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Abstract

Grey-box PK/PD modelling is presented as a new and promising
way of modelling the pharmacokinetics and pharmacodynamics of
the in vivo system of insulin and glucose and to estimate model and
derived PK/PD parameters. The concept behind grey-box modelling
consists of using a priori physical knowledge along with information
from data in the estimation of model parameters.

The grey-box PK/PD modelling principle is applied to two different
insulin studies.

The PK/PD properties of two types of insulin are investigated in an
euglycaemic clamp study where a single bolus of insulin is injection
subcutaneously. The effect of insulin on the glucose disappearance is
investigated by artificially maintaining a blood glucose concentration
close to the normal fasting level. The infused glucose needed to main-
tain the clamped blood glucose concentration can therefore be used
as a measure for the glucose utilization. The PK and PD parame-
ters are successfully estimated simultaneously thereby describing the
uptake, distribution, and effect of two different types of insulin.

The glucose tolerance tests are used for assessing the glucose tol-
erance of possible diabetic patients. The intravenous glucose toler-
ance test (IVGTT) is modelled using Bergman’s ‘Minimal Model’
from where metabolic indices are estimated and compared for nor-
mal glucose tolerant and impaired glucose tolerant subjects. The
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grey-box estimates of the system noise parameters using CTSM in-
dicate that the minimal model of glucose kinetics is too simple and
should preferably be revised. The estimated metabolic indices from
the IVGTT are compared with previously published results using
MinMod and further compared with those from an oral glucose tol-
erance test (OGTT). The derived OGTT models are inaccurate and
not suitable for predicting the indices from an IVGTT.

Keywords: Insulin, grey-box PK/PD modelling, stochastic differ-
ential equations, maximum likelihood estimation, extended Kalman
filter, euglycaemic clamp study, IVGTT, and OGTT.
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Resumé

Dette eksamensprojekt omhandler alternative m̊ader til at modellere
insulin farmakokinetikken og farmakodynamikken (PK/PD). Grey-
box modellering er en ny m̊ade at modellere in vivo dynamikken
mellem insulin og glucose samt til at estimere model- og afledte
PK/PD parametre. Konceptet bag grey-box modellering best̊ar i
at anvende a priori fysisk kendskab til systemet samt information
fra data til estimation af modelparametre.

Grey-box PK/PD modelleringsprincippet er anvendt p̊a to forskellige
studier af insulin.

PK/PD egenskaberne for to typer insulin er undersøgt i et eugly-
caemisk clamp studie, hvor en enkelt dosis af insulin injiceres subku-
tant for at undersøge insulinens effekt p̊a glucose optaget ved kun-
stigt at holde blodglukoseniveauet tæt p̊a det normale faste niveau.
Det indførte glukose, som er nødvendigt for at opretholde et kon-
stant blodglukoseniveau, kan derved anvendes som et m̊al for det
metaboliserede glukose. Det er lykkedes at estimere PK og PD
parametrene simultant og derved beskrive optaget, distributionen
og effekten af to forskellige typer insulin.

Glukosetolerance-test er anvendt til at bestemme glukosetoleran-
cen for mulige diabetikere. Det intravenøse glukosetolerance-test
(IVGTT) er modelleret ved hjælp af Bergman’s ‘Minimal Model’,
hvorfra metabolske indices er estimeret og sammenlignet for normale
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og forringede glukose tolerante patienter. Grey-box estimaterne af
systemstøjen fra CTSM indikerer, at minimal modellen for glukosekinetikken
er for simpel og skal revideres. De estimerede metabolske indices
fra IVGTT er sammenlignet med tidligere publiserede resultater ved
brug af MinMod samt med estimater fra en oral glukosetolerance-
test (OGTT). De anvendte OGTT modeller er unøjagtige og er ikke
passende til at prædiktere de metabolske indices fra et IVGTT.

Nøgleord: Insulin, grey-box PK/PD modellering, stokastiske dif-
ferential ligninger, maximum likelihood estimation, extended Kalman
filter, euglycaemisk clamp studie, IVGTT og OGTT.
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Symbols & Abbreviations

This chapter gives a quick overview of the symbols and abbreviations
used in this thesis. The first time a parameter or abbreviation is used,
it is explained and the abbreviation is given in parentheses.

Notation

The symbols and abbreviations in the following are listed alphabet-
ically starting with the Greek letters and followed by the Roman
letters. A short description of each symbol is given along with the
units used. A bold face symbol in the text is either a vector or matrix
of the symbol explained in the following table.
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List of Symbols

Greek Letters

Symbol Description Unit

δ(t) Dirac delta function [-]
ε White noise [-]
ε Residuals [-]
γ Sigmoidicity/response factor [-]
γ Proportionality factor between the glucose

and the rate of change of insulin [nmol min−2]
Λ Likelihood ratio test-score [-]
µ Mean [-]
φ Partial autocorrelation function [-]
φ1 First-phase pancreatic

responsivity index [nM min−1]
φ2 Second-phase pancreatic

responsivity index [104·nmol min−2]
ρ Autocorrelation function [-]
σ Standard deviation [-]
Σ Dispersion matrix [-]
τ Time [min]
θ Parameter [-]

Roman Letters

Symbol Description Unit

AUCt
0 Area under insulin curve [U L−1 min]

[pM min]
B Hepatic glucose [mM]
BG Blood glucose concentration [mM]
C Concentration [-]
Cc Central compartment concentration [pM]
Ce Effect concentration [pM]
CGb

Basal glucose concentration [mM]
CI Insulin plasma concentration [U L−1]

[pM]
CIb

Basal insulin concentration [pM]
Cmax Maximum insulin concentration [U L−1]

[pM]
D Dose [U]
D2 Mahalanobis’ distance [-]
ek Measurement error [-]

Continued on the following page
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Roman Letters continued from the previous page

Symbol Description Unit

E Effect [-]
Emax Intrinsic activity of the drug [mmol/min]
EC50 Potency of the drug [nM]
F Bioavailability factor [-]
F Objective function [-]
G Glucose [mM]
GIRt

0 Area under GIR curve [mol]
h Threshold level [mM]
I Inhibiting effect [-]
Ic Plasma insulin [U]

[pmol]
Ie Effect compartment insulin [pmol]
ID Dimeric insulin [U]
IH Hexameric insulin [U]
Ip Peripheral insulin [U]
Ir Remote insulin concentration [pM]
Isc Subcutaneous insulin [U]

[pmol]
ka Absorbtion rate constant [min−1]
kcp Rate constant for transfer from

central to peripheral compartment [min−1]
ke Elimination rate constant [min−1]
k1−6 Rate constants in the MM [-]
kce Elimination rate constant from

the central compartment [min−1]
ke0 Elimination rate constant from

the effect compartment [min−1]
Ke0 Equilibrium constant [min−1]
kin Response formation rate constant [min−1]
KM Michaelis constant [U/L]
kout Degradation rate constant [min−1]
kpc Rate constant for transfer from

peripheral to central compartment [min−1]
L Likelihood function [-]
n Rate constant for insulin disappearance [min−1]
P Rate constant for the transfer from

hexamer to dimer [min−1]
P Penalty function [-]
p1 Insulin-independent rate constant

of glucose uptake [min−1]

Continued on the following page
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Roman Letters continued from the previous page

Symbol Description Unit

p2 Spontaneous decrease of tissue
glucose uptake ability [min−1]

p3 Insulin-dependent increase in tissue
glucose uptake ability [min−2pM−1]

Q Equilibrium constant between
hexamer and dimer [mL2U−2]

R Response [-]
Rin Intravenous insulin [U min−1]

[pmol min−1]
Rmax Maximum response [mmol min−1]
SI Insulin sensitivity index [min−1pM−1]
SG Glucose effectiveness [min−1]
Smax Maximal stimulating effect [-]
SC50 Potency of insulin [nM]
t, T Time [min]
t1/2 Half-life [min]
tmax Time to maximum insulin concentration [min]
TRmax Time to maximum response [min]
Up Glucose utilization into the

peripheral tissue [mM]
Vd Apparent volume of distribution [L]
Ve Effect compartment volume [L]
VG Glucose compartment volume [L]
Vmax Maximal rate of elimination [U (L min)−1]
Vsc Subcutaneous volume [L]
wt Wiener process [-]
X Insulin action [min−1]

1 mU is equivalent to 6.56 pmol of insulin. The unit M is the SI
unit for concentration and is short for mol/L.
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Abbreviations

Abbreviation Description
ACF Autocorrelation Function
AIC Akaike’s Information Criterion
AIR Acute Insulin Response
ARMA Autoregressive Moving Average
AUC Area Under Curve
BG Blood Glucose
BIC Bayesian Information Criterion
BMI Body Mass Index
BW Body Weight
C-peptide Connecting-peptide
CTSM Continuous Time Stochastic Modelling
EKF Extended Kalman Filter
GIR Glucose Infusion Rate
IDDM Insulin-Dependent Diabetes Mellitus
IGT Impaired Glucose Tolerance
IV Intravenous/Intravenously
IVGTT Intravenous Glucose Tolerance Test
KF Kalman Filter
LDF Lag-Dependency Function
LRT Likelihood Ratio Test
LTI Linear Time Invariant
MAP Maximum a Posteriori
ML Maximum Likelihood
MM Minimal Model
NGT Normal Glucose Tolerance
NIDDM Non-Insulin-Dependent Diabetes Mellitus
NL Non-linear
OGTT Oral Glucose Tolerance Test
PACF Partial Autocorrelation Function
PD Pharmacodynamics
PK Pharmacokinetics
PK/PD Pharmacokinetics/Pharmacodynamics
PLDF Partial Lag-Dependency Function
SC Subcutaneous/Subcutaneously
SDE Stochastic Differential Equation
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Chapter1
Introduction

In this chapter, the background and motivation behind this thesis are
presented along with a description of the two insulin studies which
are modelled. A detailed outline of the organization of the rest of
this thesis is given at the end of the chapter.

1.1 Background

The objective of clinical drug development is to provide relevant
information on safety and efficacy of the drug to enable physicians
to treat patients optimally. Clinical drug development is a costly and
time consuming process which on average costs 600 million US dollars
over a 6-12 year period before the authorities clear the product for
distribution.

To ensure faster and a more effective development of new pharmaceu-
tical products, a pharmacokinetic and pharmacodynamic (PK/PD)
approach to drug development has been shown to be a very helpful
tool in determining which drug candidates to select for further test-
ing and whether a project should be discontinued or moved to the
next phase of the clinical trials.
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PK/PD models can be used for simulation and prediction of unin-
vestigated doses along with predictions of the effects after long time
exposure. The estimated and derived parameters from PK/PD mod-
els can thereby give valuable information about e.g. the dose needed
to obtain a clinical observable effect and possible side effects.

In the short term, the perspectives of PK/PD modelling is to use all
the available data from the clinical trials in statistical analysis of new
drug candidates. In the long term, it will perhaps be possible to build
so good models that considerable fewer and shorter clinical trials will
be necessary. At the same time, an optimization of the experimental
design will lead to a reduction in the number of animals and humans
used for testing. In the end, this will lead to faster development
of more effective pharmaceutical products which will improve the
possibilities for optimal treatment of the individual patient.

1.2 Project Description

The purpose of this thesis is to model the dynamical system of insulin
and glucose using grey-box PK/PD modelling. The two types of
insulin studies which are considered are briefly introduced in the
following along with the purposes of this thesis.

1.2.1 Clamp Study

The clamp study is used to determine the characteristics of differ-
ent types of insulin, their absorption, distribution, and elimination
kinetics along with its pharmacodynamic characteristics. The infor-
mation obtained from clamp studies is usually used in phase I clinical
trials where the insulin is tested in healthy volunteers to verify that
it has the intended properties without too many side effects and to
determine the insulin dose needed to produce an observable effect.
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The main focus of this thesis is centered on the clamp study. Several
different PK/PDmodels are derived to investigate the dynamical sys-
tem of insulin and glucose using compartment modelling. The mod-
els are estimated and validated using the principles of grey-box mod-
elling where a plausible model structure is combined with a stochas-
tic term representing disturbances and unmodelled dynamics of the
system. Traditionally, the PK and PD of insulin are described and
estimated separately even though the two are very interdependent.
The purpose is therefore also to investigate whether it is possible to
estimate the PK and PD of insulin simultaneously.

1.2.2 Glucose Tolerance Tests

Glucose tolerance tests are used for assessing the glucose tolerance
of possible diabetic patients. Since impaired insulin action is an
underlying feature of commonly encountered clinical disorders, there
has been a widespread interest in the development of techniques
to determine metabolic indices for the patient’s ability to react to
his/her own insulin. These measures give an indication whether the
patient has normal glucose tolerance, impaired glucose tolerance or
is diabetic.

The two glucose tolerance studies in this thesis are an intravenous
glucose tolerance test (IVGTT) and an oral glucose tolerance test
(OGTT). The IVGTT is usually modelled using the ‘Minimal Model’
initially proposed by Bergman et al. [7] from where two metabolic
indices for the insulin-dependent and insulin-independent glucose up-
take are derived. The purpose of modelling the IVGTT is to compare
the grey-box estimates of the minimal model with previously pub-
lished results. The estimated metabolic indices derived from the
IVGTT are further compared with those from the OGTT to inves-
tigate the correlations between them.
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1.3 Outline of Thesis

In Chapter 2, the physiological aspects of the insulin/glucose sys-
tem are introduced along with a description of the two types of dia-
betes.

Chapter 3 is concerned with the concepts of pharmacokinetics and
pharmacodynamics. Three different approaches to pharmacokinetic
modelling are mentioned along with the aspects of effect, link and
response models in pharmacodynamic modelling.

The principles of grey-box modelling are mentioned in Chapter 4.
This includes an introduction to stochastic differential equations,
maximum likelihood estimation, and state filtering. The issues of
model validation are also discussed in this chapter.

InChapter 5, the experimental procedures and data from the clamp
and glucose tolerance studies are described.

The derived PK and PK/PD models for the clamp study are dis-
cussed in Chapter 6. Four different PK models are presented to
investigate the SC absorption, distribution, and elimination of in-
sulin along with two different PK/PD models using a direct and
indirect response model, respectively.

The results and analysis of the clamp models are shown in Chapter
7. The four PK models and two PK/PD models are validated and
compared for a representative subject from the study while the most
suitable PK and PK/PD models are used for parameter estimation
for all twenty subjects.

Chapter 8 deals with the glucose tolerance models. The minimal
model for an intravenous glucose tolerance test (IVGTT) is derived
and explained along with different metabolic indices used for assess-
ing the glucose tolerance of possible diabetics. The chapter also
includes some of the most commonly used regression models for an
oral glucose tolerance test (OGTT).
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In Chapter 9, the results and analysis of the glucose tolerance mod-
els are discussed and compared with previously published results.
The metabolic indices from the IVGTT are compared with those
from the OGTT to investigate possible correlations between the two.

The obtained results from the two insulin studies and the usefulness
of grey-box PK/PD modelling of insulin are discussed in Chapter
10. The chapter also includes suggestions for future work.

The conclusion reached for the modelling of the two insulin studies
is given in Chapter 11.

In Appendix A, the anthropometric measurements from the clamp
study are presented and the identifiability of the linear PK models
is investigated. The equations for the effect-compartment model are
derived using Laplace transformation and the input and output files
from CTSM are shown for the estimation of the effect-compartment
model.

Appendix B includes the anthropometric measurements of the glu-
cose tolerance studies, the minimal model equation for plasma glu-
cose, the obtained minimal model grey-box estimates, and the input
and output files from CTSM for the estimation of the minimal model
of glucose kinetics.
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Chapter2
Physiological Aspects

This chapter gives an overview of the physiological aspects concerned
with the insulin/glucose dynamical system of the human body. First,
the pancreas is mentioned along with a description of the insulin/glu-
cose feedback system. Thereafter, the insulin molecule and receptor
are introduced. Finally, a quick description of the two types of di-
abetes and the difference between them is given at the end of the
chapter.

2.1 The Pancreas

The pancreas consists of two very different tissues, exocrine and
endocrine tissue1, where the bulk of its mass consists of exocrine
tissue. Scattered throughout the exocrine tissue are thousands of
small clusters of endocrine glands. These clusters, called the islets of
Langerhans, make up only about 2 % of the weight of the pancreas
and consist mainly of three types of cells: α-, β-, and δ-cells, which
secrete glucagon, insulin, and somatostatin, respectively [56, p. 321].

1Endocrine glands are ductless organized structures of cells specialized to se-
crete hormones directly into the blood. Exocrine glands are drained with ducts.
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Insulin is an anabolic hormone that facilitates glycogen2 synthesis
(glucogenesis) and increases the storage of carbohydrates, fatty acids
and amino acids. Glucagon is a catabolic hormone that mobilizes
glucose by facilitating the breakdown of glycogen (glucogenolysis),
fatty acids and amino acids from the tissue to the blood. Somato-
statin inhibits both insulin and glucagon [56, p. 322]. Insulin and
glucagon serve as regulators of blood glucose concentration [18, p.
246] and the connection between plasma glucose concentration and
insulin and glucagon secretion is illustrated in Figure 2.1.

Insulin Secretion
[mmol/min][mmol/min]

Glucagon Secretion

2.0

1.0

1.5

1.0

0.5

0 2 4 6 8 10 12
00

Glucose Concentration [mM]

Glucagon Insulin

3.0

Figure 2.1: Illustration of the connection between glucose concentration
and the secretion of insulin and glucagon [56, p. 324].

The grey area in the figure above is the normal physiological range of
glucose concentration. Under conditions with smooth changes in the

2Glycogen is a polysaccharid consisting of glucose units which serves as fuel
depots.
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glucose concentration, a sigmoidal functional relationship between
glucose concentration and insulin/glucagon secretion is observed [51,
p. 28].

2.2 Insulin/Glucose Feedback

The hormone/substrate pair insulin/glucose makes up an important
and very complicated feedback system that regulates the blood sugar
concentration [56, 21]. The feedback mechanism is summarized in
Figure 2.2.

Glucose
Production

Insulin

Utilization
Glucose

Secretion
Insulin

Glucose

Figure 2.2: Causal loop diagram of dominant feedback in the insulin/glu-
cose system. Stimulation and inhibition are illustrated with
solid arrows while the dashed arrows describe inhibition of
insulin/glucose upon its own secretion which is considered to
be insignificant [51, p. 26].

The primary stimulus for insulin secretion is glucose. At the same
time, insulin stimulates glucose storage as glycogen in the liver and
as triglycerides in fat. Furthermore, insulin increases the glucose
utilization as the primary source of energy in muscle and inhibits
degradation of triglycerides and glycogen. Under normal conditions,
glucose is produced at a rate of about 2 mg/kg/min but with the
stimulating effect of insulin the production of glucose is close to zero
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and the uptake is around 10 mg/kg/min [54]. Finally, insulin se-
cretion is inhibited by insulin itself, but the glucose stimulation is
considered to be much greater than the inhibition in the normal
physiological range [51, pp. 25-26].

2.3 The Insulin Molecule

The amino acid sequence (the primary structure) of insulin was dis-
covered in 1953 by Frederick Sanger [49, p. 25]. Insulin is a pro-
tein hormone consisting of 51 L-amino acids with amide linkages
between the α-amino and α-carboxyl groups.3 It consists of two
peptide chains, α and β, connected by two disulfide bonds and is
produced through biosynthesis of pre-proinsulin [49, p. 25]. First,
pre-proinsulin is converted to proinsulin by elimination of a signal
sequence consisting of 24 amino acids. Secondly, proinsulin decom-
poses to connecting-peptide (C-peptide) and insulin [56, p. 238]. The
final insulin molecule has a molecular weight of approximately 6,000
and is illustrated along with proinsulin in Figure 2.3.

β-chain

C-peptide

α-chain α-chain

β-chain

Figure 2.3: Illustration of a proinsulin and insulin molecule [24].

3Amino acids with four different substituents on the α-carbon atom are optical
active and consist of two isomers: L and R isomer which are mirror images of
each other.
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The insulin molecule is mainly degraded in the liver and kidneys
while C-peptide only is degraded in the kidneys. Since the half-life
(t1/2) for plasma insulin is approx. 6 min. while that of C-peptide is
larger, the C-peptide concentration can be used as a better measure
for the human secretion of insulin [56, p. 325].

Insulin can be produced outside the human body by gene-mani-
pulated yeast that expresses the insulin extracellularly and is later
purified and modified to resemble the characteristics of human in-
sulin. Other types of insulin are also produced, each with their spe-
cial use. The two main types of insulin, besides human insulin, are a
fast and short acting insulin analogue consisting of mainly dimers or
monomers, and a slow and long lasting insulin analogue where the
hexamer form is stabilized.

Human insulin exists as monomers in solution near neutral pH and
physiological concentrations (1 ng/mL). At higher concentrations,
and at acidic or neutral pH, it self-associates to form dimeric units,
while in the presence of zinc, hexamer units are formed. The up-
take of different association states of insulin from the subcutaneous
(SC) tissue, and at which concentrations they exist, are shown in
Figure 2.4.

The activity of injected insulin has been shown to depend on the
different association states of the SC injected insulin. It is only the
monomer that has a mono-exponential decay from the time of injec-
tion whereas the dimer has an initial slower phase (exponential decay
with a larger, i.e. less negative, time constant) followed by a phase
that is similar to that of monomer. It is not clear whether human
insulin, mainly consisting of hexamer units at therapeutic concentra-
tions, is absorbed as both hexamers and dimers, or as dimers only.
The early delay in absorption of human insulin is due to the break-
down of hexameric units into dimers and monomers. Human insulin
shows three phases: 1) An early slow phase, 2) a middle phase where
the absorption rate is equal to the initial phase of dimer absorption,
and 3) a late phase in which the absorption rate approaches that of
monomer [28].
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Capillary

Subcutaneous tissue

Zn2+

Molar Conc.
10−3 10−4 10−5 10−8

Figure 2.4: Illustration of the uptake of different association states of in-
sulin from the SC tissue [28].

2.4 Insulin Receptor

The insulin receptor is a tetramer consisting of two regulatory α-
chains exposed to the extracellular fluids and two regulatory β-chains
embedded into the cell across the lipid bilayer cell membrane. The
subunits are held together by disulfide bonds [4]. The insulin recep-
tor is illustrated in Figure 2.5.

The receptor is an allosteric enzyme4 where the binding of insulin
on the α-subunits induces tyrosine kinase activity on the β-subunits
by rapid autophosphorylation. The binding of insulin leads to an
increase in the activity of glucose transporters which facilitate the
absorption of glucose, thereby lowering the extracellular glucose lev-
els [56, p. 326].

4An allosteric enzyme is an enzyme where binding of substrate to one active
site alters the properties of other active sites in the same molecule.
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Figure 2.5: Illustration of the insulin receptor [56, p. 326].

2.5 Diabetes

Diabetes is the most common metabolic disease in the world. The
early symptoms of diabetes are extreme thirst and hunger since an
excess amount of water and glucose is excreted in abnormal amounts
of urine. If the disease is not treated, the symptoms can lead to more
severe complications or death.

One distinguishes between two types of diabetes: Type I and II. The
difference between the two is explained in the following.

Type I diabetes (insulin-dependent diabetes mellitus, IDDM) is caus-
ed by autoimmune destruction5 of the insulin-secreting β-cells in
the pancreas. Since a sufficient amount of insulin is not produced,
the entry of glucose into the cells is impaired. Furthermore, the

5Destruction caused by the organism’s own antibodies.
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high ratio between glucagon and insulin promotes the breakdown of
glycogen resulting in an excessive amount of glucose being produced
in the liver and released into the blood [49, pp. 779-780].

The treatment for type I diabetes is insulin injections to maintain a
normal level of insulin in the body. Different types of insulin are used
depending on whether a short or long lasting effect is needed [56, pp.
332-334]. The insulin is normally given SC since it breaks down in
the stomach and gut when given orally. By giving the injection SC,
the insulin bypasses the epidermal and dermal skin layers resulting
in a slow rise and decline of plasma insulin after the injection. The
primary absorption membrane in the SC tissue is the capillary wall
which has a low capillary density. The drug absorption is therefore
generally slow but effective [58, pp. 11-12].

Type II diabetes (non-insulin-dependent diabetes mellitus, NIDDM)
is a heterogeneous disorder which is characterized by a progressive
functional β-cell defect where the capacity of the β-cells to secrete
insulin is deteriorated and/or an impaired insulin action (insulin re-
sistance) is observed on the peripheral tissue which does not respond
to the hormone. This type of diabetes occurs predominantly (but not
only) at a later age than type I diabetes and among people with se-
vere obesity. In countries with high living standards, this type of
diabetes is affecting hundreds of millions and the number is grow-
ing. Typical predictors for type II diabetes are hyperinsulinemia
and hyperglycemia (elevated insulin and glucose levels) which are
risk factors for cardiovascular diseases. Type II diabetes is normally
treated through diet, exercise, and sometimes insulin injections [56,
pp. 332-334].
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Chapter3
Pharmacokinetics/
Pharmacodynamics

After having discussed the physiological aspects of the insulin/glu-
cose system, the basic concepts of pharmacokinetic/pharmacody-
namic (PK/PD) modelling are introduced in this chapter. The main
purposes of PK/PD modelling is listed below with increasing impor-
tance [52].

• Conceptualize the system
• Test competing hypotheses/models
• Estimate system variables/parameters (model robustness)
• Identify controlling factors and variability
• Assess system response predictability under new conditions

Several different types of models are presented in the following which
are supposed to give an overview of the available PK/PD modelling
techniques.
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3.1 Pharmacokinetics

Pharmacokinetics (PK) is the study of the rate of change of drug
concentrations in the body. PK modelling is aimed at a mathemati-
cal description of the concentration of drug and metabolites in areas
of the body, e.g. blood, tissue, urine, etc. This includes a descrip-
tion of the rates of drug absorption, distribution, metabolism, and
excretion following various types of administration, e.g. IV, SC, oral,
etc.

PK modelling has diverged into the following three major approaches
[58, p. 4].

The model-independent approach is based purely on a math-
ematical description of e.g. plasma profiles of a drug without
making any assumptions about a particular model. Thereby,
the use of kinetic parameters which cannot readily be vali-
dated is avoided. This approach can be seen as a ‘curve fitting
method’ to data.

In compartment modelling , the body is assumed to consist of
one or more compartments which are either spacial or chem-
ical in nature. Generally, the compartments represent a vol-
ume or group of similar tissues/fluids into which a drug is dis-
tributed. The drug movement between compartments is mainly
based on reversible or irreversible first-order processes or by
use of Michaelis-Menten kinetics1. The mathematical func-
tions or differential equations are employed without regard to
any mechanistic aspects of the system.

The physiological approach implies certain mechanisms or en-
tities that have physiological, biochemical or physical signifi-
cance. Contrary to compartmental models, physiological mod-
elling uses flow rates (fluxes) through particular organs or tis-
sues along with experimentally determined ratios, e.g. the ratio

1Michaelis-Menten kinetics describe the properties of many enzyme-catalyzed
reactions and are often used to describe the elimination of a drug from the body.
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between the blood and tissue concentration. The advantage of
the physiological approach is that events such as fever or heart
failure can be taken into account. The disadvantage is that the
mathematics then become very complex.

The range of compartments in physiological modelling is normally
from 4 to 20 whereas the number of compartments is from 1 to
3 in compartmental modelling and zero in the model-independent
approach.

Compartmental modelling is chosen as the modelling approach in
this thesis because of its simplicity and widespread use in insulin
studies.

3.2 Pharmacodynamics

While the concentration-time relationship is studied in PK, pharma-
codynamics (PD) deals with drug-target (receptor) interaction and
how the PK of a drug, control the time course of the PD response. A
major goal of PD is to relate different types of concentration-effect
relationships through coupling with the PK. Furthermore, the ob-
jective in establishing PK/PD relationships is to be able to design
an optimal dosage regimen that maximizes the effect elicited by the
drug pr. unit dose. This is done through concentration-effect corre-
lation, since it is the rate of availability (dose/time) at the receptor
which is of importance to the therapeutic outcome. PK/PD mod-
elling has become an integral part of drug development and plays a
significant role in drug therapy.

Three basic aspects of PD models will be considered next. These
aspects are effect, link, and response.
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3.2.1 Effect Models

A drug effect can be defined as any drug-induced change in a physio-
logical parameter when compared to the respective pre-dose or base-
line values. A more relevant term in PK/PD modelling than effect is
efficacy which is the sum of all therapeutically beneficial drug effects.
Efficacy is however difficult to quantify and thus effect models are
used instead [37].

Either polynomial or logistic models can be used when modelling the
effect. A polynomial can be fitted to a logistic curve, which is why
the difference between the two types of models can become virtu-
ally indistinguishable within a certain interval. However, the draw-
backs of using polynomials are that the parameters do not have any
physical interpretation unlike those of logistic models and that the
predictions outside the observed range of effect are less reliable than
logistic models. Furthermore, logistic models generally use fewer pa-
rameters than polynomials to obtain the same fit, thereby giving a
more parsimonious description of the effect [43, p. 274]. Therefore,
polynomials will not be considered in the following where the five
most commonly used logistic effect models are presented.

Fixed Effect Model: A fixed effect model (quantal effect model)
is a statistical approach based on logistic regression analysis. The
simplest type of fixed effect models are threshold models where the
effect occurs after a certain effect Efixed is reached:

E = Efixed C ≥ Cthreshold (3.1)

where E and C are the measured effect and concentration, respec-
tively.

