [88] as their most important activity
on the Internet web, and awarded it 9:1 out of 10 points. Different approaches
have been proposed to improve the search itself by commercial and research
interests, but seem to be lagging the user paradigm[82]. In general the field of
visually presenting the search results is trailing behind, and thus commercial
search engines usually order the results in a simple ranked list. Many different
approaches has although been proposed by the research community as e.g. [14,
77, 31], of which some we most likely will see more of in the future.

In general close to halve of all Internet users searching only write one query
for a given search; and does hereafter not refine the search, but look trough
the often huge amount of search results[16]. In addition to this, is the average
query string only made up of 11

2
words1. Some commercial search engines do

although aid the user in searching by relating the search result to categories as
Google[30] or NorthernLight[70], or by purposing new search query, based
on what other users have done as AltaVista[20] or Ask Jeevs[46].

Using ICA we take a look at how its properties could be set to use in search.
Our strategy is to use its unsupervised classification to group the search results,
and further to use the IC component class keywords to purpose a new and more
refined query. The search is therefore hierarchical, and an interaction between
the user and the search. Finally we want to exploit the ICA basis in visualiza-
tion of the search results, to show the relative distance between the found links.
From experience with 3D navigation in VRML we omit this idea because navi-
gation is to difficult, and since it normally is viewed on a 2D screen. This leaves
us with 2 dimensions as in e.g. topographic maps, and using the idea from [77]
of a radar like projection.

5.2.1 WebDar

To test the above stated ideas we implemented a Internet application WebDar,
that works as an extension to the Jubii search engine with ML ICA. Unfortu-
nately did implementation difficulties prevent that the full version of the Web-
Dar came to life before finishing this writing, thus we present a minor working

1By experience of the commercial web company Ankiro.
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Figure 5.7 The WebDar takes advantage of the ICA properties in divid-
ing the search results in classes and purposing new word for the query. The
current Internet address for the demo of WebDar is http://thko.imm.dtu.dk/
webdar/search.htm.

demo that outlines the general ideas, see figure5.7. The data we use consist of
750 Danish homepages from the Jubii.dk2 database.

The search query is the center (yellow house) of the radar or pie image, and
the distance to the found search results (blue houses) on the radar are equal to
the Jubii search ranking. The number of pie slices are determined by the ICA
and the size is relative to the number of search results in a given class. Thus,
the size gives the user an idea of how narrow the class is. Each IC class is
represented as a pie, with a pin as the given IC basis. The IC basis vectors are
sorted according to how close they are to each other. A given search result is
placed at an angle relative to the two IC basis’s it lie between, hereby showing

2We thank the companies Jubii A/S and Ankiro for letting us use their database and support.
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the distance to them. The maximum number of IC classes are not limited, but
should in principal not be more that 3 for the angle distance measure to hold.
The maximum number of search results shown is user defined, but default 10
as most search engines.

Using WebDar the user submits a query to the search engine. The result is clas-
sified by the ICA algorithm and keywords calculated. After presenting the user
with the WebDar radar image the links with the highest ranking is presented
according to the above description, and the keywords belonging to each class
are written with its given pins. Clicking on the blue houses links to the found
results, or clicking on the pins submits a new search including the keywords
belonging to the pin.

In figure 5.8 a search is done (in Danish but translated in this text) with the word
fish. The result showed 4 links and 3 classes:

Class keywords link description

Ca Size Cm Farm A fish farm homepage
Bread Menu from a restaurant
Eat Person writing about his world experiences (left)

Advice about healthy food homepage (right)

Pressing the pin with the keyword Bread submits a new query to the search
engine with Fish Bread, and the following result is found:

Class keywords link description

Cheese Menu from a restaurant
Fruit Advice about healthy food homepage

It should be noted that the ”advice about healthy food homepage” was present in
two different classes, although close in angle. This is fully acceptable. Studies
show that people are not generally interested in the words on a homepage but
its contents and is known as the paraphrase problem[101]. Thus choosing one
or the other keyword that are close in angle should not be a hard decision.

In further development we plan to improve the graphical presentation of the
found homepages, to reveal the homepage descriptions belonging to a class,
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Query: Fish

Query: Fish, Bread

Ca Size Cm Farm Bread

Eat

Cheese

Fruit

Homepage with menu

Homepage for advice about healthy food

Figure 5.8 A search is started by submitting the word Fish (upper left), and
futher extended by pressing the ”Bread” class pin to submit the words: Fish
Bread. Clicking on the blue houses opens a given search result.

when the mouse is over its given pie. Also to let the user choose between key-
words by clicking on them directly. Finally, going online with the full Jubii.dk
database of 1:2 mill. homepages, is crucial, to see if the ICA properties truly
can add value in searching the web.
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Conclusion

The focus of the Ph.D. thesis has been to find new tools for software agents
in virtual environments as for example, the Internet. A primary problem is to
look at how statistics can define rules that reveal context in a human sense. We
recognized independency as a natural criteria for separation in a early stage of
the project, thus focusing on this using independent component analysis (ICA).

