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Abstract— Statistical region-based segmentation methods
such as the Active Appearance Models establish dense cor-
respondences by modelling variation of shape and pixel in-
tensities in low-resolution 2D images. Unfortunately, for
high-resolution 2D and 3D images, this approach is rendered
infeasible due to excessive storage and computational re-
quirements. This paper addresses the problem by modelling
the appearance of wavelet coefficient subsets contrary to the
pixel intensities. We call this Wavelet Enhanced Appear-
ance Modelling (WHAM). Experiments using the orthog-
onal Haar wavelet and the bi-orthogonal CDF 9-7 wavelet
on cardiac MRIs and human faces show that the segmenta-
tion accuracy is minimally degraded at compression ratios
of 1:10 and 1:20, respectively.

Keywords— Segmentation, compression, Active Appear-
ance Models, wavelets, multi-scale analysis.

I. Introduction

DUE to the advances in computational power and stor-
age capacity it has become feasible to build complete

models of object classes. These models are complete in the
sense that every pixel on the surface of every object in a
training set is taken into account in a statistical analysis.
This has lead to generative models capable of synthesising
photo-realistic images of objects, which has proven to be
a very robust and widely applicable approach to interpret
unseen images. Since a compact parameterisation of the
complete appearance of an unseen object is provided along
with a precise localisation of the object shape, applications
goes far beyond segmentation and registration.

Modelling every pixel is manageable for low-resolution
2D images. But moving to high-resolution 2D images, 2D
and even 3D time-series, this approach is rendered infea-
sible due to excessive storage and computational require-
ments. We address this problem by applying wavelet com-
pression to the widely used generative model; the Active
Appearance Model (AAM) [1], [2].

Since wavelets provide an approximate decorrelated rep-
resentation of each training image, we aim at choosing
consistent subsets of wavelet coefficients over the complete
training set. The AAM is subsequently built using these
subsets in order to lessen the computational and storage
requirements. Contrary to traditional image compression
vector quantisation, entropy coding etc. are not carried
out. Consequently, the reported compression ratios does
not commensurate to those of the traditional compression
literature. The major challenge in this context is to choose
an appropriate wavelet basis and a subset that affects the fi-
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nal performance measure as little as possible. In this study
we focus mostly on the segmentation capabilities of AAMs.

The paper is organised as follows: Section 2 describes
the background of this work. Section 3 and 4 introduces
Active Appearance Models and wavelets. Sections 5 and 6
deal with the incorporation of wavelets into AAMs. Sec-
tion 7 evaluates the segmentation ability of wavelet-based
AAMs. Section 8 comments on the implementation and
Sections 9 and 10 give pointers to future work and draw
some concluding remarks.

II. Background

AAMs were introduced in [1], [2] with applications to
face segmentation and recognition. These models con-
tained 10.000 pixels and were built on sub-sampled input
images of approximately 200x300 pixels [3].

Aiming at reducing computational costs Cootes et al. [4]
used a sub-sampling scheme to reduce the texture model
by a ratio of 1:4. The scheme selected a subset of the
pixel intensities based on the ability of each pixel to pre-
dict corrections of the model parameters. When exploring
different multi-band appearance representations Stegmann
and Larsen [5] studied the segmentation accuracy of face
AAMs at different scales in the range 850 – 92.118 pixels
obtained by pixel averaging.

The main source of inspiration for our work is the ini-
tial experiments of Wolstenholme and Taylor [6]. Here, the
Haar wavelet was incorporated into the AAM framework
and evaluated on a brain MRI data set at a compression
ratio of 1:20. This approach is also very similar to the com-
pression of industrial process data in chemometrics, see e.g.
Trygg et al. [7].

III. Active Appearance Models

Active Appearance Models establish a compact param-
eterisation of object variability, as learned from a training
set by estimating a set of latent variables. The modelled
object properties are usually shape and pixel intensities.
The latter is henceforward denoted texture. From these
quantities new images similar to the training set can be
generated.

Objects are defined by marking up each example with
points of correspondence over the set either by hand, or by
semi- to completely automated methods. The key to the
compactness of these models lies in proper compensation
of shape variability prior to modelling texture variability.
Models failing in doing this, such as Eigen-faces [8], experi-
ence major difficulties in modelling variability in a compact
manner.

