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Abstract. This paper presents a novel approach to the problem of ob-
taining a low dimensional representation of texture (pixel intensity) vari-
ation present in a training set after alignment using a Generalised Pro-
crustes analysis. We extend the conventional analysis of training textures
in the Active Appearance Models segmentation framework. This is ac-
complished by augmenting the model with an estimate of the covariance
of the noise present in the training data. This results in a more compact
model maximising the signal-to-noise ratio, thus favouring subspaces rich
on signal, but low on noise. Differences in the methods are illustrated on a
set of left cardiac ventricles obtained using magnetic resonance imaging.

1 Introduction

Over the past few years, models capable of synthesising complete images of
objects have proven very useful when interpreting images. One example is the
Active Appearance Models (AAMs) [1, 2]. Applications of AAMs include recov-
ery and variation analysis of anatomical structures in medical images, such as
magnetic resonance images (MRIs) [3], radiographs [4, 5] and ultrasound ima-
ges [6].

Images can be synthesised in many ways, e.g. [7] uses a linear combination
of shape-compensated training images. To reduce dimensionality, AAMs uses a
Principal Component (PC) analysis of the training set to synthesise new images.
By maximising the variance only, the PC is modelling any noise present in the
training set along with the uncontaminated hidden image data. In this paper, we
propose to extend the AAM framework by augmenting the image representation
with noise characteristics. This is accomplished by applying the Minimum Noise
Fraction (MNF) transformation [8].

The ancestor of AAMs, the Active Shape Models [9] have previously been
extended by means of a variant of MNF in the analysis of shapes, see [5]. Here,
we extend this work to pixel intensities, henceforth denoted texture.

The MNF extracts important otherwise occluded information in the corre-
lation structures of the data, and aims at obtaining a low dimensional model
representation. As opposed to the PC transform, the MNF transform takes the
spatial nature of the image into account. Whereas the PC transform only requires
knowledge of the dispersion (covariance) matrix, the MNF transform requires an
estimate of the dispersion matrix of the noise structure as additional information.
The MNF transform was originally proposed as a transformation for ordering
multispectral data in terms of image quality with applications for noise removal.
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This paper is organised as follows. Section 2 summarises AAMs and describes
the applied statistical models. Section 3 describes the data analysed, and Section
4 presents a comparative study of the PC and MNF. In Section 5 we summarise
and give some concluding remarks.

2 Methods

In the following AAMs are summarised along with a description of the traditional
AAM texture model; the PC transform, and the proposed alternative; the MNF
transform.

2.1 Active Appearance Models

Active Appearance Models [1, 2] establish a compact parameterisation of object
variability, as learned from a training set by estimating a set of latent variables.
From these quantities new images similar to the training set can be generated.
Objects are defined by marking up each example with points of correspondence
over the set either by hand, or by semi- to completely automated methods. Ex-
ploiting prior knowledge about the local nature of the optimisation space, these
models can be rapidly fitted to unseen images, given a reasonable initialisation.

Shape and texture variability is conventionally modelled by means of PC
transforms. Let there be given P training examples for an object class, and let
each example be represented by a set of N landmark points and M texture
samples. The P shape examples are aligned to a common mean using a Gener-
alised Procrustes analysis. The Procrustes shape coordinates are subsequently
projected into the tangent plane of the shape manifold, at the pole denoted by
the mean shape. The P textures are warped into correspondence using a suitable
warp function and subsequently sampled from this shape-free reference. Typi-
cally, this geometrical reference is the Procrustes mean shape. Let s and t denote
a synthesized shape and texture and let s and t denote the corresponding means.
New instances are now generated by the adjusting PC scores, bs and bt in

s = s + Φsbs , t = t + Φtbt (1)

where Φs and Φt are eigenvectors of the shape and texture dispersions esti-
mated from the training set. To regularise the model and improve speed and
compactness, Φs and Φt are truncated, usually such that a certain amount of
variance in the training set is explained. To obtain a combined shape and texture
parameterisation, c, the values of bs and bt over the training set are combined

b =
(

W sbs

bt

)
=

(
W sΦ

T
s (s− s)

ΦT
t (t− t)

)
. (2)

Notice that a suitable weighting between pixel distances and pixel intensities
is done through the diagonal matrix W s. To recover any correlation between
shape and texture a third PC transform is applied

b = Φcc (3)
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obtaining the combined appearance model parameters, c, that generate new
object instances by

s = s + ΦsW
−1
s Φc,sc , t = t + ΦtΦc,tc , Φc =

(
Φc,s

Φc,t

)
. (4)

The object instance, (s, t), is synthesised into an image by warping the pixel
intensities of t into the geometry of the shape s. Given a suitable measure of fit
the model is matched to an unseen image using an iterative updating scheme
based on a fixed Jacobian estimate [10, 11] or a reduced rank regression [2].