The problem with the fixed effect model is that it often falls short
at predicting complete effect-time profiles.
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Linear Effect Model: In the linear effect model, the observed
effect is considered to be proportional to the drug concentration [42]:

E = S · C + E0 (3.2)

where S and E0 represent the effect induced by one unit of C and
the baseline effect in the absence of drug, respectively.

This model is preferable to measured effects with physiological base-
lines such as blood glucose and the parameters are easily estimated
using linear regression. A similar model to the linear model is the
log-linear model where C is replaced by logC.

Even though the linear and log-linear models seem intuitively right,
they rarely fit PD data very well. The explanation is that a threshold
concentration must be attained before any response is elicited and
because there usually exists a maximum effect which is independent
of the drug concentration.

Hyperbolic Emax Model: Another possibility is to have a hyper-
bolic relation (Emax model) between the drug concentration and the
observed effect [40]:

E =
Emax · C
EC50 + C

+ E0 (3.3)

where EC50 (the potency of the drug) is the drug concentration
producing 50 % of the maximum effect Emax (the intrinsic activity
of the drug).

This model becomes equivalent with the linear model when C ¿
EC50 and is consistent with the log-linear model in the range between
20 % and 80 % of Emax.

The model is based on the theory of drug-receptor interaction and
is derived for the equilibrium interaction of a drug with its receptor.
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It is widely used to describe pharmacologic effects under both com-
petitive and non-competitive agonist and antagonist interactions2 at
the response system [37].

Sigmoidal Emax Model: Finally, the relation between the drug
concentration and the observed effect can be described by the Hill
response equation (sigmoidal Emax model) [42]:

E =
Emax · C

γ

EC
γ

50 + Cγ + E0 (3.4)

where γ represents the sigmoidicity/response factor (steepness of the
curve).

The sigmoidal Emax model is a generalization of the hyperbolic Emax

model (γ = 1). For γ < 1, a smoother and for γ > 1, a steeper
curve is obtained. The parameter γ allows more different types of
PK/PD data to be modelled. Theoretically, the sigmoidal Emax

model is derived from the interaction between γ drug molecules and
one receptor [37].

The five effect models are illustrated in Figure 3.1.

3.2.2 Link Models

Ideally, the insulin concentration should be measured at the effect
site (extracellular space) where the interaction with the biological
receptor system takes place [42]. Since this is not possible in most
cases, the concentration in the more accessible plasma is measured
instead and related to the effect site under the assumption that the
pharmacologically active and unbound concentration at the effect
site is directly related to the more accessible plasma concentration

2An agonist is a drug responsible for triggering a response while an antagonist
interferes or prevents the action of a drug [32, p. 18+36].
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Figure 3.1: Illustration of five effect models. The parameters used are:
E0 = 0, S = 1 and 15 for the linear and log-linear model,
respectively. Emax = 95, EC50 = 50, and γ = 6.

or other body fluids. Furthermore, the concentration at the effect
site is assumed to be in PK equilibrium (steady-state) [37].

There exist two ways of linking the drug concentration and the ef-
fect, i.e. direct and indirect link models. When the measured plasma
concentration is assumed to be equivalent to the concentration at the
effect site, direct link models are used. If a drug does not distribute
instantaneously to all the body tissues (including the effect site), the
pharmacological response will not always parallel the drug concen-
trations in the plasma and an indirect link model is needed. One
way to determine if a direct or indirect link model should be used
is through the shape of a phase-plot where the drug effect is plotted
against the drug concentration and the data points are connected in
chronological order.
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Direct Link Models

At steady-state conditions, a phase-plot of effect vs. plasma con-
centration typically results in a sigmoid-shaped curve. Direct link
models, where the effect site (the receptor) is placed in the central or
peripheral compartment in the PK model, can be used under such
conditions.

Indirect Link Models

At non steady-state, a counter-clockwise hysteresis loop is observed
in the phase-plot, the size of which depends on the delay between
maximum drug concentration Cmax and maximum effect Emax. The
phenomenon can be explained by the effect rising slowly, reaching a
peak, and is more sustained than the plasma drug concentration [42].
Therefore, there exists two different effects for any drug concentra-
tion depending on the time after drug administration, also referred
to as ‘kinetic-dynamic dissociation’ [26].

An indirect link model is then needed to circumvent the dissocia-
tion problem. If the hysteresis loop is related to a distributional
delay and not an indirect response mechanism, a hypothetical effect
compartment containing the drug receptor can be added to the PK
model, receiving only a negligible amount of drug. The concentration
and effect are thereby aligned (in time) and steady-state conditions
are achieved [59]. The drawbacks of the indirect link model is that
the link between measured drug concentration and observed effect is
based on an unknown mechanism (black box) [37].

Soft and Hard Link Models

The link between the PK and PD data can also be established in two
different ways, i.e. soft and hard link models. In soft link models,
both the PK and PD data are used to determine the link between
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them, i.e. the flow of used information is bidirectional. The link
thereby serves as a buffer accounting for a misfit between the PK and
PD relationships, e.g. the temporal delay of the effect compartment
described above.

In hard link models, the PD data is not used in characterizing the
model. The PK data is instead combined with information such
as receptor affinity obtained from in vitro3 studies. The flow of
information is thereby unidirectional, where the additional in vitro
information determines the link between the PK and PD data. The
prediction of the PD data is thereby thought of as ‘truly predictive’
since the PD data is not used in the determination of the link. Hard
link models are by definition also direct link models [37].

3.2.3 Response Models

This leads to the next issue of choosing between a direct or indirect
response model to describe the relationship between drug concen-
tration and pharmacological effect. A direct response is when the
interaction of the drug with a response structure at the effect site
directly results in the observed effect. When a physiological factor
that governs the observed effect is modulated, it is thought of as an
indirect response.

Unfortunately, plasma concentration and effect measurements are
usually insufficient to distinguish whether the apparent delay be-
tween the two are related to a distribution delay (tissue equilibra-
tion) or an indirect response mechanism (delays downstream from
the receptor) [46].

3In vitro means isolated from the living organism opposed to in vivo meaning
within the living organism.
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Direct Response

Direct response models are characterized by a direct correlation be-
tween the effect site concentration of the drug and the observed effect
without time lag. The indirect link model like the effect model pre-
sented in Section 3.2.2 is thus a direct response model where the ob-
served hysteresis loop is related to a distributional delay and closed
by adding a steady-state effect compartment to the model. If the
apparent delay between plasma concentration and effect is related
to an indirect response mechanism, an indirect response model must
be used instead [37].

Indirect Response

Indirect response models are used under non steady-state conditions
when the drug inhibits or stimulates the observed effect indirectly.
The indirect response model can be understood as a black-box, which
exposed to an input kin, yields a pharmacological response R as an
output as illustrated in Figure 3.2 [30, 46].

R
kin kout

Figure 3.2: Indirect response model.

The change in response is described by the following equation [37,
45]:

dR

dt
= kin − kout ·R (3.5)

where kin and kout are the response formation and degradation rate
constants, respectively.
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The drug can either inhibit or stimulate kin or kout resulting in the
following four indirect response models [42]:

dR

dt
= kin · S − kout ·R (3.6a)

dR

dt
= kin · I − kout ·R (3.6b)

dR

dt
= kin − kout · S ·R (3.6c)

dR

dt
= kin − kout · I ·R (3.6d)

where S and I are the stimulating/inhibiting effect described by one
of the effect models mentioned in Section 3.2.1.
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Chapter4
Modelling & Estimation
Methods

The modelling and estimation methods used in grey-box PK/PD
modelling of insulin in this thesis are presented in the following sec-
tions.

First, three types of modelling principles for dynamical systems are
introduced. Thereafter, stochastic differential equations (SDE) which
are used in grey-box models, are deduced. Next, continuous-discrete
time state space models based on SDE are suggested as a suitable
way to describe the relationship between input and output signals in
dynamical systems. The issues of identifiability and distinguishabil-
ity are discussed before maximum likelihood estimation is introduced
along with state filtering. Finally, different methods of validating a
proposed grey-box model are mentioned to address the issue of model
control.
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4.1 Modelling Principles

Dynamical systems in continuous time are often described by differ-
ential equations. The three most used methods for modelling such
systems are white-box, black-box, and grey-box modelling. The con-
nection between the three methods is illustrated in Figure 4.1.

Grey−box

Deterministic Stochastic

White−box Black−box

Figure 4.1: Illustration of different modelling principles.

The three methods are further explained in the following sections.

White-box Modelling: White-box models, also referred to as de-
terministic models, are based on deterministic equations and prior
knowledge only. The future evolution of the system can be predicted
exactly with knowledge about the initial state and future inputs.
The limitation of white-box modelling is that differential equations
rarely describe the uncertainties and measurement errors in a true
physiological system such as the insulin/glucose system.

Black-box Modelling: The black-box model is identified from
the use of data and statistics only and not by any prior knowledge.
The parameters are estimated so that the model describes the data
in a predefined best possible way. Therefore, the parameters have no
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direct physical meaning and are not very helpful in understanding
the dynamics of e.g. the insulin/glucose system. An example of a
black-box model is the well known ARMA (autoregressive moving
average) model.

Grey-box Modelling: Grey-box modelling is a hybrid of the two
previously mentioned modelling methods. A grey-box model consist
of a known or proposed model structure including a stochastic term
which represents disturbances, inputs to the system which are not
measured, and unmodelled dynamics of the system. It is therefore
possible to use prior physical knowledge and at the same time de-
scribe the noise in the system by combining a deterministic part with
a stochastic part. This makes grey-box modelling a very attractive
tool for modelling the insulin/glucose dynamics since it is not yet
fully understood or cannot be explicitly modelled. The advantage
of using grey-box models is that the physiological knowledge is com-
bined with information from data. Thereby the parameters in the
models have physical meaning and may readily be interpreted. Fur-
thermore, it is possible to treat missing data and to model non-linear
(NL) and time-varying systems.

4.2 Stochastic Differential Equations

The equations used in grey-box models are stochastic differential
equations and can be defined from the following stochastic difference
equation of finite differences [33, pp. 167-169]:

xt+h − xt = hf(xt,ut,θ, t) +G(xt,ut,θ, t)(wt+h −wt) (4.1)

where xt is the state vector, ut is the input vector, θ is the parameter
vector, h is the time step, f is a deterministic function called the
drift coefficient, G is the diffusion coefficient, and wt is a Wiener
process with the following mathematical properties.
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The Wiener process is a non-stationary stochastic process that starts
in 0 and has mutually independent (orthogonal) increments which
are normally distributed with mean and covariance [33, p. 167]:

E[wt −ws] = 0 (4.2a)

V [wt −ws] = σ2|t− s| (4.2b)

The derivative of the Wiener process has a constant spectral density
for all frequencies and thus has infinite variance. This makes it the
closest to the concept ‘continuous white noise’ [33, p. 168].

The stochastic differential equation is obtained by letting the time
step h tend to zero in (4.1):

dxt = f(xt,ut,θ, t) dt+G(xt,ut,θ, t) dwt (4.3)

The solution to (4.3) can formally be written as:

xt = x0 +

∫ t

0
f(xs,us,θ, s) ds+

∫ t

0
G(xs,us,θ, s) dws (4.4)

with the first integral being a standard Riemann integral, while the
last integral is a stochastic integral1. A suitable way to represent the
relationship between input and output signals in a dynamical system
is by a state space formulation which is introduced in the following
section.

4.3 State Space Models

A state space model is an internal parametric representation between
input and output which in a continuous time formulation enables a
direct physical meaning of the parameters. Since the structural in-
formation of the physical system is formulated in continuous time

1In this thesis, the stochastic integral is an Itô integral.



4.4 Identifiability & Distinguishability 31

and the data is observed at discrete time instants, the following
continuous-discrete time state space model, consisting of a continu-
ous time system equation and a discrete time observation equation,
is used.

dxt = f(xt,ut,θ, t) dt+G(xt,ut,θ, t) dwt (4.5a)

yk = h(xk,uk,θ, tk) + ek (4.5b)

The state xt is not directly measurable in the system equation (4.5a).
The observation equation (4.5b) describes what is actually measured
at discrete time instants tk, and is a function of the state contami-
nated with Gaussian distributed white noise. The system noise wt

and observation noise ek are assumed mutually independent.

4.4 Identifiability & Distinguishability

The analysis of the two related topics, identifiability and distin-
guishability, are a priori in nature, meaning that it assumes perfect
input-output data and can be performed before the data is collected.
The issue about identifiability with respect to the experimental con-
ditions is briefly mentioned in Chapter 5 and will not be discussed
in this section.

Structural identifiability is concerned with whether the unknown pa-
rameters within a model such as the state space model in (4.5) can be
identified uniquely from the experiment considered given that the set
of data is informative (persistently excited) enough. The state space
representation is in general not a unique representation because any
given model can be written in a continuum of ways. This makes the
concept of structural identifiability an important and necessary one
since the estimation of a non-identifiable model will not converge to a
single set of parameters [33, p. 182]. An example of determining the
structural identifiability of a linear model is illustrated in Appendix
A.2 using Laplace transformation. Several different approaches such
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as linearization [13] and differential algebra [6] has been suggested
for investigating the identifiability of NL models. Structural identi-
fiability is far more complicated for NL than linear models and will
therefore not be considered in this thesis.

Another important issue when constructing the model structure is
distinguishability – the ability to distinguish between models. The
model parameters in compartmental models often have diagnostic
significance which makes it important to validate the correctness of
the chosen model. Some techniques for testing for distinguishability
are the phase-plane method [19], the local state isomorphism theo-
rem [12] along with several other numerical algorithms which can be
applied to distinguish what type of e.g. absorption and elimination
kinetics is present.

4.5 Estimation Methods

The two most used methods for parameter estimation in continuous
state space models are: Maximum likelihood (ML) and maximum a
posteriori (MAP) estimation. The major difference between these
two approaches is that MAP estimation uses not only the experi-
mental data, but also the a priori available statistical information
on the parameter vector (Baysian approach), e.g. mean and covari-
ance matrix in the gaussian case, while ML is a Fisherian approach,
where only experimental measurements are used by the estimator.

In [48], it is shown that MAP estimation of insulin secretion, always
leads to higher precision estimates than ML with the possibility of
a slightly worse fit. Since the a priori information from population
studies of insulin is not available for the studies mentioned in this
thesis, only ML estimation is considered.
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4.5.1 Maximum Likelihood

Maximum likelihood estimation is based on maximizing the likeli-
hood function of the observations YN = [yN ,yN−1, . . . ,y0] given the
parameter vector θ [29].

The likelihood function is given by [33, pp. 186-188]:

L(YN |θ) = p(YN |θ) = p(yN ∩ YN−1|θ)
= p(yN |YN−1,θ)p(YN−1|θ)

=

( N
∏

k=1

p(yk|Yk−1,θ)

)

p(y0|θ)
(4.6)

where Bayes rule P (A ∩ B) = P (A|B)P (B) is used to obtain the
likelihood function as a product of conditional probability densities.
Under the assumption that the conditional density function is Gaus-
sian, which is only valid for linear models, the following equations
describe the one-step conditional density in (4.6):

ŷk|k−1 = E{yk|Yk−1,θ} (4.7)

Rk|k−1 = V {yk|Yk−1,θ} (4.8)

εk = yk − ŷk|k−1 (4.9)

Under the assumption that the data is normally distributed, the
conditional likelihood for the output Y is completely characterized
by equation (4.7) and (4.8), its first and second moments in the
conditional densities, respectively. The likelihood function can then
be written as:

L(YN ,θ) =
(

N
∏

k=1

exp
(

− 1
2ε

T
kR

−1
k|k−1εk

)

√

det(Rk|k−1)
(√

2π
)l

)

p(y0|θ) (4.10)

where l is the dimension of yk.
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If the likelihood function is further conditioned on y0 and by taking
the negative logarithm of (4.10), the following equation appears:

− ln
(

L(YN |θ,y0)
)

=
1

2
Nl ln

(

2π
)

+
1

2

N
∑

k=1

(

ln
(

det(Rk|k−1)
)

+ εTkR
−1
k|k−1εk

)

(4.11)

The innovation εk and the conditional variance Rk|k−1 can be cal-
culated for given parameters θ and initial conditions x0 by the use
of the Kalman Filter (see Section 4.6.1) or the Extended Kalman
Filter (section 4.6.2) for linear and NL systems, respectively. To find
the estimate of the parameters θ, the following argument must be
minimized with respect to θ:

θ̂ = arg min
θ∈Θ
{− ln

(

L(YN |θ,y0)
)

} (4.12)

The optimization of the likelihood function is implemented in the
program CTSM (Continuous Time Stochastic Modelling) by using a
quasi-Newton step for numerical NL optimization [29].

The maximum likelihood estimates are asymptotically normally dis-
tributed with mean θ and covariance matrix D. An approximation
of the uncertainty D can be found by:

D(θ̂) 'H−1 (4.13)

where H is the Hessian calculated as the second derivative of the
negative log-likelihood function (4.11) at the obtained parameter es-
timate.

4.6 State Filtering

Since the system equation of the state space model is continuous
while the observation equation is discrete, state filtering is intro-
duced as a tool for estimating the underlying states such as the SC
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insulin concentration or the concentration in a non-measurable com-
partment at time t based on the measurements until time tk.

The two types of models considered in this section are linear time-
invariant (LTI) and NL models. The Kalman Filter (KF) is an exact
solution to the state filtering problem for linear dynamical systems
while the Extended Kalman Filter (EKF) is used in case of NL sys-
tems.

4.6.1 Kalman Filter

The KF is a set of mathematical equations that provides an efficient
and exact recursive solution to the state filtering problem for linear
systems. In the following, the KF will be derived for the LTI system
below [33, pp. 172-174]:

dxt =
(

A(θ)xt +B(θ)ut

)

dt+ σ(θ) dwt (4.14a)

yk = C(θ)xk +D(θ)uk + ek (4.14b)

where A, B, C, and D are constant coefficient matrices, wt is a
standard Wiener process assumed to be independent of ek, which
is a Gaussian white noise process with zero mean and covariance
S(θ, tk).

For linear models, the covariance Rk|k−1 and the innovation εk, i.e.
equation (4.8) and (4.9), can be computed for a given set of param-
eters θ and initial states x0 by means of the KF.

The update equations are:

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

(4.15)

Pk|k = Pk|k−1 −KkRk|k−1K
T
k (4.16)

where the initial conditions are x̂1|0 = µ0 and P1|0 = V0. x̂k|k is the
update of the state, Pk|k is the update of the covariance, and Kk is
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the Kalman gain which can be calculated by the Kalman equation,
i.e.:

Kk = Pk|k−1C
TR−1

k|k−1 (4.17)

Next, the state prediction equations which are the optimal (mini-
mum variance) linear prediction of the mean and covariance can be
calculated as:

dx̂t|k/dt = Ax̂t|k +But (4.18)

dPt|k/dt = APt|k + Pt|kA
T + σσT (4.19)

Finally, the output prediction equations of the observation ŷk+1|k
along with the covariance Rk+1|k are shown below:

ŷk+1|k = Cx̂k+1|k +Duk+1 (4.20)

Rk+1|k = CPk+1|kC
T + S (4.21)

where S is the covariance matrix of the measurement error.

Since it is necessary to estimate the systems’ evolution between dis-
crete time instants, the integration of (4.14a) through the sample
interval [tk, tk+1] is shown below [33, pp. 185-186]:

xtk+1
= eA(tk+1−tk)xtk +

∫ tk+1

tk

eA(tk+1−s)Bus ds

+

∫ tk+1

tk

eA(tk+1−s)σdws

(4.22)

The two first terms in (4.22) are the deterministic parts while the
last integral is a stochastic Itô integral. Using the assumption that
wt is a Wiener process, the integral

∫ tk+1

tk
eA(tk+1−s)σdws is normally

distributed white noise with zero mean and covariance Pk+1|k, i.e.:

Pk+1|k = eAτsPk|k
(

eAτs
)T

+

∫ τs

0
eAsσσT

(

eAs
)T
ds (4.23)
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where τs = tk+1 − tk is the sampling time.

If ut is constant in the sample interval, the sampled version of (4.22)
can be written as:

x̂k+1|k = eAτsxk +

∫ τs

0
eAs dsBu (4.24)

The Kalman procedure is visualized in Figure 4.2.

Measurement Update

Initial conditions:

Prediction

1. Predict the state and covariance

2. Predict the observations

ŷk+1|k = Cx̂k+1|k +Duk+1

Rk+1|k = CPk+1|kC
T + S

1. Calculate the Kalman gain

2. Update the state and covariance

Kk = Pk|k−1C
TR

−1
k|k−1

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

Pk|k = Pk|k−1 −KkRk|k−1K
T
k

dPt|k/dt = APt|k + Pt|kA
T + σσT

dx̂t|k/dt = Ax̂t|k +But

P1|0 = V0

x̂1|0 = µ0

Figure 4.2: Kalman procedure [57].

4.6.2 Extended Kalman Filter

In case of NL models like the one shown in (4.25), it is necessary
to use the extended Kalman filter (EKF) to get the optimal NL
estimation of the state.

dxt = f(xt,ut,θ, t) dt+ σ(ut,θ, t) dwt (4.25a)

yk = h(xk,uk,θ, tk) + ek (4.25b)
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where the functions f(·) and h(·) are NL functions of the state vector
xt while ek is a Gaussian white noise process mutually independent
of wt.

The EKF uses a local linear approximation of the functions f(·)
and h(·) by Taylor expansion at each sampling time to describe the
dynamics in the system [33, pp. 199-200], i.e.:

A(x̂t, ût,θ, t) =
∂f

∂x

∣

∣

∣

x=x̂
(4.26a)

C(x̂k|k−1, ûk,θ, tk) =
∂h

∂x

∣

∣

∣

x=x̂k|k−1

(4.26b)

The prediction of the output ŷk+1|k in the NL case using EKF is:

ŷk+1|k = h(x̂k+1|k,uk+1,θ, tk+1) (4.27)

while the formulas for prediction of the mean and covariance of the
state-vector are:

dx̂t|k/dt = f(x̂t|k,ut,θ, t) (4.28a)

dPt|k/dt = APt|k + Pt|kA
T + σσT (4.28b)

where A = A(x̂t|k,ut,θ, t) which is calculated as in (4.26a) and
t ∈ [tk, tk+1].

An iterated EKF is used to avoid numerical integration of the state-
prediction equations (4.28) where the time interval [tk, tk+1] is sub-
sampled and the equations are linearized at each subsample.

A fundamental problem with EKF and the iterated EKF is that
the assumption of the random variables being normal no longer is
valid after the linearization. The state estimator is therefore only an
approximative solution and not exact like the KF [57].

4.7 Model Validation

After having determined the model structure and estimated the pa-
rameters in the model, the next step is to validate the results. The
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purpose of model validation is to test whether the model assump-
tions are valid. Furthermore, the ability of the estimated model to
predict/simulate the observed dynamics of the modelled system is
tested.

The models in this thesis are validated using visual inspection along
with statistical analysis of the model structure, the parameter es-
timates, and the residuals, i.e. the difference between the observed
data and the 1-step prediction. This is done to get an indication
whether the models are able to capture the relevant features of the
dynamics of the modelled system. If the proposed model is accepted
in these tests, it should preferably be followed by cross validation
where the results from a model identified from one set of data is
tested on another set of data.

4.7.1 Test for Model Structure

The tests for model structure mentioned in this section serve as a
tool for comparing alternative model structures, to reveal possible
over-fitting, and to test whether a model reduction is relevant.

Likelihood Ratio Test

The likelihood ratio test (LRT) is a way to test if it is reasonable
to reduce a previously proposed model to a submodel. This is done
by testing whether or not the value of the negative log-likelihood
function for the reduced model is significant compared to the original
model. The hypothesis to test is H0 : θ ∈M0 against the alternative
H1 : θ ∈M1 with θ being the parameter vector and whereM0 and
M1 are the two models to test for whichM0 ⊂M1. The likelihood-
ratio is [33, pp. 104-105]:

Λ =
L(θ̂0)
L(θ̂1)

(4.29)
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where L(θ̂i) (i = 0, 1) is the maximized likelihood function under H0

and H1, respectively.

A test for accept of H0 against H1 is:

−2 log Λ ∈a.s. χ2(s− r) (4.30)

where r and s denote the dimensions ofM0 andM1.

In the output from CTSM, the value of the objective function F
is calculated along with the value of the penalty function P. The
objective function is the negative log-likelihood function corrected
with the penalty function [29], i.e.:

F(θ) = − log (L(Y|θ, y0)) + P (4.31)

Equation (4.29) can be rewritten using (4.31):

−2 log Λ = 2
(

− logL0 − (− logL1)
)

= 2
(

(

F0 − P0
)

−
(

F1 − P1
)

) (4.32)

which can be calculated readily using the output from CTSM.

Information Criteria

The LRT is limited to comparison of two nested models and does
therefore not apply when one wishes to test a model which is not
a true subset of a larger model. Furthermore, it is not possible
to choose between models by comparing the value of the likelihood
function as a measure for the optimal model since models with more
parameters tend to fit a data set better than models with fewer
parameters. A penalty on the model complexity is therefore needed.

Instead, several information criteria has been proposed for order se-
lection where the optimal order p = dim(θ) is found through mini-
mizing a specified cost function. First, the data is fitted using ML
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and the model complexity is thereafter penalized. The two most
common information criteria are AIC (Akaike’s Information Crite-
rion) and BIC (Bayesian Information Criterion) where the model
order can be found through minimizing the following expressions for
AIC and BIC, respectively [33, p. 106]:

AIC = 2p− 2 logL(θ,YN ) (4.33)

BIC = p logN − 2 logL(θ,YN ) (4.34)

AIC is not a consistent estimator since it has a tendency to overes-
timate the model order for large data sets, i.e. large N . Opposed to
AIC, BIC generally gives a consistent estimate of the model order
by penalizing with p logN instead of 2p.

4.7.2 Residual Analysis

The principle of residual analysis is to check whether the information
obtained from the model contradicts with the model assumptions.
Plots of the residuals along with tests in the sample autocorrelation
and lag-dependency functions, will be considered to test for indepen-
dence of the residuals in this thesis.

Plot of Residuals

By plotting the residuals between the observed data yk and the 1-
step prediction ŷk|k−1, it is possible to spot trends and inhomogeneity
of the variance, outliers and poor data. This often gives a quick
indication whether something is missing in the model and may also
provide hints for an alternative model structure.

Autocorrelation Functions

The autocorrelation function (ACF) ρ(k) is a measure for the cor-
relation between observations with time lag k. Provided that the



42 Chapter 4. Modelling & Estimation Methods

residuals εt are white noise, then:

ρ̂(k) ∈approx. N(0,
1

N
) (4.35)

where N is the number of observations.

The variance of ρ̂(k) for lags k greater than some value q is computed
using Bartlett’s approximation [9, pp. 34-36]:

V [ρ̂(k)] ' 1

N

{

1 + 2

q
∑

v=1

ρ2v

}

, k > q (4.36)

An approximate 95 % confidence interval to test whether the predic-
tion errors are significantly different from white noise can be found
as ±2

√

V [ρ̂(k)].

The partial autocorrelation function (PACF) φkk(k) is a measure of
the correlation between the observations at time t and t + k given
all the observations in between. An approximative 95 % confidence
interval is calculated as ± 2√

N
where N is the number of observations

[9, p. 65].

These two types of tests for whiteness of the residuals are only valid
for linear systems since it is only the linear dependencies which are
taken into account.

Lag-Dependency Functions

To identify lag-dependencies in the residuals for NL models, it is
not sufficient to carry out tests in the autocorrelation functions as
mentioned above. Instead, a lag-dependency (LDF) and partial lag-
dependency function (PLDF) is introduced in [39] where the NL
dependency is taken into account.

LDF(k) and PLDF(k) are calculated as:

LDF (k) = sign
(

f̂k(b)− f̂k(a)
)√

(R̃2
0(k))+ (4.37)

PLDF (k) = sign
(

f̂kk(b)− f̂kk(a)
)√

(R̃2
(0k)|(1...k−1)+ (4.38)
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where fk(x) = E[Xt|Xt−k = x] and fkk(x) is a partial dependence
function in lag k when the effect of lag 1, . . . , k − 1 is accounted for
while a and b are the minimum and maximum of the observations.
R2 is the coefficient of determination while the ‘+’ indicates that
only non-negative values are used [39].

LDF(k) can be interpreted as the part of the totale variation in xt
which can be explained by xt−k while PLDF(k) is the relative de-
crease in the variance of the 1-step prediction, when lag k is included
as an extra predictor [33, pp. 76-77].

4.7.3 Validation of Parameter Estimates

Hotelling’s T 2 test can be used to test whether the estimated param-
eter vectors θ̂i, i = 1 . . . n, for n subjects can be assumed to come
from the same normal distribution, i.e.:

θ̂i ∈ Np(µ,Σ) (4.39)

where p is the dimension of θ̂i, µ is the mean vector, and Σ is the
dispersion matrix.

The hypothesis to test is H0 : µ = µ0 against the alternative H1 :
µ 6= µ0 where µ0 is a given vector. The test can be written as [15,
pp. 273-275]:

n− p
(n− 1)p

T 2 ∈ F (p, n− p) (4.40)

where T 2 is calculated as:

T 2 = n
(

θ̄ − µ0

)T
S−1

(

θ̄ − µ0

)

(4.41)

where θ̄ and S are the empirical mean parameter vector and the
empirical dispersion matrix, respectively.

