
I-SG : INTERACTIVE SEARCH GROUPING
SEARCH RESULT GROUPING USING INDEPENDENT COMPONENT ANALYSIS

CLASSIFICATION

Thomas Lauritsen and Thomas Kolenda

Department of Mathematical Modeling, Building 321

Technical University of Denmark, DK-2800 Lyngby, Denmark

Phone: +45 4525 3920

E-mail: tl@ingolf.dk,thko@imm.dtu.dk

Abstract. We present a computational simple and eÆcient ap-

proach to unsupervised grouping the search result from any search

engine. Along with each group a set of keywords are found to an-

notate the contents. This approach leads to an interactive search

trough a hierarchial structure that is build online. It is the users

task to improve the search, trough expanding the search query

using the topic keywords representing the desired groups. In do-

ing so the search engine limits the space of possible search results,

virtually moving down in the search hierarchy, and so re�nes the

search.

INTRODUCTION

In application of assisting the Internet WWW user while using a search en-

gine, we purpose an interactive search that groups the search result of a

given search engine into underlying topics and suggests keywords for further

re�nement of the search query.

The classi�cation into topics is done using independent component analy-

sis (ICA), that has shown to be a natural basis for representing text [4]. The

number of classes are found with a prior on not having two many classes, since

this might confuse the user. The ICA classi�cation supports a hierarchial

structure depending on the number of classes, thus separating its contents at

various context levels. Separating into only a few classes does therefore not

limit the search, thus lets the user have a better understandable overview of

the search, only on the expense of more user iterations through the search.

In this application we demonstrate the ability of the ICA algorithm to

separate text into the underlying topics. We annotate the topic group with

ranked keywords that describe each topic best, and further give an alternative

webpage ranking that describes how close a webpage is to the class it has been

grouped with.

Getting started:

Read the text �le README.txt for installation and execution instructions.

This project has been made in our spare time and we thank the Department

of Mathematical Modeling at the Technical University of Denmark for letting

us use there facilities.

MODEL FRAMEWORK

The framework is based in the vector space model (VSM) presented by Salton

[7], that transforms text into a word{frequency subspace. In here docu-

ments/webpages are easily compared, simply by measuring the angle be-

tween them, equivalent to their dot product. As such, the word{frequency

from each webpage is then counted from a given search result and placed in a

common term/document1 matrix as shown in �gure 1. The term/document

matrix is beforehand �ltered for trivial words by a stop{word list, discarding

of e.g. and, of and the, and also words that occur only in few documents are

removed. To avoid problems of di�erent document lengths and too dominant

term frequencies a normalization is subsequently multiplied to each element

in the pre-normalized term/document matrix eX. An element (et; ed)in the t�d

term/document matrix is herby formulated as,

Xet;ed = eXet;ed � 1qeXed � eXed � log

 P
t;d
eXP

d
eXet
!
; (1)

where eXed is the ed column vector amd eXet is the et row vector in the pre-

normalized term/document matrix.

Employing principal component analysis to �nd a better subspace rep-

resentation from the term/document matrix X, Deerwester [3] set up the

framework named latent semantic indexing (LSI) using singular vector de-

composition (SVD). In here he observed that document were grouping in ray

like structures that held the same semantic meaning thus the same topic. In

�gure 2 (top row) the projection of the �rst three LSI dimensions are shown,

clearly re
ecting the groping structure of the topics. A subspace of lower

dimension can hereby be found using the �rst k LSI components, and words

of polysemy 2 or synonymy3 meanings are closely aligned together.

1We shall regard words as terms and webpages as documents in the following text.
2Polysemy: Words that have more than one meaning/topic, e.g. Jaguar can be a cat

or a car.
3Synonymy: One meaning/topic can be describer by di�erent words.