In general we used a linear ICA model with possible gaussian noise. A short
introduction to the properties of ICA is presented and the framework for prob-
abilistic ICA algorithms, using a maximum likelihood (ML) and a mean field
(MF) formulation. Further we present the dynamic Molgedey and Schuster
(MS) ICA algorithm based on joint diagonalization. In the latter case we ac-
knowledge the use of a single time delay to be enough, but from experiments
also recognize how sensitive the algorithm is to the choice of the delay param-
eter. We therefore formulate a method for finding the delay parameter � and
verified the results by both exhaustive search using Bayes information criterion
(BIC) and from experiments.

Using the criteria of independence on different media, we investigated the prop-
erties of the ICA separation. The two ICA frameworks with ML and MS, re-
spectively with or without use dynamic input, were tested for computational
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speed and accuracy on artificially mixed sound signals, against the traditional
principal component analysis (PCA) algorithm. Of the two ICA algorithm, MS
was the fastest and ML the most accurate. The quality of the separation when
listening was good in both cases, as opposed to the PCA solution.

Separation of images was looked into, both by achieving independency between
pixels and images. For that we employed the MS and positive MF algorithms
using artificial data. The positive MF assumes positive source distributions and
mixing. Nothing conclusive could be said about which method is best, and in-
stead it should be decided giving a concrete problem. Regarding positive and
non-positive constraint ICA, the positive clearly showed a better result in re-
gards to better interpretability of the separated images. Comparing the positive
ICA with the non-negative matrix factorization (NMF) algorithm, both gave
close to the same result, thus we conclude that the positive constraint holds
much stronger than the independency.

A general framework was presented for ICA classification on features in ex-
tension to the latent semantic indexing model (LSI). This was demonstrated
on text and images, using term, texture and color frequencies. Evidence was
found that the separation by independence presents a hierarchical structure that
relates to context in a human sense. Towards manual labeling of a given data
set, best description level was determined as to how few ICA components pro-
duced minimum classification error. In the setting of multiple media modalities
a combined hierarchical structure was found to reflect the context described at
multiple levels, thus to reflect the collectable impression of the context.

Employing the properties of ICA, online Internet applications were implemented
in the setting of chat room analysis and visualization of search engine results.
The analysis of chat rooms seem a natural choice of application, giving that
chat room text streams are a mixture of simultaneous unsupervised discussions.
The MS ICA algorithm was utilized due to its minor computational burden, and
therefore ideal for online purposes. Model selection was done using BIC as
to find the number of classes, hence topics. Finally the ongoing separation for
a fixed number of chat lines was presented on an Internet web page, showing
topic keywords and activation times. In the application of visualizing search
engine results, the result of a given search can be grouped, thus presenting the
user with a better overview. Using a pie radar-like visualization, the informa-
tion on both search engine ranking and intermediate distance between search
results can be shown, relative to the classification. The keywords from the ICA
classification is likewise presented to the user, to suggest new words for fur-
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ther search. The application was implemented as extension to a public Danish
search engine, but because of implementation problems it was not tested on the
full database in due time.
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A P P E N D I X A

Detailed equations

This appendix hold more detailed calculations of equations mentioned in the
main text. In general [93] were used throughout the thesis for matrix calcula-
tion.

A.1 Mean Field Likelihood equality

When differentiating with respect to the parameters e.g. A, we can write the
connection between the log likelihood of the mixed signals given the parame-
ters, and the log likelihood of the mixed signals given the parameters and the
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source signals.
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, where h�i denotes the sources posterior average given the mixed signals, the
mixing matrix and the noise covariance matrix. We used Bayes rule from the
equality of (3.7) and (3.7), and the integral from (3.9). Also we used that
@

@x
log f(x) = 1

f(x)

@

@x
f(x) twice. Once to remove the log and later to insert

it again.
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Papers

The most important papers published in relation to work done on this thesis are
shortly described in this appendix.

B.1 Independent Components in Text

[57] T. Kolenda, L.K. Hansen and S. Sigurdsson, Independent Components in
Text in M. Girolami (ed.) Advances in Independent Component Analysis,
Springer-Verlag, chapter 13 229-250, 2000.

Description: We introduce a framework for ICA classification in text, and ana-
lyze the feasibility of ICA for dimensional reduction and representation of word
histograms. The study is carried out using mean field that allows for estimating
the noise level. We also discuss the generalizability of the estimated models
and show that an empirical test error estimate may be used to optimize model
dimensionality, in particular the optimal number of sources. When applied to
word histograms ICA is shown to produce representations that are better aligned
with the group structure in the text data than the LSA.
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Contributions in this paper from this writings author is largely found in section
4.2.1 about text separation.