Each parameter can further be tested individually to see if it is sig-
nificantly different from a given parameter value θ0. The hypothesis
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can formally be written as [14, p. 337]:

θ̂ − θ0
σ̂

∈ t(N − 1− p) (4.42)

where θ̂ and σ̂ are the estimated parameter value and variance, re-
spectively, while N is the number of observations and p is the num-
ber of estimated parameters in the model. This test is automatically
generated in the output from CTSM for θ0 = 0.
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Chapter5
Experimental Procedures
and Data

When clinical studies are carried out, the number of measurements
should be as large as possible to ensure the greatest precision in
parameter estimation by maximizing the information in the data.
Furthermore, the measurements should cover a wide range of insulin
and effect concentrations to describe the shape of the PK/PD re-
lationship optimally. However, the constraints are many in human
clinical studies, which is why issues like identifiability cannot always
be taken into account. The frequency of data collection is therefore
not always optimal for distinguishing what type of PK/PD model is
needed.

In the following, the two different experiments considered in this
thesis are explained.

5.1 Euglycaemic Clamp Study

The euglycaemic clamp study performed at Steno Diabetic Center is
used to determine the characteristics of two different types of insulin
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and to verify that the insulin has the intended properties without
too many side effects [27]. The information obtained from the clamp
study is further used to determine the insulin dose needed to obtain
a clinically observable effect in human patients.

5.1.1 Subjects

The euglycaemic clamp study is performed on twenty healthy non-
smoking Caucasian males between 18 and 40 years of age with a
body mass index < 27 kg/m2. The anthropometric measurements of
each subject can be seen in Appendix A.1.

5.1.2 Trial and Procedure Information

The experimental design is a single center two-period randomized
double blind crossover experiment as illustrated in Figure 5.1. Each
patient receives a bolus dose of either insulin A or B1 on the first day
of the study and the opposite type of insulin at the next visit which
is one or two weeks later to prevent carry-over effects from the first
treatment to the next.

A A

B B

Pre−trial Post−trial

Figure 5.1: Experiment diagram.

The insulin and C-peptide levels are measured by inserting a catheter
into an antecubital vein in the patient’s arm. The glucose concen-

1The difference between insulin A and B is not known and of no importance
since it is the modelling and estimation methods which are the primary interests
of this thesis.
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tration is measured through a glucose sensor in the hand of the same
arm. To suppress the secretion of insulin from the pancreas, the pa-
tient continuously receives an IV infusion of regular human insulin
(0.15 mU/kg BW/min) during the whole experiment in the oppo-
site arm along with an IV infusion of glucose (GIR) to maintain a
constant blood glucose (BG) concentration. The experiment can be
thought of as some sort of titration where the amount of infused glu-
cose needed to maintain euglycemia (constant glucose concentration)
can be assumed to be equal to the amount of glucose utilized in the
body.

After 90 min. of monitoring the insulin and the BG, the patient re-
ceives a single dose of either insulin type A or B (0.2 U/kg BW)
which is injected SC and the insulin, GIR, BG, and C-peptide con-
centration are observed during the next 10 hours.

The plasma insulin concentration is sampled at non-equidistant time
instants. Each patient is monitored 90 min. before the injection with
samples every 30 min. until the time of injection. The patients are
thereafter monitored for 10 hours with samples every 10 min. during
the first hour, every 15 min. the next hour, and every 20 min. the
last 8 hours. The GIR, BG, and C-peptide concentration are sampled
every minute throughout the entire study.

The C-peptide concentration is used as a measure for the human
secretion of insulin (see Section 2.3) and may be used to correct the
measured insulin concentration for endogenous insulin by use of the
following equation [27]:

Iexo = Imeas −
Iini
Cini

· Cmeas (5.1)

where Iexo is the exogenous insulin, Imeas and Cmeas are the mea-
sured insulin and C-peptide concentrations, respectively, Iini is the
initial insulin concentration, and Cini is the initial C-peptide con-
centration. Iini and Cini are computed as the average of the mea-
surements up to the time of injection at t = 0.
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5.1.3 Experimental Data

The plasma insulin concentration, GIR, and BG concentration are
shown in Figure 5.2 for a representative subject from the study.

A sudden drop in the insulin concentration at high concentrations
resulting in two apparent peaks for each type of insulin is observed
in Figure 5.2. It can be explained as insulin crystallizing in the high
insulin concentration blood samples resulting in a lower measured
insulin concentration than the actual plasma insulin concentration.
The crystallization of insulin does not only appear at high concen-
tration but is a known phenomena at all concentrations.

5.2 Glucose Tolerance Studies

The glucose tolerance studies are used for assessing the insulin sen-
sitivity/resistance for normal (NGT) and impaired glucose tolerant
(IGT) subjects. The two tests used in the glucose tolerance studies
are an intravenous glucose tolerance test (IVGTT) and a less inva-
sive oral glucose tolerance test (OGTT). The studies were performed
at Steno Diabetic Center [23].

The IVGTT experiment consists of injecting a bolus of glucose into
the bloodstream thus inducing an increase of the insulin plasma con-
centration secreted by the pancreas. The difference between the
IVGTT and the OGTT is that the glucose is given orally in the
OGTT.

5.2.1 Subjects

The glucose tolerance studies were performed on 70 verified type II
diabetes mellitus subjects with four or more offspring and a spouse
without known diabetes (288 subjects).
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Figure 5.2: Insulin concentration, GIR, and BG concentration for a rep-
resentative subject for treatment with insulin A (Blue) and
insulin B (Red).
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5.2.2 Trial and Procedure Information

The NGT and IGT subjects from the study underwent an IVGTT
and OGTT while the type II diabetic subjects only underwent an
OGTT. The focus in the study is on the NGT and IGT subjects
where detailed information from the IVGTT and OGTT performed
on the same subject are used to predict the sensitivity to insulin.

IVGTT

All non-diabetic subjects underwent a tolbutamide modified, fre-
quently sampled IVGTT. After 12 hours of fasting, veneous blood
samples were drawn in triplicate at -10, -5, and 0 min. before the
IVGTT and at 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 22, 23, 24, 25,
27, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, and 180 min.
for analysis of serum insulin, plasma glucose, and C-peptide concen-
trations. At t = 0 min., glucose was injected IV in the contralateral
antecubital vein over a period of 1 min. (0.3 g/(kg BW) of 50 %
glucose).

At t = 20 min., a bolus of 3 mg tolbutamide/(kg BW) was injected
during 5 seconds to elicit a secondary pancreatic beta-cell response.
The injected tolbutamide causes an insulin burst. This ensures that
as much of the dynamics of the insulin/glucose system is present in
the measured data. For IGT subjects, it is especially necessary to
inject tolbutamide since it raises the plasma insulin level above the
insulin baseline.

OGTT

All subjects underwent a 75 g frequently sampled OGTT within 1-4
weeks prior to the IVGTT. After a 12 hour overnight fasting, veneous
blood samples were drawn in triplicate at -10, -5, and 0 min. before
the OGTT and at 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 140, 160,
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210, and 240 min. from the start of the glucose load for analysis of
serum insulin, plasma glucose, and C-peptide concentrations.

5.2.3 Experimental Data

In both studies, anthropometric measurements including age, height,
weight, waist, hip, and BMI was recorded. The sample mean and
standard deviation of these measurements are shown in Table B.1 in
Appendix B.1.

The plasma insulin, BG, and C-peptide concentrations are plotted in
Figure 5.3 and Figure 5.4 for a representative NGT and IGT subject,
respectively, from the IVGTT and OGTT.

The fasting and stimulated glucose concentrations are clearly higher
in the NGT than the IGT subjects whereas the fasting plasma insulin
are more alike for the NGT and IGT subject.
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Figure 5.3: Plasma insulin, BG, and C-peptide concentrations for a rep-
resentative NGT subject from IVGTT (Blue) and OGTT
(Red).
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Figure 5.4: Plasma insulin, BG, and C-peptide concentrations for a repre-
sentative IGT subject from IVGTT (Blue) and OGTT (Red).
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Chapter6
Clamp Models

The purpose of the PK/PD models for the clamp study is to deter-
mine the characteristics of two different types of insulin which can be
used for reliable glycaemic predictions and eventually for therapeutic
control.

This chapter reflects the model building process and a discussion
hereof. In the following sections, different PK and PK/PD models for
the clamp study are derived and described along with an introduction
to important PK and PD parameters. The PK models considered
in this chapter are purely empirical compartmental models, meaning
descriptive and not explanatory mechanistic models [1]. The logistic
sigmoidal Emax effect model used in the PK/PD models is derived
empirically by incorporating known, theoretical characteristics of the
data and can therefore be considered as a semi-mechanistic model.
The information needed to build truly mechanistic models is sub-
stantially larger compared to empirical models. They are very time
consuming and will therefore not be considered in this thesis.

The compartments of interest are illustrated using boxes while the
arrows represent the absorption, distribution, and elimination of in-
sulin. The black arrows represent inputs to the system while the
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white arrows describe the distribution and elimination of insulin.
When a rate constant is written above an arrow it means that it
follows first-order kinetics while an arrow without a rate constant
above symbolizes zero-order kinetics.

6.1 PK Models

Four different PK models are presented in the following, starting with
the simplest model consisting of only one compartment. Next, the
model is expanded with compartments for the SC depot in two dif-
ferent ways. Thereafter, the single-compartment model is expanded
with a peripheral compartment representing the insulin equilibra-
tion with the tissue. Finally, the four models are summarized and
compared.

6.1.1 Single-Compartment Model

The single-compartment model is a very simplified model where the
plasma is assumed to consist of a single-compartment with first-order
absorption and elimination and is illustrated in Figure 6.1.

Central
Compartment

Ic

Vd

ke

ka
Isc

Rin

D

Figure 6.1: Single-compartment model. The symbols in the model are
explained in the text.
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The two states in the model are Isc and Ic. Isc describes the amount
of insulin remaining to be absorbed from the SC tissue and Ic rep-
resents the amount of insulin in the central compartment.

The parameters ka and ke are the rate constants for the irreversible
absorption to and elimination from the central compartment, re-
spectively. The parameter Vd is the volume of the central compart-
ment. Vd should not be mistaken with the plasma volume but can
be thought of as the apparent volume of distribution in the body.

The two inputs to the system are D and Rin. D describes the SC
injected insulin dose of either type A or B while Rin is the IV infusion
of regular human insulin given throughout the study to suppress the
secretion of insulin from the pancreas.

Assumptions

The model assumptions are:

A1: The insulin is mixed instantaneously in the plasma. The
actual time taken for mixing is approx. a few minutes and
is therefore insignificant compared with the sampling time.

A2: The insulin absorption and elimination is assumed to fol-
low first-order kinetics meaning that the rate of change
of insulin concentration is directly proportional to the re-
maining concentration of insulin. This assumption leads to
a linear model.

A3: The amount of insulin removed from the SC tissue is equal
to the amount absorbed in the central compartment. This
assumption is made because the break down of SC insulin
is not modelled.

A4: No insulin is secreted from the pancreas because the IV in-
fusion of regular human insulin suppresses the production.
The small amount of insulin that actually is secreted in the
pancreas is corrected by using C-peptide measurements. It
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is therefore reasonable not to include any feedback mecha-
nisms in the model since they have been disrupted.

Model equations

The difference equation of finite differences ∆t for the amount of
insulin is shown in Table 6.1 where t is the time from SC injection
of insulin A/B.

Table 6.1: Integral mol balance for insulin.

Accumulated = In − Out

Isc(t+∆t)− Isc(t) = D − kaIsc∆t
Ic(t+∆t)− Ic(t) = (kaFIsc +Rin)∆t − keIc∆t

The parameter F is the bioavailability factor which is included to
describe the fraction of the injected dose D which is available in the
SC depot.

The differential equation is obtained by dividing with ∆t and letting
the time step tend to zero in the difference equation, i.e.:

dIsc
dt

= D · δ(t)− kaIsc (6.1a)

dIc
dt

= kaFIsc +Rin − keIc (6.1b)

where δ(t) is a Dirac delta function.

The specified model in (6.1) is structural unidentifiable (see Ap-
pendix A.2) but can be made identifiable by setting the bioavail-
ability factor F equal 1, thereby assuming that all the SC injected
insulin is available.
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Analytical solution

The amount of insulin remaining to be absorbed from the SC depot
can be found by solving (6.1a), i.e.:

Isc = D · e−kat (6.2)

with the initial condition Isc = D for t = 0.

By substituting (6.2) into (6.1b), the change in the amount of insulin
in the central compartment can be written as:

dIc
dt

= kaFDe
−kat +Rin − keIc (6.3)

The deterministic equation (6.3) is split into two domains:

dIc,1
dt

= Rin − keIc,1 −90 < t < 0 (6.4)

dIc,2
dt

= kaFDe
−kat +Rin − keIc,2 0 < t (6.5)

since IV infusion of regular human insulin is given throughout the
study (t ∈ [−90, 600]) while the SC injection of insulin A/B is given
at t = 0.

The solution to (6.4) is:

Ic,1 =
Rin

ke

(

1− e−keτ
)

+ Ic,0e
−keτ (6.6)

with the initial condition Ic = Ic,0 for τ = t+ 90 = 0.

The solution to (6.5) can be found using the Panzer equation, i.e.:

Ic,2 = e−ket
[

∫

eket
(

kaFDe
−kat +Rin

)

dt+ C
]

= FD
ka

ka − ke

(

e−ket − e−kat
)

+ Ic,1

(6.7)
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Thereby, the analytical solution for the insulin concentration Cc =
Ic
Vd

becomes:

Cc,1 =
Rin

Vdke

(

1− e−keτ
)

+
Ic,0
Vd

e−keτ −90 < t < 0 (6.8)

Cc,2 =
FD

Vd

ka
ka − ke

(

e−ket − e−kat
)

+ Cc,1 0 < t (6.9)

The analytical solution (6.8) and (6.9) can be expressed as a linear
combination of exponential terms and a constant term K, i.e.:

Cc = (φ1 + φ2) · e−φ3τ + φ4 · e−φ3t + φ5 · e−φ6t +K (6.10)

where ke = φ3 > 0, and ka = φ6 > 0.

The sum of the parameters φ1 and φ2 can be identified from (6.10)
but not the individual parameters since they cannot be distinguished
from one another. The biexponential terms φ4 · e−φ3t and φ5 · e−φ6t

for SC insulin are not identifiable in the sense of having a unique
vector of parameters associated with a given set of predictions since
the parameters φ3 and φ6 may be exchanged without changing the
predictions. Identifiability of the biexponential terms is ensured by
requiring that φ3 > φ6 so that the first exponential term determines
the initial absorption phase of insulin while the terminal elimination
phase primarily is determined by the second exponential term.

Fundamental PK Parameters

Three fundamental pharmacokinetic parameters, that frequently are
used to characterize the insulin profile in the plasma, are the time to
maximum insulin concentration (tmax), the maximum insulin concen-
tration (Cmax), and the area under the insulin concentration profile
(AUC). These parameters are derived from the single-compartment
model presented above.
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Time to Maximum Insulin Concentration: The maximum in-
sulin concentration Cmax, occurs at time tmax. At this time, the
insulin profile is at its peak and the slope is zero. tmax can be found
by setting the first derivative of (6.9) equal to zero and solving for
tmax [58, p. 171]:

dCc
dt

=
FD

Vd

ka
ka − ke

(

− kee−ketmax + kae
−katmax

)

+

(

Rin − Ic,0ke
)

Vd
e−ke(tmax+90) = 0

(6.11)

Maximum Insulin Concentration: The maximum insulin con-
centration Cmax can be found by inserting the time tmax which solves
(6.11) into (6.9):

Cmax =
FD

Vd

ka
ka − ke

(

e−ketmax − e−katmax

)

+
Rin

keVd

(

1− e−ke(tmax+90)
)

+
Ic,0
Vd

e−ke(tmax+90)
(6.12)

Area Under Curve: The area under the insulin concentration
profile (AUC) describes how much of the insulin is absorbed. AUCT

0

is found by integrating (6.9) from t = 0 to T :

AUCT
0 =

FD

Vd

ka
ka − ke

∫ T

0

(

e−ket − e−kat
)

dt

+
Rin

Vdke

∫ T

0

(

1− e−keτ
)

dt

+
Ic,0
Vd

∫ T

0
e−keτ dt

(6.13)

The expression in (6.13) for AUC depends on a good estimation of
the rate constants and of a possible lag-time [44, p. 30]. Therefore,
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the Trapezoidal-method is used to determine the AUC, i.e.:

AUCT
0 =

N
∑

i=0

Cc,i+1 + Cc,i
2

(

ti+1 − ti
)

(6.14)

where N is the number of measurements.

6.1.2 SC Uptake Models

Several models for SC insulin kinetics are proposed in the literature
[41, 55]. The two most prominent models are:

• The hexamer/dimer SC uptake model proposed in [55] where
the SC depot consists of two compartments for hexamer and
dimer insulin, respectively.

• The two-compartment SC uptake model proposed in [41] is an
expansion of the single-compartment model where an extra SC
compartment is added to account for the delay between the SC
injection of insulin and the absorption into the plasma along
with degradation from the SC depot.

Hexamer/Dimer SC Uptake Model

The hexamer/dimer SC uptake model describes the diffusion in the
SC depot and the equilibration between different association states
of insulin. The model is illustrated in Figure 6.2.

The model proposed in [55] also included a compartment for bind-
ing of insulin in the tissue and has previously only been used for
simulation. The compartment for binding of insulin is made super-
fluous by assuming that the binding in the SC depot is negligible at
therapeutic concentrations. Thereby, the model is more suitable for
estimation since the number of parameters in the model are reduced
considerably.
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Subcutaneous Depot

Hexameric
Insulin Q

Dimeric
Insulin

Central
Compartment

ka

D

IH Vsc ID Vsc Vd

ke

Rin

Ic

Figure 6.2: Hexamer/dimer SC uptake model.

Assumptions

The following assumptions are made about the hexamer/dimer SC
uptake model along with assumption A1, A3, and A4 from the single-
compartment model to obtain a model suitable for estimation:

A1: Insulin A mainly consists of hexamer units while insulin B
is an analogue where the dimer structure is stabilized. The
insulin in the SC depot is therefore assumed to be of those
two forms only. If a monomer stabilized insulin had been
used, it would be necessary to include a compartment for
monomer insulin.

A2: Since therapeutic concentrations and doses1 are much high-
er than 10−8 M, the binding of insulin in the SC tissue is
clinically not relevant and therefore not modelled. Because
of the high concentration in the syringe, the SC injected
dose is assumed to be in the hexamer form for both types
of insulin.

1The actual concentration in the syringe is 100 U/mL, which is equal to 0.66
mM.
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A3: Only dimeric insulin is assumed to be absorbed since the
hexameric molecule is too large to pass through the capil-
lary wall. The insulin is therefore only removed from the
dimer compartment in the SC depot. When the insulin is
absorbed into the plasma, the insulin is assumed to be in
the monomeric form.

A4: The spherical geometry of the SC injected dose is not mod-
elled, as e.g. in [55], to circumvent the use of partial differ-
ential equations. The influence of different injection vol-
umes are therefore not modelled.

A5: The spread of insulin in the SC depot is assumed to be
negligible. The volume of the SC depot is thereby assumed
to be constant and equal to the volume of the SC injected
insulin which is around 0.1 mL.

Model equations

With the assumptions mentioned above, the equations for the hex-
amer/dimer SC uptake model becomes:

1

Vsc

dIH
dt

= −P
( IH
Vsc
−Q

( ID
Vsc

)3)

+
1

6

D · δ(t)
Vsc

(6.15a)

1

Vsc

dID
dt

= P
( IH
Vsc
−Q

( ID
Vsc

)3)

− ka
ID
Vsc

(6.15b)

dIc
dt

= 2 · kaID +Rin − keIc (6.15c)

where Q = IH/I
3
D is the equilibrium constant and P is the rate

constant describing the transfer from hexamer to dimer. D is divided
by 6·Vsc since D is the injected amount of monomer insulin while the
compartment in which it is injected is modelled using the hexamer
concentration, i.e. consisting of 6 monomers. The same argument is
used for the transfer of dimer insulin from the dimer SC compartment
to the central compartment where the insulin is assumed to be in the
monomeric form, hence it is multiplied by 2.
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Two-Compartment SC Uptake Model

The two-compartment SC uptake model is a combination of two of
the models proposed in [41] in which the rate constant ke and the
volume Vd are estimated from an intravenous experiment and subse-
quently considered as fixed variables in the SC injection experiment.

The modelling approach of the two-compartment SC uptake model
is quite different from the hexamer/dimer model. The delay from
injection to absorption is modelled by adding an extra SC compart-
ment and not due to hexamer/dimer equilibration. Furthermore, the
degradation of insulin in the SC compartment is also modelled. The
two-compartment SC uptake model is illustrated in Figure 6.3.

Subcutaneous Depot

SC Comp.
I

SC Comp.
II

Central
Compartment

ka

D

Vd

ka

kd

Isc,2Isc,1

ke

Ic

Rin

Figure 6.3: Two-compartment SC uptake model.

The SC compartment I in Figure 6.3 can be thought of as the injec-
tion site while SC compartment II is the SC tissue from where some
of the insulin is degraded while the rest is absorbed into the central
compartment.
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Assumptions

The assumptions about the two-compartment SC uptake model are
summarized below:

A1: The degradation of SC insulin is only present in SC com-
partment II since the degradation is assumed to occur in
the SC tissue and not at the injection site.

A2: The rate constant describing the transfer from the SC com-
partment I to II is the same as the rate constant for ab-
sorption into the central compartment. This assumption is
made to circumvent the estimation of an extra parameter.

Assumption A1, A2, and A4 from the single-compartment model also
apply to the two-compartment SC uptake model.

Model equations

The differential equations for the two-compartment SC uptake model
are:

dIsc,1
dt

= D · δ(t)− kaIsc,1 (6.16a)

dIsc,2
dt

= kaIsc,1 −
(

ka + kd
)

Isc,2 (6.16b)

dIc
dt

= kaIsc,2 +Rin − keIc (6.16c)

where Isc,1 and Isc,2 are the amounts of insulin in SC compartment
I and II, respectively. kd is the rate constant for insulin degradation
in SC compartment II. The rest of the parameters are the same as
in the single-compartment model.

The system of equations (6.16) are a priori non-identifiable, but iden-
tifiability is obtained by fixing the parameter kd (see Appendix A.3).
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6.1.3 Peripheral-Compartment Model

The last PK model to be investigated is the peripheral-compartment
model with Michaelis-Menten elimination kinetics. The reason for
including a peripheral compartment is to try and model the plasma
insulin equilibration with tissue. The Michaelis-Menten kinetics used
to describe the elimination from the central compartment is a gen-
erally accepted expression for the elimination from the organism,
especially when the capacity of the metabolism is exceeded by the
therapeutic concentration. The peripheral-compartment model is il-
lustrated in Figure 6.4 and consists of: 1) a central compartment
where the IV and SC injected insulin is absorbed and eliminated
and 2) a peripheral compartment in equilibrium with the central
compartment.

Central
Compartment Compartment

Peripheral

Ic

Vd

ka
Isc

Rin

D

kcp

Ip

kpc

VmaxVd
VdKm+Ic

Figure 6.4: Peripheral-compartment model with Michaelis-Menten elimi-
nation kinetics.

The parameter KM is the Michaelis constant. It represents the in-
sulin concentration at which the rate of elimination is half its maxi-
mal value Vmax.

The Michaelis-Menten kinetics used for the elimination of insulin
from the central compartment is a mixture between zero- and first-
order kinetics and is very similar to the hyperbolic effect model men-
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tioned in Section 3.2.1. At low concentrations, the rate of elimina-
tion is almost linearly proportional to the insulin concentration Cc

in the central compartment while the elimination is almost indepen-
dent of Cc at high concentrations. Mathematically, this translates
into the following equation for the rate of elimination VMM following
Michaelis-Menten kinetics:

VMM =
Vmax

KM + Cc
Cc

When Cc ¿ KM , the expression for VMM reduces to Vmax
KM

Cc while
the rate of elimination is equal to the maximal rate of elimination
Vmax in situations where Cc À KM .

Assumptions

Assumption A1, A3, and A4 mentioned in the section about the
single-compartment model also apply to the peripheral-compartment
model. Furthermore, no insulin is assumed to be degraded or elim-
inated from the peripheral compartment. This assumption is made
to reduce the number of parameters to be estimated.

Model equations

The three differential equations for SC (Isc), central (Ic) and periph-
eral insulin (Ip) for the peripheral-compartment model can thereby
be written as:

dIsc
dt

= D · δ(t)− kaIsc (6.17a)

dIc
dt

= kaIsc −
( VmaxVd
VdKm + Ic

+ kcp

)

Ic + kpcIp +Rin(6.17b)

dIp
dt

= kcpIc − kpcIp (6.17c)
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where the rate constants kcp and kpc describe the transfer between
the central and peripheral compartments. The remaining parame-
ters are otherwise the same as those used in the single-compartment
model.

6.1.4 Summary of PK Models

The presented PK models are briefly summarized in Table 6.2 to
show the differences between them before moving on to the PK/PD
models.

Table 6.2: Summary of the PK models for the clamp study.
Model Single-Compartment Hexamer/Dimer SC Uptake

Focus Plasma insulin SC distribution and equilibration

States 2 3

Parameters 2 4

Strengths Simple, few parameters Different association states
of SC insulin

Weaknesses All SC insulin is absorbed SC injected insulin is assumed to be
Many simplifying assumptions hexameric for both types of insulin

Model Two-Comp. SC Uptake Peripheral-Compartment

Focus SC distribution and elimination Tissue equilibration
Michaelis-Menten elimination

States 3 3

Parameters 3 6

Strengths Delay from injection to absorption Saturable elimination kinetics

Weaknesses Same rate constant ka for SC No degradation from
and plasma absorption the peripheral compartment

Only degradation from SC comp. II Unmeasurable insulin equilibration
with tissue
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6.2 PK/PD Models

After having considered the PK models, the insulin concentration is
coupled to the effect through PK/PD models. To determine which
type of PK/PD model is needed to model the dynamics between
insulin and glucose, a phase-plot of GIR vs. the plasma insulin con-
centration, where data points are connected in chronological order,
is plotted in Figure 6.5 for a representative subject from the study.
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Figure 6.5: Phase-plot of GIR vs. plasma insulin.

A counter-clockwise hysteresis loop is observed in the phase-plot
above since there exists two different values of GIR for any plasma
insulin concentration depending on the time after the insulin ad-
ministration. The delay for insulin A is smaller than that for in-
sulin B since the hysteresis loop is smaller for insulin A. Had there
been no hysteresis loop, a basic PK/PD model such as the single-
compartment model expanded with a direct link model could have
been used. Instead, two PK/PD models with different assumptions
about the nature of the response are presented in the following. The
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single-compartment model is used as the PK part of the following
PK/PD models for simplicity but can easily be replaced by any of
the PK models in Section 6.1.

6.2.1 Effect-Compartment Model

The effect-compartment model was initially proposed by Sheiner et
al. in [47] concerning its application to d -tubocurarine. The single-
compartment model is expanded with a hypothetical effect compart-
ment since the time course of insulin effect does not parallel the
time course of drug computed to reside in the central compartment.
The effect site can be thought of as the extracellular space where the
interaction with the biological receptor system takes place [42]. Mod-
elling the kinetics of the effect site by adding an effect compartment
is a simple way to correct non steady-state data to the equivalent
of steady-state data so that a concentration-response curve can be
discerned, unobscured by a hysteresis loop as seen in Figure 6.5 [46].

The effect-compartment model is shown in Figure 6.6.

Central
Compartment Compartment

Effect

PK

PD

ke

Ic

ke0

VeVd

Ie

ka
Isc

Rin

D
kce

GIR

Figure 6.6: Effect-compartment model.
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Assumptions

The assumptions from the single-compartment model also apply to
the effect-compartment model along with the following three assump-
tions [17, 26, 42]:

A1: It is assumed that the effect compartment receives a neg-
ligible mass from the central compartment, thereby not
affecting the equations for the insulin in the central com-
partment.

A2: The PD effect of insulin is assumed to be proportional to
Ce. Consequently, the time-dependent aspects of the equi-
librium between the plasma and effect concentrations are
only controlled by the equilibrium constant Ke0.

A3: Because of the nature of the experimental procedure in
the clamp study and since the endogenous production of
insulin is ignored, the amount of infused glucose (GIR)
needed to maintain euglycemia can be assumed to be equal
to the amount of glucose utilized in the body. The GIR can
thereby be used as the response to the injected insulin.

Model Equations

The PK model for the effect-compartment model in Figure 6.6 is
described by the following differential equations:

dIsc
dt

= D · δ(t)− kaIsc (6.18a)

dIc
dt

= kaIsc +Rin − keIc (6.18b)

dIe
dt

= kceIc − ke0Ie (6.18c)

where the rate constants ka and ke are the same as in the single-
compartment model described in Section 6.1.1, while kce and ke0 are
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the rate constants for the irreversible elimination from the central
and effect compartment, respectively.

At steady-state, the concentration in the effect compartment Ce,ss

is equal to the concentration in the central compartment Cc,ss. The
rate of input will therefore equal that of output, i.e. kce · Ic = ke0 · Ie
[17]. This assumption allows for the calculation of the volume Ve for
the effect compartment by the following equation [31]:

Vd · kce · Cc,ss = Ve · ke0 · Ce,ss (6.19)

The concentration in the effect compartment can then be calculated
by dividing Ie with Ve. When doing so, the rate constant for the
irreversible elimination from the central compartment to the effect
compartment kce cancels out as shown in Appendix A.4. The fol-
lowing system of equations thereby describes the PK part of the
effect-compartment model:

dIsc
dt

= D · δ(t)− kaIsc (6.20a)

dIc
dt

= kaIsc +Rin − keIc (6.20b)

1

Ve

dIe
dt

= Ke0

( Ic
Vd
− Ie
Ve

)

(6.20c)

where Ke0 is the equilibrium constant for the passive diffusion be-
tween the central and effect compartment. The remaining parame-
ters are otherwise the same as the ones from the single-compartment
model.