Search result texts

Stop word/single word

 removal

Word histograms
(Term / doc matrix)

Normalize

LSI ICA Classification

1 2
University, Information Rec, Golf, IntramuralKeywords :

M
od

el
in

g
D

at
a

ex
tr

ac
ti

on

Google
Sport

Search

Google Google

Groups:

Figure 1: At the beginning of the search the user submits a search query to the

search engine, e.g. sport. The highest ranked webpages returned from the search

engine are �ltered for trivial words and a term/document matrix is generated. The

normalized term/document matrix is then mapped trough LSI and ICA to �nd

the independent underlying topics and each document/webpage is classi�ed in that

regard. The keywords that dominate a topic class are presented to the user to

re-submit the search query using one or more of the keywords.

In the LSI model the components are bound to be orthogonal, thus not

being able to align well with the directions of the grouping structures. Further

extending this approach to independent component analysis (ICA) solves this

problem [4]. We are hereby able to classify each document as being assigned

to the component by which it is closest in angle, see �gure 2.

0 0.05 0.1 0.15 0.2
−0.2

−0.1

0

0.1

0.2

2.
 P

C
 C

O
M

P

1. PC COMP
−0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

2.
 P

C
 C

O
M

P
3. PC COMP

−1 0 1 2 3
−1

0

1

2

3

2.
 IC

 C
O

M
P

1. IC COMP
−2 0 2 4

−1

0

1

2

3

2.
 IC

 C
O

M
P

3. IC COMP

0 0.5 1
0

0.2

0.4

0.6

0.8

1

2.
 S

of
t I

C
 C

O
M

P

1. Soft IC COMP
0 0.5 1

0

0.2

0.4

0.6

0.8

1

2.
 S

of
t I

C
 C

O
M

P

3. Soft IC COMP

1
2
3
4
5

Figure 2: Medical abstracts from the Medline database are projected onto the

LSI and ICA basis where each dot represents a document. The coloring shows

the manually labled �ve classes that are used for veri�cation. The LSI dimensions

(top) are shown by the �rst PCA components and clearly show the ray like grouping

structure. Further employing ICA (middle) with the LSI basis makes the grouping

structures align nicely along the ICA basis. Finally classi�cation (bottom) of each

document onto a given class amounts to �nding the IC component for which each

document is closest in angle, or simply the biggest IC component for each document.

In the bottom �gures softmax normalized IC components are shown, so to express

the probability for each class given a document.

The model hereby consists of two basis transformation, one from LSI and

ICA, decomposing the term/document matrix into,

X
t�d

= T
t�k

� A
k�k

� S
k�d

;
(2)

where T holds the term eigenvectors from the SVD4, A is the ICA mixing

matrix and S holds the separated documents. By matrix inversion of A the

IC components S = A�1LD> is found.

Classifying a document ed to a class label l is done by �nding the IC

component Sed with the largest value,

led = arg maxek Sek;ed
(3)

The collected basis TA holds the mixing proportions coming from the

term space to the lower dimensional topic space. Back projecting the found

topic basis vectors lets us �nd the most dominant terms/keywords for each

topic. In �gure 3 a unit normalized column in the combined TA matrix is

shown, using the data shortly described in �gure 2. Normalizing the columns

to unit length formes a natural ranking of the keywords equivalent to their

dominance/importance in a topic.

100 200 300 400 500 600 700 800 900 1000 1100
−0.2

0

0.2

0.4

0.6

0.8

1 cancer

cell

human

lung

TERMS

Figure 3: Keywords describing each topic can be found as the most dominant terms

centered on that topic. Using a threshold lets us determine a limited number of

keywords that are ranked by size.

4The singular vector decomposition (SVD), decomposes the term/document matrix

X = TLD
>, where T holds the term eigenvectors, L the eigenvalues and D the document

eigenvectors

Optimization

From eq. (3) we are left to �nd the SVD decomposition X = TLD>, the

ICA mixing matrix A and its inverse. The SVD is done using the LAPACK
5

[6] as is the matrix inversion. The inverse mixing matrix W is found using

a iterative gradient optimization with the Bell and Sejnowski infomax ICA

algorithm [2], together with the natural gradient by Amari [1].