2.2 Principal Components Transformation

Consider a set of P texture vectors {ti}P
i=1 laid out as a set of P shape-free images

with grey levels ri(x), i = 1, · · · , P , where x is the coordinate vector denoting
the grid point of the sample. Let r(x) = [r1(x) · · · rP (x)]T and assume first
and second order stationarity, i.e. E{r(x)} = 0 and D{r(x)} = Σ. The PC
transformation thus chooses P linear transformations zi(x) = aT

i r(x), i =
1, · · · , P such that the variance for zi(x) is maximum among all linear transforms
orthogonal to zj(x), j = 1, · · · , i− 1. The variance in the ith PC is given by

Var{aT
i r} = λi = aT

i Σai. (5)

We see that the basis for the PCs is identified as the conjugate eigenvectors
of the dispersion matrix. Let λ1 ≥ · · · ≥ λP ≥ 0 be the eigenvalues with the
corresponding conjugate eigenvectors A = [a1 · · ·aP ].

Above, the PC problem is solved in Q-mode. Using the Eckart-Young’s The-
orem the R-mode solution becomes Φt = RT Λ−1/2A, where R = [r1 · · · rM ]
with rj containing spatially corresponding intensities over the training set, and
Λ a diagonal matrix of the eigenvalues.

2.3 Minimum Noise Fractions Transformation

Consider the random signal variable r(x) from above. Assuming that an additive
noise structure applies r(x) = s(x) + n(x) with Corr{s(x),n(x)} = 0, the
dispersion structure can be separated into

D{r(x)} = Σ = Σs + Σn. (6)

The Minimum Noise Fractions transformation chooses P linear combinations
zi(x) = aT

i r(x), i = 1, · · · , P which maximise the signal-to-noise ratio (SNR)
for the ith component

SNRi =
V{aT

i s(x)}
V{aT

i n(x)} =
aT

i Σai

aT
i Σnai

− 1. (7)

and the problem reduces to solving a generalized eigenproblem, Σai = λiΣnai.
Let λ1 ≥ · · · ≥ λP be the eigenvalues of Σ with respect to Σn with the corre-
sponding conjugate eigenvectors a1, · · · , aP . Then zi(x) is the ith MNF. A high
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order component has a high noise fraction and thus little signal. A low order
component has a high SNR, hence the name Minimum Noise Fraction trans-
form. The central issue in obtaining good MNF components is the estimation of
the dispersion matrix of the noise. Using the difference between a pixel and its
neighbours as a noise estimate, MNF maximises the spatial autocorrelation. Let
∆T = [∆1 ∆2] represent a spatial shift. Introducing Σ∆ = D{r(x)−r(x+∆)}
which, when considered as a function of ∆, is a multivariate variogram and as-
suming a proportional covariance model [13] the covariance of the noise can be
estimated by Σn = Σ∆/2. When the covariance structure for the noise is propor-
tional to the identity matrix, the MNF transform reduces to the PC transform.
In [12] several other models are presented for estimating image noise.

When maximising autocorrelation the MNF analysis qualifies as an Indepen-
dent Components Analysis (ICA) similar to the Molgedy-Schuster algorithm [14],
see [5]. A comparative study of the PC and MNF can be found in [15, 16].

3 Data

Short-axis, end-diastolic cardiac MRIs were selected from 28 subjects. MRIs were
acquired using a whole-body MR unit (Siemens Impact) operating at 1.0 Tesla.
The chosen MRI slice position represented low and high morphologic complexity,
judged by the presence of papillary muscles. Images were acquired using an
ECG-triggered breath-hold fast low angle shot (FLASH) cinematographic pulse
sequence. Slice thickness=10 mm; field of view=263x350 mm; matrix 256x256.
The endocardial and epicardial contours of the left ventricle were annotated
manually by placing 33 landmarks along each contour, see Figure 3.

4 Results and Discussion

Noise is added to the training data simulating different SNRs, i.e. different qual-
ity of the MRIs due to inter-patient, inter-operator variation etc. This is done in
order to examine the robustness of the texture representation in the MNF basis
compared to the PC basis. Gaussian noise is applied with a standard deviation
randomly chosen to produce training images with an SNR down to 6 dB. This
knowledge of the noise structure is not used in the subsequent analyses.

