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Summary

This thesis is concerned with the application of statistical methods in quality
improvement of injection molded parts. The methods described are illustrated
with data from the manufacturing of parts for a medical device. The emphasis
has been on the variation between cavities in multi-cavity molds.

From analysis of quality measurements from a longer period of manufacturing,
it was found that differences in cavities was that source of variation with great-
est influence on the length of the molded parts. The other large contribution to
the length variation was the different machine settings. Samples taken within
the same machine set-point did not cause great variation compared to the two
preceding sources of variation.

A simple graphical approach is suggested for finding patterns in the cavity
differences. Applying this method to data from a 16 cavity mold, a clear con-
nection was found between a parts length and the producing cavitys position
in the mold. In a designed experiment it was possible to isolate the machine
parameters contributing to the variation between cavities. Thus, with a proper
choice of levels for the machine variables, it was possible to reduce the varia-
tion between cavities substantially. Also an alternative model for the shrinkage
of parts from a multi-cavity mold is suggested. From applying the model to
data from a shrinkage study, it seemed that the observed part differences were
not only due to differences in cavity dimensions.

A model for the in-control variation for a multi-cavity molding process was
suggested. Based on this model, control charting procedures have been sug-
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gested for monitoring the quality of the molded parts. Moreover, a capability
index for multi-cavity molds has been suggested.

Furthermore an alternative method for in-line quality charting is suggested.
The method is for continuous control by attributes, and it is an alternative to
the batch oriented approach mostly used. The procedure is especially efficient
for quality requirements of very low proportion non-conformities. For the pro-
posed charts the ARL function is derived. It is shown that in the case where
a non-conforning unit is only expected very rarely during sampling, a moving
sum chart and a CUSUM chart are equivalent.

Finally, the correlation structure of 21 process variables has been studied prior
to monitoring the process. It is illustrated how the process can be analysed
with multivariate techniques. It was found that two principal components re-
flected changes in machine set-points. Thus, there seems to be great potential
in monitoring the process variables using a multivariate approach.



Resume (in Danish)

Denne afhandling omhandler brugen af statistiske metoder ved kvalitetsforbed-
ring af sprajtestgbte produkter. Alle metoder er illustreret med data fra produk-
tionen af dele til et medicinsk device. Fokus har iseer vaeret pa variationsbidrag
hidrgrende fra kavitetsforskelle i multikavitetsforme.

Ved at analysere kvalitetsdata fra en leengere sammenhaengende produktions-
periode blev det fundet, at kavitetsforskelle var den variationskilde med den
stgrste indflydelse pa laengden af de stabte emner. Det andet store bidrag
til variationen var maskinens forskellige indstillinger i perioden. Skudprgver
taget ved samme maskinindstilling betad derimod ikke sa meget sammenlignet
med de to foregaende.

Der er foreslaet en simpel grafisk metode til at finde en struktur i kavitets-
forskellene. Ved anvendelse af denne metode pa data fra en form med 16
kaviteter, blev det fundet, at der var en tydelig sammenhang mellem, hvor
langt et emne var, og hvor i formen det var blevet produceret. Gennem forsggs-
planleegning var det muligt at isolere de maskininparametre, der havde indfly-
delse pa variansen indenfor en skudprave. Ved et passende valg af maskinind-
stillinger, vil det séledes veere muligt at reducere variationen mellem kaviteter-
ne betragteligt. Der er desuden foreslaet en alternativ model til at beskrive
svindforlgbet af de stabte emner. Ved anvendelse af denne model pa data fra et
svindstudie er der ligeledes fundet forskelle pa de forskellige kaviteters svind-
forlgb, hvilket tyder pa at kavitetsforskellene ikke udelukkende kan tilskrives
variationer i kaviteternes fysiske dimensioner.



Der er opsillet en model til at beskrive malinger af emner fra en multikavitets-
form, og pa baggrund af denne model, er der foreslaet kontrolkort-metoder til
overvagning af kvaliteten af de stgbte emner. Derudover er der foreslaet mal
for kapabiliteten (capability index) for multikavitetsforme.

Desuden er der foresldet en metode til godkendelseskontrol i processen for
alternativ variation med kvaliteter i ppm omradet. Metoden er baseret pa en
glidende sum, og er et alternativ til den batchbaserede godekendelseskontrol,
der saedvanligvis benyttes. Metoden er seerlig effektiv for krav til kvaliteter
med meget lav andel afvigende emner. Det bliver vist, at nar et afvigende emne
kun forventes at optraede uhyre sjeeldent, da er et moving sum kontrolkort og
et CUSUM kontrolkort aekvivalente.