B.2 On Independent Component Analysis for Multime-
dia Signals

[37] L.K. Hansen, J. Larsen and T. Kolenda On Independent Component Anal-
ysis for Multimedia Signals. in L. Guan et al. (eds.) Multimedia Image
and Video Processing, chapter 7, 175-200, 2000.

Abstract: We discuss the independent component problem within a context of
multimedia applications. The literature offers several independent component
analysis schemes which can be applied in this context, and each have its own
trade-off between flexibility, complexity and computational effort. The specific
applications investigated in this chapter comprise modeling of speech/sound,
images, and text data.

Contributions in this paper from this writings author is largely found in section
4.1.1 about separation of sound signals, and in section4.1.2 about separation of
images.

B.3 Signal Detection using ICA: App. to Chat Room
Topic Spotting

[56] T. Kolenda, L.K. Hansen and J. Larsen, Signal Detection using ICA: Ap-
plication to Chat Room Topic Spotting in proc. ICA’2001, 2001.

Abstract: There is an increasing interest in the application of machine learning
methods in text analysis. We apply independent component analysis to dy-
namic text gathered in a CNN chat room. Using dynamic decorrelation we find
that there are stable dynamic components during eight hours contigous chat.
The components have widely different dynamic structure as reflected in their
temporal autocorrelation functions. Each component activates a distinct word
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frequency histogram and these histograms are straightforward to relate to news
topics on the given day.

Contributions in this paper from this writings author is largely found in section
3.4.2 about determining the value of tau, and in section 5.1 about ICA in chat
applications.
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[86] M. Pötzsch and M. Rinne. Gabor wavelet transformation. Internet, 1996.
http://www.neuroinformatik.ruhr-uni-bochum.de/ ini/ VDM/ research/
computerVision/ imageProcessing/ wavelets/ gabor/ contents.html.



108 BIBLIOGRAPHY

[87] A.E. Raftery. Bayesian model selection in social research. Technical
Report 94-12, University of Washington Demography Center, 1994.

[88] Jupiter Research. by Infoseek Press Release, 1999.

[89] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge:
University Press, 1 edition, 1996.

[90] S. Russell and P. Norvig. Ai on the web. Computer Sci-
ence Division Office, University of California, Berkeley, 2001.
http://www.cs.berkeley.edu/ russell/ ai.html.

[91] G. Salton. Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesle, 1989.

[92] G. Salton and C. Buckley. Term Weighting Approaches in Automatic
Text Retrieval. Department of Computer Science, Cornell University,
Technical Report TR87-881, 1987.

[93] S.M. Selby. Standard Mathematical Tables. CRC Press, 20 edition,
1972.

[94] TSI Department Signal-Images. Enst/tsi – image-signal department,
2001. http://sig.enst.fr/.

[95] M. Sipper. An introduction to artificial life. Explorations in Artificial
Life (special issue of AI Expert), pages 4–8, 1995.

[96] Smart. Department of computer science, cornell university. Public ftp,
1999. ftp.cs.cornell.edu/pub/smart/.

[97] P. H. Sorenson, O. Winther, and L.K. Hansen. Mean field approaches to
independent component analysis. Neural Computation, The MIT Press,
14:889–918, 2002.

[98] L. Tesfatsion. How Economists Can Get Alife, volume XXVII. Addison-
Wesley, 1997.

[99] Net Valley. History of the internet. Internet, 2001.
http://www.netvalley.com/ archives/ mirrors/ davemarsh-timeline-
1.htm.

[100] T. Westerveld. Image retrieval: Content versus context. In proc. Content-
Based Multimedia Information Access, RIAO 2000 – C.I.D.-C.A.S.I.S.,
pages 276–284, 2000.



BIBLIOGRAPHY 109

[101] T. Westerveld, D. Hiemstra, and F. De Jong. Extracting bimodal rep-
resentations for language-based image retrieval. In proc. Eurographics
Workshop, Multimedia ’99, pages 33–42, 2000.

[102] Working with the Office Assistant. Microsoft Corporation, 2001.
http://msdn.microsoft.com/ library/ default.asp?url=/ library/ en-us/
modcore/ html/ deovrWorkingWithOfficeAssistant.asp.

[103] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-
tice. The Knowledge Engineering Review, 10(2):115–152, 1995.

[104] A. Ziehe and K. Muller. Tdsep – an efficient algorithm for blind sepa-
ration using timestructure. In proc. 8 th ICANN, Perspectives in neural
computing, pages 675–680, 1998.