Since the BG level is clamped, the GIR is used as the response
variable to the insulin injection. The PD are therefore modelled
by combining the GIR with the insulin concentration in the effect
compartment using the sigmoidal Emax model presented in Section
3.2.1, i.e.:

GIR =
Emax

EC
γ

50 +
(

Ie
Ve

)γ ·
(

Ie
Ve

)γ

(6.21)
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where EC50 is the insulin concentration producing 50 % of the max-
imum effect Emax while γ is the sigmoidicity/response factor.

Analytic Solution

The analytic solution for the insulin concentration Cc is the same as
the one found in the single-compartment model while the analytic
solution for the concentration in the effect compartment Ce is derived
and shown in Appendix A.4.

6.2.2 Indirect Response Model

The last model in this chapter is the indirect response model where
the delay between plasma insulin and BG is assumed to be related
to an indirect response mechanism downstream from the insulin
receptor. Since insulin stimulates glucose storage and utilization,
this model seem intuitively as a physiological more likely descrip-
tion of the PK/PD of the insulin/glucose system than the effect-
compartment model.

The PK part of the indirect response model is the same as the single-
compartment model. The PD indirect response model is used to
describe the rate of change of glucose G which is stimulated by the
insulin concentration in the central compartment. The indirect re-
sponse model is illustrated in Figure 6.7.

Assumptions

The assumptions for the indirect response model besides those of the
single-compartment model are mentioned below [21]:

A1: The delay between the glucose is injected and later ob-
served in the blood is insignificant compared to the sam-
pling time since it is injected IV.
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Figure 6.7: Illustration of the indirect response model. The insulin stim-
ulation of glucose utilization is illustrated using a dashed ar-
row.

A2: The GIR is assumed to be mixed instantaneously with the
BG. The GIR can thereby be used as a direct input to
the differential equation governing the rate of change of
glucose.

A3: The glucose is eliminated in a first-order manner (kout)
plus a stimulating effect of insulin modelled using the Hill
response equation.

A4: The insulin in the central compartment stimulates the uti-
lization of glucose indirectly. Ideally, it should be the con-
centration at the receptor but since this is not measured,
the central compartment concentration is used instead.
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Model equations

The differential equations for the indirect response model are:

dIsc
dt

= D · δ(t)− kaIsc (6.22a)

dIc
dt

= kaIsc +Rin − keIc (6.22b)

dG

dt
= GIR− kout

(

1 +
Smax ·

(

Ic
Vd

)γ

SC
γ

50 +
(

Ic
Vd

)γ

)

G (6.22c)

where kout is a first-order rate constant for elimination of G and the
GIR is used as a zero-order input. The Hill response equation is
used to describe the stimulating effect of insulin on the utilization of
G where the parameter SC50 is the insulin concentration producing
50% of the maximum stimulating effect Smax.

6.2.3 Summary of PK/PD Models

The two PK/PD models presented above are different in the sense
of how the physiological response to the injected insulin is thought
of, i.e.:

• In the effect-compartment model, the PK and PD are coupled
using a soft indirect link model. The GIR is assumed to be a
direct response to the insulin concentration in a hypothetical
effect compartment which is added to the single-compartment
model to ensure steady-state conditions.

• In the indirect response model, the response is assumed to be
indirect and the PK and PD are coupled using a hard direct
link model. The BG concentration is used as the PD response
to the insulin concentration in the central compartment.

From a physiological point of view, the injected insulin stimulates the
utilization of glucose indirectly by activating the transport of glucose
into the cells. The indirect response model therefore seem to be the
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choice of model for the insulin/glucose system but because of the
experimental procedure of the clamp study, the effect-compartment
model, where a direct response mechanism is assumed, is more likely
to be able to capture the dynamics of the insulin/glucose system
since the GIR is used as a measure of the utilized glucose.
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Chapter7
Results from Clamp
Models

In this chapter, the results and statistical analysis of the clamp mod-
els in Chapter 6 are shown.

The following grey-box models are all implemented in CTSM 2.1 [29]
and estimated using ML. The derived PK and PD parameters tmax,
cmax, AUC

∞
0 , TRmax, Rmax and GIR∞

0 are determined from the
pure simulation using the grey-box estimates from CTSM.

The PK models from the clamp study are modelled using the in-
sulin concentration in U/L while the PK/PD models are modelled
using the insulin concentration in pM to be able to compare with
estimates from the literature. The values of the estimated model pa-
rameters and derived PK/PD parameters are shown along with the
concentration and response profiles of a representative subject, i.e.
subject 3 in Table A.1. Furthermore, the models are validated and
compared and the residuals are tested whether or not they can be
considered to be white noise. Since only one set of data is available
for each treatment with insulin A and B for each subject, it has not
been possible to cross validate the estimated models on a set of data
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which has not been used in the estimation of the model parameters.

After comparing the different PK models, one is chosen as the most
suitable. Thereafter, the parameter estimates for all twenty subjects
in the study are shown for that particular model. This model is
then used as the PK part in the PK/PD model where both the PK
and PD parameters are estimated simultaneously. Finally, the two
PK/PD models in Section 6.2 are estimated and compared at the
end of this chapter.

7.1 PK Models

The four PK models presented in Section 6.1 are estimated, vali-
dated, and compared in the following section.

7.1.1 Single-Compartment model

Two different ways of estimating the parameters are presented in
this section concerning the single-compartment model.

• A white-box model without system or observation noise where
the parameters are estimated using unconstrained NL opti-
mization. The set of algebraic equations for the analytical
solution for the single-compartment model are used in the es-
timation procedure, i.e. equation (6.8) and (6.9).

• Two grey-box models for the single-compartment model with
and without the bioavailability factor F . The parameters are
estimated using ML and implemented in CTSM 2.1.

Grey-box Model

The LTI state space model for the single-compartment model using
the derived differential equation (6.1) in Section 6.1.1, consists of two
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continuous time system equations and a discrete time observation
equation, i.e.:

[

dIsc
dIc

]

=

([

−ka 0
kaF −ke

] [

Isc
Ic

]

+

[

1 0
0 1

] [

D
Rin

])

dt+ σ dwt

CI =
Ic
Vd

+ ek

whereD and Rin are input variables, wt is a standard Wiener process
with covariance matrix σ with σsc and σc in the diagonal, and ek ∈
N(0, S2) is a white noise process mutually independent of wt.

The two different types of insulin are injected subcutaneously at t =
0. Therefore, the input variable D assumes the value of 0.2 U

kgBW L
at t = 0 and zero otherwise. The injection of SC insulin is assumed
to last 1 minute and since the insulin concentration is not measured
at t = 1, a missing observation for plasma insulin is entered into
the data files used for estimation. The other input variable in the
model is Rin which is equal to 0.15 mU

kgBW L throughout the experi-
ment. Since it is the insulin concentration in the central compart-
ment that is measured, the state Ic is divided by Vd, the apparent
volume of distribution of the central compartment, in the observation
equation.

Parameter Estimates

Three different estimates of the parameters of the single-compart-
ment model are shown in Table 7.1 for treatment with insulin A
and B. The column ‘White’ refers to the parameter estimation in
the deterministic algebraic equations (6.8) and (6.9) implemented
in Matlab, using unconstrained NL optimization with the estimates
from the grey-box model used as the initial guesses. The next two
columns, ‘Grey’ and ‘Grey(F=1)’, contain the grey-box parameter
estimates of the single-compartment model with the parameter F
estimated using ML and where it is fixed at the value 1, respectively.
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Table 7.1: Single-compartment model PK parameter estimates for insulin A and B.

Insulin A Insulin B

White Grey Grey (F=1) White Grey Grey (F=1)

Parameter Unit θ̂ θ̂ θ̂ Std. dev. θ̂ θ̂ θ̂ Std. dev.

Ic,0 [U] 6.4490 2.3709 2.4154 0.8442 0.3266 0.3266 0.3676 0.5315

ka [min−1] 0.0143 0.0107 0.0108 0.0040 0.0091 0.0090 0.0073 0.0086

ke [min−1] 0.0053 0.0079 0.0078 0.0026 0.0320 0.0331 0.0394 0.0069

F [-] 2.0433 0.9898 0.6728 0.6766

Vd [L] 457.6149 174.5839 177.5967 59.5071 32.5001 31.5793 34.0248 10.4146

σsc [-] 0.0000 0.0000 0.0016 0.0000 0.0000 0.0001

σc [-] 0.0000 0.0000 0.0034 0.0000 0.0000 0.0066

S2 [-] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

tmax [min] 105.00 105.00 105.00 55.00 50.00 50.00

cmax [U/L] 0.05 0.05 0.05 0.07 0.07 0.07

AUC∞
0 [U/L min] 18.03 18.05 18.05 18.47 18.30 18.30
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The parameter estimates of the three different models in Table 7.1 are
very different but they describe the observed insulin concentration-
time profiles equally well. It is clearly seen that there does not exist
one true set of parameters in the three models. In Appendix A.2, it
is shown that the parameters in the single-compartment model are
a priori non-identifiable when the parameter F is not fixed and the
identifiability of the white-box model is discussed in Section 6.1.1.
In the following, only the the grey-box estimates with F = 1 are
considered.

The limiting rate constant in the model is ka for insulin B since ka <
ke while the two rate constants are more equal for insulin A. When
comparing the rate constants for absorption and elimination for the
two types of insulin, ka seems to be the same while ke is about twice
as large for insulin B than A. The change in the primary structure
of insulin B compared to insulin A1 seems to alter the kinetics for
elimination rather than that of absorption. This observation does
not fit very well to the fact that it is ka which is attempted enlarged
in insulin B to speed up the absorption while no attempt is made to
alter ke. This phenomena is referred to as the ‘flip-flop’ effect and is
further discussed in Chapter 10.

The significantly different Vd for the two types of insulin can partially
be explained by the two types of insulin occupy a different volume
in the body. The large value of Vd for insulin A is probably due to
some of the insulin is bound in the tissue resulting in less insulin in
the plasma. The volume is thereby over-estimated since the model
does not include a compartment for bound insulin or a bioavailabil-
ity factor F that compensates for non-available insulin since F was
eliminated from the model to make it a priori identifiable.

The system noise (σSC , σc) and measurement error (S2) in the model
are all estimated to zero. This gives an indication that the measured
data does not deviate from the model approximations. Furthermore,
the correlation between the noise parameters is high since the data

1The primary structure of the insulin molecule is the amino acid sequence.
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probably is not persistently excited enough and the model is linear
which makes it difficult for CTSM to determine where to add the
noise. The noise parameters are the only parameters in the model
which are not significantly different from zero on a 95 % confidence
level.

Statistical Analysis

A way to distinguish between the two grey-box models, with and
without F , is by using the likelihood ratio test (LRT) (see Section
4.7.1). The test score for the LRT between the single-compartment
grey-box model with and without the parameter F for insulin B is:

−2 log Λ = 2
(

− logL0 − (− logL1)
)

= 2
(

− 113.97− 1.40 · 10−5 − (−114.60− 2.34 · 10−4)
)

= 1.2696 < χ2(1)0.95 = 3.84

which is why the hypothesis H0 : θ ∈ M0 cannot be rejected since
the single-compartment model without the parameter F is not sig-
nificantly worse than the model with F . The hypothesis is neither
rejected for insulin A since the LRT score is −2 log Λ = −0.0097.
Therefore, the grey-box model without the bioavailability factor F
is the only model considered in the model validation.

Model Validation

The 1-step prediction and pure simulation are plotted along with
the observed plasma insulin concentration for both types of insulin
in Figure 7.1(a). The residuals are shown in Figure 7.1(b) along with
the ACF in Figure 7.1(c) and PACF in Figure 7.1(d).

The estimated noise parameters in the system equations (σSC and
σc) are estimated to zero as mentioned previously, which is why the 1-
step prediction and the pure simulation are identical in Figure 7.1(a).
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(a) Insulin concentration-time profiles
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Figure 7.1: Insulin concentration-time profiles, residuals, ACF, and
PACF for insulin A (Blue) and insulin B (Red).
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From the concentration-time profile of the two types of insulin, it
is seen that ka and ke are more alike for treatment with insulin A
than treatment with insulin B since the profile of insulin A is more
‘bell-shaped’ than that of insulin B.

After a visual inspection, it seems like the 1-step prediction and
simulation capture the PK of the system quite well with only few
exceptions. In the insulin residual plot (see Figure 7.1(b)), it is
seen that the residuals close to cmax are outside the approximative
95 % confidence interval plotted as ±2σε. All the observed insulin
concentrations close to cmax are somewhat lower than the 1-step
predicted/simulated. This could be because the insulin crystalizes
in the drawn blood samples taken at high insulin concentrations. The
measured insulin concentrations close to cmax are therefore perhaps
a bit lower than the actual plasma concentration.

The residuals are further tested by plotting ACF and PACF with
an approximative 95 % confidence interval in Figure 7.1(c) and Fig-
ure 7.1(d). Lag(k) is significant for k = 2 for insulin A and k = 6, 10
for insulin B but the residuals are otherwise close to being white
noise.

Derived PK Parameters

The three derived PK parameters tmax, cmax, and AUC are also
plotted in Figure 7.1(a). The time to maximum insulin concentra-
tion tmax for insulin B is almost half of that of insulin A while the
maximum insulin concentration cmax is about 40 % larger for insulin
B than insulin A. The AUC is not very different for the two types of
insulin and can therefore not be used to assess the difference in the
treatment with insulin A and B. By comparing the three derived PK
parameters it can be concluded that insulin B is a faster and shorter
acting insulin compared to that of insulin A, while the amount of
insulin absorbed throughout the study is almost the same for both
types of insulin.
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7.1.2 SC Uptake PK Models

The single-compartment model is next expanded with compartments
for the SC depot to investigate the different absorption characteris-
tics of the two types of insulin and to see whether this expansion
results in physiological more reasonable parameter estimates. The
grey-box models of the hexamer/dimer and two-compartment SC up-
take models are presented along with a short description of the model
parameters (See Section 6.1.2 for a more detailed description). The
results from the estimation are shown along with plots of the 1-step
prediction and pure simulation of the model and the ability of the
two models to estimate the time course of SC insulin is compared.

Grey-box Models

The NL state space model for the hexamer/dimer SC uptake model
described by the differential equations in (6.15) in Section 6.1.2, con-
sisting of three continuous time system equations and a discrete time
observation equation, is shown below:





dCH
dCD
dIc



 =









−P
(

CH −Q · C3
D

)

+D/(6 · Vsc)
P
(

CH −Q · C3
D

)

− kaCD
2 · Vsc · ka · CD +Rin − keIc









dt+ σ dwt

CI =
Ic
Vd

+ ek

where CH = IH/Vsc and CD = ID/Vsc represent the hexamer and
dimer concentrations in the SC compartments, respectively, while
the state variable Ic describes the amount of insulin in the central
compartment as in the single-compartment model. The volume of
the SC compartment is assumed to be 0.1 mL and fixed at that
value in the estimation of model parameters. Q = CH/C

3
D is the

equilibrium constant between hexamer and dimer and P is the rate
constant describing the transfer from hexamer to dimer. The rest of
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the parameters are otherwise the same as in the grey-box model for
the single-compartment model.

The LTI state space model for the two-compartment SC uptake
model using the deterministic differential equations in (6.16), con-
sisting of three continuous time system equations and a discrete time
observation equation, can be written as:





dIsc,1
dIsc,2
dIc



 =









−ka 0 0
ka −

(

ka + kd
)

0
0 ka −ke









Isc,1
Isc,2
Ic



+





1 0
0 0
0 1





[

D
Rin

]



 dt

+σ dwt

CI =
Ic
Vd

+ ek

where the rate constant ka describing the transfer from SC com-
partment I to II is assumed to be the same as the rate constant
for absorption to the central compartment. The rate constant for
degradation kd in SC compartment II is fixed at 0.015min−1 for the
model to be a priori identifiable (see Appendix A.3). The value of
kd = 0.015min−1 is chosen since it gives the best estimation results.

The plasma insulin concentration is measured in both SC uptake
models which is why the state Ic is divided by Vd in the observation
equations.

Parameter Estimates

The obtained estimates from the two grey-box models, the hexam-
er/dimer (Hex/Dim) and two-compartment (Two-Comp.) SC up-
take models, are shown in Table 7.2.

The estimated volume Vd is physiological more likely than the ones
obtained from the single-compartment model. The differences in the
estimated volumes for treatment with insulin A and B are much
larger for the hexamer/dimer model than the two-compartment SC
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Table 7.2: PK model parameter estimates for the SC uptake models for treatment with insulin A and B.

Insulin A Insulin B

Hex/Dim Two-Comp. Hex/Dim Two-Comp.

Parameter Unit θ̂ Std. dev. θ̂ Std. dev. θ̂ Std. dev. θ̂ Std. dev.

Ic,0 [U] 0.2459 0.1031 0.0244 0.0202 0.0664 0.0470 0.2181 0.0181

ka [min−1] 0.0475 0.0098 0.0077 0.0008 0.0292 0.0150 0.0125 0.0007

ke [min−1] 0.0269 0.0053 0.2648 0.1955 0.0896 0.0338 0.3244 0.1777

P [min−1] 0.2900 0.9500 0.0292 0.0150

Q [mL2U−2] 0.9601 0.5496 0.0292 0.0467

Vd [L] 27.0070 5.5457 2.8261 2.1610 7.9391 3.0453 2.5969 1.4512

σsc,1 [-] 0.2297 0.0629 0.0000 0.0003

σsc,2 [-] 0.0000 0.0000 0.0000 0.0000

σH [-] 0.0000 0.0000 0.0549 0.1155

σD [-] 0.1162 0.0492 0.0000 0.0000

σc [-] 0.0000 0.0001 0.0026 0.0356 0.0000 0.0000 0.0109 0.0035

S2 [-] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

tmax [min] 105.00 75.00 40.00 60.00

cmax [U/L] 0.05 0.05 0.07 0.07

AUC∞
0 [U/L min] 18.58 18.05 19.19 18.61
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uptake model. This is not to say that the estimates of the hexam-
er/dimer model are unreliable since the volume of distribution of the
two types of insulin are not necessarily the same.

The limiting rate constant is ka for insulin B in both SC uptake
models as in the single-compartment model. For insulin A, the lim-
iting rate constant is ke for the hexamer/dimer model and ka for the
two-compartment model.

Unlike the single-compartment model, the parameters for the system
noise in the SC equations (σH , σD, and σsc,1) are not estimated to
zero in the two SC models. However, the standard deviations of the
system noise parameters are quite large why most of them are not
significantly different from zero on a 95 % confidence level.

There is quite a difference between the derived parameters for the
two models. The difference between the time to maximum insulin
concentration is 30 min. for insulin A and 20 min. for insulin B while
the parameters cmax and AUC∞

0 are almost the same for the two
models.

Statistical Analysis

The two SC models are compared by means of the BIC to reveal
possible over-fitting. The LRT cannot be used since the two models
are not nested. The columns in Table 7.3 from left to right are the
model, the number of model parameters p, the value of the objective
function F , penalty function P, log-likelihood function logL, and
the BIC.
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Table 7.3: Test for model structure for hexamer/dimer and two-
compartment SC uptake models.

Model p F P logL(θ,YN ) BIC

Hexamer/dimer

Insulin A 10 −125.0527 0.0026 125.0553 −216.0986

Insulin B 10 −115.1348 0.0001 115.1349 −196.2578

Two-compartment

Insulin A 8 −122.1274 0.0001 122.1275 −217.0454

Insulin B 8 −114.7022 0.0001 114.7023 −202.1950

The BIC criteria is minimized for the two-compartment SC uptake
model for both types of insulin. The value of the log-likelihood func-
tion is approximately the same for the two models but because of
the more parsimonious two-compartment model, it is preferred in
preference to the hexamer/dimer model.

Model Validation

The estimated insulin concentration and the insulin residuals for the
two SC uptake models are shown in Figure 7.2 and Figure 7.3.

The simulated time series of the plasma insulin are shown in Fig-
ure 7.2(a) and Figure 7.3(a) for the hexamer/dimer and two-compart-
ment SC uptake model, respectively, and are very similar to the
concentration-time profiles of plasma insulin predicted by the single-
compartment model.

The SC insulin calculated to reside in the SC compartments clearly
shows the different PK of the two types of insulin. Since the in-
jected insulin is assumed to be hexameric for both types of insulin
in the hexamer/dimer model, the steep ascent in hexameric insulin
at t = 0 min. is the same. Since the dimeric form of insulin is stabi-
lized in insulin B, the equilibrium between the hexamer and dimer is
shifted much more rapidly towards the dimer and thereby absorbed
faster into the plasma for insulin B than A in the hexamer/dimer
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Figure 7.2: Results from hexamer/dimer SC uptake model for insulin A
(Blue) and insulin B (Red).
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Figure 7.3: Results from two-compartment SC uptake model for insulin
A (Blue) and insulin B (Red).
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model. The same characteristics for insulin B are observed in the
two-compartment model where the SC insulin is shifted faster to-
wards SC Compartment II than that of insulin A.

By looking at the lag-dependency function (LDF) and partial lag-
dependency function (PLDF), the residuals are clearly not white
noise for the hexamer/dimer model while those of the two-compart-
ment SC uptake model more or less can be considered as white noise
with only lag k=2 being significant for insulin B.

7.1.3 Peripheral-Compartment Model

Finally, the single-compartment is expanded with a peripheral com-
partment and the elimination from the central compartment is de-
scribed by Michaelis-Menten kinetics.

Grey-box Model

The NL state space model for the peripheral-compartment model
with Michaelis-Menten elimination kinetics, consisting of three con-
tinuous time system equations and a discrete time observation equa-
tion, is shown below:





dIsc
dIc
dIp



 =







−kaIsc +D

kaIsc −
(

VmaxVd
VdKM+Ic

+ kcp

)

Ic + kpcIp +Rin

kcpIc − kpcIp






dt+ σ dwt

CI =
Ic
Vd

+ ek

where Isc, Ic, and Ip are the states representing the SC, central,
and peripheral compartment, respectively. The rate constants kcp
and kpc describe the equilibrium between the central and peripheral
compartment while Vmax and KM are the Michaelis-Menten param-
eters.
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Parameter Estimates

The estimates of the parameters in the grey-box state space model
for the peripheral-compartment model are shown in Table 7.4 along
with the standard deviations and the corresponding t-score, and the
probability for insignificance.

The system noise is yet again estimated to zero in the three system
equations while the derived PK parameters are close to the ones
found in the three previous models. The standard deviation of the
initial amount of insulin in the unobservable peripheral compartment
is notably large compared to the estimated value of Ip,0 for insulin
B.

The apparent volume of distribution for insulin A is reduced with ap-
proximately 160 L down to 20 L compared with the single-compart-
ment model and seems much more reasonable from a physiological
point of view. The reduction in the apparent volume of distribution
of insulin A might stem from the added peripheral compartment
where the binding of insulin in the tissue is accounted for. The pa-
rameter Vd for insulin B is on the other hand slightly larger than
the one estimated in the single-compartment model but with a very
large standard deviation.

The difference in ka for the two types of insulin is in agreement with
the intended enhancement of insulin absorption for insulin B. The
estimated value for ka is approximately four times as large for insulin
B than A, i.e. ka = 0.0023 for insulin A and ka = 0.0094 for insulin
B.

The Michaelis-Menten parameter KM for insulin A is estimated to
0.0110U/L which is equal to the insulin concentration at which the
rate of elimination is half its maximal value Vmax = 0.0025U/(L ·
min). The estimated Michaelis-Menten parameters for insulin B are
about ten times as large as those for insulin A and with large stan-
dard deviations which suggests that the uncertainty of the estimates
is quite high.
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Table 7.4: Parameter estimates for the peripheral-compartment model for treatment with insulin A and B.

Insulin A Insulin B

Parameter Unit θ̂ Std. dev. t-score p(> |t|) θ̂ Std. dev. t-score p(> |t|)

Ic,0 [U] 0.1599 0.1307 1.2228 0.2374 0.5007 0.3676 1.3621 0.1902

Ip,0 [U] 1.9742 0.5507 3.5849 0.0024 4.1754 15.6940 0.2660 0.7933

ka [min−1] 0.0023 0.0014 1.7001 0.1067 0.0094 0.0047 1.9977 0.0616

kpc [min−1] 0.0168 0.0082 2.0552 0.0552 0.0018 0.0089 0.2077 0.8378

Vd [L] 19.7060 13.8560 1.4221 0.1724 48.6530 29.4390 1.6527 0.1161

Vmax [U (L min)−1] 0.0025 0.0008 3.1604 0.0058 0.0274 0.0222 1.2354 0.2328

KM [U/L] 0.0110 0.0105 1.0474 0.3089 0.9563 0.6095 1.5690 0.1344

kcp [min−1] 0.0152 0.0086 1.7711 0.0939 0.0061 0.0058 1.0575 0.3044

σsc [-] 0.0000 0.0000 0.1315 0.8968 0.0000 0.0000 0.0039 0.9970

σc [-] 0.0000 0.0000 0.0826 0.9351 0.0000 0.0000 0.0084 0.9934

σp [-] 0.0000 0.0000 0.0631 0.9504 0.0000 0.0000 0.0038 0.9970

S2I [-] 0.0000 0.0000 3.7824 0.0016 0.0000 0.0000 3.5003 0.0029

tmax [min] 120.00 60.00

cmax [U/L] 0.05 0.07

AUC∞
0 [U/L min] 18.09 18.47
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Model Validation

The results and the plasma insulin residuals for the peripheral-com-
partment model are plotted in Figure 7.4.

The model captures the initial rise and decline at t < 0 for insulin
A but not for insulin B. Furthermore, the simulated plasma insulin
concentration of insulin B is below that of insulin A for t ≥ 500 min.
which is in agreement with the observed time series of insulin.

The estimated time series of peripheral insulin in Figure 7.4(b) shows
an initial decline for both types of insulin followed by a more distinct
rise for insulin B than A. The very high level of peripheral insulin
for insulin B compared to that of insulin A is due to the large un-
certainty of the estimated initial amount of insulin in the peripheral
compartment Ip,0 for insulin B.

The residuals seem reasonable from a visual point of view and can al-
most be assumed to be white noise when looking at LDF and PLDF.

7.1.4 Comparison of PK Models

Each of the four PK models add different insights to the understand-
ing of the PK of insulin A and B. Unfortunately, the available data
is not informative enough to combine them all into one big model.
The four proposed PK models are compared by means of the BIC to
determine which one of the models should be used as the PK model
in the following PK/PD models. The BIC for the four models are
shown in Table 7.5.
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Figure 7.4: Insulin concentration-time profiles, residuals, LDF, and
PLDF for insulin A (Blue) and insulin B (Red).
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Table 7.5: Test for model structure for PK models.

Model p logL(θ,YN ) BIC

Single-Compartment

Insulin A 7 125.1088 −226.4091
Insulin B 7 113.9663 −204.1243
Hex/Dim SC Uptake

Insulin A 10 125.0553 −216.0986
Insulin B 10 115.1349 −196.2578
Two-Comp. SC Uptake

Insulin A 8 122.1275 −217.0454
Insulin B 8 114.7023 −202.1950
Peripheral-Compartment

Insulin A 12 131.0513 −221.2882
Insulin B 12 114.5537 −188.2929

The choice of model is clearly the single-compartment model using
the BIC since it is minimized for both types of insulin. The value of
the log-likelihood functions are close to being the same for the three
models. The single-compartment is therefore preferred because of its
fewer parameters.

The single-compartment representation is the simplest possible model
for the PK of insulin. It is a very simplified but adequate descrip-
tion of the insulin in the plasma but the estimated parameters are
somewhat unrealistic from a physiological point of view. However,
with sampling intervals larger than 10 min., the model seems to cap-
ture the relevant characteristics of the PK of insulin considering the
rather parsimonious model.

The hexamer/dimer SC uptake model stands out as the physiolog-
ically most likely description of the SC insulin absorption kinetics
that enables prediction of various insulin preparations. Despite the
advantages of the model, the use of three more parameters compared
to the single-compartment model does not increase the value of the
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log-likelihood function considerably. Furthermore, the model needs
to be expanded with a monomer compartment if monomer stabi-
lized insulin is to be investigated since the monomer has a greater
affinity for binding to the tissue which will complicate the system
dramatically.

The assumption in the two-compartment SC uptake model about
the rate constant for the transfer from the SC compartment I to II
is the same as the absorption to the central compartment cannot
be validated from the experimental data. The assumption about
the degradation of insulin only is present at SC compartment II
and fixed at a particular value can neither be validated using the
measured plasma insulin. The two-compartment SC uptake model is
therefore discarded since there are too many assumptions that cannot
be validated and the fit between the observed and simulated plasma
insulin is not significantly better than the single-compartment model.

The peripheral-compartment model with Michaelis-Menten kinetics
is a widely accepted description of drug elimination from the plasma.
The peripheral-compartment model captures both the initial rise and
decline of insulin A and the estimated values of the apparent volume
of distribution are reasonable. Furthermore, the rate constant for
absorption is four times as large for insulin B than A which is in
agreement with the intended enhancement of the absorption kinetics
for insulin B. The drawback of the model is the rather high uncer-
tainty of the estimated parameters and a high degree of correlation
in the correlation matrix which is why this model is not chosen for
the following PK/PD models.