Sluttelig er korrelationsstrukturen mellem 21 procesvariable studeret med hen-
blik pa at overvage processen. Det er illustreret, hvorledes processen bgr anal-
yseres ved multivariate statistiske metoder, inden der fastssettes en metode til
overvagning. Det blev fundet, at to principale komponeter afspejlede skift i
maskinindstillinger. Der er derfor tilsyneladende stort potentiale i at overvage
procesvariablene. Der er foreslaet alternative metoder til overvagning af pro-
cessen, der alle bygger pa de principale komponenter for procesvariablene.
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Chapter 1

Introduction

1.1 Background

There has been a tremendous increase in the demand for injection molded pro-
ducts over the past several years. Early, the molding process concentrated on
producing high volume products with low to moderate quality requirements.
In recent years, the market has expanded to include precision molded items
requiring high quality, such as medical devices or connectors for the auto in-
dustry.

The introduction of both the microprocessor and the computer controlled injec-
tion molding machine, together with the relevant instrumentation, has enabled
the molding process to be suitable optimized, so as to produce plastics com-
ponents comparable to machined metal parts. Proper control of the process
not only ensures accurate product manufacture, but also improves the produc-
tivity of the molding process by producing components with far fewer defects
occurring.

Designs for plastic parts are becoming increasingly more complex. In addition,
economic constraints have led to the use of multi-cavity molds. Therefore
the number of critical dimensions is increasing, not only as a result of part
geometries, but it is also increasing by a factor equal to the number of cavities
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4 CHAPTER 1. INTRODUCTION

in the mold. Operating a process becomes more difficult when there are more
critical dimensions to meet.

In general, it is important to understand that in every manufacturing process
there is always some natural variation in the product - even when no external
changes have been made to the process. For the injection molding process this
leads to, for example, variations in dimensions or weight, and hence no two
moldings are identical. Therefore, irrespective of the care taken to control the
molding process, product variation is naturally inherent and inevitable.

In the present thesis the emphasis will be on studying and understanding the
variation in the molding process. Especially the variation between cavities in
multi-cavity molds will be studied in various ways.

A lot of research has been done in the area of modeling polymer processing
processes in closed mathematical/physical models. Mold filling simulation is
the most common type of process modeling. Commercial Computer Aided En-
gineering (CAE) software has been available since 1978. Over the years, the
scope of such software has expanded beyond filling analysis to include cooling
analysis, part gate location, runner sizing, weldline prediction, gas-trap pre-
diction, warpage and residual stress analysis. Naitove and De Gaspari (1992)
presented a comprehensive survey of the usage of CAE software in the mold-
ing industry. The results of the survey indicated that the majority of simulation
is done during mold design and construction. However, experience has shown,
that the development of process monitoring models in this kind of manufactur-
ing environment, necessitates the use of empirically based techniques.

Quiality control for injection molding is basically a two-stage process. The
first stage consists of process tuning in which acceptable molded part quality is
achieved. The second stage consists of some form of continuous quality mon-
itoring and control during production. For each stage, several fundamentally
different approaches have been proposed for locating and/or ensuring molded
part quality.

The traditional approach to machine input selection (tuning) in the plastics
industry has been based on trial and error. For this purpose samples are usually
taken during start-up, and part quality attributes are measured after each sample
to evaluate the quality of produced parts. A human expert then uses knowledge
of the process to select the machine settings in such a way as to improve the
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quality of the part from cycle to cycle. This tuning exercise is repeated until
the specifications for part quality are satisfied.

A more methodological approach to tuning is design of experiments (DOE),
where an empirical model is formed based on data obtained from a set of de-
signed experiments. Based on this model, the objective function of an uncon-
strained optimization problem is defined in terms of the part quality attributes,
and the set of inputs that produce the best quality attributes are obtained as the
“optimal” point of this optimization problem. Deliz and Caraballo (1995) used

a fractional factorial experiment to find the processing conditions that would
minimize the out-of-roundness while centering diameter and length at their
nominal values. Also Xia and Mallick (1997) and Blyskal (1994) applies DOE
techniques to determine optimal settings with respect to one or more dimen-
sional measures. Beard (1999) suggests the use of DOE for process validation.
His approach is to define a process window such that molding anywhere inside
that process window will lead to acceptable parts.

Wortberg et al. (1997) argues that the design of experiments technique is not
appropriate for building a forecast model to predict the quality of manufactured
product from the actual state of the process. They criticize the DOE approach
for being too expensive when a large number of factors (more than 200) should
be studied, and for resulting in a break of the production. Instead they advocate
the use of artificial neural networks in which the quality characteristics of the
molded product are typically forecasted from the measured process data during
production. A lot of ongoing research is taking place in the application of
neural networks to quality prediction. See also Rewal et al. (1998) and Petrova
and Kazmer (1999).

As with most manufacturing processes, statistical process control (SPC) is
mostly used to chart the output of the injection molding process. Werner and
Berenter (1985) suggested charting part weight to signal process problems.
Operators were instructed not to adjust the process unless the control chart
indicated an out of control condition. As a result of the new operating proce-
dures, the injection molding machine was reported to run for 14 shifts without
producing any defects.

One of the main problems with precision molding is the time taken for parts
to acclimatize and reach their final dimensions. The need for on-line checking
is vital to prevent hours of work being rejected. Hunkar (1983) applied SPC
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techniques to the process variables rather than the process output. Approxi-
mately 30 process variables were monitored in order to diagnosis of failure of
machine systems. Wang and Wang (1991) attempted a more ambitious use of
process variables for quality control. They implemented an empirically based
predictive model to be used to control part thickness. The model was used to
make shot to shot adjustments in the hydraulic packing pressure.