Exploiting prior knowledge about the local nature of the
optimisation space, these models can be rapidly fitted to



unseen images, given a reasonable initialisation.
Variability is modelled by means of a Principal Compo-

nent Analysis (PCA), i.e. an eigen analysis of the disper-
sions of shape and texture. Let there be given P training
examples for an object class, and let each example be rep-
resented by a set of N landmark points and S texture sam-
ples. The shape examples are aligned to a common mean
using a Generalised Procrustes Analysis. The Procrustes
shape coordinates are subsequently projected into the tan-
gent plane of the shape manifold, at the pole denoted by the
mean shape. The textures are warped into correspondence
using a piece-wise affine warp and subsequently sampled
from this shape-free reference. Typically, this geometrical
reference is the Procrustes mean shape. Let s and t denote
a synthesized shape and texture and let s and t denote the
corresponding means. New instances are now generated by
the adjusting PC scores, bs and bt in

s = s + Φsbs , t = t + Φtbt (1)

where Φs and Φt are eigenvectors of the shape and texture
dispersions estimated from the training set. To regularise
the model and improve speed and compactness, Φs and Φt

are truncated, usually such that a certain amount of vari-
ance in the training set is explained. To obtain a combined
shape and texture parameterisation, c, the values of bs and
bt over the training set are combined

b =
(

Wsbs

bt

)
=

(
WsΦT

s (s− s)
ΦT

t (t− t)

)
. (2)

Notice that a suitable weighting between pixel distances
and pixel intensities is done through the diagonal matrix
Ws. To recover any correlation between shape and texture
a third PC transform is applied

b = Φcc (3)

obtaining the combined appearance model parameters, c,
that generate new object instances by

s = s+ΦsW−1
s Φc,sc , t = t+ΦtΦc,tc , Φc =

(
Φc,s

Φc,t

)
.

(4)
The object instance, (s, t), is synthesised into an image

by warping the pixel intensities of t into the geometry of
the shape s. Given a suitable similarity measure the model
is matched to an unseen image using an iterative updating
scheme based on a fixed Jacobian estimate [9], [3] or a
reduced rank regression [2].

This sums up the basic theory of AAMs. For further
details refer to [2], [9], [3].

IV. Wavelets

Wavelets are a family of basis functions that decompose
signals into both space and frequency. Though originated
in a continuous formulation, this work will use the discrete
wavelet transform (DWT), which can be viewed as a set
of successive rank-preserving linear operations by matrix
operators. In practice these are carried out in a subband

Fig. 1. The wavelet coefficients of a two-level octave decomposition
using the Haar wavelet.

convolution scheme known as the fast wavelet transform
(FWT) [10] where an image is decomposed by a high-pass
filter into a set of detail wavelet subbands, and by a low-
pass filter into a scale coefficient subband. These bands
are then down-sampled and can be further decomposed.
Each decomposition thus adds a new scale level. We use
the octave decomposition scheme that successively decom-
poses the scale subband, giving a discrete frequency de-
composition. Alternative decomposition schemes include
the wavelet packet basis where successive decompositions
are carried out in the detail subbands as well.

Figure 1 shows a two-level octave wavelet decomposi-
tion. The first, third and fourth quadrants are the detail
subbands and stem from the initial decomposition (level 1).
The four sub-quadrants of the second quadrant stem from
the second decomposition (level 2) with the scale subband
at the top left corner.

Apart from being simple linear operators, wavelets are
invertible which is typically achieved by orthonormality.
Consequently, wavelet transforms can be considered a ro-
tation in function space, which adds a notion of scale. In
Figure 1 the Haar wavelet is applied by convolutions of the
low- and high pass filters 1

2 [
√

2
√

2 ]T and 1
2 [
√

2 −√2 ]T,
respectively. The figure illustrates the zero-order vanishing
moment of the Haar wavelet, i.e. that zero-order surfaces
have a zero response in the detail subbands.1 This is ex-
ploited in compression by removing near-zero wavelet co-
efficients with minimal impact on the reconstruction. Fur-
ther, the scale property of wavelets lends itself nicely to
progressive signal processing, e.g. transmission.