The PK models presented in this chapter describe the time course of
plasma insulin equally well. Since the value of BIC is minimized for
the single-compartment model, it is chosen to be the most suitable
PK model to use in the following PK/PD models.

To be able to investigate and validate a physiological more likely
model for the SC absorption, distribution, and elimination of insulin,
it is necessary to obtain data from other insulin studies using several
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different doses of both unlabelled and labelled insulin.

7.1.5 Parameter Estimates for All Twenty Subjects

The single-compartment model with F = 1 is used in the following
since it is structural identifiable, the null hypothesis of the LRT
was accepted and the value of the log-likelihood function was not
significantly worse than the three model expansions when using the
BIC. The estimated parameters in the single-compartment model
with F = 1 for all twenty subjects are shown in Table 7.6 on the
following page along with the sample mean and standard deviation
for each parameter.

The value of the penalty function is insignificant compared to the
value of the objective function for all the subjects which is an in-
dication that the parameter limits in the estimation procedure are
reasonable. Furthermore, the values of the normalized derivatives of
the objective function F with respect to the particular parameters
are all close to zero which suggests that the solution found is the
true optimum.

The discrepancy between the estimated apparent volume of distri-
bution Vd for the two types of insulin in the same subject and for
the same type of insulin in the twenty subjects is rather large and
might seem physiological unlikely at first hand. If the individual
variability among the twenty subjects in the study are taken into ac-
count, the difference between Vd for the twenty subjects seems more
reasonable. The correlation between the estimated apparent volume
of distribution Vd and three anthropometric measurements (height,
body weight (BW), and body mass index (BMI) in Table A.1) are
estimated to see if these measurements can account for the physio-
logical variability of Vd among the twenty subjects. The correlation
matrix is shown in Table 7.7.
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Table 7.6: Single-compartment model PK parameter estimates for subject 1-20.

Insulin A Insulin B

Subject Ic,0 ka ke Vd σSC σc S2 Ic,0 ka ke Vd σSC σc S2

[U/L] [min−1] [min−1] [L] ·104 [U/L] [min−1] [min−1] [L] ·104

1 0.6477 0.0054 0.0201 52.4262 0.0 0.0000 0.5 0.3524 0.0075 0.0422 22.0159 0.0000 0.0000 0.4

2 0.4332 0.0031 0.0161 52.8284 0.0 0.0453 0.0 0.3687 0.0054 0.0234 50.0070 0.0000 0.0560 0.0

3 2.4154 0.0108 0.0078 177.5967 0.0 0.0000 0.1 0.3676 0.0073 0.0394 34.0248 0.0000 0.0000 0.3

4 4.0766 0.0101 0.0054 241.9810 0.0 0.0000 0.2 0.6079 0.0087 0.0210 58.9601 0.0000 0.0000 0.2

5 3.8966 0.0130 0.0055 282.2412 0.0 0.0000 0.1 0.2947 0.0091 0.0623 24.5001 0.0000 0.0000 0.3

6 0.9362 0.0064 0.0186 93.6259 0.0 0.0000 0.1 1.4805 0.0228 0.0141 128.7584 0.0568 0.0000 0.2

7 1.9710 0.0074 0.0075 170.8192 0.0 0.0000 0.1 0.5969 0.0113 0.0308 44.9651 0.0788 0.0000 0.3

8 2.0685 0.0082 0.0079 158.3835 0.0 0.0000 0.3 0.8852 0.0138 0.0138 100.9721 0.0000 0.0000 0.4

9 2.0706 0.0102 0.0076 151.6026 0.0 0.0000 0.2 1.0664 0.0086 0.0246 48.5374 0.0000 0.0000 0.5

10 1.9052 0.0101 0.0094 145.5388 0.0 0.0000 0.2 0.6878 0.0177 0.0178 76.3576 0.0000 0.0000 0.4

11 0.8375 0.0072 0.0253 45.8148 0.0 0.0000 0.2 0.1825 0.0103 0.0421 31.6677 0.0000 0.0000 0.5

12 1.5746 0.0097 0.0086 152.2096 0.0 0.0000 0.1 0.4417 0.0100 0.0284 53.6280 0.0000 0.0000 0.1

13 5.9034 0.0062 0.0048 247.4544 0.0 0.0000 0.2 0.8733 0.0062 0.0233 64.0119 0.0000 0.0000 0.3

14 0.6818 0.0058 0.0120 104.1347 0.0 0.0732 0.0 0.0 0.0166 0.0170 83.0035 0.0000 0.0000 0.4

15 1.8281 0.0126 0.0106 111.2920 0.0 0.0000 0.3 0.7347 0.0161 0.0164 84.1414 0.0229 0.0000 0.2

16 0.7016 0.0085 0.0224 52.0394 0.0 0.0000 0.3 0.5213 0.0234 0.0234 65.8626 0.0377 0.0163 0.4

17 2.0184 0.0093 0.0082 145.4131 0.0 0.0000 0.1 0.5009 0.0136 0.0228 54.5802 0.0000 0.0000 0.4

18 1.5337 0.0118 0.0093 143.1262 0.0 0.0000 0.1 0.7365 0.0212 0.0200 70.6127 0.0000 0.0000 0.2

19 1.1603 0.0054 0.0112 120.8677 0.0 0.0884 0.0 1.4036 0.0114 0.0119 109.3328 0.0000 0.0000 0.3

20 0.7821 0.0082 0.0080 128.3665 0.0 0.0000 0.6 0.4103 0.0092 0.0310 32.8359 0.0000 0.0000 0.3

θ̄ 1.8721 0.0085 0.0113 138.8881 0.0 0.0103 0.2 0.6256 0.0125 0.0263 61.9388 0.0098 0.0036 0.3

s̄ 1.3730 0.0026 0.0059 65.6336 0.0 0.0262 0.2 0.3769 0.0055 0.0123 28.7954 0.0223 0.0129 0.1



7.1 PK Models 103

Table 7.7: Correlation matrix for the estimated Vd,A and Vd,B for treat-
ment with insulin A and B, respectively, and three anthropo-
metric measurements.

Vd,A Vd,B Height BW BMI

Vd,A 1

Vd,B −0.1244 1

Height 0.1021 0.3937 1

BW 0.5781 0.3968 0.7248 1

BMI 0.7524 0.1497 −0.0152 0.6751 1

From the correlation matrix, it is seen that there is a strong positive
correlation between the estimated volume Vd,A for insulin A and
BMI while the correlation is not that apparent for Vd,B . In [41],
values ranging from a few mL to 100 L are cited for the apparent
volume of distribution in different models. The observed correlation
between BMI and Vd along with the values cited in the literature
seem to indicate that the estimated volumes for the twenty subjects
for treatment with insulin A and B are reasonable.

Statistical Analysis

The rate constants ka and ke for all twenty subjects for treatment
with insulin A are tested if they could come from the same distri-
bution with the mean vector of ka and ke for treatment with insulin
B. The same test is performed for treatment with insulin B. This is
done by Hotelling’s T 2 test where the test scores for the two tests
are:

FA = 44.69

FB = 131.39

with treatment of insulin A and B, respectively.



104 Chapter 7. Results from Clamp Models

The test scores are clearly significant on a 95 % confidence level
since F (2, 20−2)0.95 = 3.55. The estimated rate constants ka and ke
for all twenty subjects for treatment with insulin A/B can therefore
not be assumed to come from the same distribution with the mean
vector of the same two parameters for treatment with insulin B/A,
respectively. Therefore, insulin A and B have significantly different
absorption and elimination kinetics from a statistical point of view.

7.2 PK/PD Models

Next, the results for the two PK/PD models in Section 6.2 are pre-
sented. The main difference between the two models is that the
time delay between the plasma insulin concentration and response
in the effect-compartment model is assumed to be related to a dis-
tributional delay while the indirect response model assumes that the
delay is related to an indirect response mechanism. The two models
are compared at the end of the section and the best model is used
for parameter estimation for all twenty subjects in the study.

7.2.1 Effect-Compartment Model

The PK and PD parameters in the effect-compartment model are
estimated simultaneously in this section. In previous studies, the
PK parameters are estimated while the PD parameters are fixed at
values found from in vitro studies. It is therefore interesting to see
whether the simultaneous estimation of PK and PD parameters are
different from the ones estimated separately.

Grey-box Model

The LTI state space model for the effect-compartment model, con-
sisting of three continuous time system equations and two discrete
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time observation equations, is shown below:
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+ e1,k

GIR =
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EC
γ

50 + Cγ
e
· Cγ

e + e2,k

where Ke0 is the equilibrium constant for the passive diffusion be-
tween the central and effect compartment while the PD parameters
in the model are Emax, EC50, and γ.

The PK/PD parameters in the effect-compartment model are esti-
mated using only the observations at time instants where both insulin
and GIR are observed (see Appendix A.5 which includes the input
and output files from CTSM). The parameters are first estimated for
insulin B. Next, the estimated value of Emax for insulin B is used
as a fixed variable and the rest of the parameters are estimated for
insulin A. This procedure is necessary for the estimation to converge
for insulin A. Since the effect of the injected insulin does not come
close to the maximum effect Emax in this study, it is reasonable to
assume that Emax is the same for insulin A and B for the same
subject.

Parameter Estimates

The parameter estimates (θ̂) for the effect-compartment model for
treatment with insulin A and B are shown in Table 7.8 along with
their standard deviation (Std. dev.).

The estimated PK parameters are similar to the ones discussed in
Section 7.1.1 where the results from the single-compartment PK
model are mentioned and will therefore not be discussed any fur-
ther in this section.



106 Chapter 7. Results from Clamp Models

Table 7.8: PK/PD model parameter estimates for the effect-compartment
model for treatment with insulin A and B.

Insulin A Insulin B

Parameter Unit θ̂ Std. dev. θ̂ Std. dev.

Ic,0 [nmol] 15.8860 5.1881 2.6384 1.2955

Ce,0 [nM] 0.0735 0.0235 0.1078 0.0318

ka [min−1] 0.0108 0.0038 0.0073 0.0007

ke [min−1] 0.0078 0.0025 0.0391 0.0067

Ke0 [min−1] 0.0183 0.0028 0.0261 0.0044

Vd [L] 177.4400 55.8310 34.3590 6.3678

σsc [-] 0.0000 0.0000 0.0000 0.0307

σc [-] 0.0000 0.0025 0.0000 0.0015

σe [-] 0.0000 0.0002 0.0000 0.0000

Emax [mmol/min] 9.2 9.1570 2.3370

EC50 [nM] 0.3097 0.0162 0.2684 0.0773

γ [-] 1.7554 0.1784 2.0325 0.4334

S2
I [-] 0.0006 0.0001 0.0013 0.0004

S2
GIR [-] 0.0017 0.0004 0.0038 0.0009

tmax [min] 107.00 53.00

Cmax [pM] 328.29 465.84

AUC∞
0 [µM min] 0.1207 0.1223

TRmax [min] 171.00 101.00

Rmax [mmol/min] 4.43 6.31

GIR∞
0 [mol] 1.66 1.82

The physical meaning of the PD parameters Emax and EC50 are the
maximum GIR concentration and the insulin concentration produc-
ing 50 % of the maximum GIR, respectively. The estimated value of
Emax = 9.157 for treatment with insulin B is used as a fixed variable
in the estimation with insulin A which is why no standard deviation
is available for that parameter. The estimated value of Emax is much
higher than the value of the derived parameter Rmax = 6.3 (maxi-
mum GIR) which indicates that the maximal effect is not reached.
In [59, 60], the parameters in a similar effect-compartment model
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are estimated using the computer program ADAPT II [16] using al-
gebraic PK equations while the PD parameters Emax, EC50 and γ
are fixed at 5.56 mmol/min, 0.44 nM, and 2.00, respectively. The
proposed values are suggestions from unpublished work by the au-
thors of [59]. The estimated values of the PD parameters from the
treatment with insulin A are close to those cited in [59].

It is very interesting to see that the parameter γ is estimated close to
2 for both types of insulin. The theoretical meaning of the parameter
γ in the sigmoidal Emax model is that γ insulin molecules and one
receptor elicit the effect (see Section 3.2.1). The estimated value of
2 is therefore also in agreement with the illustration of the insulin
receptor in Figure 2.5 where two insulin molecules interact with the
insulin receptor resulting in an increase in the activity of the glucose
transporters. Normally, the value of γ = 2 is estimated in a static
environment using in vitro cells exposed to insulin [54]. The estima-
tion of the parameter γ in the grey-box effect-compartment model is
therefore very reasonable.

Since the PK and PD parameters all are estimated simultaneously,
the correlation between the PK and PD parameters can be assessed.
The sample correlation matrix for insulin B is shown in Table 7.9.

The PK and PD parameters in Table 7.9 do not seem to be very cor-
related. The correlation between the PD parameters are quite high,
especially between Emax and EC50 where the correlation coefficient
is estimated to 0.9853. The correlation between all three parameters
for the system noise (σsc, σc, and σe) is estimated to 1.0 which also
is observed in the previously described PK models.

Model Validation

The validation of the effect-compartment model is carried out us-
ing all the available data with missing observations entered into the
validation data files when the insulin concentration is not available.
Thereby, all 690 measurements of GIR are used along with the 30
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Table 7.9: Sample correlation matrix for insulin B.

Ic,0 Ce,0 ka ke Ke0 Vd σsc σc σe Emax EC50 γ S2I S2GIR

Ic,0 1

Ce,0 −0.1578 1

ka 0.3538 −0.2777 1

ke −0.4430 0.1856 −0.7273 1

Ke0 0.0527 −0.0681 −0.0811 −0.3472 1

Vd 0.4518 −0.2309 0.8106 −0.9798 0.2733 1

σsc −0.0328 0.0406 −0.0274 0.0787 −0.0826 −0.0797 1

σc −0.0328 0.0405 −0.0274 0.0787 −0.0826 −0.0797 1.0000 1

σe −0.0328 0.0406 −0.0274 0.0787 −0.0826 −0.0797 1.0000 1.0000 1

Emax −0.1588 −0.1623 −0.1544 0.1821 0.0790 −0.1814 −0.0393 −0.0393 −0.0393 1

EC50 −0.1634 −0.1300 −0.1877 0.1768 0.1446 −0.1972 −0.0407 −0.0407 −0.0407 0.9853 1

γ 0.0744 0.3361 −0.1092 0.0614 −0.2132 −0.0794 0.0735 0.0735 0.0735 −0.8828 −0.8783 1

S2I −0.0339 0.0271 −0.1037 0.1855 −0.1298 −0.1887 0.0845 0.0845 0.0845 0.0178 0.0217 0.0379 1

S2GIR −0.1066 0.0562 −0.0452 0.0581 −0.0615 −0.0645 0.0316 0.0316 0.0316 −0.0078 −0.0104 0.0192 −0.0606 1
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observations of the plasma insulin concentration. The results from
the effect-compartment model are plotted along with the observed
plasma insulin concentration and GIR for treatment with insulin A
in Figure 7.5 and for treatment with insulin B in Figure 7.6. Only the
pure simulation of the estimated models are shown since the system
noise is estimated to zero.

The effect compartment concentration is slightly shifted towards the
right compared with the observed plasma insulin concentration (see
Figure 7.5(a) and Figure 7.6(a)). The reason is that the insulin re-
siding in the central compartment is not at steady-state resulting
in the hysteresis loop shown in Figure 6.5 while the effect compart-
ment concentration is assumed to be at steady-state and thereby
shifted to the right compared to the insulin in the central compart-
ment. Furthermore, the volume of the effect compartment must be
much smaller than Vd if the assumption about a negligible amount is
transferred from the central compartment to the effect compartment
is valid since the concentration in the two compartments is almost
the same.

The simulated GIR follows the observed GIR very well. The oscil-
lations in GIR are not captured by the estimated model since only
30 observations are used in the estimation and because it is a nurse
who is regulating the GIR by observing the BG. From Figure 7.5 and
Figure 7.6, the time delay between time to maximum insulin concen-
tration (Cmax) and maximum effect (Rmax) is clearly seen while the
peak on the effect concentration curve seem to be aligned with that
of GIR.

The phase-plot of the observed GIR vs. the predicted concentration
at the effect site Ce in Figure 7.5(c) and Figure 7.6(c) follows the es-
timated sigmoidal-shaped curve very nicely for both types of insulin.
The phase-plots clearly show that the observed GIR for treatment
with insulin B is distributed along most of the sigmoidal curve while
that of insulin A only is in the linear area between 20 % and 80 %
effect. This explains why it is not possible to estimate a reasonable
value of the parameter Emax for insulin A.
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Figure 7.5: Plot of results from effect-compartment model for insulin A.
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Figure 7.6: Plot of results from effect-compartment model for insulin B.
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The plasma insulin residuals for insulin A and B are the exact
same as the ones shown in Figure 7.1(b) on page 85 for the single-
compartment PK model and therefore not shown here.

The GIR residuals for treatment with insulin A and B are shown in
Figure 7.7 along with LDF and PLDF.
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Figure 7.7: Residual analysis of GIR for treatment with insulin A (Blue)
and insulin B (Red).

The residuals in Figure 7.7(a) are clearly not white noise but consid-
ering that it is a nurse who regulates the GIR by observing the BG,
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one would not expect the residuals to be white noise. In the light of
that, the estimated sigmoidal Emax model seem to capture the PD
of the insulin/glucose system very well.

7.2.2 Indirect Response Model

The last model in this chapter is the indirect response model where
the delay between plasma insulin and the effect on the BG concen-
tration is assumed to be related to an indirect response mechanism.
It has not previously been used in clamp studies because of the na-
ture of the study where glucose is infused to keep a clamped glucose
level. It is therefore doubtful whether the GIR can be used as an
input variable.

Grey-box Model

The NL state space model for the indirect response model, consisting
of three continuous time system equations and two discrete time
observation equations, is shown below:
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 =
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dt+ σ dwt

CI =
Ic
Vd

+ ek,1

BG =
G

VG
+ ek,2

where D, Rin, and GIR are input variables while G is the state
variable for the amount of glucose in the blood. The parameter kout
is the first-order rate constant for elimination of G while SC50 is the
insulin concentration producing 50% of the maximum stimulating
effect Smax. The volume of the glucose compartment is fixed at
VG = 10 L to prevent the estimation of yet another volume.
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Parameter Estimates

The parameter estimates (θ̂) for the indirect response model for
treatment with insulin A and B are shown in Table 7.10 along with
the standard deviation (Std. dev.).

The sigmoidicity parameter γ is estimated with quite a large stan-
dard deviation to 4.77 and 14.67 for treatment with insulin A and
B, respectively. These values do not agree with the estimated value
of γ found in the effect-compartment model or the fact that two
insulin molecules are needed to activate the insulin receptor. Fur-
thermore, the value of γ = 14.67 is very close to the maximal value
of 15 specified in CTSM.

The insulin needed to produce 50 % of the maximal stimulating
effect Smax is about 1/3 of the similar parameter EC50 from the
effect-compartment model. This can be explained by the BG is also
eliminated without the stimulation effect of insulin described by the
first-order rate constant kout.

Model Validation

The results from the indirect response model are plotted along with
the observed plasma insulin and BG concentration for treatment
with insulin A and B in Figure 7.8.

It is clearly seen in Figure 7.8(a) that the estimated model captures
the PK of insulin as well as the effect-compartment model which
is expected since the same PK model is used. The simulated time
course of BG oscillates around the observed BG, which probably is
due to the oscillating nature of the input variable GIR or distur-
bances and unmodelled dynamics.

The 1-step prediction of BG seem to capture the time course of BG
and is further investigated by plotting the BG residuals for treatment
with insulin A and B in Figure 7.9 along with LDF and PLDF.
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Table 7.10: PK/PD Model parameter estimates for the indirect response model for treatment with insulin
A and B.

Insulin A Insulin B

Parameter Unit θ̂ Std. dev. t-score p(> |t|) θ̂ Std. dev. t-score p(> |t|)
Ic,0 [nmol] 13.1390 5.5371 2.3729 0.0219 2.5861 1.1678 2.2145 0.0318

BG0 [mM] 5.4173 0.5669 9.5559 0.0000 4.8240 0.6147 7.8473 0.0000

ka [min−1] 0.0098 0.0039 2.5141 0.0155 0.0073 0.0007 10.6275 0.0000

ke [min−1] 0.0082 0.0031 2.6373 0.0114 0.0370 0.0064 5.7441 0.0000

kout [min−1] 0.0183 0.0104 1.7618 0.0847 0.0237 0.0041 5.8260 0.0000

Smax [-] 3.2002 2.5775 1.2416 0.2206 3.3596 0.8007 4.1961 0.0001

SC50 [nM] 0.1408 0.0218 6.4450 0.0000 0.1395 0.0125 11.1272 0.0000

γ [-] 4.7723 2.9789 1.6020 0.1159 14.6690 3.3050 4.4385 0.0001

Vd [L] 165.4500 62.7890 2.6350 0.0114 36.1830 6.8426 5.2879 0.0000

σsc [-] 0.0000 0.0000 0.0355 0.9718 0.0000 0.0007 0.0000 1.0000

σc [-] 0.0000 0.0000 0.0110 0.9912 0.0000 0.0003 0.0000 1.0000

σG [-] 0.3439 0.0477 7.2146 0.0000 0.4010 0.0552 7.2591 0.0000

S2I [-] 0.0006 0.0002 3.4446 0.0012 0.0011 0.0003 3.6094 0.0008

S2BG [-] 0.0000 0.0000 0.0134 0.9894 0.0000 0.0000 0.0000 1.0000

tmax [min] 110.00 55.00

Cmax [pM] 327.00 459.90

AUC∞
0 [nM min] 121.20 122.50
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Figure 7.8: Plot of results from indirect response model for insulin A
(Blue) and insulin B (Red).
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Figure 7.9: Residual analysis of BG for treatment with insulin A (Blue)
and insulin B (Red).

The residual plot shows that the BG residuals almost are within the
approximative 95 % confidence interval of ±2σε. The same is not
true when looking at LDF and PLDF, where almost all the lags from
1 to 10 are significant for treatment with insulin A and B.
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7.2.3 Comparison of PK/PD Models

The two PK/PD models presented in the previous sections for the
insulin/glucose system are compared using the BIC in Table 7.11.

Table 7.11: Test for model structure for PK/PD models.

Model p logL(θ,YN ) BIC

Effect-Compartment

Insulin A 14 123.9301 −156.3465
Insulin B 14 100.0970 −108.6802
Indirect Response

Insulin A 14 97.2005 −102.8873
Insulin B 14 115.1349 −72.7181

Since both of the models have 14 parameters and are estimated us-
ing the same number of observations, the value of the likelihood
function can be used as well as the BIC which shows that the effect-
compartment model is chosen as the best model.

From physiology studies, it is known that the delay between plasma
insulin concentration and observed response is due to an indirect
response mechanism downstream from the insulin receptor. The in-
direct response model is therefore the physiological most likely rep-
resentation of the insulin/glucose system but in this study where the
glucose level is clamped and glucose is infused, the effect-compart-
ment model is superior to the indirect response model when compar-
ing the two models with the BIC.

The effect-compartment model is therefore chosen as the best repre-
sentation of the insulin/glucose system and is used in the following
parameter estimation for the twenty subjects in the study.
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7.2.4 Parameter Estimates for All Twenty Subjects

The parameter estimates obtained for each subject with the effect-
compartment model along with the sample mean and standard de-
viation for each parameter are reported in Table 7.12 for insulin A
while the estimates for insulin B are shown in Table 7.13.

The maximal value of the parameter Emax is specified in CTSM as
15.0 mmol/min while the maximal value of EC50 is set to 1.0 nM to
make the estimation converge. Emax is close to the maximal value
of 15 mmol/min for half of the subjects for insulin A and 7 out of
20 for insulin B. The range of the estimated parameter EC50 is from
0.1 nM to the maximal allowable value of 1.0 nM. The estimates of
Emax and EC50 for subject 2, 9, and 15 for insulin A and subjects 8,
11, and 20 for insulin B are therefore doubtful since they are close to
the limits specified in CTSM. The value of the penalty function is on
the other hand not significant compared to the likelihood-function,
which is why the estimates of those subjects are not taken out.

The sample mean of γ is close to 2 but with quite a large standard
deviation due to the variation of γ among subjects. Especially the
value of γ = 4.16 for subject 7 seem unreasonable since it means
that four insulin molecules would need to interact to facilitate the
transport of glucose into the cell.
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Table 7.12: Effect-compartment model PK/PD parameter estimates for insulin A for subject 1-20.

Subject Ic,0 Ce,0 ka ke Ke0 Vd σSC σc σe Emax EC50 γ S2
I S2

GIR

[nmol] [nM] [min−1] [min−1] [min−1] [L] [mmol/min] [nM]

1 1.8486 0.0766 0.0040 0.0348 0.0290 28.5000 0.0000 0.3160 0.0000 14.7 0.6919 1.4439 0.0012 0.0007

2 2.0417 0.0561 0.0026 0.0210 0.0185 38.2960 0.0000 0.2406 0.0035 14.6 0.9967 1.2508 0.0000 0.0013

3 15.8860 0.0735 0.0108 0.0078 0.0183 177.4400 0.0000 0.0000 0.0000 9.2 0.3097 1.7554 0.0006 0.0017

4 19.8740 0.0333 0.0076 0.0072 0.0423 178.8500 0.0000 0.0000 0.0000 14.7 0.5122 1.4669 0.0008 0.0038

5 19.8080 0.0338 0.0093 0.0073 0.0375 211.9700 0.0000 0.0000 0.0000 7.6 0.1567 2.5414 0.0006 0.0055

6 9.0295 0.1321 0.0075 0.0153 0.0270 115.9800 0.0000 0.0001 0.0000 5.9 0.1487 2.8308 0.0006 0.0044

7 14.3020 0.1624 0.0071 0.0075 0.0171 169.3300 0.0000 0.2555 0.0051 7.6 0.2216 4.1641 0.0002 0.0003

8 14.2920 0.0877 0.0082 0.0079 0.0134 158.9100 0.0000 0.0000 0.0000 14.6 0.4281 1.9988 0.0011 0.0028

9 14.6670 0.0592 0.0107 0.0073 0.0192 159.1000 0.0000 0.0000 0.0000 14.8 0.9926 1.2204 0.0008 0.0007

10 14.6530 0.0417 0.0102 0.0092 0.0199 150.0600 0.0000 0.0000 0.0000 7.3 0.1785 1.7053 0.0010 0.0052

11 6.0196 0.1127 0.0073 0.0247 0.1054 47.1040 0.0000 0.0000 0.0000 14.8 0.7656 1.2713 0.0008 0.0018

12 11.0360 0.0977 0.0099 0.0085 0.0581 154.8800 0.0000 0.0000 0.0000 4.5 0.1859 1.9208 0.0003 0.0026

13 39.7700 0.0000 0.0062 0.0047 0.0239 249.2500 0.0000 0.0000 0.0000 10.6 0.3419 2.2668 0.0009 0.0040

14 15.1410 0.1000 0.0089 0.0082 0.0175 159.6300 0.0000 0.0000 0.0000 6.1 0.1290 3.0893 0.0007 0.0043

15 15.1560 0.0909 0.0134 0.0098 0.0466 121.9100 0.0000 0.0000 0.0000 14.9 0.9963 1.0894 0.0014 0.0033

16 11.6200 0.0000 0.0225 0.0085 0.0162 139.2200 0.0000 0.0000 0.0000 14.7 0.5636 1.1512 0.0011 0.0036

17 14.3530 0.0299 0.0093 0.0082 0.0221 146.9700 0.0000 0.0000 0.0029 4.6 0.1602 2.1777 0.0006 0.0052

18 10.1200 0.1036 0.0115 0.0096 0.0166 139.5100 0.0000 0.0000 0.0000 5.3 0.1387 2.2422 0.0006 0.0017

19 7.2835 0.0505 0.0052 0.0115 0.0184 115.9400 0.0000 0.5669 0.0000 4.6 0.1333 2.5341 0.0000 0.0016

20 6.7928 0.0240 0.0080 0.0080 0.0394 128.7900 0.0000 0.0000 0.0000 14.9 0.7152 1.4597 0.0028 0.0014

θ̄ 13.1847 0.0683 0.0090 0.0114 0.0303 139.5820 0.0000 0.0690 0.0006 10.3 0.4383 1.9790 0.0008 0.0028

s̄ 8.0525 0.0432 0.0041 0.0074 0.0215 53.9870 0.0000 0.1538 0.0014 4.4 0.3181 0.7807 0.0006 0.0016
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Table 7.13: Effect-compartment model PK/PD parameter estimates for insulin B for subject 1-20.