1.2 Outline of the Thesis

This thesis is organized into two parts. The first part is four chapters and con-
tains a description of the injection molding process as well as a discussion of
the results presented in the papers. The five papers are included as part Il.

In Chapter 2 a general introduction to the injection molding process is pre-
sented. In the description of the process special emphasis will be given to
factors that influence the repeatability of the molding process.

In Chapter 3 the results of the cases presented in the papers are summarized
and discussed. Also some related general aspects not treated in the papers
are discussed in this chapter. The papers should be read in connection with
Chapter 3.

Finally, the conclusions are presented in Chapter 4.



Chapter 2

Introduction to injection
molding

Injection molding is the most widely used polymeric fabrication process. It
evolved from metal die casting, however, unlike molten metals, polymer melts
have a high viscosity and can not simply be poured into a mold. Instead a
large force must be used to inject the polymer into the hollow mold cavity.
More melt must also be packed into the mold during solidification to avoid
shrinkage in the mold. The injection molding process is primarily a sequential
operation that results in the transformation of plastic pellets into a molded part.
Identical parts are produced through a cyclic process involving the melting of
a pellet or powder resin followed by the injection of the polymer melt into the
hollow mold cavity under high pressure. The process has been described by
several authors, for example Whelan and Goff (1996) and Rauwendaal (2000).

Injection molding can be used to form a wide variety of products. Complexity
is virtually unlimited and sizes may range from very small to very large. Most
polymers may be injection molded, including thermo plastics, fiber reinforces
thermo plastics, thermosetting plastics, and elastomers.

Critical to the adoption of this high volume, low cost process technology is the

ability to consistently produce quality parts. In the following description of
the injection molding process, factors which influence the repeatability of the

7
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Figure 2.1: Injection molding machine.

molding process will be highlighted.

2.1 The injection molding machine

An injection molding machine is a machine which produces components by
injection molding. It is most commonly a hydraulically powered, in-line screw
machine although electric machines are appearing and will be more important
in the market in the future.

The main units of a typical injection molding machine are the clamping unit,
the plasticating unit, and the drive unit; they are shown in Figure 2.1. The
clamping unit holds the injection mold. It is capable of closing, clamping, and
opening the mold. Its main components are the fixed and moving plates, the
tie bars, and the mechanism for opening, closing and clamping.

The injection unit or plasticating unit melts the plastic and injects it into the
mold. The drive unit provides power for the plasticating unit and clamping
unit.

Injection molding machines are often classified by the maximum clamp force
that the machine can generate. This is the force that pushes the two mold halves
together to avoid opening of the mold due to internal pressure of the plastic
melt in the mold. The clamping force of typical injection molding machines
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Figure 2.2: Stage 1 of the injection molding cycle: injection of the plastic melt
into the mold. (From Rauwendaal (2000).)

range from 200 to 100 000 kN.

2.1.1 The injection molding cycle

There are three main stages in the injection molding cycle; stage 1, injection,
followed by stage 2, holding pressure and plasticating, and finally, stage 3,
ejection of the injection molded part. When stage 3 is completed, the mold
closes again and the cycle starts over again.

Stage 1, Injection of the plastic melt into the molid. stage 1, the mold is
closed and the nozzle of the extruder is pushed against the sprue bushing of
the mold. The screw, not rotating at this point, is pushed forward so that the
plastic melt in front of the screw is forced into the mold. See Figure 2.2.

Stage 2, Holding pressure and plasticating¥hen the mold is completely
filled, the screw remains stationary for some time to keep the plastic in the mold
under pressure; this is called the “hold” time. During the hold time additional
melt is injected into the mold to compensate for contraction due to cooling.
Later, the gate, which is the narrow entrance into the mold, freezes. At this
point the mold is isolated from the injection unit. However, the melt within
the mold is still at high pressure. As the melt cools and solidifies, the pressure
should be high enough to avoid sink-marks, but low enough to allow easy
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Figure 2.3: Stage 2 of the injection molding cycle: holding and screw recovery.
(From Rauwendaal (2000).)

removal of the parts.

During the plastication stage, the material is pushed forward from the feed
hopper through the barrel and toward the nozzle by a rotating screw. When the
gate freezes, the screw rotation is started. The period of screw rotation is called
screw “recovery”. The rotation of the screw causes the plastic to be conveyed
forward. As the plastic moves forward, heat from the electric heater bands
along the barrel and shear starts to melt the plastic. At the discharge end of the
screw, the plastic will be completely melted. The melt that accumulates at the
end of the screw pushes the screw backward. Thus the screw is rotating and
moving backward at the same time. The rate at which plastic melt accumulates
in front of the screw can be controlled by the screw backpressure, that is, the
hydraulic pressure exerted on the screw. This also controls the melt pressure
in front of the screw.