The log likelihood of the ICA model can be written as,

log p(XjA) = N log detW +
X
k;d

log cosh(S); (4)

The gradient update with the natural gradient correction is given as,

�W = � (NI� tanh(S)X>W>)W; (5)

where I is the k�k identity matrix and � is the step size of the gradient that

is �xed. Initially the parameters in W are set to the identity matrix.

Number of classes

Finally we are left with the problem of �nding the number of topics thus the

optimal number of components. Using the maximum likelihood formulation

of the LSI space from Minka [5] we can write the collected likelihood for the

model p(XjA;L).

Wanting a computational simple model and still reasonable estimation

we use the Bayes information criterion (BIC), and �nd the model with the

highest probability

p(XjA;L) d�
D

2 ; (6)

for di�erent values of k. Where D = k(2t� k + 1)=2 + 1 + k2 is the number

of free parameters in the model. Typically k is tested in the range of 1::4,

as we prefer not to have two many classes that might confuse the end result

that the user has to see.

Topic ranking of webpages

The angle between a given document and the IC component that correspond

to its class label describes how well it �ts the keywords for that class. At

the same time, documents that are close to zero in all components are very

e�ected to the noise background, thus less likely to be member of that given

class to which it has been assigned. We therefore formulate a topic rank r

having two competing terms, one for the angle and one for the distance to

zero. A given document ed is ranked,

red =

"
1� cos�1

S
kmaxed
jSedj

!
4

�

�
jSedj

max(Skmax)

�
; (7)

5This can be done more computational eÆcient and online for realtime implementations.

where jSedj is the vector norm of the ed document, S
kmaxed is the largest value

in S for document ed and max(Skmax) is the largest value in S for the class to

which document ed belongs.

CODE IMPLEMENTATION

This section will brie
y describe the implementation of our contest submis-

sion. The code has been written entirely in C++ and compiles and runs on

RedHat Linux without warnings. The code makes heavy use of the STL for

containers etc. Wherever possible, the code has been written for clarity, not

for execution speed or minimal memory consumption. Datastructures and

algoritms have generally been chosen to keep the overall runtime complexity

low.

The source code is reasonably commented and it's encouraged to take a

look through the sources for the best overview of the implementation details.

The search

The search part of our implementation is extremely naive and simple. It

searches through the documents in a linear fashion and tests every words for a

match. Every time a match is found in a document, the URL and all terms of

the documents are written to a plain text �le called searchresult.txt.The

search ends when one hundred matching documents has been found or when

there's no more documents to search through.

The searcher is implemented in the ripper-framework supplied by Google

for this contest, and THIS SHOULD NOT BE CONSIDERED OUR CON-

TEST CONTRIBUTION but a naive supplement for Googles search engine.

The searcher is implemented as a derivation of the ParseHandler-class in the

�le parsehandler-search.cc.

The searcher is invoked through the ripper-framework as follows and will

prompt for the search term upon invocation.

ripper --search [pre-parsed repository files]

The classi�cation

The classi�er is an independant piece of software. It reads the contents

of the �le ../searchresult.txt (probably generated by the searcher, see

above) and does classi�cation on this data. The program doesn't accept any

parameters, so invocation is done by simply running it as follows.

searchclassifier

When classi�cation is done, the result is written as HTML to the �le

result.html

Global parameters

The classi�er has a number of parameters which controls the classi�cation.

These are placed in the Constants class which is implemented in the �les

constants.h and constants.cc. See these �les for the actual parameters

and default values.

Structure

The implementation is divided in a handfull of classes. Each class is im-

plemented in a pair of .h and .cc �les with the same name as the class.

The main entry point and core functions of the code is located in the �le

searchclassifier.cc.