Wavelets that are not strictly orthogonal will also be
considered in the following. These have odd length, linear
phase and high efficiency for compression purposes. They
are called bi-orthogonal wavelets and come in pairs of anal-
ysis and synthesis filters, which together form a unitary
operation.

1Higher-order vanishing moments can for example be obtained from
the family of orthogonal Daubechies wavelets.



V. Wavelet Enhanced Appearance Modelling

This section introduces a notation for wavelet compres-
sion and provides a more detailed discussion of how this
can be integrated into a traditional AAM framework. Since
AAMs provide a shape-compensated representation of tex-
tures, namely the shape-free reference frame, all wavelet
manipulations are done herein. We call this Wavelet En-
hanced Appearance Modelling (WHAM).

A. Mathematical Observations

Let an n-level wavelet transform be denoted by

W(t) = Γt = ŵ = [ âT û1 · · · ûT
n ]T (5)

where â and û are the scale and detail wavelet coefficients,
respectively. In the case of 2D images each set of detail co-
efficients is an ensemble of horizontal, vertical and diagonal
filter responses:

ûi = [ ĥ
T

i v̂T
i d̂

T

i ]T. (6)

Compression is now obtained by a truncation of the wavelet
coefficients

C(ŵ) = Cŵ = w = [ aT u1 · · · uT
n ]T (7)

where C is a modified identity matrix, with rows corre-
sponding to truncated coefficients removed.

Following [6] we build AAMs upon the truncated wavelet
basis, w = C(W(t)), contrary to the image intensities in t.
Consequently, this adds scale-portions to all texture-related
matrices in the AAM. For the texture PCA of wavelet co-
efficients we have

w = w + Φwbw ⇔ (8)



a
u1

...
un


 =




a
u1

...
un


 +




Φa

Φu1

...
Φun


bw

where Φw is the eigenvectors of the wavelet covariance ma-
trix. Rearranging this into scaling and detail terms we get

a = a + Φabw , ui = ui + Φuibw , i = 1 . . . n. (9)

The PCA texture model is now inherent multi-scale and
can used for analysis/synthesis at any given scale. Mo-
tivations for doing so would include robustness and com-
putational efficiency. Further, compared to conventional
multi-scale AAMs this also gives a major decrease in stor-
age requirements. However, since the PCA is calculated
at full scale (including all detail bands) we can not expect
this to be strictly equal to the separate scale-PCAs of con-
ventional multi-scale AAMs.

Using non-truncated orthogonal wavelets (i.e. C = I),
W(t) is a true rotation in texture hyperspace. Hence the
resulting PCA is simply a rotation of the original intensity
PCA, i.e. Φw = ΓΦt (using proper centring), iif W is fixed

Fig. 2. Two-level wavelet decomposition of a texture vector.

over the training set. The principal component scores are
identical, bw = bt. If C is chosen to truncate the wavelet
basis along directions with near-zero magnitude, we can
assume the wavelet PC scores to be approximate equal to
the original PC scores.

Finally we note the scale structure of the principal com-
ponent regression traditionally employed in AAMs where
residual texture vectors between the model and image,
δt = tmodel − timage are regressed against known displace-
ment vectors, δc. For wavelet-based textures this becomes:

δc = Rδw ⇔ (10)

δc =




...
...

...
Ra Ru1 · · · Run

...
...

...



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...
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
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Rearranging into scaling and subband terms we have

δc = Raδa +
n∑

i=1

Ruiδui. (11)

B. Wavelets in Practice

The construction and usage of the sparse matrix Γ is
cumbersome and excessively slow. Instead the fast wavelet
transform (FWT) is applied. Since the FWT decomposes
images and not vectors care must be taken in making
appropriate conversions between vectors and images vice
versa.

In Figure 2 a normalised texture vector is wavelet trans-
formed and truncated using the notation of Section V-A.
First the vector is rendered into its equivalent shape-free
image. Secondly, the shape-free image is expanded into a
dyadic image to avoid any constraints on n due to image
size. This image is then transformed using FWT and sub-
sequently rendered into the vector ŵ by masking out areas
outside the octave representation of the reference shape.
Eventually, ŵ is compressed by truncation, T , into w.