When sufficient melt has accumulated in front of the screw, the rotation of
the screw stops. During screw recovery the plastic in the mold is cooling, but
typically the cooling is not finished by the end of screw recovery. As a result,
the screw will remain stationary for some period until cooling is completed.
This period is often referred to as “soak” time. During this time additional
plastic will melt in the extruder from conductive heating. Also, the melted
material will reach more thermal uniformity, although the soak time is usually
too short to improve thermal homogeneity significantly.
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|
7

Part ejected from mold

Figure 2.4. Stage 3 of the injection molding cycle: ejection of the part(s).
(From Rauwendaal (2000).)

Stage 3, Ejection.When the material in the mold has cooled sufficiently to
hold its shape, the mold opens and the parts are ejected from the mold. See
Figure 2.4. When the molded part has been ejected, the mold closes and the
cycle starts over again.

The different stages can be graphically illustrated as shown in Figure 2.5. The
top bar shows the movement of the extruder screw, the second bar shows the
action going on inside the mold and the third bar indicates at what times the
mold is open and closed. As can be seen in Figure 2.5 the major part of the
injection molding cycle is the cooling time required for the plastic in the mold

to reduce to a temperature where the part can be removed without significant
distortion. The main variable that determines the cooling time is the thickness
of the molded part.

2.2 Plastic properties

Plastics have several properties that influence the repeatability of the mold-
ing process. First, plastics are compressible. The pressure in the mold cavity
determines how much the melt is compressed. If all other variables are held
constant, a higher hydraulic pressure results in a higher cavity pressure and
will force more plastic into the mold cavities.
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time

Screw pushed forward | Hold time Screw recovery Dwell time
Mold filling Part cooling Part gected
Mold closed Mold open

Figure 2.5: The different stages in the injection molding cycle. The top bar
shows the movement of the extruder screw, the second bar shows the action
going on inside the mold and the third bar indicates at what times the mold is
open and closed.

Second, plastics shrink significantly when cooled. Together these properties
indicate the need for the packing stage during the molding cycle. After the
mold cavity is filled, continued pressure on the piston connected to the screw
forces more melt into the cavity to compensate for part shrinkage due to initial
cooling. Shrinkage is also influenced by the cooling rate. A faster cooling
rate, i.e. colder mold temperature, results in less shrinkage. When a part is
cooled very quickly, the dimensions are “frozen-in” and, therefore, the part will
shrink less. A slower cooling rate gives more time for the molecules to align
and, consequently, the part will exhibit greater shrinkage. Finally, shrinkage
is affected by polymer orientation, alignment of the molecule and molecular
segments in the direction of flow. Shrinkage is a result of two factors, a normal
decrease in volume due to temperature change and relaxation of the stretching
caused by carbon-carbon linkages. As there are more carbon-carbon linkages
in the direction of the orientated flow, there will be greater shrinkage in this
direction. Any parameter that affects the mobility of the molecular segments
will affect orientation and consequently part shrinkage.

The third important property of plastic is that its viscosity is dependent on tem-
perature and flow rate of the melt. Increases in either flow rate or temperature
reduce viscosity. Higher temperatures are an indication of greater molecular
motion and consequently lower viscosity. Constant viscosity is required to pro-
duce parts of consistent quality. Viscosity can affect how much the polymer
is compressed in the cavity and therefore how much shrinkage will take place.
Lower viscosity results in smaller pressure drops along the flow path (runner
and gate) and consequently higher cavity pressure. Higher cavity pressure re-
sults in greater compressibility and consequently less shrinkage.
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2.3 The mold

Each mold, sometimes referred to as a tool, is built to exact specifications of
the part or parts required by the customer. The mold typically consists of two
mold halves. Usually one mold half contains the cavity and forms the outer
shape of the part. This part of the mold is called the cavity side. The other
mold half contains a protruding shape and forms the inner shape of the part;
this mold part is called the core. When the core is clamped against the cavity,
the hollow space that is formed defines the shape of the part to be molded. The
plastic is usually injected into the mold from the cavity side.

The mold cavities are cut to dimensions larger than the desired part dimen-
sions to compensate for the plastic shrinkage which occurs during cooling.
The cavity dimensions are equal to the part dimensions plus some shrink fac-
tor supplied by the material manufacturer. There are usually two shrink factors
given, one for dimensions in the direction of the flow and one for dimensions
perpendicular to the direction of the flow. Estimating shrinkage, however, is
not straight forward. It is often difficult to predict the melt flow path in parts
with complex geometries and therefore, not clear which shrink factor to apply.
Also, as discussed earlier in the chapter, part shrinkage is influenced by the
process conditions.

A sketch of a 16 cavity mold is shown in Figure 2.6. The 16 cavities are
denotedA throughP.

2.3.1 The runner system

A mold basically consists of properly designed sprue, runner, gate, and cavity.
The sprue is the channel, cut in the stationary platen, that transports the melt
from the plasticator nozzle to the runner. Once the plastic melt enters the
mold, it flows through a distribution system, called the runner system, and
then through the gates into the part cavities. In a so-called cold runner system,
a new runner is molded in each molding cycle and the runner is ejected together
with the molded parts. The plastic of the runner can often be reprocessed and
molded again.