Subject Ic,0 Ce,0 ka ke Ke0 Vd σSC σc σe Emax EC50 γ S2
I S2

GIR

[nmol] [nM] [min−1] [min−1] [min−1] [L] [mmol/min] [nM]

1 2.3732 0.0000 0.0077 0.0400 0.0298 23.3550 0.2309 0.0000 0.0000 14.732 0.8319 1.3906 0.0015 0.0053

2 2.4043 0.0923 0.0053 0.0257 0.0216 44.9680 0.0000 0.3242 0.0000 14.639 0.5555 1.6562 0.0003 0.0057

3 2.6384 0.1078 0.0073 0.0391 0.0261 34.3590 0.0000 0.0000 0.0000 9.157 0.2684 2.0325 0.0013 0.0038

4 3.6934 0.0985 0.0088 0.0203 0.0371 60.9220 0.0000 0.1577 0.0000 14.699 0.5561 1.4046 0.0007 0.0033

5 1.7460 0.0000 0.0088 0.0638 0.0234 23.6150 0.0000 0.0000 0.0000 7.616 0.1796 2.0499 0.0013 0.0020

6 7.2193 0.0000 0.0192 0.0169 0.0277 107.5100 0.5357 0.0000 0.0000 5.869 0.1616 3.7393 0.0008 0.0034

7 9.9450 0.0568 0.0236 0.0145 0.0175 97.9920 0.5323 0.0000 0.0000 7.635 0.2327 2.0357 0.0011 0.0021

8 4.6586 0.0754 0.0138 0.0137 0.0119 100.8100 0.0000 0.0000 0.0000 14.619 0.9702 1.1012 0.0016 0.0026

9 5.5890 0.1797 0.0081 0.0269 0.0104 43.7950 0.0000 0.0000 0.0000 14.791 0.6766 1.6488 0.0019 0.0030

10 4.1391 0.0000 0.0186 0.0172 0.0351 77.7820 0.0000 0.3837 0.0000 7.270 0.2841 1.4871 0.0013 0.0010

11 0.9602 0.0669 0.0106 0.0392 0.0220 34.2550 0.0000 0.0000 0.0000 14.779 0.9710 1.0697 0.0020 0.0014

12 2.1344 0.0000 0.0095 0.0302 0.0216 49.8650 0.0000 0.0682 0.0000 4.517 0.1439 2.0940 0.0005 0.0017

13 9.5792 0.0365 0.0072 0.0185 0.0377 82.8650 0.0000 0.0000 0.0000 10.592 0.3122 1.2465 0.0014 0.0037

14 0.7372 0.0994 0.0170 0.0162 0.0212 86.3490 0.0000 0.0000 0.0000 6.138 0.1605 1.8661 0.0017 0.0020

15 5.1628 0.0000 0.0172 0.0150 0.0172 91.3350 0.0000 0.2198 0.0138 4.862 0.5168 1.8851 0.0008 0.0000

16 3.0949 0.1209 0.0236 0.0230 0.0078 66.7750 0.0000 0.3023 0.0101 4.655 0.3832 1.9165 0.0016 0.0000

17 6.2303 0.0437 0.0220 0.0141 0.0231 88.8310 0.0000 0.0000 0.0000 4.640 0.1456 1.8235 0.0015 0.0028

18 4.0973 0.0000 0.0209 0.0205 0.0150 68.8760 0.0000 0.0000 0.0000 5.328 0.1422 1.1603 0.0010 0.0040

19 7.8904 0.0445 0.0114 0.0120 0.0122 108.4700 0.0000 0.0000 0.0000 4.604 0.1329 2.3581 0.0011 0.0044

20 2.8247 0.0929 0.0094 0.0297 0.0166 34.3360 0.0000 0.0000 0.0031 14.860 0.9088 1.3007 0.0012 0.0011

θ̄ 4.3559 0.0558 0.0135 0.0248 0.0217 66.3533 0.0649 0.0728 0.0013 10.300 0.4267 1.7633 0.0012 0.0027

s̄ 2.6807 0.0522 0.0061 0.0128 0.0086 28.6696 0.1685 0.1289 0.0037 4.363 0.3008 0.5974 0.0005 0.0016
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Chapter8
Glucose Tolerance Models

The development of type II diabetes is preceded and predicted by de-
fects in both the insulin-dependent and insulin-independent glucose
uptake. The defects are detectable when the patients are normogly-
caemic and in most cases more than a decade before diagnosis of the
disease. On that background, glucose tolerance tests are performed
on patients to derive metabolic indices of the insulin-dependent and
insulin-independent glucose uptake which can be used to determine
whether or not the patient is likely to develop diabetes.

A brief definition of insulin resistance is given in the following section
followed by a description of the models considered for the glucose
tolerance tests.

8.1 Insulin Resistance

Insulin resistance (the opposite of insulin sensitivity) is defined as an
impaired biological response to insulin [5]. When the insulin receptor
sensitivity is decreased, glucose is not transported into the cell, which
consequently causes an excess of glucose to build up in the blood.
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Several procedures, such as the euglycaemic clamp and glucose tol-
erance tests, have been developed in an attempt to find ways of
measuring insulin resistance and determining whether a patient has
normal glucose tolerance (NGT), impaired glucose tolerance (IGT)
or is type II diabetic. Among those, the three most widely used
techniques are described in the following.

Euglycaemic Clamp: The total amount of infused glucose can be
used as an index of insulin action on glucose metabolism since
an insulin resistant patient would require much less glucose to
maintain the clamped plasma glucose level than a normal pa-
tient. The more glucose infused, the greater the sensitivity to
insulin of the patient. The advantage of this test is that the ef-
fect of insulin can be assessed in absence of the insulin/glucose
feedback system since the pancreatic secretion of insulin has
been suppressed. The limitations of this technique are how-
ever that several doses of insulin are needed to estimate the
full spectrum of insulin resistance. The complexity and ex-
penses associated with that are many, which is why the use of
the clamp technique is limited to research laboratories only [5].

IV Glucose Tolerance Test: A more practical method to mea-
sure insulin resistance is by using an intravenous glucose toler-
ance test (IVGTT). The measure of insulin resistance is highly
correlated with the results obtained with the clamp technique
for non-diabetic but not for diabetic patients. The flaws of this
method is that the peripheral and hepatic glucose metabolism
are not separated. The focus is primarily on glucose ignoring
all other insulin-sensitive issues. The advantage of IVGTT is
that the results obtained from the IVGTT are generally better
at predicting type II diabetes than that of the clamp technique.
It provides information on both the insulin action and secre-
tion. The IVGTT is relative simple compared to the clamp
technique but is still too complex and costly to be used for
clinical evaluation of insulin resistance.
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Oral Glucose Tolerance Test: The oral glucose tolerance test
(OGTT) is less invasive than the IVGTT since the glucose
dose is given orally. The OGTT and IVGTT are otherwise
the same. The advantage of OGTT over IVGTT is that it can
be used in various clinical settings because it is more practical
and less costly than the IVGTT. The modelling of the OGTT
is more difficult than IVGTT since the glucose is no longer IV
administered but absorbed from the gut.

8.2 IVGTT Models

In the following, the minimal model (MM) initially proposed by Dr.
Richard N. Bergman et al. [7] in 1979 is presented. The model was
introduced for the interpretation of the glucose and plasma insulin
concentrations following an IVGTT.

The MM is different from the clamp models since there is no suppres-
sion of insulin secretion in the IVGTT. Therefore, the insulin/glucose
feedback mechanisms has to be included in the MM.

The glucose kinetics in the MM have recently been reassessed by
Ni et al. [38] where it is concluded that it is too simple. Several
model expansions have been cited in the literature to try and come
up with better models. Those expansions include two instead of one
compartment for glucose [10, 11] and a circulatory model for glucose
kinetics [34]. The reason why these models have not been included
in this thesis, is because a labelled IVGTT is needed to estimate the
model parameters.

The MM consists of two parts which will be explained in the following
sections. The first MM is for the glucose kinetics while the second
part is for the insulin kinetics. Metabolic indices can be derived
from each of the two models to assess the insulin sensitivity and the
beta-cell function.
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8.2.1 Minimal Model of Glucose Kinetics

The MM of glucose kinetics consists of a compartment for glucose
along with two compartments for plasma and remote insulin. The
controlling action of insulin on hepatic glucose production and uti-
lization of glucose in the peripheral tissue is modelled using the in-
sulin in the remote compartment. The cold1 MM of glucose kinetics
during an IVGTT is illustrated in Figure 8.1.

Remote
Insulin

Plasma
Insulin

Liver Peripheral
Tissue

Plasma
Glucose

k2 k3
β-cells

k5

D

G(t)

Ir(t)I(t)

k1

k6 k4

Figure 8.1: Minimal model of glucose kinetics. G(t) is plasma glucose,
I(t) is plasma insulin, and Ir(t) is remote insulin. The in-
puts to the system are D (IV infused glucose dose) along
with the secreted insulin from the beta-cells shown as solid
black arrows. The parameters ki are rate constants character-
izing material fluxes (solid white arrows) and control action
(dashed arrows).

The rate constants k1 and k5 represent the effect of glucose to acceler-
ate its utilization by the peripheral tissues and the liver, respectively,

1Cold, meaning that the insulin is not labelled, opposed to the hot model
where the injected glucose is radioactive or a stable isotope acting as a tracer.
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independent of insulin levels. k2 describes the efficiency with which
plasma insulin fills the remote compartment. k3 is a measure of the
rate of disappearance of the insulin effect while k4 and k6 correspond
to the effect of remote insulin in enhancing glucose disappearance [4].

Model Equations

The rate of change of glucose G is the difference between the net
hepatic glucose balance B and the disappearance of glucose into the
peripheral tissue Up. The equations for B and Up are introduced in
the following and later combined in a differential equation for the
rate of change of glucose.

The equation for the hepatic glucose can be written as [7]:

B = B0 −
(

k5 + k6Ir
)

G (8.1)

where B0 is the extrapolated hepatic glucose production at zero glu-
cose concentration, Ir is the insulin in the remote compartment, and
G is the plasma glucose. Depending whether the liver is producing or
consuming glucose, B can assume both positive and negative values.

The expression for the glucose utilization Up into the peripheral tis-
sue where the remote insulin Ir is assumed to increase the mobility
of the glucose across the cell membrane is shown below [7]:

Up =
(

k1 + k4Ir
)

G (8.2)

where k1 and k4 are the rate constants for insulin-independent and
insulin-dependent glucose uptake, respectively.

The equation for the rate of change of plasma glucose is obtained by
combining equation (8.1) and (8.2) (see Appendix B.2) and shown
in equation (8.3) along with the equation for the rate of change of
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remote insulin:

dG

dt
= −

[

(

k1 + k5
)

+
(

k4 + k6
)

Ir

]

G

+
(

k1 + k5
)

CGbV +D · δ(t) (8.3a)

dIr
dt

= k2
(

CI − CIb
)

− k3Ir (8.3b)

where CGb and CIb are the basal plasma glucose and insulin con-
centrations, respectively, typically measured 180 minutes after the
glucose bolus injection.

To obtain a model which is uniquely identifiable from glucose and
insulin measurements, equation (8.3) is reparameterized as in the
MM, i.e. [7, 53]:

p1 = k1 + k5

p2 = k3

p3 = k2
(

k4 + k6
)

X = (k4 + k6)Ir

whereX is the insulin action proportional to the insulin in the remote
compartment Ir. The parameter p1 is the insulin-independent rate
constant of glucose uptake, also referred to as glucose effectiveness
while p3 describes the insulin-dependent increase in tissue glucose
uptake ability pr. unit of insulin concentration above baseline insulin.
The parameter p2 corresponds to the spontaneous decrease of tissue
glucose uptake ability [20].

The MM of glucose kinetics thereby consists of two differential equa-
tions describing the glucose plasma concentration and insulin action
as shown below with the new parameters mentioned above:

dG

dt
= −

(

p1 +X
)

G+ p1CGbV +D · δ(t) (8.4a)

dX

dt
= p3

(

CI − CIb
)

− p2X (8.4b)
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where G(0) = G0 and X(0) = 0.

The glucose is utilized at a constant rate p1 and by the feedback
effect of the insulin action X represented by −X ·G. An additional
amount of plasma insulin will cause an increase in X and thereby
cause the rate of glucose utilization to be lowered.

8.2.2 Minimal Model of Insulin Kinetics

The second part of the MM is for insulin kinetics as illustrated in
Figure 8.2 [8].

Plasma Insulin
Compartment I

nγ(G− h)t

β-cells

Figure 8.2: Minimal model of insulin kinetics.

The secreted insulin from the beta-cells enters the plasma insulin
compartment at a rate proportional by γ to the degree by which the
glucose exceeds a threshold level h and to the time from the glucose
injection. The insulin is cleared from the plasma compartment at a
rate proportional to the amount of insulin in the plasma compart-
ment.

The minimal model of insulin kinetics is described by the following
equation:

dI

dt
= γ [G− h]+ t− nI (8.5)

where γ is the proportionality factor between the glucose concentra-
tion and the rate of change in plasma insulin, h is the threshold level
while n is the first-order rate constant for insulin disappearance and
t is the time elapsed from the glucose stimulus. The ‘+’ in (8.5)
symbolizes that it is only the positive part of [G− h] which is used.
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The estimation of parameters in the two minimal models of glucose
and insulin kinetics has to be conducted in two steps using the mea-
sured insulin and glucose concentrations as known forcing functions
in (8.4) and (8.5), respectively. It has been shown in [20] that cou-
pling of the two parts of the MM will not admit an equilibrium and
the concentration in the remote insulin compartment will increase
without any bounds.

8.2.3 Metabolic Indices

The sensitivity index SI , representing the insulin-dependent glucose
elimination, is derived from the MM of glucose kinetics along with a
measure for the insulin-independent glucose elimination called glu-
cose effectiveness index SG.

With the notation used in (8.3), the insulin sensitivity index and
glucose effectiveness translates into:

SI =
k2
(

k4 + k6
)

k3
=
p3
p2

(8.6a)

SG = k1 + k5 = p1 (8.6b)

The two metabolic indices which can be obtained from the MM of
insulin kinetics are the first- and second-phase pancreatic responsi-
tivity indices (φ1 and φ2).

The first- and second-phase pancreatic responsivity index can be
calculated from the minimal model for insulin kinetics as [8]:

φ1 =
I0

n ·∆G (8.7a)

φ2 = γ · 104 (8.7b)

where I0 is the early peak in insulin plasma concentration while
∆G = G0−Gb is the maximum change in the glucose concentration
due to the glucose injection.
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The first-phase pancreatic responsivity index φ1 is a measure of the
size of the first peak of plasma insulin due to the bolus of glucose.
The second-phase pancreatic responsivity index φ2 represents the
sensitivity of the rate of rise of the second-phase to glucose. This
peak is enhanced by injecting tolbutamide at t = 20 min. in the
present IVGTT (see Figure 5.3).

As a measure of the beta-cell function, the acute insulin response
(AIR) can be calculated as the area under the insulin curve from
t = 0 to 8 min. The value of AIR0−8 is often used in combination
with the insulin sensitivity index SI to distinguish between NGT and
IGT subjects.

8.3 OGTT Models

The OGTT is not modelled using differential equations since the
glucose is not injected IV but given orally. The glucose is therefore
absorbed from the gut which makes the modelling a bit more com-
plicated. Instead, regression models are commonly used for deriving
insulin sensitivity and pancreatic beta-cell function indices from the
OGTT. The purposes of these models are to estimate indices which
are correlated with the indices from the MM during an IVGTT using
as few measurements from the OGTT as possible.

Four commonly used insulin sensitivity indices and two indices for
the pancreatic beta-cell function derived from the OGTT are briefly
described in the following sections.

8.3.1 Insulin Sensitivity

During the oral glucose load, the suppression of hepatic glucose pro-
duction is not very complete. The insulin sensitivity index therefore
reflects both suppression of hepatic glucose production as well as
glucose disposal by all tissues in the body. The more resistant the
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liver and peripheral tissues are, the greater the rise will be in mean
plasma glucose concentrations during the OGTT. The following re-
gression models try to model these dependencies using insulin and
glucose measurements entered in the formulas as mM and pM (unless
otherwise is stated) along with simple demographic parameters.

The insulin sensitivity index calculated using the homeostasis model
assessment (HOMA) is the simplest of the four models. It only
requires fasting glucose and insulin samples and is calculated as [2,
22, 35]:

HOMA =
ins0′

22.5 exp(− log glu0′)
(8.8)

where ins0′ and glu0′ are the plasma insulin and glucose concentra-
tions at t = 0 min, respectively.

In the Cederholm index, the prediction of the insulin sensitivity is
based on four samples of insulin and glucose (t=0, 30, 60, 120 min.)
along with measurements of the bodyweight BW [2, 22].

Cederholm =
75 + (glu0′ − glu120′) · 1.15 · 180 · 0.19 · BW

120 · log(mean ins) ·mean glu
(8.9)

where the mean values of the insulin and glucose concentration are
calculated using the four samples of insulin and glucose, respectively.

The Stumvoll index for insulin sensitivity is calculated using a simple
demographic parameter (BMI) along with only two measurements
from the OGTT [50].

Stumvoll = 18.8−0.271 ·BMI−0.0052 · ins120′−0.27 ·glu90′ (8.10)

Finally, the Matsuda index uses the mean of seven insulin and glucose
measurements (t=-30, -15, 0, 30, 60, 90, 120 min.) along with the
samples of fasting insulin and glucose [36]. The insulin sensitivity
index is calculated as a constant divided by the square root of the
product of fasting and mean values of insulin and glucose, i.e.:

Matsuda =
10, 000

√

(glu0′ · ins0′)(mean glu ·mean ins)
(8.11)
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where the plasma insulin and glucose are entered in the formula as
mg/dL and mU/L.

8.3.2 Pancreatic Beta-Cell Function

The following two indices of the pancreatic beta-cell function are
to be compared with the acute insulin response (AIR0−8) from the
IVGTT.

The HOMA index for the pancreatic beta-cell function is calculated
using only the fasting glucose and insulin measurements, i.e.:

HOMA =
20 · ins0′

glu0′ − 3.5
(8.12)

while the Stumvoll index for the pancreatic beta-cell function is cal-
culated using the following formula:

Stumvoll = 1283+1.829 · ins30′− 138.7 · glu30′ +3.772 · ins0′ (8.13)
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Chapter9
Results from Glucose
Tolerance Models

The results from the glucose tolerance models are presented in this
chapter. First, the grey-box estimates of the parameters in the MM
of glucose kinetics for the IVGTT are presented and validated. Next,
the derived metabolic indices are tested if they can be used in a
discriminant analysis to distinguish between NGT and IGT subjects
and compared with estimates from previous studies. Finally, the
indices from the IVGTT are compared with those from the OGTT
to examine the correlation between them.

9.1 IVGTT Models

Since the IVGTT is modified with tolbutamide injected after 20 min.,
the measured insulin data cannot be used for estimation of the pa-
rameters in the differential equation (8.5) for the MM of insulin ki-
netics. The measured insulin is therefore only used as a forcing func-
tion in the MM of glucose kinetics, i.e. equation (8.4). Consequently,
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the estimation of the first- and second-phase pancreatic responsivity
indices is not possible using the present IVGTT.

9.1.1 Grey-box Model

The NL state space model for the MM of glucose kinetics, consist-
ing of two continuous time system equations and one discrete time
observation equation, is shown below:

(

dG
dX

)

=

(

−
(

p1 +X
)

G+ p1CGbV +D
p3
(

CI − CIb
)

− p2X

)

dt+ σ dwt

CG =
G

V
+ ek

where D is the bolus dose of glucose given at t = 0 min. and the in-
sulin concentration CI is a known forcing function. The basal glucose
and insulin concentrations, i.e. CGb and CIb , are found as the aver-
age of the measurements at t=140, 160, and 180 min. of the glucose
and insulin concentrations, respectively. wt is a standard Wiener
process with covariance matrix σ with σG and σX in the diagonal,
and ek ∈ N(0, S2) is a white noise process mutually independent of
wt.

9.1.2 Parameter Estimates

The grey-box parameter estimates for the MM of glucose kinetics
are shown in Table 9.1 for a representative NGT and IGT subject
along with the standard deviations.

The apparent volume of distribution of the glucose is estimated close
to 12.6 L and 13.7 L for the NGT and IGT subject, respectively.
Unlike the clamp models, the estimation of the volume V does not
seem to be a problem in the MM. The values of V for the NGT and
IGT subject both seem physiological reasonable.
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Table 9.1: MM parameter estimates for a representative NGT and IGT
subject.

NGT IGT

Parameter Unit θ̂ Std. dev. θ̂ Std. dev.

G0 [mmol] 6.5504E+01 3.5506E+00 8.6505E+01 2.9457E+00

p1 [min−1] 2.0097E−02 4.8879E−03 1.4629E−02 7.2208E−03

p2 [min−1] 5.7490E−02 1.7436E−02 2.5365E−01 2.7911E−01

p3 [min−2pM−1] 6.9959E−06 1.7469E−06 8.3331E−06 1.4697E−05

V [L] 1.2610E+01 3.9444E−01 1.3742E+01 4.1699E−01

σG [-] 9.8176E−01 3.4316E−01 5.8172E−07 2.3523E−02

σX [-] 7.9394E−09 5.3310E−06 4.5122E−03 3.6639E−03

S2 [-] 7.3042E−02 2.5261E−02 3.3406E−02 1.1552E−02

AIR0−8 [pM min] 2.3265E+03 1.0320E+03

The system noise is not estimated to zero, which was the case for
most of the clamp models, since the glucose and insulin measure-
ments from the IVGTT are much more excited than those from the
clamp study. The rather large value of σG for the NGT subject in-
dicates that the dynamics of the glucose is not modelled completely
with the MM. The MM has not been expanded with more compart-
ments since it would require the injected glucose to be labelled to
be able to estimate yet another unobservable state as mentioned in
Section 8.2.

The glucose effectiveness index can be calculated from the parameter
estimate of p1 from the MM. The estimated values of the glucose
effectiveness index for the NGT and IGT subject are 0.020 and 0.015
min−1, respectively. The glucose effectiveness is a measure of the
insulin-independent ability to dispose glucose. SG does not seem to
be significantly different for NGT and IGT subjects when comparing
the estimates of the two representative subjects.
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The insulin sensitivity index is equal to the ratio between the esti-
mated parameters p3 and p2 from the MM, i.e. SI = p3/p2. It is a
measure of the insulin-dependent ability to dispose glucose. Unlike
the glucose effectiveness, the values of SI are quite different for the
two glucose tolerance groups. The estimated values are SI = 1.217
and SI = 0.329 for the NGT and IGT subject, respectively1.

The parameter AIR0−8 is the acute insulin response which is used
as a measure of the beta-cell function, i.e. the ability of the beta-
cells to produce insulin when exposed to a bolus of glucose. It is
calculated as the area under the insulin curve from 0 to 8 min. using
the Trapezoidal-method. The value of AIR0−8 is about twice as
large for the NGT subject compared with the IGT subject, which
indicates that the response to the glucose bolus of the NGT subject
is much larger than that of the IGT subject.

The sample mean and standard deviation of the MM parameter es-
timates can be found in Appendix B.3 for the 108 NGT and 17 IGT
subjects in the IVGTT. The sample mean of the system noise pa-
rameters σG and σX indicates that the MM of glucose kinetics is too
simple.

9.1.3 Model Validation

Next, the ability of the MM model to predict and simulate the ob-
served dynamics of the insulin/glucose system is tested. The 1-step
prediction and pure simulation of the glucose concentration CG and
the insulin action X are plotted in Figure 9.1 and Figure 9.2 for
a representative NGT and IGT subject, respectively. The glucose
residuals are also plotted and tested whether they can be consid-
ered to be white noise using the lag-dependency function (LDF) and
partial lag-dependency function (PLDF).

When comparing the time course of the measured glucose in Fig-
ure 9.1(a) and Figure 9.2(a), it is seen that the disposal of glucose

1The unit of SI is 10−4 · min−1pM−1.
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Figure 9.1: Measured, predicted, and simulated glucose and insulin con-
centrations along with a residual analysis of glucose for a rep-
resentative NGT subject.



140 Chapter 9. Results from Glucose Tolerance Models

−10 0 60 120 180
0

5

10

15

20

G
lu

co
se

 c
on

c.
 [m

M
]

Time [min]

Obs C
G

Pred C
G

Sim C
G

(a) Glucose conc. CG

−10 0 60 120 180
0

200

400

600

In
su

lin
 c

on
c.

 [p
M

]

Time [min]

Obs C
I

Pred X
Sim X

0

0.02

0.04

0.06

X
 [m

in
−

1 ]

0

0.02

0.04

0.06

(b) CI,obs and X

−10 0 60 120 180
−1

−0.5

0

0.5

1

+2σε

−2σε

ε
t

Time [min]

(c) Glucose residuals

0 2 4 6 8 10

−0.5

0

0.5

1

LD
F

Lag k

(d) LDF

0 2 4 6 8 10

−0.5

0

0.5

1

P
LD

F

Lag k

(e) PLDF

Figure 9.2: Measured, predicted, and simulated glucose and insulin con-
centrations along with a residual analysis of glucose for a rep-
resentative IGT subject.
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for the IGT subject is not as fast as for the NGT subject. One hour
after the glucose bolus, the glucose level of the NGT subject drops
to a minimum which is below the basal glucose level, and then grad-
ually returns to the level before the injection of glucose while the
basal glucose level barely is reached for the IGT subject during the
180 min. of the IVGTT.

The 1-step prediction and pure simulation of the glucose concentra-
tion for both the NGT and IGT subject seem to fit the measured
glucose concentration nicely. Almost all of the glucose residuals plot-
ted in Figure 9.1(c) and Figure 9.2(c) are within ±2σε. The plots
of LDF and PLDF for the NGT and IGT subjects show that the
residuals are not far from being white.

The measured insulin concentration is used as an input to the model
which is why it has not been predicted or simulated. The mea-
sured insulin concentration is though plotted in Figure 9.1(b) and
Figure 9.2(b) along with the 1-step prediction and simulation of the
insulin action X to compare the time course of the two. For the
NGT subject, the measured insulin concentration rises rapidly to a
peak immediately after the glucose injection and drops shortly there-
after to a lower level still above the basal insulin concentration. At
t = 20 min., the second-phase insulin response is boosted by the
tolbutamide injection to an insulin peak higher than the first-phase
response which gradually drops to the basal level. The insulin peaks
for the IGT subject are not as distinct as for the NGT subject and
the insulin concentration does not return to the basal level before 2
hours after the glucose bolus.

The insulin action is quite different for the NGT and IGT subject.
There is an apparent delay between the measured plasma insulin
and the insulin action for the NGT subject while the predicted and
simulated insulin action for the IGT subject are close to zero during
the whole IVGTT. This observation indicates that it is the insulin-
dependent and not the insulin-independent glucose uptake which is
impaired for the IGT subject.
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9.1.4 Outliers and Corrupted Data

The IVGTT is performed on 261 NGT and 27 IGT subjects. Un-
fortunately, not all of the subjects could be used in the estimation
of MM parameters because of various reasons. To ensure precise
estimates of the metabolic indices which can be used to distinguish
between NGT and IGT subjects in the IVGTT, it is therefore neces-
sary to remove outliers and subjects with missing or corrupted data.

Out of the 288 subjects, only 108 NGT and 17 IGT subjects remains
after the removal procedure which is summarized in Table 9.2.

Table 9.2: Removal of subjects in the IVGTT.

Subject NGT IGT Total

Number of subjects 261 27 288

Missing data 37 3 40

No convergence 88 6 94

Possible misclassification 28 1 29

Remaining 108 17 125

All the glucose and insulin measurements for 40 of the subjects in
the study are missing and the subjects are removed on that account.
The parameter estimation of the MM is extremely dependent on the
initial guesses. To reduce the time of estimating the parameters
for the remaining 248 subjects, a reasonable set of initial values are
specified in CTSM for the estimation of NGT subjects and another
for IGT subjects. The estimation does not converge for 88 NGT
and 6 IGT subjects when using those initial values and are therefore
removed. Finally, 29 subjects are removed because the estimated pa-
rameters indicate a possible misclassification. Those subjects should
preferably be tested further by a physician to determine whether the
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preclassification is valid or not so that they can be included in the
study once again. The remaining numbers of NGT and IGT subjects
in the IVGTT after the removal procedure are therefore 108 and 17,
respectively.

9.1.5 Statistical Analysis

The following statistical analysis of the results from the IVGTT are
performed to investigate the differences between NGT and IGT sub-
jects.

First, the sample mean and standard deviation of SG, SI , andAIR0−8

are shown in Table 9.3 for the 108 and 17 successful estimations of
MM parameters for NGT and IGT subjects, respectively.

Table 9.3: Sample mean and standard deviation of SG, SI , and AIR0−8.

NGT IGT

Parameter Unit θ̄ s̄ θ̄ s̄

SG [min−1] 0.0206 0.0095 0.0211 0.0102

SI [10−4 · min−1pM−1] 1.0074 0.3988 0.2488 0.2068

AIR0−8 [nM min] 2.2397 1.3656 2.4744 1.8780

The sample means of SI for NGT and IGT subjects are clearly dif-
ferent while the sample means of the two other indices are almost
identical for NGT and IGT subjects. This observation seems to in-
dicate that it is only the insulin-dependent glucose uptake which is
affected in IGT subjects.

To determine which of the three indices are best at separating the
NGT and IGT subjects, a matrix of scatter plots of SI , SG, and
AIR0−8 is shown in Figure 9.3. The histograms in the diagonal are
divided into ten equally spaced bins on the x-axis and the frequency
is shown on the y-axis to illustrate the distribution of each parameter
for NGT and IGT subjects.
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Figure 9.3: Matrix of scatter plots of SI , SG, and AIR0−8 with his-
tograms in the diagonal for NGT (red) and IGT (blue) sub-
jects.

The SI values are clearly separated for NGT and IGT subjects while
the SG and AIR0−8 do not seem to be all that different for the two
populations. The presence of SI values indistinguishable from zero
for four of the IGT subjects is a known and unexplained physiological
phenomenon in the MM which suggests that it is too simple a model
for the insulin/glucose system [38].