C. Free Parameters

To apply the above wavelet transform, the type of
wavelet, W, must be chosen and values for n and C must
be determined. Being a key issue, the estimation of C is
described in a later section.

The choice the wavelet type depends on two issues i) the
nature of the data and ii) computational issues. Data con-
taining sharp edges suggests sharp filters such as the Haar



wavelet and smooth data requires smooth wavelets. How-
ever, the price of higher order vanishing moments comes
in form of increased computational load induced by the
extra filter-taps. Since the wavelets operate in a finite dis-
crete domain traditional boundary issues arises w.r.t. the
filter implementation. Consequently, the longer smoother
wavelets suffer more from boundary effects.

The upper bound on the number of scale levels, n, is
given directly by min(dlog2(w)e, dlog2(h)e), w and h being
the image width and height. We choose n heuristically, so
it is possible to recognise the object at the smallest scale.
One should observe that boundary effects increase with n.

D. Handling Boundary Effects

In wavelet compression boundaries are typically handled
by extending the signal by mirroring. In this way filter re-
sponses for the full image can be calculated. Obviously, the
width of the required boundary extension is obtained from
the width of the wavelet filter. For even-length wavelets
such as Haar the symmetry point is placed between the
edge pixel and the first boundary extension pixel. For odd-
length wavelets the symmetry point is placed on the edge
pixel.

Normally this is carried out as a rectangular extension.
However, in this application the extension should adapt to
the shape of the texture image. Augmenting the wavelet
transform with the shape-free reference mask carries this
out.

If one is stuck with an out-of-the-box wavelet package for
rectangular domains, a poor mans solution is to perform
a shape adaptive horizontal and vertical mirroring of the
dyadic shape image. In this case the width of the mirroring
should be <filter width>× 2n−1.

E. Putting it All Together

The full scheme for building a Wavelet Enhanced Ap-
pearance Model now becomes:

1. Sample all training textures into {ti}P
i=1.

2. Transform {ti}P
i=1 into {ŵi}P

i=1.
3. Estimate ŵ.
4. Estimate C.
5. Transform {ŵi}P

i=1 into {wi}P
i=1.

6. Build an AAM on {wi}P
i=1.

Further, all incoming textures in subsequent optimisa-
tion stages should be replaced with their truncated wavelet
equivalents.

The synthesis of a WHAM is the reverse of Figure 2,
again with appropriate masking. Reconstruction of trun-
cated wavelet coefficients is accomplished by inserting the
truncated coefficients into their original positions and in-
serting mean values at all truncated positions:

ŵsynth = Csynth(w) = CTw + Csynthŵ (12)

where Csynth is a modified identity matrix, with rows cor-
responding to non-truncated coefficients zeroed. Mirroring

is carried out around shape edges to minimise boundary
effects.

F. Extension to Multi-channel AAMs

Support for multi-channel images such as RGB [11],
Edge AAMs [12] or composite representations [5] can be
implemented in different ways. A simple approach is to
wavelet transform each texture band separately with non-
coupled truncation schemes. However, this often leads to
situations where one multi-band pixel is partially truncated
and partially included into the model. If this is not desir-
able, a composite per-pixel measure must be used when
estimating C, e.g. the sum of band variances at that pixel
position.

G. A Note on Representation

Depending on the AAM implementation, the conversion
from t to the shape-free image might be avoided since this is
often the canonical representation of t after warping. The
calculation of the truncation can also be done directly in
image-space to avoid unnecessary transforms from vector
to image-space etc.

VI. Wavelet Coefficient Selection

For segmentation purposes the optimal C is given by the
minimum average error between the optimised model shape
and the ground truth shape over a test set of t examples:

arg min
C

(
t∑

i=1

|si,model − si,ground truth|2
)

. (13)

subject to the constraint that C has s rows. This gives rise
to a compression of ratio 1 : S/s.

Unfortunately it is not feasible to perform direct opti-
misation of (13). Gradients are not well defined and each
cost function evaluation involves building a complete model
from the training set and a subsequent evaluation on a test
set.