In the design of the runner system the objective is to have the plastic reach all
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Figure 2.6: Sketch of a 16 cavity mold. Cavities are numbered A-P and con-
nected by the runner system.

gates at the same time. This is an important issue in multi-cavity molds. In
a rectangular runner system, the number of cavities is multiple of two. In a
circular runner any number of cavities can be used.

The gate connects the runner to the actual part. The cross section of the gate is
usually small so that the runner can be easily removed from the part and does
not leave a large gate mark on the part.

2.3.2 Mold cooling

During the machine cycle, heat is first required to be put into the material and
then that heat must be removed as quickly, and as consistently as possible, if
the rapid production of consistent products is to be obtained. As most mod-
ern injection molding machines are screw machines, heat input is relatively
easy. Heat removal from the plastics material contained in the mold is, how-
ever, difficult as plastics material contains a lot of heat and has a low thermal
conductivity.
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Cooling allows the plastic to solidify and become dimensionally stable before
ejection. Heat that has been transferred to the mold by the molten plastic is
carried away by a coolant that circulates through cored passages in the mold.
Coolant temperature and flow rate determine the efficiency of heat removal.

Cooling the molded components uniformly may mean either, cooling the mold
with different flow rates of cooling medium in different areas or, using the
same flow rate throughout the mold but with different temperatures of cooling
medium. The objective is to cool the components as quickly and uniformly as
possible, while ensuring that defects such as poor surface finish and changes
in physical properties are not encountered.

The design of the mold cooling passages also affects the ability to remove heat
from the mold. The mold surfaces closest to the cored passages will cool first.
Differences in mold temperature or mold temperature distribution will affect
reproducibility of part moldings.

2.3.3 Venting

As the mold fills the air in the mold will be displaced by the advancing melt
front. It is important that the mold is designed in such a way that the air dis-
placed in the mold filling process has a chance to escape from the mold. If air
does not have a chance to escape, it is compressed quite rapidly. As the air
compresses, it heats up and the temperature rise can be high enough to cause
burning of the plastic. Thus improper venting can not only cause incomplete
filling of the molded part, but can also cause burn marks.

2.4 Process variables

Each process variable can be categorized into one of five main types such as
speed, pressure, time, temperature and stroke. The relationship between the
five is of an interactive nature as each variable cannot be readily isolated. This
relationship can be simply demonstrated, for example, upon increasing the hy-
draulic back pressure, the linear retraction speed of the screw (during recovery)
changes causing an increase in the screw recovery time, the melt temperature
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and/or homogeneity. As a result of the increase in the melt temperature further
changes occur to the mold fill time, the injection pressure, the mold temper-
ature, the product ejection temperature and the product dimensions. Hence,
by increasing a pressure variable (for example, the hydraulic back pressure)
three other main variable types are collectively influenced. More important,
the process and subsequently the molded components are affected.

When changes to a particular process variable or machine setting do occur
(which significantly affect the stability of the molding process so that reject
components are produced) it is important that the correct process variable is
changed so as to rectify the disturbance. For instance, the selection of the
wrong hopper throat temperature can cause short moldings to be produced
which then misleads the molder into altering other variables (for example the
holding pressure and/or, the shot volume and/or, the mold filling speed etc.)
to overcome the short molding problem. As the initial selection was incorrect,
the process remains unstable but, in changing another variable type, the molder
is led to believe the problem is resolved. However, in reality rejectable and/or
inconsistent parts will continue to be produced throughout the production run.

The following table highlights typical process variables which need to be mon-

itored and/or controlled each cycle. Each of the listed variables will be dis-

cussed in more detail to highlight the importance of each variable with respect
to the stability of the process.

Temperat. Times Speeds Pressures Strokes

Melt Ejection Injection Holding Melt cushion
Mold surface Mold close  Screw Injection Screw stroke
Barrel Mold open Mold close  Hyd. back  Mold open
Component  Cooling Mold open Ejection Change over
Material Cycle Screw return  Mold safety position
Environment Screw recov. Ejection Nozzle Decompress.
Qil Hold press.

Table 2.1: Process variables.

To assist in identifying which variable is causing the major interference to
process stability, the variables can be divided in two types, controllable and
consequential.
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2.4.1 Controllable variable

This type of variable can be set to a particular value and suitably maintained at
this value to within a defined tolerance band, for example, the holding pressure
should be set t60 + 1 bar. This should be done by the control system or other
mechanism on the molding machine.

A typical controllable process variable would be either the holding pressure or
the holding pressure time. The holding pressure is set using the pressure con-
trol circuit of the machine’s hydraulic system and the holding pressure duration
by a timer or a timing device. Both of these variables can be accurately set to
their respective values and are suitably controllable. The accuracy and vari-
ability of the setting value is dependent upon the effectiveness of the hydraulic
and electronic control systems employed on the molding machine.