4.1 Learning Based Image Representation

To examine the robustness of the MNF transform, 101 leave-one-out studies were
carried out. One on the uncorrupted and 100 on the noise degraded shape-free
sets of 28 MRIs. Results of the cross-validation analyses are presented in Figure
1. The left plot corresponds to uncorrupted MRIs and the right to a randomly
chosen analysis on a degraded training set. The curves with o/x symbols marks
the performance of the MNF/PC models and provides the mean squared texture
error (MSE) as a function of the model rank. For the scenario without the
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performance of the MNF and the PC transform is very similar. Notice, however
that the MNF is better for almost all number of modes. The general trend for the
noise degraded data is reflected in the MSE curves in Figure 1 (right). The MNF
and PC are competing for low rank models, but for an intermediate number of
modes the MNF outperforms the PC transform. The MNF thus does a better
job of separating important signal from noise in the training data.

Figure 2 shows the PC and the MNF eigenvectors (the Φt’s) of the mean
shape aligned 28 noise degraded cardiac data for which the leave-one-out texture
representation curve in Figure 1 (right) was generated. All images in Figure 2
are stretched between mean ±3 std. The top four rows correspond to the PC
eigenvectors and the four bottom rows to the MNFs. The components are or-
dered row-wise according to the amount of variance/SNR they explain. The last
component in both shows the mean texture sample, t. Notice that the MNF gives
a better ordering of components in terms of texture quality. A higher degree of
speckle noise is present in all PC components compared to the MNF components.
Moreover, the last components of the PC analysis appear to include a relatively
higher amount of auto-correlated signal. This explains the better performance
of the MNF representation in the cross-validation study.
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Fig. 1. Leave-one-out study on cardiac MRIs. Without noise (left). With noise (right).

4.2 Cardiac Segmentation

Hitherto, the PC and the MNF transform have been evaluated w.r.t. represen-
tation. To assess the transforms capabilities in a de facto segmentation setting,
a cross-validation study was carried out on the cardiac data set.
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Fig. 2. PC (top) and MNF (bottom) decomposition of noise degraded cardiac MRIs.

Fig. 3. Example annotation of the left ventricle using 66 landmarks (left). Segmenta-
tion result on noise contaminated cardiac MRI (right).
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To maximise the effective size of the training set, validation was performed
using a leave-one-out evaluation on the set of 28 short-axis cardiac MRIs. A
total of 56 AAMs were built on noise-contaminated versions of the 28 cardiac
MRIs; i.e. 28 PC AAMs and 28 MNF AAMs. In both transforms the largest
14 texture modes were included into the models. This model rank was chosen
as half the maximum basis size producing a cut-off point where an average of
85% of the total amount of variation is explained. Each model was initialised
on the image that was left out, in its mean configuration (i.e. mean shape and
mean texture) and displaced ±8 pixels from the ground truth centre in image
coordinates. From this position the AAM search was started. Refer to Figure 3
(right) for an example segmentation.

Two performance measures were evaluated: normalised texture MSE (MSE)
and mean point-to-point distance between corresponding landmarks of the model
and the ground truth. Segmentations with a pt.-pt. distance larger than ten
pixels were deemed outliers and removed. The PC/MNF AAMs yielded a mean
normalised MSE of 3.55±3.35 / 3.43±2.67 and a pt.-pt. landmark error of 5.03±
1.60 / 4.79 ± 1.51 pixels, respectively. In the two PC/MNF runs 2 / 1 outliers
were removed. Thus, a modest improvement in both performance measures and
corresponding uncertainties is observed for the MNF AAMs. Notice the rather
high MSE standard deviations, due to the large inhomogeneity in the noise
characteristics.

5 Conclusion

We have shown that a more compact representation of texture can be obtained by
extending the PC to the MNF transformation in the AAM framework. The novel
approach shows better performance in leave-one-out representation studies both
on original and on noise degraded cardiac MRIs. Thus, by separating important
signal from noise the MNF transform generalises better than the PC transform.

The MNF texture representation is applied in a leave-one-out AAM segmen-
tation study in comparison to applying a conventional PC basis of equal rank.
Even though the MNF extension only affects the texture- and not the shape
representation, and the texture model rank is chosen relatively high compared
to the amount of noise present in the data; improvements in both landmark and
texture error and corresponding uncertainties are observed for the MNF AAMs.

In contrast to the PC analysis, the new approach by maximizing SNR is
invariant to linear transformations such as scaling of the individual components
in the training set. As a consequence, the MNF decomposition is expected to
be useful in future AAM studies involving data fusion of multiple features of
different nature measured at different scales. This includes derived physiological
measures, textual quantities, and multiple imaging modalities.

Moreover, the MNF analysis in itself can be applied as a data driven method
probing for uncorrelated modes of biological variation in non-Euclidean space,
and thus constitute a useful tool in exploratory analysis of medical data.
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