The most important classes are the TermDoc, the Classifier and the

Outputter. These classes does the main part of the work, but are relying

also on a few aggregated classes. The Matrix class also plays an important

role, as it is the center of all calculations. See �gure 4 for a structural layout

of the implementation.

The TermDoc class is responsible for building the term-doc matrix. This

can be done in a few steps, starting by con�guring the class with stopwords

and word endings. Then documents and words should be added in sequen-

tial order and �nally Process should be executed. Process �lters the data

for stopwords, empty documents etc. When Process has ben executed the

�nal term-doc matrix can be generated by a call to CreateMatrix. The

TermDoc uses the classes Endings, Stopwords and Wordmap (which in turns

uses Wordcounter) to accomplish these actions.

The class Classifier does the actual classi�cation of the term-doc ma-

trix. By calling the method Classify and supplying a TermDoc instance, the

Classifier runs SVD, BIC and ICA on the term-doc matrix. Finally the

documents will be classi�ed and keywords for each class will be extracted.

The Classifier can be qeuried about number of classes and documents and

keywords for each class.

The Outputter class generates an HTML �le with the result of the classi�-

cation. The method Output takes an instance of the Classifier and formats

and writes the data from this instance in an HTML �le called result.html.

The Matrix class implements a few basic matrix operations like addition

and multiplication and some specialized operations for this application. It

+NextDocument()
+AddWord()
+Process()

+CreateMatrix()

-stopwords : Stopwords
-endings : Endings
-wordmap : Wordmap

TermDoc

+Classify()
+GetDocuments()
+GetKeywords()

Classifier

The classifier control flow is as follows

1) The TermDoc matrix is build
2) The Classifier classifies the documents from the TermDoc

3) The Outputter outputs the results of the Classifier

«uses»

+Get()
+Set()
+operator =()
+operator +()
+operator *()
+SVD()
+ICA()

«utility»
Matrix

+Load()
+IsSameWordStart()
+IsSameWord()

Endings

+Output()

Outputter
+ComputeSVD()
+ComputeInverse()
+ComputeAbsDeterminant()

«utility»
Lapack functions

«subsystem»
LAPACK

+Load()
+IsStopWord()

Stopwords

+Insert()
+Merge()
+RemoveSingleWords()
+RemoveStopWords()
+SetMatrix()

Wordmap

+AddDoc()
+IncrementCurrentDoc()
+MergeCounter()
+CountWords()
+IsSizeOk()

Wordcounter

«uses»

Class diagram and control flow of classifier implementation

1

Figure 4: Structural layout of the implementation.

also uses LAPACK [6] for doing non-trivial calculations like SVD and matrix

inversion..

REFERENCES

[1] S. Amari, A. Cichocki and H. H. Yang, \A New Learning Algorithm for Blind

Signal Separation," in D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.),

Advances in Neural Information Processing Systems, The MIT Press,

1996, vol. 8, pp. 757{763.

[2] A. Bell and T. Sejnowski, \An Information-Maximization Approach to

Blind Separation and Blind Deconvolution," Neural Computation, vol. 7,

pp. 1129{1159, 1995.

[3] S. Deerwester, S. Dumais, G. Furnas, T. Landauer and R. Harshman, \Indexing

by Latent Semantic Analysis," J. Amer. Soc. for Inf. Science, vol. 41,

pp. 391{407, 1990.

[4] T. Kolenda, L. Hansen and S. Sigurdsson, \Independent Components in Text,"

M. Girolami, editor, Advances in Independent Component Analysis,

Springer-Verlag, pp. 229{250, 2000.

[5] T. Minka, \Automatic Choice of Dimensionality for PCA," In proc. of

NIPS'2000, vol. 13, 2000.

[6] Netlib, \CLAPACK (f2c'ed version of LAPACK)," 2002,

http://www.netlib.org/clapack/.

[7] G. Salton, Automatic Text Processing: The Transformation, Analysis,

and Retrieval of Information by Computer, Addison-Wesle, 1989.