2.4.2 Consequential variable

This type of variable is one which cannot be set, as it is the ultimate result

of a combination of process variables used to perform a specific function or

operation, in order to produce the components to the required quality standard.
Such a type of variable is much more difficult to control as it's variability

is totally dependent upon the consistency and performance of other, usually
controllable variables.

A typical consequential variable is the melt cushion value. The melt cushion
is a variable which is the consequence of how much material is used to fill
the mold and then how pressure is applied to the molten material in order to
produce the component to the required dimensions. The variables associated
in carrying out the above operation include the amount of injection pressure
used, the stroke of the screw, the mold filling speed, the melt temperature of
the material, the applied clamping force, the level of holding pressure and the
holding pressure time used.

Therefore, to achieve a consistent melt cushion value to within specified limits
(for example 0.1 mm) it is essential that all the related variables are closely

controlled so that the cumulative effect is sufficiently small to ensure that the
melt cushion value does not significantly alter each cycle. As the melt cushion
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is the consequence of many other variables, significant importance is given to
it's variation. The extent of the variability encountered is a good indicator of
the level of inherent stability present within the molding process. Hence, the
smaller the variation the more consistent and stable the process.

2.4.3 Speed related process variables

Mold opening and closing speeds

As it is possible to select different opening and closing speeds, and speed
changes can be introduced during the opening and closing operations of the
mold, these variables are regarded as controllable.

The more common system used for mold movement is the combination of the
hydraulically operated closed loop volume (flow) proportional valve, or pump,
and the stroke transducer.

Injection speed

The injection speed is linear speed used to fill the mold with molten material.
When filling the mold, the injection speed is controlled to suit the characteris-
tics of the product, the material and/or, the mold. The rate at which the molten
material flows into the mold is dependent upon there being sufficient injec-
tion pressure available to maintain a consistent selected filling velocity. Incon-
sistency of the mold filling speed prevails if inadequate injection pressure is
selected.

As the filling of the mold is regarded as one of the most important elements
of the molding cycle, considerable investigations and technological advance-
ments have been made by injection molding machine manufacturers to try and
ensure that the selected (velocity) value corresponds to the actual value. The
mold filling speed is regarded as controllable.

Screw rotational speed

Some of the heat necessary to plasticize the plastics material is created as a
result of rotating the screw. The faster it is rotated the higher the temperature.
It is important to ensure that the correct speed is being used otherwise pro-
cess instability will occur. This means that the screw rotational speed must be
capable of being accurately measured.
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Screw recovery speed

Screw recovery is the return of the screw after plasticization has been per-
formed. Screw return is obtained by rotating the screw at a predetermined
speed and against a predetermined back pressure. This feature is regarded as
being controllable as most modern molding machines possess a facility to ad-
just this speed setting.

Component retraction speed

The speed and manner in which products are removed from the mold should be
regarded as controllable although the design of the mold, the configuration of
the product and the processing conditions selected, dictate the speed at which
the product can be extracted.

2.4.4 Pressure related process variables

Injection pressure

A correct injection pressure value is important so as to maintain a consistent
mold filling velocity. The pressure value is a consequence of, for example,
the melt temperature, the viscosity characteristics of the material being pro-
cessed, the mold filling speed used, the surface temperature of the mold, and
the distance the material has to flow in the mold cavity.

Holding pressure

Holding pressure (also called follow-up pressure) needs to be applied after the
mold has been initially filled with melt, so as to compact and shape the ma-
terial and thus allow the production of components which have the required
dimensions and aestethic quality standards. The amount of holding pressure
used is related to the dimensional and/or the visual requirements of the molded
component but the amount selected should be controlled carefully for consis-
tent product quality. Control of this variable is dependent upon the molding
machine’s pressure generation system. However, machine technology nowa-
days enables the selected pressure values to be held to withaar. For this
reason the holding pressure is regarded as controllable.

Hydraulic back pressure

When the screw is rotated, heat-softened (plasticized) material is pushed for-
ward through the back flow valve assembly to the front of the screw. The
pressure generated within, and by the molten material, forces the screw (and
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back flow valve assembly) to move backwards, thus refilling the vacated vol-
ume with molten material. Hydraulic back pressure has an influential effect
on the melt temperature and homogeneity. The value selected corresponds to
the type of material being processed, the shot capacity of the barrel being uti-
lized, the plasticizing capability of the screw, the rotational speed of the screw,
and the quality standards of the components to be molded. The hydraulic back
pressure is set either manually or electronically and the selected value should
be maintained within some tolerances as the melt homogeneity is significantly
influenced by the amount of back pressure selected and its consistency.

2.4.5 Time related process variables

Injection time

The period from when the screw commences its forward movement to the point
where the holding pressure is applied is called the injection, or mold fill, time.
The amount of material that should be pushed into the mold during this period
is between 95 to 98% of the total shot volume. The time to force this amount
of molten material into the mold is dependent upon important factors such as
the injection speed selected, melt viscosity, screw stroke used, the dimensions
of the gate.