Since the disposition index, defined as the product of SI and AIR0−8,
often is used to determine whether a particular NGT subject is likely
to become IGT or diabetic, the scatter plot of AIR0−8 vs. SI is shown
in Figure 9.4 and further investigated in the following section.
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In the prediabetic phase, before developing IGT, the value of AIR0−8

tends to increase (rather than decrease) while the value of SI de-
creases [54]. The value of AIR0−8 drops when going from NGT to
IGT, causing the placement in a scatter plot of AIR0−8 vs. SI of IGT
subjects to be in an area just below the hyperbola of AIR = k/SI as
shown in Figure 9.4. The value of k is calculated using the following
discriminant function which minimizes the probability of misclassi-
fication when using only the value of the disposition index [15, p.
313]:

k = SI ·AIR0−8 =
1
2 µ̂

2
N σ̂

−2 − 1
2 µ̂

2
I σ̂

−2 + log c

σ̂−2 · (µ̂N − µ̂I)
= 1.35

(9.1)

where µ̂N and µ̂I are the estimated mean vectors of SI ·AIR0−8 for
NGT and IGT subjects, respectively, σ̂ is the estimated standard
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deviation of SI · AIR0−8, and c = 1 since no a priori knowledge
about the expected loss is available.

1 IGT subject is misclassified as NGT while 35 NGT subjects are
misclassified as IGT when using the discriminant function of SI ·
AIR0−8 = 1.35 which is equal to 6 % misclassification of the IGT
subjects and 32 % of the NGT subjects. When using the information
about the changes of the two indices SI and AIR0−8 in the predi-
abetic stage, the NGT subjects just above the hyperbola and with
large values of AIR0−8 are likely to become IGT. If the IVGTT had
been performed on type I and II diabetic subjects, then the type II
diabetics would be below the IGT subjects in the scatter plot and
the type I diabetics would be below the type II diabetics.

A test is performed in the following to determine which indices con-
tribute with additional information for separating the populations of
NGT and IGT subjects in a discriminant analysis.

Mahalanobis’ distance between the two populations is calculated us-
ing the full information from SI , SG, and AIR0−8 and on the basis of
the reduced information using the estimated values of SI only. The
formula for Mahalanobis’ distance is [15, pp. 309-329]:

D2 = (µ̂N − µ̂I)T Σ̂−1(µ̂N − µ̂I) (9.2)

where Σ̂ is the estimated dispersion matrix.

The two values of Mahalanobis’ distance using the full and reduced
information are:

D2
full = 4.1760

D2
red = 3.9984

The test for the hypothesis that SG and AIR0−8 do not contribute
to an increase in the discrimination is:

Z =
nN − nI − p− 1

q
·

nN · nI(D2
full −D2

red)

(nN + nI)(nN + nI − 2) + nN · nI ·D2
red
(9.3)
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where nN and nI are the number of NGT and IGT subjects, respec-
tively, p is the total number of variables while p − q is the reduced
number of variables.

Z is thus a measure of the relative increase in the ‘distance’ between
the two populations when going from p − q to p variables. For the
test to be accepted, it can be shown that Z ∈ F (q, nN +NI − p− 1)
and the hypothesis is rejected for large values of Z. The value of Z
for the stated hypothesis is:

Z =
108− 17− 3− 1

2
· 108 · 17(4.1760− 3.9984)

(108 + 17)(108 + 17− 2) + 108 · 17 · 3.9984
= 0.8688

The hypothesis is therefore accepted since Z < F (2, 108 + 17 − 3 −
1)0.95 = 3.071. Thus, the additional information from the values
of SG and AIR0−8 does not contain additional information which
can be used to distinguish between NGT and IGT subjects. The
discriminant function which minimizes the probability of misclassi-
fication using only the values of SI can be written as:

SI · σ̂−2
SI
· (µ̂N − µ̂I)−

1

2
µ̂2N σ̂

−2
SI

+
1

2
µ̂2I σ̂

−2
SI

= log c = 0 (9.4)

By rewriting (9.4), the value of SI which separates NGT and IGT
subjects is estimated as:

SI =
1
2(1.0074

2 − 0.24882)

1.0074− 0.2488

= 0.6281

(9.5)

Subjects with SI values larger than 0.6281 are therefore classified
as NGT while subjects with values below 0.6281 are classified as
IGT. Only 1 IGT subject (6 %) is misclassified as NGT while 21
NGT subjects (19 %) are misclassified as IGT. The misclassification
is thereby reduced using the discriminant function of SI instead of
the product of SI and AIR0−8.
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9.1.6 Comparison with Estimates from MinMod

The estimates obtained with CTSM are compared with those from
MinMod [25], a program for the estimation of parameters in the
MM. The difference between MinMod and CTSM is that MinMod
does not include a diffusion term in the system equations as CTSM
does. The MinMod parameter estimates which are compared with
the CTSM parameter estimates are taken from [23].

Scatter plots of the estimates of SI and SG from MinMod and CTSM
are shown in Figure 9.5. Only 13 out of the 17 IGT subjects are
plotted since the MinMod estimates of the remaining 4 IGT subjects
are not available. The same applies for 11 of the 108 NGT subjects.
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Figure 9.5: Scatter plots of SI and SG from MinMod and CTSM.

The correlation coefficient is calculated as a measure of the strength
of the association between the values of SI estimated by MinMod
and CTSM. The two estimates of SI are reasonable correlated with a
correlation coefficient of 0.8678. The scatter plot of SI from MinMod
and CTSM shows that the values are close to the dashed line dividing
the scatter plot in two equal parts. The fact that most of the values
are above the dashed line could be due to the noise term in the
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system equations in CTSM. The estimated values of SI from CTSM
are lower than those from MinMod since the Wiener process accounts
for disturbances and unmodelled dynamics of the system.

The estimates of SG from the MM are generally less precise than
those of SI . This is partially because of the model assumption con-
cerning the self-production of glucose which is assumed to be negli-
gible. The correlation coefficient between the estimates of SG using
MinMod and CTSM is 0.3089 which is significantly lower than that
of SI . The big difference between the values of SG from MinMod
and CTSM shown in Figure 9.5(b) is probably due to the numerical
instability of MinMod where the range of the glucose concentrations
are from 0 to 10 while the range of the insulin concentrations are
from 0 to 600 since the glucose is specified in mM and the insulin in
pM. The accuracy of insulin is therefore much higher than that of
glucose since the insulin measurements are weighted more in the cal-
culation of the likelihood function. To avoid the numerical instability
in the estimation of parameters in CTSM, the insulin concentrations
are inserted in 10−1 µM as shown in Appendix B.4 to obtain values
between 1 and 15.

9.1.7 Summary of IVGTT Results

The estimated parameters for the noise in the system equations of
the MM are rather large indicating that the model is too simple
and not sufficient in describing the complicated dynamical system of
insulin and glucose during an IVGTT.

The sample mean of the insulin sensitivity index SI estimated in
CTSM is significantly different for NGT and IGT subjects while
the values of SG and AIR0−8 do not seem to be affected in the
prediabetic phase. The value of SI is therefore the only of these
three measures which can be used to distinguish between NGT and
IGT subjects in a statistical analysis.

The estimated values of SI using CTSM are slightly lower than those
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from the program MinMod. Since MinMod does not add noise pa-
rameters to the system equations, the values of SI are overestimated.
The correlation between the values of SG using CTSM and MinMod
is very little due to mentioned differences in the weighting of insulin
and glucose measurements.

9.2 OGTT Models

The OGTT indices for the insulin sensitivity and beta-cell function
presented in Section 8.3 are estimated and compared with the esti-
mates of SI and AIR0−8 from the IVGTT. The estimated indices
from the OGTT are calculated for the same subjects as those from
the IVGTT.

9.2.1 Insulin Sensitivity

Scatter plots of the estimates of the insulin sensitivity from four
OGTT models vs. the CTSM estimates of SI from the MM are il-
lustrated in Figure 9.6 along with a fitted regression line and the
squared multiple correlation (coefficient of determination) R2.

The value of the R2 statistics is generally the best indicator of the
fit of a regression line and can be interpreted as the relative amount
of variance of the dependent variable explained or accounted for by
the explanatory variable.

The simplest of the four OGTT models is the HOMA model in the
upper left hand corner of Figure 9.6. It is the only model where the
regression line has a negative slope. The model with the lowest value
of R2 is the Cederholm model. The Stumvoll and Matsuda model
seem to be the best OGTT models for deriving an insulin sensitivity
index which is correlated with the SI values from an IVGTT. The
values of R2 are almost the same for the two models where approxi-
mately 45 % of the variance in SI from the MM can be explained by
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Figure 9.6: OGTT models for the insulin sensitivity.

the Stumvoll and Matsuda models. The values of R2 for the regres-
sion of Stumvoll and Matsuda and the estimates of SI from MinMod
are 0.51 and 0.65, respectively [23]. The R2 statistics are lower using
the SI estimates from CTSM than MinMod which probably is due
to the OGTT models are derived using the estimates from MinMod
and not CTSM.

9.2.2 Beta-cell Function

The OGTT models for the beta-cell function are compared with the
values of the acute insulin response from the IVGTT. These results
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are therefore not obtained using CTSM but are included for the
completion of the OGTT.

The HOMA and Stumvoll index of the beta-cell function are calcu-
lated using equations (8.12) and (8.13) and compared with the esti-
mates of AIR0−8 from the IVGTT in the scatter plots in Figure 9.7.

0 3 6 9
0

1

2

3

R2 = 0.27

AIR
0−8

 (IVGTT)

H
O

M
A

(a) HOMA

0 3 6 9
0

1

2

3

R2 = 0.38

AIR
0−8

 (IVGTT)

S
tu

m
vo

ll

IGT
NGT

(b) Stumvoll

Figure 9.7: OGTT models for the beta-cell function.

The OGTT models for the beta-cell function are not as accurate
as the models for the insulin sensitivity. The R2 statistics are only
0.27 and 0.38 for the HOMA and Stumvoll model, respectively. The
two models therefore seem too simple at explaining the variation in
AIR0−8 from the IVGTT.

9.2.3 Summary of OGTT Results

The results from the four OGTT models are not all equally suc-
cessful in assessing the insulin sensitivity index SI from an IVGTT
estimated in CTSM. The two OGTT models which appear to be the
best are the Stumvoll and Matsuda models with R2 values of 0.44
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and 0.45, respectively. These values are somewhat lower than previ-
ously published estimates using MinMod since the OGTT regression
models are derived using the estimates from MinMod.

The accuracy of the two OGTT models for the beta-cell function are
less than the models for the insulin sensitivity and seem to be too
simple at predicting the acute insulin response from an IVGTT.
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Chapter10
Discussion

The primary focus of the discussion will be on the assumptions and
results of the clamp and glucose tolerance models presented in the
previous chapters along with a general discussion of the methods used
for modelling the PK/PD of insulin. At the end of this chapter, the
discussion is summarized as a direction for future work.

10.1 Euglycaemic Clamp Models

The euglycaemic clamp study is presented as a method of assessing
the PK/PD of different types of insulin. The experiment is con-
ducted in a way so that the secretion of insulin from the pancreas
is suppressed so that it can be modelled using rather simple mathe-
matical models.

10.1.1 PK Models and Assumptions

Since the insulin is injected both IV and SC, it is difficult to deter-
mine the PK of the absorption. Methods like the phase-plane method
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[19] has been applied to the data from the clamp study but with no
success since the phase-plane plots are obscured by the IV infusion
of human insulin. First-order absorption of SC insulin, where the
rate of absorption is dose dependent, is therefore assumed through-
out this thesis while the absorption of IV insulin is assumed to follow
zero-order kinetics since it is injected directly into the blood.

The bioavailability factor F is normally introduced in models with
SC absorption due to degradation of insulin in the SC depot. Since
the bioavailability of the SC injected insulin is not known for the
two types of insulin, the value of F is fixed at 1 to ensure global
identifiability of the single-compartment PK model. Compared with
the estimates of the parameters in the single-compartment model
where F is not fixed, the apparent volume of distribution is slightly
increased when F is set equal to unity while the rate constants are
not affected significantly. This assumption therefore seem quite rea-
sonable and is not the issue of further discussion.

The obtained results with the single-compartment model are in agree-
ment with the measured plasma insulin concentrations. The PK of
insulin A and B are clearly different when considering the shape of
the simulated concentration-time profiles as well as the summary
measures of tmax and Cmax but not the value of AUC∞

0 . Since F is
eliminated from the model, ka and ke are the only parameters which
can be used as measures of the differences between insulin A and
B. The comparison indicates that it is the elimination kinetics of
insulin B which are altered rather than the absorption kinetics when
compared with insulin A. This observation is does not agree with the
intended change in the primary structure of insulin B which should
increase the absorption. This phenomena often occurs for drugs with
fast elimination and is referred to as the ‘flip-flop’ effect. This effect
is due to the fact that it is not always possible to separate what is ka
and ke in the estimation. The ‘flip-flop’ effect can be circumvented
by assuming that ka > ke, but since it is not possible to enter such
assumptions in CTSM, the main difference between insulin A and B
appears wrongly to be in the elimination kinetics.
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Since the bioavailability factor cannot be used as a measure of the
different availability of the two types of insulin due to identifiability
issues and since the estimated parameters of the single-compartment
model are physiological unlikely, the difference in SC absorption ki-
netics for insulin A and B are further examined by expanding the
single-compartment model with compartments for the SC depot.
The two different approaches considered are a model with compart-
ments for the different association states of SC insulin and a model
with a delay between the SC injection and absorption into the plasma
along with degradation from the SC depot.

The hexamer/dimer SC uptake model is a modification of a similar
model proposed in [55]. Five simplifying assumptions are made to
make the model suitable for estimation since the original model only
has been validated through simulation. The slower uptake of insulin
A than B is explained by the equilibrium between hexamer and dimer
is shifted faster towards that of dimer for insulin B since the dimer
structure is stabilized. These different properties of insulin A and
B are verified from the estimated model and the simulated plasma
insulin concentrations are similar to those of the single-compartment
model. The parameter estimates of the apparent volume of distri-
bution for insulin A and B are reduced significantly to more likely
values. Unfortunately, the uncertainty of the parameter estimates
of the hexamer/dimer model are quite large. Especially the uncer-
tainties of the parameters for the equilibration between hexamer and
dimer, i.e. P and Q, are so high that the parameters are insignificant
on a 95 % confidence level. The estimated values of the noise in the
system equations of hexamer and dimer insulin also indicate that the
PK of the insulin in the SC depot are not fully captured.

Since the hexamer/dimer model does not seem to be suitable for es-
timation even after applying some simplifying assumptions, a more
empirical and parsimonious approach is attempted in the two-com-
partment SC uptake model. The characteristics of insulin A and B in
the SC depot are the same as in the hexamer/dimer model. The esti-
mated values of the apparent volume of distribution are almost equal
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for the two types of insulin and close to the physiological plasma
volume in the two-compartment model and the uncertainties of the
parameters in the two-compartment model are considerably less than
in the hexamer/dimer model. This model is therefore preferred com-
pared to the hexamer/dimer model. The simplifying assumptions of
the same rate constant ka for the transfer between the two SC com-
partments and the absorption into the central compartment along
with the fixed parameter for the SC degradation to make the model
a priori identifiable are assumptions that cannot be validated from
the measured plasma insulin concentrations. Compared with the
single-compartment model, the two-compartment model adds insight
to the different absorption kinetics of the two types of insulin but
does not contribute with a better description of the plasma insulin
concentrations.

All of the PK models, with the exception of the peripheral-compart-
ment model, incorporate the common assumption that the elimina-
tion of insulin from the plasma is a first-order process. This is a dras-
tic assumption since true first-order elimination applies only to com-
pounds that are eliminated exclusively by mechanisms that do not
involve enzymatic or transport processes, i.e. processes that require
energy. Another simplifying assumption is that the rate constant for
elimination is a true constant and is independent of the drug concen-
tration. The percentage of the plasma insulin that is eliminated pr.
unit time is therefore constant and any saturable elimination kinetics
are neglected. Nevertheless, the elimination of insulin seems to be
adequately described by the first-order elimination rate constant ke.
The reason why the insulin exhibit apparent first-order elimination
kinetics in most cases is that the plasma insulin concentrations are
well below those required to saturate the processes involved.

To investigate if saturable elimination kinetics are present in the
elimination of plasma insulin, the elimination of insulin is described
in the form of Michaelis-Menten elimination kinetics in the peripheral-
compartment model. Michaelis-Menten kinetics is a combination of
zero- and first-order kinetics and is a generally accepted expression
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for the elimination of drug from the organism. Furthermore, the
plasma insulin equilibration with tissue is included in the peripheral-
compartment model. This reduces the apparent volume of distribu-
tion dramatically for insulin A while the estimates for insulin B do
not seem to have converged. Unfortunately, the number of parame-
ters to be estimated in the peripheral-compartment model seem to
exceed the number of parameters which can be identified from the
experimental data since the correlation and uncertainty of the pa-
rameter estimates are quite high. For the peripheral-compartment
model to work, information about the insulin equilibration with tis-
sue or the Michaelis-Menten parameters must be specified thereby
reducing the number of parameters to be estimated. The information
about the Michaelis-Menten parameters can perhaps be obtained by
performing different experiments where the insulin is administered
in different doses while the insulin equilibration with tissue can be
assessed by labelling the injected insulin which thereby acts as a
tracer for the distribution.

The various PK models presented in this thesis produce rather simi-
lar predictions/simulations of the plasma insulin concentrations. The
different expansions of the single-compartment model add valuable
insights about the differences of the two types of insulin but are not
considered for the PK/PD models since the parsimonious description
of the single-compartment model is adequate at describing the PK
of insulin which is needed to build a PK/PD model.

10.1.2 PK/PD Models and Assumptions

The primary objective of PK/PD modelling in this thesis is to iden-
tify key properties of insulin in vivo and thereby characterize and
predict the insulin effect under physiologic conditions.

First of all, it is essential to identify the significance of the biologi-
cal processes involved in eliciting the insulin-induced response. The
delay between the plasma insulin concentration and the amount of
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glucose needed to maintain a constant blood glucose concentration
is illustrated through a counter-clockwise hysteresis loop in a phase-
plot of GIR vs. CI (see Figure 6.5). The delay for treatment with
insulin B is significantly larger than for insulin A but the phase-plot
cannot explain whether or not the delay is due to a distributional
delay or an indirect response mechanism. These two possibilities are
therefore tested in an attempt to determine which model is best at
describing the delay.

The effect-compartment model, where the before mentioned delay
is assumed to be distributional, has previously been applied with
success to clamp studies of insulin. Instead of specifying the PD
parameters using in vitro data, the approach is to investigate the
possibility of estimating the PK and PD simultaneously. This ap-
proach seems more reasonable since the PK and PD of insulin are
interdependent.

The obtained estimates of the three PD parameters are similar to
those from in vitro studies which indicates that the simultaneous es-
timation of PK and PD parameters is successful. The estimate of the
maximum effect Emax for treatment with insulin A is made difficult
since the observed effect of insulin A only assumes values in the linear
area between 20 % and 80 % effect. To circumvent these estimation
problems, the maximum effects of insulin A and B are assumed to
be identical for the same subject. Since the observed effects are well
below the value of Emax, this assumption seems reasonable.

The parameter EC50, which can be interpreted as the insulin con-
centration producing 50 % of the maximum effect, contributes with
information about the concentration needed to produce a clinical
observable effect. The sample means of EC50 for treatment with
insulin A and B are almost equal which also is expected since the
change in the primary structure of insulin B should not change the
PD properties significantly but only the absorption kinetics of the
molecule.

The final PD parameter which is estimated is the sigmoidicity factor
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γ. The estimated value of γ ≈ 2 for many of the subjects in the study
is similar to the expected value from a theoretical point of view since
the estimated value of γ can be interpreted as the number of insulin
molecules it takes to elicit the transport of glucose into the cells.

The derived parameters of tmax, Cmax, TRmax, and Rmax are esti-
mated using the simulated time series of plasma insulin and GIR, re-
spectively. The uncertainties of the derived parameters in this thesis
are therefore much lower compared with the procedures in previous
insulin studies where the derived parameters are estimated using the
sparse information of only a few measurements in the determination
of the maximum concentration and effect.

The drawbacks of the effect-compartment model is that several dif-
ferent doses of insulin preferably should be used to validate the use of
an indirect link model such as the ‘black box’ approach of the effect-
compartment model. Since this information is not available for the
current clamp study, the model cannot be further validated except
by comparing the simulated and observed response GIR. Another
problem with the effect-compartment model is that the estimated
PD parameters are not reasonable for all the subjects in the study.
The doubtful estimates are investigated further by changing the ini-
tial estimates but without success. The subjects with doubtful PD
parameters are not removed from the study since the estimation pro-
cedure seems to have converged and the simulated time series of GIR
are similar to the measurements.

Instead of ascribing the delay to be distributional in nature as in
the effect-compartment model, an indirect response model where the
delay is assumed to be caused by a delay downstream from the insulin
receptor, is applied to the data from the clamp study. This approach
is the physiological most likely but has not been used in previous
clamp studies because of the experimental procedures. The variation
of GIR is quite large since the amount of glucose infused is regulated
by a nurse in the attempt to keep the blood glucose concentration
at the clamped level. The nurse uses the values of the measured
blood glucose concentration from the previous minute to determine
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how much glucose should be infused. If the nurse infuses too much
glucose, the glucose will rise above the clamped level and the nurse
must wait until the glucose returns to the clamped level because the
GIR only assume values larger than zero since glucose cannot be
withdrawn from the plasma.

When comparing the ability of the effect-compartment model and
the indirect response model to predict the response to the injected
insulin, it seems like it is better to use the GIR as a measure of
the utilized glucose rather than trying to add a compartment for
the blood glucose concentration where GIR is used as an input.
The effect-compartment model is therefore preferred compared to
the indirect response model.

10.2 Glucose Tolerance Models

Glucose tolerance tests are a commonly used technic to determine
metabolic indices of possible diabetics. Compared with the eugly-
caemic clamp study where the insulin production is suppressed and
the blood glucose concentration is clamped manually by varying the
glucose infusion, the glucose tolerance tests use an open-loop ap-
proach where no ‘external’ regulation is present. The feedback mech-
anisms of the insulin/glucose system therefore has to be included in
mathematical models of the glucose tolerance tests.

10.2.1 IVGTT

The IVGTT is a reasonably simple experiment yielding an informa-
tive set of data about the glucose tolerance of a subject by esti-
mating parameters referring both to insulin-dependent and insulin-
independent glucose uptake in the MM proposed by Bergman et al.
[7].

The estimation of 125 out of the 288 subjects in the IVGTT is suc-
cessful and the glucose residuals are not far from being white noise.
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The validity of the present MM analysis using grey-box modelling is
somehow diminished by the many subjects for whom it is impossi-
ble to estimate a reasonable set of parameters. Since this is a known
problem in previous MM analyses of IVGTT, it will not be discussed
any further.

The simplifying assumption of the single-compartment glucose dis-
tribution in the MM was initially implemented by Bergman et al.
[7] so that the MM parameters could be estimated from a single,
relative simple experimental procedure. The consequences of the
single-compartment glucose kinetics approximation are investigated
using the estimated system noise parameter σG in the grey-box MM
which indicates that the unmodelled dynamics of the system is con-
siderable.

The effect of undermodelling the glucose kinetics seems to result in an
overestimation of the glucose effectiveness SG to fit the glucose data,
especially for IGT subjects. The insulin action X is thereby underes-
timated until the glucose returns to the baseline and is overestimated
thereafter. This structural bias introduced by glucose model simpli-
fications also affects the estimation of the insulin sensitivity index
since SI can be expressed as the ratio between the AUC of insulin
action and the insulin concentration above basal level. The insulin
sensitivity index SI is thereby underestimated. Furthermore, the oc-
currence of SI values indistinguishable from zero for IGT subjects
is not negligible in the MM and might be a consequence of overesti-
mating SG. The overestimation of the glucose effectiveness SG might
also be a result of combining the hepatic and peripheral components
of SG in a single parameter in the MM, i.e. parameter p1.

In previous IVGTT studies, the overestimation of SG in MinMod is
also caused by the glucose concentration is specified in mM while the
insulin concentration is in pM. The consequence is that the insulin
measurements are weighted more in the calculation of the likelihood
function. This numerical problem is avoided in this thesis by insert-
ing the values of the glucose and insulin concentrations in mM and
10−1 µM, respectively.
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The wide rage of insulin sensitivity, glucose effectiveness, and acute
insulin response due to the inter-individual variability of these in-
dices for NGT and IGT subjects makes it difficult to distinguish
between NGT and IGT subjects since the thresholds between the
two populations overlap each other. NGT and IGT subjects are of-
ten separated in a discriminant analysis using the disposition index
SI ·AIR0−8. A discriminant analysis using only the values of SI for
NGT and IGT subjects results in a lower misclassification than when
using the disposition index and the test for further information using
the values of SG and AIR0−8 along with SI is rejected. The MM
does therefore not seem adequate enough for providing metabolic in-
dices other than the insulin sensitivity index SI which can be used
at separating NGT from IGT subjects.

From a dynamical point of view, it would be desirable to build a
combined model of glucose and insulin kinetics but the coupling of
the two parts of the MM has been shown not to be appropriate in
a formal study of the MM [20]. In the search for more accurate
predictions of possible diabetic patients, several new IVGTT models
have been derived. They all include injection of labelled glucose
which is why these models are not considered in this thesis.

10.2.2 OGTT

The best OGTT model for insulin sensitivity is the Matsuda index
using fasting and mean values of the insulin and glucose concen-
tration from the OGTT. The Matsuda index explains 45 % of the
variance in the estimates of SI from the MM of the IVGTT while
the three other OGTT models explain from 17 % to 44 % of the
variance. Compared with previous OGTT studies, the R2 values in
this thesis are somewhat lower. This is probably due to the OGTT
regression models are derived to obtain the maximum correlation
with the estimates of SI from MinMod and not the estimates from
CTSM which are slightly lower.
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The OGTT models for the beta-cell function are compared with the
estimates of the acute insulin response AIR0−8 from the IVGTT
which is not estimated using the principles of grey-box modelling.
The models are nevertheless included for the completion of the OGTT.
The Stumvoll index for the beta-cell function explains 38 % of the
variance in AIR0−8 from the IVGTT while the R2 statistics for the
HOMA index is 0.27. The accuracy of the OGTT models for the
beta-cell function is highly doubtful and seem to be too simple at
deriving indices which are correlated with those from an IVGTT.

The assessment of SI and AIR0−8 from an IVGTT using the mea-
surements from an OGTT along with different regression models
do not seem overwhelmingly accurate. The OGTT models should
preferably be revised before being used in large-scale epidemiologi-
cal studies of NGT and IGT subjects.

10.3 Grey-box PK/PD Modelling of Insulin

The usefulness of grey-box PK/PD modelling of insulin is discussed
in this section in the light of the obtained results from the two dif-
ferent insulin studies in this thesis.

The structural identifiability of the linear models is investigated since
it is of key importance for well-posedness of the parameter estimation
of physiological systems to ensure the uniqueness of the solution for
the unknown model parameters. Unfortunately, the identifiability of
the non-linear models is not investigated since it is far more compli-
cated and outside the scope of this thesis. The correlation between
model parameters though seem to indicate an over-parameterization
in some of the non-linear models.

Another issue concerning identifiability has to do with the experi-
mental data. The data from the clamp study does not seem to be
persistently excited due to the experimental procedures of the study
and the constraints in human clinical studies. All the dynamics of
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the insulin/glucose system are therefore not represented in the mea-
sured data. The estimates of the noise term in the system equations
are estimated to zero in most of the presented clamp models and it
is difficult to determine whether the models capture all of the dy-
namics of the insulin/glucose system or if it is because the dynamics
are not present in the measured data. To make full use of grey-
box PK/PD modelling, the experimental data from clamp studies of
insulin therefore needs to be more excited.

The experimental data from the glucose tolerance studies are much
more excited than that of the clamp study and the estimated noise
parameters in the system equations symbolizing disturbances and
unmodelled dynamics indicate that the minimal model of glucose
kinetics is too simple and should be revised.

10.4 Future Work

The reflections of the present work are summarized in the following
section as a direction and perspective for future work.

10.4.1 Euglycaemic Clamp Study

The presented PK/PD models of the clamp study seem to be suc-
cessful in capturing the dynamics of the insulin/glucose system. The
next step in modelling the clamp study would be to use a popula-
tion PK/PD approach instead of the individual approach applied in
this thesis. Since the data from the clamp study is balanced, i.e.
the insulin, GIR, and BG measurements are sampled at the same
time points for all the subjects, it can easily be used in population
modelling.

The estimation of population and individual parameters, one at a
time, using MAP estimates for the population parameters would re-
quire some sort of recursive estimation scheme so that all the infor-
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mation gathered after the twenty estimations would be used to esti-
mate the parameters for the twenty subjects once again. At present,
CTSM is not suitable for population PK/PD modelling since the
recursive estimation scheme has not been implemented yet and it is
therefore not possible to estimate population and individual param-
eters.

Instead of using CTSM for population modelling, the statistical pro-
gram S-Plus could preferably be used since population modelling
already is implemented using non-linear mixed-effect models. The
estimation of parameters for the inter- and intravariability between
subjects is performed using algebraic instead of differential equa-
tions. The Wiener process is therefore not applied to the state equa-
tions of the system. This can be justified since the noise parameters
in the system equations are estimated to zero in CTSM. The non-
linear mixed-effect model of the insulin concentration for individual
i at time tj can thereby be written as [43, pp. 273-287]:

Cij = (β1 + b1i) · e−(β2+b2i)tj + (β3 + b3i) · e−(β4+b4i)tj + εij (10.1)

where the fixed effect β1, β2, β3, and β4 represent the mean values of
the parameters in the population of individuals and the individual
deviations are represented by the random effect b1i, b2i, b3i, and
b4i which are assumed to be distributed normally with mean 0 and
variance-covariance matrix Ψ. The random effects corresponding
to different individuals are assumed to be independent while the
within-group errors εij are assumed to be independently distributed
as N(0, σ2) and to be independent of the random effects.