Alternatively one can reside to design C based on prior
beliefs. Below we will show a few schemes originated from
such beliefs.

A. Preserving Variance

The traditional approach when dealing with compression
based on training data ensembles, taken by [6], is to let
C preserve per-pixel variance over the training set. This
is easily accomplished by constructing C to select the s
largest coefficients from

κ =
P∑

i=1

(ŵi − ŵ)¯ (ŵi − ŵ). (14)

where ¯ denotes the Hadamard product (i.e. element-wise
multiply).

We further propose to assume spatial coherence and reg-
ularise this scheme by a smoothing of κ (in the image do-
main) by



κ ← κ ∗G (15)

where ∗G denotes a convolution with a suitable kernel
(preferably Gaussian).

B. Preserving Energy

Single images are compressed by truncating near-zero
coefficients. But since our aim is to calculate statistics on
a set of training textures, consistent coefficients are needed.
Hence locally optimal coefficients cannot be chosen.

Nevertheless, preserving energy rather than variance
might lead to better segmentation. Coefficients with low
energy consistent over the training set stem from regions
decorrelated by the wavelet filter and are consequently safe
to ignore in a reconstruction sense.2 These are constant
regions, linear ramp regions etc. depending on the wavelet
used. Thus C is constructed by selecting the s largest co-
efficients from

κ =
P∑

i=1

ŵi ¯ ŵi. (16)

This truncation has some impact on the generative prop-
erty of AAMs. Whereas preserving variance gives an opti-
mal reconstruction for a per-pixel truncation scheme, this
scheme trades medium-variance coefficients of low magni-
tude for high magnitude coefficients. This might be bene-
ficial in segmentation applications but not in applications
where the generative property is used directly.

C. Preserving Gaussianity

Along the lines of the above we can further elaborate on
the idea of preferring coefficients that act as a stable sig-
nature of the modelled object class. While the two earlier
schemes were blind to the distribution of each coefficient
included in the model, we propose a third scheme that pre-
serves a property well modelled by the AAM framework,
namely Gaussianity.

To accomplish this, we borrow from the maximisation
of non-Gaussianity employed in the estimation of indepen-
dent components in ICA. As [13] we exploit a central re-
sult from information theory, namely that a Gaussian dis-
tributed random variable exhibit maximal entropy among
all random variables of equal variance. This leads to the
concept of negentropy

NE(y) = E(ν)− E(y) (17)

where E denotes the entropy, y a standardised random vari-
able and ν ∈ N(0,Σν), Σν = I.

Thus NE is zero for a Gaussian distributed variable. A
measure of Gaussianity that is simple to compute and far
more robust than the traditional kurtosis measure is ob-
tained by the following approximation:

NE(y) ≈
j∑

i=1

[E{Gi(y)} − E{Gi(ν)}]2 . (18)

2However, they still act as a stable signature of the object class, i.e.
in a recognition sense this behaviour should also be modelled.

Fig. 3. Left: Contours of a shape-free face. Middle: Corresponding
distance map. Right: Thresholded distance map.

Like [13] we use j = 2 and

G1(x) = log cosh x , G2(x) = − exp(
−x2

2
). (19)

Now C can be constructed by selecting the s smallest co-
efficients from the vector v, where each element is

vi = NE({ŵi}P
i=1). (20)

Furthermore, one might want to exclude elements with lit-
tle energy prior to this selection.

D. Preserving Texture Near Landmarks

Another prior belief is to consider image intensities
around model contours important. If the shape interior
is unstable this will lead to better models. The predeces-
sor to AAMs, the Active Shape Models [14] featured a fixed
limitation of only modelling texture variation along model
point normals. Here we will extend this to a narrow band
around all model contours by means of the fast marching
method [15]. To obtain C we march from all model con-
tours with a constant speed function of one.3 Coefficients
can then selected by thresholding in this distance map. Al-
ternatively the map can be used as a weighting factor on
a second selection scheme. An example of the scheme ap-
plied to a face model is shown in Figure 3.

This concludes the list of coefficient selection schemes.
While only the first scheme is evaluated in the following,
results for the remaining schemes and weighted combina-
tions will be given in an extended edition of this paper.