Ph. D. theses from IMM

1. Larsen, Rasmus. (1994). Estimation of visual motion in image se-
quences. xiv + 143 pp.

2. Rygard, Jens Moberg. (1994). Design and optimization of flexible man-
ufacturing systems. xiii + 232 pp.

3. Lassen, Niels Christian Krieger. (1994). Automated determination of
crystal orientations from electron backscattering patterns. xv + 136 pp.

4. Melgaard, Henrik. (1994). Identification of physical models. xvii + 246
pp.

5. Wang, Chunyan. (1994). Stochastic differential equations and a biolog-
ical system. xxii + 153 pp.

6. Nielsen, Allan Aasbjerg. (1994). Analysis of regularly and irregularly
sampled spatial, multivariate, and multi-temporal data. xxiv + 213 pp.

7. Ersbøll, Annette Kjær. (1994). On the spatial and temporal correla-
tions in experimentation with agricultural applications. xviii + 345 pp.

8. Møller, Dorte. (1994). Methods for analysis and design of heteroge-
neous telecommunication networks. Volume 1-2, xxxviii + 282 pp., 283-
569 pp.

9. Jensen, Jens Christian. (1995). Teoretiske og eksperimentelle dynamiske
undersøgelser af jernbanekøretøjer. viii + 174 pp.



112

10. Kuhlmann, Lionel. (1995). On automatic visual inspection of reflective
surfaces. Volume 1, xviii + 220 pp., (Volume 2, vi + 54 pp., fortrolig).

11. Lazarides, Nikolaos. (1995). Nonlinearity in superconductivity and
Josephson Junctions. iv + 154 pp.

12. Rostgaard, Morten. (1995). Modelling, estimation and control of fast
sampled dynamical systems. xiv + 348 pp.

13. Schultz, Nette. (1995). Segmentation and classification of biological
objects. xiv + 194 pp.

14. Jørgensen, Michael Finn. (1995). Nonlinear Hamiltonian systems. xiv
+ 120 pp.

15. Balle, Susanne M. (1995). Distributed-memory matrix computations. iii
+ 101 pp.

16. Kohl, Niklas. (1995). Exact methods for time constrained routing and
related scheduling problems. xviii + 234 pp.

17. Rogon, Thomas. (1995). Porous media: Analysis, reconstruction and
percolation. xiv + 165 pp.

18. Andersen, Allan Theodor. (1995). Modelling of packet traffic with ma-
trix analytic methods. xvi + 242 pp.

19. Hesthaven, Jan. (1995). Numerical studies of unsteady coherent struc-
tures and transport in two-dimensional flows. Risø-R-835(EN) 203 pp.

20. Slivsgaard, Eva Charlotte. (l995). On the interaction between wheels
and rails in railway dynamics. viii + 196 pp.

21. Hartelius, Karsten. (1996). Analysis of irregularly distributed points.
xvi + 260 pp.

22. Hansen, Anca Daniela. (1996). Predictive control and identification -
Applications to steering dynamics. xviii + 307 pp.

23. Sadegh, Payman. (1996). Experiment design and optimization in com-
plex systems. xiv + 162 pp.

24. Skands, Ulrik. (1996). Quantitative methods for the analysis of electron
microscope images. xvi + 198 pp.



113

25. Bro-Nielsen, Morten. (1996). Medical image registration and surgery
simulation. xxvii + 274 pp.

26. Bendtsen, Claus. (1996). Parallel numerical algorithms for the solution
of systems of ordinary differential equations. viii + 79 pp.

27. Lauritsen, Morten Bach. (1997). Delta-domain predictive control and
identification for control. xxii + 292 pp.

28. Bischoff, Svend. (1997). Modelling colliding-pulse mode-locked semi-
conductor lasers. xxii + 217 pp.

29. Arnbjerg-Nielsen, Karsten. (1997). Statistical analysis of urban hy-
drology with special emphasis on rainfall modelling. Institut for Miljø-
teknik, DTU. xiv + 161 pp.

30. Jacobsen, Judith L. (1997). Dynamic modelling of processes in rivers
affected by precipitation runoff. xix + 213 pp.

31. Sommer, Helle Mølgaard. (1997). Variability in microbiological degra-
dation experiments - Analysis and case study. xiv + 211 pp.

32. Ma, Xin. (1997). Adaptive extremum control and wind turbine control.
xix + 293 pp.

33. Rasmussen, Kim Ørskov. (1997). Nonlinear and stochastic dynamics
of coherent structures. x + 215 pp.

34. Hansen, Lars Henrik. (1997). Stochastic modelling of central heating
systems. xxii + 301 pp.

35. Jørgensen, Claus. (1997). Driftsoptimering på kraftvarmesystemer. 290
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