As a final suggestion for future work of modelling the PK/PD of
the clamp study, it would be interesting to include pharmacological
knowledge in the PK/PD models to make them more mechanistic
instead of empirical along with a more physiological modelling ap-
proach where the body is divided into compartments based on true
anatomical regions or volumes such as e.g. blood, heart, and liver.
This approach seems very unlikely to succeed using the sparse in-
formation about the dynamics of the insulin/glucose system which
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is represented in the present measurements since the system is not
excited enough. It will perhaps be possible to build and estimate a
physiological model of the insulin/glucose system if measurements
of the renal and urine excretion are available and by distributing
different doses of labelled and unlabelled insulin.

10.4.2 Glucose Tolerance Studies

From the present analysis of the MM using grey-box modelling, the
model of glucose kinetics seems too simple to estimate metabolic in-
dices which can be used to assess the differences of NGT and IGT
subjects. Furthermore, the glucose and insulin kinetics are fitted
separately in the MM. It would be desirable to have a model repre-
senting the whole dynamical system of insulin and glucose. By fitting
the two parts simultaneously, a more coherent dynamical model is
obtained using the entire set of observations.

IVGTT studies indicate that the MM of glucose kinetics needs to
be expanded with an additional compartment for the glucose distri-
bution to obtain a more reasonable model due to the limitations of
the mono-compartmental representation of glucose kinetics at non
steady-state. To estimate parameters in such models, it is necessary
to use labelled glucose to investigate the distribution of glucose and
to be able to separate the injected glucose from the hepatic glucose
production.

A two-compartment minimal model has been presented in [10] which
provides a physiologically plausible profile of endogenous glucose pro-
duction during the IVGTT along with indices of the glucose effec-
tiveness and insulin sensitivity. Furthermore, the estimates of the
glucose effectiveness and the plasma clearance rate are singled out
in the two-compartmental minimal model compared to the original
minimal model which is unable to separate the two estimates.

The OGTT regression models which are used in this thesis are de-
rived using the MinMod estimates. It would therefore be interesting
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to build new OGTT regression models for the insulin sensitivity and
beta-cell function using the grey-box estimates from CTSM to eval-
uate the possibility of getting better predictions of the metabolic
indices from an IVGTT using OGTT measurements.
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Chapter11
Conclusion

The purpose of this thesis is to model the in vivo dynamical system
of insulin and glucose using grey-box PK/PD modelling where a
stochastic term is added to a derived PK/PD model to represent
disturbances and unmodelled dynamics of the physiological system.

The grey-box PK/PD modelling method is applied to two insulin
studies. All PK/PD models presented in this thesis are implemented
in the program CTSM and the parameters are estimated using ML
estimation.

Several different PK and PK/PD models are tested and compared
for the euglycaemic clamp study to determine the characteristics of
two types of insulin, i.e. insulin A and B. The single-compartment
model presented in this thesis is the simplest and most parsimonious
PK model consisting of a central compartment with first-order ab-
sorption of SC insulin and first-order elimination. This model is
shown to be adequate at capturing the different PK of insulin A and
B and the derived PK parameters show that insulin A is a slower
and longer lasting insulin than insulin B.

The purpose of modelling the euglycaemic clamp study is also to
investigate the possibility of estimating the PK and PD of insulin
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simultaneously. The effect-compartment model where the apparent
delay between the plasma insulin concentration and the observed
response is assumed to be distributional, is suitable for predicting
the PD response with the Hill response equation as the effect model.
The estimated PD parameters of the effect-compartment model are
similar to those estimated from in vitro studies which is why the
simultaneous estimation of PK and PD parameters is concluded to
be successful.

The estimates of the diffusion term in the stochastic differential equa-
tions representing disturbances and unmodelled dynamics of the in-
sulin/glucose system are insignificant in most of the clamp models.
The proposed models therefore seem to capture the dynamics of the
in vivo insulin/glucose system but it is difficult to make any con-
clusions since the experimental data from the clamp study is not
persistently excited.

The focus of the two glucose tolerance tests presented in this thesis is
to compare the grey-box estimates with previously published results.

The minimal model of glucose kinetics is used to model the data from
the IVGTT. Out of the three metabolic indices which are estimated
from the minimal model, the insulin sensitivity index SI , a measure
of the insulin-dependent glucose elimination, is the only one which
can be used to distinguish between normal and impaired glucose
tolerant subjects.

The grey-box estimates of SI are lower than previously published
results using the program MinMod due to the added diffusion term
in the system equations. The estimated noise parameters indicate
that the minimal model of glucose kinetics is too simple and should
preferably be revised.

The presented regression models for the OGTT are used to investi-
gate the correlation with the estimates of the insulin sensitivity and
beta-cell function from the IVGTT. The OGTT estimates are not
very correlated with the indices from the IVGTT and it can there-
fore be concluded that the OGTT models are too simple and cannot
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be used to make accurate predictions of the indices from an IVGTT.

Hopefully, this novel way of modelling the PK/PD of insulin will
lead to a better understanding of the in vivo system of insulin and
glucose and thereby come up with better ways to treat diabetes.
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AppendixA
Euglycaemic Clamp Study

This appendix deals with the clamp study. First, the anthropomet-
ric measurements of the twenty subjects in the study are shown in
Table A.1. These measurements include the age, height, body weight
(BW), and body mass index (BMI) of each subject. Next, the identi-
fiability of the single-compartment model and the two-compartment
SC uptake model are investigated. Finally, the equations for the
effect-compartment model are derived and the input and output files
from CTSM for the effect-compartment model are shown.
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A.1 Anthropometric Measurements

Table A.1: Anthropometric measurements for the clamp study.

Subject Age Height BW BMI

[years] [cm] [kg] [kg/m2]

1 18.5 175 70.10 22.9

2 26.1 182 70.10 21.1

3 34.3 193 83.00 22.3

4 23.4 180 80.00 24.7

5 27.5 178 85.20 26.9

6 23.6 196 90.00 23.4

7 27.1 193 81.20 21.8

8 26.7 187 86.00 24.6

9 24.5 183 77.00 23.0

10 26.4 180 78.00 24.1

11 23.0 184 70.00 20.7

12 28.5 185 73.00 21.3

13 25.8 196 103.00 26.8

14 28.0 190 84.00 23.3

15 25.3 180 74.60 23.0

16 23.7 188 76.70 21.7

17 27.3 188 80.00 22.6

18 23.2 187 78.70 22.5

19 25.6 182 78.00 23.5

20 29.5 168 65.00 23.0
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A.2 Identifiability of Single-Compartment Model

The second order linear differential equation for the single-compart-
ment model mentioned in Section 6.1.1 is considered in the following.
The state space model (without the noise model) written in matrix
notation is:

dX

dt
= AX +BU (A.1a)

Y = CX (A.1b)

translates into (A.2) for the single-compartment model:

[

dIsc

dIc

]

=

[

−ka 0

kaF −ke

][

Isc

Ic

]

dt+

[

1 0

0 1

][

D

Rin

]

dt (A.2a)

CI =
[

0 V −1
d

]

[

Isc

Ic

]

(A.2b)

The transfer function G(s) = Y (s)/U(s) for the linear state space
model is obtained by Laplace transformation of (A.2). The Laplace
transform of (A.2a), using the notation in (A.1), is:

(sI −A)X = BU (A.3)

and the transfer function can be found by combining (A.3) and
(A.2b):

G(s) = C (sI −A)−1B

=
[

0 V −1
d

]

[

s+ ka 0

−kaF s+ ke

]−1 [

1 0

0 1

]

=

[

kaF s+ ka

]

(s+ ke) (s+ ka)Vd

(A.4)
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The expression for G(s) is then compared with what is possible to
observe, namely:

G(s) =
s+ p2

q0s2 + q1s+ q2
(A.5)

The parameters in the numerator (p) and denominator (q) can then
be found as:

p2 = ka (F + 1)

q0 = Vd

q1 = Vd (ka + ke)

q2 = Vdkeka

By comparing (A.4) with the parameters above it is clearly seen
that the system is not structural identifiable since a second order
equation is obtained for ke or ka which results in two solutions for ke
or ka. The model can be made structural identifiable by eliminating
F making the parameter p2 = 2ka, thereby making the parameters
ka, ke and Vd uniquely identifiable.

A.3 Identifiability of Two-Compartment SC

Uptake Model

The identifiability of the two-compartment SC uptake model is exam-
ined using the same procedure as in the single-compartment model
(see Appendix A.2).
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The transfer function for the two-compartment SC uptake model is:

G(s) = C (sI −A)−1
B

=
[

0 0 V −1
d

]









s+ ka 0 0

−ka s+ ka − kd 0

0 −ka s+ ke









−1 







1 0

0 0

0 1









=

[

k2a (s+ ka)(s+ ka − kd)
]

Vd (s+ ke) (s+ ka) (s+ ka − kd)
(A.6)

Next, equal powers of s in the transfer function are combined:

G(s) =
s2 + s(2ka − kd) + 2k2a − kakd

Vd [s3 + s2(2ka + ke − kd) + s(k2a + 2kake − kakd − kekd) + k2ake − kakekd]
(A.7)

The observable transfer function for the system is:

G(s) =
s2 + p2s+ p3

q0s3 + q1s2 + q2s+ q3
(A.8)

The expression for the parameters in the numerator (p) and denom-
inator (q) can be found by comparison with the coefficients in (A.7),
i.e.:

p2 = 2ka − kd
p3 = 2k2a − kakd
q0 = Vd

q1 = 2ka + ke − kd
q2 = k2a + 2kake − kakd − kekd
q3 = k2ake − kakekd

It is clearly seen that the two-compartment SC uptake model is a
priori non-identifiable with the current parameters since there does



188 Appendix A. Euglycaemic Clamp Study

not exist a unique solution for the parameters. The identifiability
of the model is obtained by fixing the rate constant kd for insulin
degradation in SC compartment II at 0.015min−1 thereby reducing
the equation for ka to a simple first-order equation.

A.4 Equations for the Effect-Compartment

Model

The following differential equations for the effect-compartment model
describe the rate of change of SC, plasma, and effective insulin:

dIsc
dt

= D · δ(t)− kaIsc (A.9a)

dIc
dt

= kaIsc +Rin − keIc (A.9b)

dIe
dt

= kceIc − ke0Ie (A.9c)

The equation for the amount of insulin in the plasma is the same
as for the single-compartment model since the effect compartment
receives a negligible mass from the central compartment.

Using Laplace transformation, the following system of equations is
obtained:

sIsc(s)− Isc,0 = D − kaIsc(s) (A.10a)

sIc(s)− Ic,0 = kaIsc(s) +
Rin

s
− keIc(s) (A.10b)

sIe(s)− Ie,0 = kceIc(s)− ke0Ie(s) (A.10c)

since L{δ(t)} = 1.

The initial conditions at τ = t+ 90 = 0 in (A.10) are:

Isc = 0

Ic = Ic,0

Ie = Ie,0
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First, Isc(s) is isolated in (A.10a). Next, Ic(s) is isolated in (A.10b)
using the expression for Isc(s):

Isc(s) =
D

s+ ka
(A.11a)

Ic(s) =
kaD

(s+ ke)(s+ ka)
+

Rin

s(s+ ke)
+

Ic,0
s+ ke

(A.11b)

The expression for Isc(s) and Ic(s) are then substituted into (A.10c)
and Ie(s) is isolated:

Ie(s) =
kcekaD

(s+ ke)(s+ ka)(s+ ke0)
+

kceRin

s(s+ ke)(s+ ke0)

+
kceIc,0

(s+ ke)(s+ ke0)
+

Ie,0
s+ ke0

(A.12)

Since all the poles (−ke, −ka, −ke0, and 0) and coefficients in (A.12)
are real, equation (A.12) can be transformed back using the single-
pole rule [3, p. 292] giving the following equation for the inverse
Laplace transform of Ie(s):

L−1 {Ie(s)} =
kcekaD

(s+ ka)(s+ ke0)

∣

∣

∣

s=−ke
· e−ket

+
kcekaD

(s+ ke)(s+ ke0)

∣

∣

∣

s=−ka
· e−kat +

kcekaD

(s+ ke)(s+ ka)

∣

∣

∣

s=−ke0
· e−ke0t

+
kceRin

(s+ ke)(s+ ke0)

∣

∣

∣

s=0
· e−0τ +

kceRin

s(s+ ke0)

∣

∣

∣

s=−ke
· e−keτ

+
kceRin

s(s+ ke)

∣

∣

∣

s=−ke0
· e−ke0τ +

kceIc,0
(s+ ke0)

∣

∣

∣

s=−ke
· e−keτ

+
kceIc,0
(s+ ke)

∣

∣

∣

s=−ke0
· e−ke0τ + Ie,0 · e−ke0τ

(A.13)

The analytical solution for the amount of insulin in the effect com-
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partment Ie can thereby be written as:

Ie = kcekaD

(

e−ket

(ka − ke)(ke0 − ke)
+

e−kat

(ke − ka)(ke0 − ka)

+
e−ke0t

(ke − ke0)(ka − ke0)

)

+ kceRin

(

1

keke0
− e−keτ

ke(ke0 − ke)

− e−ke0τ

ke0(ke − ke0)

)

+ kceIc,0

(

e−keτ

(ke0 − ke)
+

e−ke0τ

(ke − ke0)

)

+ Ie,0 · e−ke0τ

(A.14)

The insulin concentration in the effect compartment Ce is expressed
as Ce = Ie/Ve, where Ve is the volume of the effect compartment.
Since Ve cannot be measured, the insulin effect is related to the
insulin concentration in the plasma under steady-state conditions
where Cc,ss = Ce,ss. At steady-state, the following equation is there-
fore valid:

Vd · kce · Cc,ss = Ve · ke0 · Ce,ss (A.15)

which solved for Ve gives:

Ve =
Vdkce
ke0

(A.16)

By using the expression for Ve, the equation for the insulin concen-
tration in the effect compartment becomes:

Ce =
Ieke0
Vdkce

(A.17)

Substituting (A.14) into (A.17) yields:

Ce =
Dke0ka
Vd

(

e−ket

(ka − ke)(ke0 − ke)
+

e−kat

(ke − ka)(ke0 − ka)

+
e−ke0t

(ke − ke0)(ka − ke0)

)

+
Rinke0
Vd

(

1

keke0
− e−keτ

ke(ke0 − ke)

− e−ke0τ

ke0(ke − ke0)

)

+
Ic,0ke0
Vd

(

e−keτ

(ke0 − ke)
+

e−ke0τ

(ke − ke0)

)

+
Ie,0ke0
Vdkce

· e−ke0τ

(A.18)
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where the part with D is equal to zero for t ∈ [−90, 0] since the SC
insulin is injected at t = 0.

In the equation above, it is seen that the insulin concentration in
the effect compartment is independent of kce except for the fraction
with Ie,0 in the nominator thus not affecting the differential equa-
tions for the system since the initial amount of insulin in the effect
compartment easily can be redefined as Ie,0/kce. Consequently, the
time-dependent aspects of the equilibrium between the plasma and
effect concentration are only controlled by the equilibrium constant
Ke0.

The differential equations for the effect-compartment model can there-
by be written as:

dIsc
dt

= D · δ(t)− kaIsc (A.19a)

dIc
dt

= kaIsc +Rin − keIc (A.19b)

1

Ve

dIe
dt

= Ke0

( Ic
Vd
− Ie
Ve

)

(A.19c)

where Ke0 is the equilibrium constant for equilibrium between the
central and effect compartment.

A.5 CTSM Files

Input to CTSM

The input file used for estimation of the effect-compartment model
is shown in Table A.2 for subject 3.
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Table A.2: CTSM input file for the effect-compartment model.

Time D Rin CI GIR

[min] [nmol] [nmol] [nM] [10−2 mol/min]

-90 0.0 0.081672 0.055104 0.10491

-60 0.0 0.081672 0.10824 0.13877

-30 0.0 0.081672 0.093808 0.068274

0 108.896 0.081672 0.066256 0.061613

1 0.0 0.081672 2.0E+300 0.041076

10 0.0 0.081672 0.1417 0.13377

20 0.0 0.081672 0.39098 0.067164

30 0.0 0.081672 0.52611 0.26533

40 0.0 0.081672 0.42771 0.4757

50 0.0 0.081672 0.41656 0.57062

60 0.0 0.081672 0.4487 0.57561

75 0.0 0.081672 0.4041 0.59948

90 0.0 0.081672 0.46838 0.72493

105 0.0 0.081672 0.41197 0.54619

120 0.0 0.081672 0.36014 0.51067

150 0.0 0.081672 0.29651 0.67775

180 0.0 0.081672 0.25387 0.48958

210 0.0 0.081672 0.21058 0.43129

240 0.0 0.081672 0.16138 0.41298

270 0.0 0.081672 0.16203 0.41131

300 0.0 0.081672 0.1535 0.30141

330 0.0 0.081672 0.081344 0.056063

360 0.0 0.081672 0.10365 0.13766

390 0.0 0.081672 0.11414 0.19483

420 0.0 0.081672 0.11414 0.11101

450 0.0 0.081672 0.1043 0.11823

480 0.0 0.081672 0.097088 0.094918

510 0.0 0.081672 0.081344 0.14709

540 0.0 0.081672 0.089216 0.07438

570 0.0 0.081672 0.069536 0.079376

600 0.0 0.081672 0.09184 0.11601
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Output from CTSM

The output from CTSM consists of some information about the op-
timization, the setup used for estimation along with the estimation
results, and the estimated correlation matrix.

Table A.3: CTSM optimization results for the effect-compartment model.

Value of objective function −1.000963822904744E+02

Value of penalty function 5.663221463800949E−04

Negative logarithm of determinant of Hessian −1.172734634881623E+02

Number of iterations 119

Number of objective function evaluations 172
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Table A.4: CTSM estimation results for the effect-compartment model.

Name Min. value Initial value Max. value Prior std. dev. Estimate Std. dev. t-score p(> |t|) dF/dPar dPen/dPar

Isc,0 Fix N/A 0.0 N/A N/A 0.0 N/A N/A N/A N/A N/A

Ic,0 ML 0.0 3.0 10.0 N/A 2.6384E+00 1.2955E+00 2.0366 0.0474 0.0000 0.0000

Ce,0 ML 0.0 0.1 1.0 N/A 1.0780E-01 3.1777E-02 3.3924 0.0014 0.0000 0.0000

ka ML 0.0 0.01 0.1 N/A 7.3497E-03 7.2944E-04 10.0759 0.0000 -0.0000 0.0000

F Fix N/A 1.0 N/A N/A 1.0 N/A N/A N/A N/A N/A

ke ML 0.0 0.01 0.1 N/A 3.9059E-02 6.6901E-03 5.8383 0.0000 0.0000 0.0001

Ke0 ML 0.0 0.01 0.1 N/A 2.6053E-02 4.3714E-03 5.9598 0.0000 0.0000 0.0000

Vd ML 0.0 30.0 100.0 N/A 3.4359E+01 6.3678E+00 5.3956 0.0000 0.0000 0.0001

σsc ML 0.0 1.0 10.0 N/A 1.7460E-07 3.0731E-02 0.0000 1.0000 -0.0000 0.0000

σc ML 0.0 1.0 10.0 N/A 7.2017E-09 1.4657E-03 0.0000 1.0000 -0.0000 0.0000

σe ML 0.0 1.0 10.0 N/A 2.4896E-12 6.7938E-07 0.0000 1.0000 -0.0000 0.0000

Emax ML 0.0 0.5 1.5 N/A 9.1570E-01 2.3371E-01 3.9181 0.0003 -0.0000 0.0004

γ ML 1.0 2.0 5.0 N/A 2.0325E+00 4.3342E-01 4.6894 0.0000 -0.0000 -0.0001

EC50 ML 0.0 0.2 1.0 N/A 2.6840E-01 7.7334E-02 3.4706 0.0012 0.0000 0.0001

S2
c ML 0.0 1.0 10.0 N/A 1.2529E-03 3.5428E-04 3.5365 0.0010 -0.0000 0.0000

S2
GIR ML 0.0 1.0 10.0 N/A 3.7529E-03 9.2274E-04 4.0672 0.0002 -0.0000 0.0000
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Table A.5: CTSM estimation of correlation matrix for the effect-compartment model.

Ic,0 Ce,0 ka ke Ke0 Vd σsc σc σe Emax γ EC50 S2
c S2

GIR

Ic,0 1

Ce,0 -0.1578 1

ka 0.3538 -0.2777 1

ke -0.4430 0.1856 -0.7273 1

Ke,0 0.0527 -0.0681 -0.0811 -0.3472 1

Vd 0.4518 -0.2309 0.8106 -0.9798 0.2733 1

σsc -0.0328 0.0406 -0.0274 0.0787 -0.0826 -0.0797 1

σc -0.0328 0.0405 -0.0274 0.0787 -0.0826 -0.0797 1.0000 1

σe -0.0328 0.0406 -0.0274 0.0787 -0.0826 -0.0797 1.0000 1.0000 1

Emax -0.1588 -0.1623 -0.1544 0.1821 0.0790 -0.1814 -0.0393 -0.0393 -0.0393 1

γ 0.0744 0.3361 -0.1092 0.0614 -0.2132 -0.0794 0.0735 0.0735 0.0735 -0.8828 1

EC50 -0.1634 -0.1300 -0.1877 0.1768 0.1446 -0.1972 -0.0407 -0.0407 -0.0407 0.9853 -0.8783 1

S2
c -0.0339 0.0271 -0.1037 0.1855 -0.1298 -0.1887 0.0845 0.0845 0.0845 0.0178 0.0379 0.0217 1

S2
GIR -0.1066 0.0562 -0.0452 0.0581 -0.0615 -0.0645 0.0316 0.0316 0.0316 -0.0078 0.0192 -0.0104 -0.0606 1
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AppendixB
Glucose Tolerance Studies

The sample mean and standard deviation of the anthropometric mea-
surements from the glucose tolerance studies are shown in this ap-
pendix along with the MM parameter estimates. The MM equation
for plasma glucose is derived and the input and output files from
CTSM for the estimation of the parameters in the MM of glucose
kinetics are shown at the end of this appendix.
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B.1 Anthropometric Measurements

Table B.1: Anthropometric measurements for the glucose tolerance stud-
ies.

Units NGT IGT Type II Total
diabetics

N (men/women) [-] 261 (112/149) 27 (10/17) 70 (38/32) 358 (160/198)

Age [years] 42.0 (12.2) 46.4 (12.0) 62.8 (12.2) 46.4 (14.6)

Height [cm] 172.2 (8.7) 168.6 (9.8) 168.7 (10.2) 171.3 (9.2)

Weight [kg] 77.2 (14.5) 85.6 (17.8) 86.4 (17.6) 79.6 (15.9)

Waist [cm] 85.7 (12.4) 94.0 (15.2) 99.2 (13.9) 88.8 (14.0)

Hip [cm] 99.6 (9.0) 107.5 (8.8) 105.0 (11.0) 101.2 (9.7)

BMI [kg/m2] 26.0 (4.5) 30.0 (5.3) 30.3 (5.0) 27.1 (5.0)

The numbers are mean values with the standard deviation shown in brackets.

B.2 Derivation of MM Glucose Equation

The accumulation of plasma glucose can be written using equation
(8.1) for the hepatic glucose production B and equation (8.2) for the
utilization of glucose into the peripheral tissue Up, i.e.:

Accumulated = In − Out

=
(

B +D · δ(t)
)

− Up
dG

dt
= B0 − (k5 + k6Ir)G+D · δ(t) − (k1 + k4Ir)G

The equation for the accumulation of plasma glucose is next rear-
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ranged to the following equation:

dG

dt
= −

[

(

k1 + k5
)

+
(

k4 + k6
)

Ir

]

G+
(

k1 + k5
)

Gb +D · δ(t) (B.1)

where the extrapolated hepatic glucose production at zero glucose
concentration B0 is written as

(

k1+k5
)

Gb to obtain the MM equation
for plasma glucose. The insulin-independent glucose elimination is
therefore only dependent on the glucose above the basal level of
glucose Gb since the equation for the plasma glucose can be rewritten
as:

dG

dt
= −

(

k1 + k5
)(

G−Gb

)

+
(

k4 + k6
)

IrG+D · δ(t) (B.2)

B.3 Parameter Estimates from the MM

Table B.2: Sample mean and standard deviation of the MM parameter
estimates.

NGT IGT

Parameter Unit θ̄ s̄ θ̄ s̄

G0 [mmol] 69.5577 17.9816 73.1372 18.2347

p1 [min−1] 0.0206 0.0095 0.0211 0.0102

p2 [min−1] 0.0804 0.0846 0.2778 0.3580

p3 [min−2pM−1] 0.0008 0.0008 0.0004 0.0005

V [L] 13.3401 3.1637 12.6624 2.7233

σG [-] 0.1487 0.4219 0.1912 0.5555

σX [-] 0.0079 0.0371 0.0221 0.0561

S2 [-] 0.0630 0.0792 0.0296 0.0233

AIR0−8 [pM min] 2.3265E03 1.0320E03
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B.4 CTSM Files

Input to CTSM

The input file used for estimation of the minimal model is shown in
Table B.3 for a representative NGT patient in the study.

Table B.3: CTSM input file for the minimal model.

Time D CI CGb
CG,obs

[min.] [mmol] [10−1 µM] [mM] [mM]
-10 0.0 0.49 3.6667 5.45
-5 0.0 0.45 3.6667 5.35
0 125.6558 0.49 3.6667 5.35
1 0.0 1.93 3.6667 2.0E300
2 0.0 4.35 3.6667 15.15
3 0.0 5.27 3.6667 15.25
4 0.0 4.47 3.6667 15.40
5 0.0 3.9 3.6667 14.20
6 0.0 3.09 3.6667 13.85
7 0.0 2.55 3.6667 13.00
8 0.0 2.1 3.6667 12.75
10 0.0 1.95 3.6667 12.35
12 0.0 1.71 3.6667 12.15
14 0.0 1.49 3.6667 11.60
16 0.0 1.31 3.6667 11.05
19 0.0 1.23 3.6667 10.65
22 0.0 4.15 3.6667 10.20
23 0.0 4.61 3.6667 10.30
24 0.0 4.38 3.6667 10.25
25 0.0 4.07 3.6667 9.90
27 0.0 3.43 3.6667 9.55
30 0.0 2.41 3.6667 9.00
35 0.0 1.97 3.6667 7.85
40 0.0 1.76 3.6667 6.95
50 0.0 1.16 3.6667 6.10
60 0.0 0.76 3.6667 5.10
70 0.0 0.65 3.6667 4.50
80 0.0 0.48 3.6667 4.35
90 0.0 0.31 3.6667 4.05
100 0.0 0.21 3.6667 3.75
120 0.0 0.12 3.6667 3.45
140 0.0 0.09 3.6667 3.50
160 0.0 −0.04 3.6667 3.45
180 0.0 −0.05 3.6667 4.05
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Output from CTSM

The output from CTSM consists of some information about the op-
timization, the setup used for estimation along with the estimation
results, and the estimated correlation matrix.

Table B.4: CTSM optimization results for the minimal model.

Value of objective function 3.557747789279118E+00

Value of penalty function 2.726449889477113E−04

Negative logarithm of determinant of Hessian −5.715943569711322E+01

Number of iterations 48

Number of objective function evaluations 75

Table B.5: CTSM estimation setup and results for the minimal model.

Name Min. value Initial value Max. value Prior std. dev. Estimate Std. dev.

G0 ML 0.0 1.0 100.0 N/A 6.5504E+01 3.5506E+00

X0 Fix N/A 0.0 N/A N/A 0.0 N/A

p1 ML 1.0E-5 0.03 0.1 N/A 2.0097E-02 4.8879E-03

V ML 0.0 40.0 50.0 N/A 1.2610E+01 3.9444E-01

p3 ML 1.0E-5 1.0E-4 0.1 N/A 6.9959E-04 1.7469E-04

p2 ML 1.0E-5 0.5 2.0 N/A 5.7490E-02 1.7436E-02

σG ML 0.0 0.1 2.0 N/A 9.8176E-01 3.4316E-01

σX ML 0.0 0.1 1.0 N/A 7.9394E-09 5.3310E-06

S2
G ML 0.0 0.1 1.0 N/A 7.3042E-02 2.5261E-02

Name t-score p(> |t|) dF/dPar dPen/dPar

G0 18.4487 0.0000 0.0000 0.0006

X0 N/A N/A N/A N/A

p1 4.1117 0.0004 -0.0000 0.0000

V 31.9691 0.0000 -0.0000 0.0000

p3 4.0048 0.0006 -0.0000 -0.0000

p2 3.2973 0.0031 0.0000 0.0000

σG 2.8609 0.0087 0.0000 0.0002

σX 0.0015 0.9988 -0.0000 0.0000

S2
G 2.8914 0.0081 -0.0000 0.0000
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Table B.6: CTSM estimation of correlation matrix for the minimal model.

G0 p1 V p3 p2 σG σX S2
G

G0 1

p1 -0.3951 1

V 0.7979 -0.5535 1

p3 0.2891 -0.8071 0.3883 1

p2 0.2436 -0.7177 0.3338 0.9289 1

σG -0.0593 0.2933 -0.1937 -0.2725 -0.2870 1

σX -0.2860 0.7411 -0.3507 -0.8562 -0.8877 -0.0749 1

S2
G 0.0942 -0.1600 0.2102 0.1320 0.1356 -0.4035 -0.0004 1
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