VII. Implementation

A C++ implementation of the WHAM framework
have been based on the AAM-API, which is an AAM
implementation in C++ that can be downloaded from
http://www.imm.dtu.dk/~aam/. In the current version,
the wavelet filtering is implemented in non-optimised C++.
For time critical applications we recommend to use the
wavelet functionality in the library Intel Performance Prim-
itives, IPP. For further exploration of wavelets we recom-
mend the Stanford WaveLab package for Matlab.

3Though we have chosen the fast marching method, any other dis-
tance transform is applicable, e.g. Chamfer distance maps etc.



VIII. Experiments

To assess the practical impact of the above a set of exper-
iments was carried out on cardiac magnetic resonance im-
ages and perspective images of human faces. Below the sen-
sitivity of the segmentation accuracy was evaluated w.r.t.
compression ratio and wavelet type. All experiments used
three decomposition levels. Pt.pt. and pt.crv. measures
were used for benchmarking segmentation accuracy.4 In
both case studies all models were initialised by displacing
the mean model configuration±10% of its width and height
in x and y from the known optimal position.

A. Short-axis Cardiac Magnetic Resonance Images

Short-axis, end-diastolic cardiac MRIs were selected
from 14 subjects. MRIs were acquired using a whole-body
MR unit (Siemens Impact) operating at 1.0 Tesla. The
chosen MRI slice position represented low and high mor-
phologic complexity, judged by the presence of papillary
muscles. The endocardial and epicardial contours of the
left ventricle were annotated manually by placing 33 land-
marks along each contour, see Figure 4. This set was par-
titioned into a training set of 10 examples and a test set of
4 examples.

The first combined mode of texture and shape variation
is shown in Figure 5 for an uncompressed model using 2156
texture samples and a compressed model at compression
ratio 1:10 using the orthogonal Haar and the bi-orthogonal
CDF 9-7 wavelet. Very subtle blocking artefacts from the
Haar wavelet are present, while the smooth 9-7 leaves a
visually more pleasing result. Less subtle is the over-all
smoothing induced by wavelets due the high frequency cut-
off.

Segmentation accuracy of compressed models with reg-
ularisation has been tested using the Haar and the 9-7
wavelet at compression ratios 1:1–1:20. Results are shown
in Figure 6. Due to the limited size of the data set measures
are unstable, but suggests that the Haar and 9-7 wavelet
are comparable in accuracy. Except for 1:20 compression,
where the Haar is outperformed by 9-7. This could be due
to statistical fluctuation. Surprisingly, both Haar and 9-7
performed better than the uncompressed AAM at ratios
close to 1:1.

B. Human Faces

Using a Sony DV video camera 40 still images of people
facing front were acquired in 640×480 JPEG colour format
and subsequently annotated using 58 landmarks, see Fig-
ure 7. The first 30 persons were used for training and the
remaining 10 persons for testing.

The first combined mode of texture and shape varia-
tion is given in Figure 8 for an uncompressed model with
30.666 texture samples and a compressed model at com-
pression ratio 1:10. Consistent with the previous case the
9-7 wavelet produced visually pleasing results, contrary to

4Pt.pt. measures Euclidean distance between corresponding land-
marks of the model and the ground truth, whereas pt.crv. measures
the shortest distance to the curve in a neighbourhood of the corre-
sponding ground truth landmark.

Fig. 4. Example annotation of the left ventricle using 66 landmarks.

Fig. 5. The first combined mode of texture and shape variation
[−2σ1, 0, +2σ1]. Top: AAM (uncompressed). Middle: WHAM
(Haar, ratio 1:10). Bottom: WHAM (CDF 9-7, ratio 1:10).
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Fig. 6. Segmentation results at various levels of compression.



Fig. 7. Example annotation of a face using 58 landmarks.

Fig. 8. The first combined mode of texture and shape variation
[−3σ1, 0, +3σ1]. Top: AAM (uncompressed). Middle: WHAM
(Haar, ratio 1:10). Bottom: WHAM (CDF 9-7, ratio 1:10).