Because of the influence from all the above factors, the injection time is often
regarded as consequential.

Holding pressure time

The holding pressure time is the time, when the screw is held almost stationary
in its most forward position so as to apply the necessary holding pressure to the
molten material in order to pack the material into the mold cavities during the
early stages of material solidification. The period of time used for the holding
pressure to be applied should correspond with the time the gate takes to freeze
off or, for the gate to sufficiently solidify. This holding pressure time once set

is readily controlled by, for example, the process timers used in the molding
machine.

Pause (dwell) time
At the end of each molding cycle, and before the commencement of the next,
it is necessary to allow sufficient time for the moldings to be extracted.
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Cooling time

Cooling time is necessary for the molten plastic material to cool to a tem-
perature which will enable the moldings to be ejected from the mold without
distortion. This time period is dependent upon many factors, for example, the
general shape of the component, the wall thickness of the component, and the
type of material being processed. The time period needed is readily set by
means of electrical timers and hence is regarded as controllable.

This time period is always the longest portion of the molding cycle. During the
cooling sufficient time is needed to retract the screw (sometimes called screw
recovery, or dosing time) so as to refill the barrel with material.

Cycle time

The time period for product manufacture is dependent upon the accumulation
of all other time increments of the molding cycle. As some of these elements

are consequential, whilst others are controllable, the cycle time also has to be
regarded as consequential. However, by reducing the variation of the control-
lable process variables to a minimum the overall cycle time variation can also

be maintained within a narrow band.

2.4.6 Stroke related process variables

Melt cushion
The melt cushion is the amount of molten material left after injection. The size
of the melt cushion results from selecting and controlling other process values.

Screw stroke

The screw stroke is the linear distance the screw moves or travels, from it's sta-
tionary position (after plasticization) to the selected position of holding pres-
sure application (mold pack). A constant volume of molten material must enter
the mold each cycle or the product quality will be affected. Any variation in
this volume is usually related to the variation in the final (stationary) position

of the screw. Low variation can be achieved by selecting the correct screw
rotational speed. Upon setting the necessary parameters so as to maintain a
screw stationary position the screw stroke can be regarded as controllable.

Changeover position from injection to holding pressure
The changeover from injection pressure to holding pressure is usually per-
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formed by one of three different modes. That s, by pressure dependent switch-
over, time dependent switch-over and stroke (distance) dependent switch-over.
The most common and preferred technique is stroke dependent switch-over,
i.e. the switch-over position from injection pressure to holding pressure is ini-
tiated at a preselected distance. When the advancing screw reaches this posi-
tion an electric impulse signals for a change of hydraulic mode - from injection
pressure/screw velocity to holding pressure.

2.4.7 Temperature related process variables

Melt temperature

The melt temperature is hot measured in the process directly. Instead the con-
tents of the cylinder or barrel is shot directly into a cup and measured with a
thermocouple. The temperature of the molten polymer inside the cylinder as-
sembly is determined by a selection of many important process parameters and
machine settings. For example, melt temperature is affected by screw speed,
back pressure, cycle time, barrel temperature settings and the hopper throat
temperature. Its value can be changed by simply altering one of these process
variables. This variable is considered as consequential.

Mold temperature

The surface temperature of each mold half varies every cycle as the molten
material enters the mold. The excess heat contained within the molten material
has to be removed so that the molding can be extracted without distortion. The
mold temperature is a consequence of many process and design variables, for
example, the melt temperature, the cooling time, the rate at which the cooling
medium is flowing through the mold and the design of the cooling circuit in
the mold.

Barrel temperature

The barrel forms the outer boundary of the screw channel. For injection mold-

ing one can assume that the major portion of the heat that must be applied to
the plastic is supplied by the barrel. To do this, the barrel is equipped on the

outside with electrical band heaters.
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Cooling water temperature
Any injection molding process is reliant upon the flow rate, the available sys-
tem pressure and the temperature of the cooling medium used.
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Chapter 3

Results and Discussion

In this thesis various methods for quality improvement in injection molding
are suggested. The emphasis has been on studying the variation in the process.
It is well-known, that in manufacturing with multi-cavity molds, the cavity
differences are of major importance. The cavity-to-cavity variation has been
addressed in Papers A, B, C, and E.

It was found that the largest single contribution to the variation in the finished
parts was due to the difference between cavities (Paper C). This source of
variation accounted for 46 % of the total variation. Consequently, any efforts in
improving the quality of the product should pay special attention to the cavity-
to-cavity variation.

3.1 Cauvity-to-cavity variation

In Paper B output from a multi-cavity molding process is analyzed for sys-

tematic differences between the cavities in the mold. It is found that in the

row-column layout of the mold, there is a systematic effect from the cavities

positions. The closer to the center of the mold a part is produced, the longer it
is.

25
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Also a study of shrinkage data reported in Paper E indicated that the observed
differences were not only due to differences in cavity dimensions. From the

parameters in a non-linear regression model, it was found that the shrinkage
rate was not the same for all cavities. Consequently, there is a potential for
reducing the variation, if reasons for the differences can be found.