TABLE I

Texture PCA Eigenvalues for the Face Model

EV1 EV2 EV3 EV4 EV5

Uncompressed 20.5 % 9.2 % 7.7 % 6.4 % 5.6 %

Haar (1:1) 20.4 % 9.2 % 7.7 % 6.4 % 5.6 %
Haar (1:5) 22.2 % 9.6 % 8.2 % 6.6 % 5.6 %
Haar (1:10) 26.3 % 11.3 % 8.3 % 6.8 % 5.0 %

CDF 9-7 (1:1) 20.7 % 9.3 % 7.8 % 6.5 % 5.6 %
CDF 9-7 (1:5) 22.1 % 9.6 % 8.2 % 6.6 % 5.6 %
CDF 9-7 (1:10) 26.2 % 11.2 % 8.2 % 6.8 % 5.0 %

Fig. 9. Selected wavelet coefficients for the face training set (Haar,
ratio 1:10). Top: Without filtering. Bottom: With filtering.
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Fig. 10. Segmentation results at various levels of compression.



the subtle blocking artefacts of the Haar wavelet. Quanti-
tatively, the 9-7 wavelet also offered a better reconstruction
of the training textures in terms of MSE.

To illustrate the effects of coefficient truncation and bi-
orthogonality Table I shows the largest five eigenvalues of
the texture PCA with and without compression. It shows
that the variance along the five major axes is unchanged
when transforming the training textures using the Haar
and the 9-7 wavelet without truncation. Hence, it should
be safe to assume that the 9-7 wavelet is close to orthogo-
nal. Furthermore, we observe that the texture data cloud
deforms gracefully with increasing compression rate.

Figure 9 shows the selected wavelet coefficients before
and after regularisation as obtained by the variance pre-
serving scheme. In both cases all scale coefficients are se-
lected. Furthermore, the variance-preserving scheme does
a good job at preserving resolution in areas of consistent
details, e.g. at the eye, mouth and nostrils. The asymmetry
at the boundary of the face stems from slightly erroneous
annotations of the right-hand side. The simple regulari-
sation step is seen to give a much better quality of the
selected coefficients.

Segmentation accuracy of the compressed models has
been tested with regularisation using the Haar and the 9-7
wavelet at compression ratios 1:1–1:80. Figure 10 shows
that the segmentation accuracy is relatively insensitive to
the choice of wavelet. Consistent with the cardiac study
the 9-7 outperforms Haar at high compression ratios and
both wavelets gave higher accuracy for ratios close to 1:1.
Actually, compression at 1:10 had no cost w.r.t. segmen-
tation accuracy in this case study. Since the Haar wavelet
is orthogonal and Table I hinted that the bi-orthogonal 9-7
wavelet is close to orthogonal this result comes as a sur-
prise and will be pursued in the extended edition of this
paper.

IX. Future Work

In future work we will test the above alternative coef-
ficient selection schemes and other wavelet bases. This
will be carried out using leave-one-out cross-validation of
our rather limited training sets. Furthermore, we will ex-
plore the capabilities of wavelet compression for 3D and
3D+time problems. It could also prove beneficial to em-
ploy the shape adaptive wavelet schemes emerged with the
advent of object coding in the MPEG4 standard, e.g. [16].
Exploiting the inherent scale properties of the WHAM is
also attractive in order to obtain computational cheaper
and more robust means of optimisation. Finally, earlier
work on denoising in the wavelet domain could also be in-
corporated into this framework.

X. Conclusion

We have provided a detailed description of the WHAM
framework that facilitates reduction of the texture model
in Active Appearance Models. Through case studies of car-
diac MRI and face images we have experienced WHAM to
enable compression at ratios of 1:10 and 1:20 with minimal
degradation of the segmentation accuracy by using wavelet

coefficient vectors of 10% and 5% the size of the original
intensity vectors. Furthermore, the 9-7 wavelet should be
chosen over the Haar wavelet to obtain the highest synthe-
sis quality. While the accuracy of the 9-7 wavelet is similar
to the Haar, the computational costs are somewhat higher.

As alternatives to the variance preserving coefficient se-
lection scheme, we have proposed a set of selection schemes
for different purposes. We anticipate that wavelet-based
appearance modelling will become a key technique with
applications to compression, model pruning, denoising and
scale-analysis.
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