Furthermore a capability index taking the cavity-to-cavity variation into ac-
count has been suggested in Paper B. Using the average of the percentage
non-conforming from each cavity the resulting index is equivalent to the con-
ventionalC,,, index with respect to the percentage of non-conforming parts.

Another paper dealing with methods to reduce the cavity-to-cavity variation is
Paper A. In Paper A an 8 factor fractional factorial experiment is applied to the
molding process of a part produced in a multi-cavity mold. Two factors were
identified having a significant effect on the cavity-to-cavity variation. Shorter
injection time results in lower variation, and longer cooling time results as well
in lower variation. Thus, a proper choice of levels for the machine variables
will result in more consistent quality of the molded parts.

3.2 Process variables

In Paper C the correlation of 21 process variables are analyzed. The process
variables are analyzed by means of principal component analysis, which takes
the multivariate nature of the variables into account. It was illustrated in an
example how a retrospective multivariate analysis of production data can facil-
itate a deeper understanding of the correlation structure of the data, which can
assist in building a proper monitoring strategy.

Two principal components were found to reflect the changes in machine set-
points very well. There were clearly two levels of variation, a macro variation
was the variation from set-point to set-point, and a micro variation was the
variation within set-points.

The correlation between process variables and part quality was not very good.
One reason for this may be that the observed process was a process in control.
Again a designed experiment may provide more information on the correla-
tion structure between the process variables, and on their correlation with part
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quality. The experiment could be performed by means of Evolutionary Opera-
tion (EVOP) (Box and Draper (1969)), where the experiments are carried out
during production without interrupting it.

The influence of eight machine variables on part length was studied in a de-
signed experiment. Four machine variables were found to influence the mean
length significantly. In this controlled setting, the four variables explained al-
most all the observed variation in part length.

3.3 Productivity

Apart from part quality, another great concern for the manufacturer is the cy-
cle time. The lower the cycle time, the more product the molder can produce.
However, since cooling time is the greatest contribution to the cycle time, we
have that an increase in cooling time will result in lower cavity-to-cavity vari-
ation, which will in turn lead to a greater proportion of parts within specifi-
cations. Consequently, a higher production rate leads to a higher proportion
non-conforming parts. Thus, some compromise between the production rate
and the quality of the parts must be sought.

To further investigate the relation between part quality and productivity, a sim-
ple cost of quality model is investigated. The hourly profit can be expressed as
a difference between the gain on the conforming product, and the loss due to
non-conforming product. The proportion of conforming and non-conforming
product produced in an hour are both functions of the process variation, and
thus functions of the cooling time. Consequently the hourly profit can be writ-
ten as the following function of the cooling time,

Ul(te) = cih(te) PI(tc) — cah(te)(1 — PI(tc)) (3.1)

whereh(t.) is the production ratel?1(t.) is the proportion of parts produced
inside the specifications; is the profit of a conforming part, and is the cost
associated with a non-conforming part. In the constan@ndcs the cost of
inspection, sorting and rework may be included.

To illustrate this model, it is applied to the case presented in Paper A, where a
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Figure 3.1: Relationship between cooling time and hourly profit.

crude relation between cooling time and cavity-to-cavity variation was found
from a designed experiment. The cavity-to-cavity variation is assumed to de-
crease linearly with the cooling time, and a suitable model for the production
rate is suggested below.

The cycle time is the sum of the cooling time and several other time compo-
nents. The other time components do not depend on the cycle time, and for
simplicity their sum is set to 10 seconds. The amount of parts produced per
hour from the 16 cavity mold is assumed to be

16 % 3600
h(te) = ———. 3.2
(te) 10 + ¢t (3.2)
With ¢1=2,¢,= 3.5, = 70.13 mm and specification limit&SL = 70.07 mm
andU SL = 70.19 mm respectively, the relationship between the cooling time
and the hourly profit is as shown in Figure 3.1.

The hourly profit is seen to have a maximum for a cooling time of approxi-
mately 3.5 seconds. Thus, the best compromise between quality and produc-
tion rate is obtained when using a cooling time of 3.5 seconds.
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3.4 Monitoring and control

The objective for monitoring the process is to improve product quality, de-
tect process changes and disturbances and increase operator awareness of the
impact of process changes. Two different approaches for monitoring are dis-
cussed in this work. In Paper B charts for monitoring the quality of the molded
parts are suggested, and in Paper C alternative methods for monitoring the pro-
cess variables are discussed.

When monitoring the product from a multi-cavity mold, it is important to dis-
tinguish between an assignable cause that shifts the mean level of all of the
cavities over time (called an overall assignable cause), and an assignable cause
that changes the mean of one or more cavities relative to the remainder (called
a relative assignable cause). A control charting procedure has been suggested,
that is controlling the overall and the relative assignable causes separately.

In Paper A methods for control of the injection molding process were sug-
gested. One control approach suggested, was the model based control, based
on finding a suitable model for the dynamical behaviour of the process. In
Paper C it was found that the sample-to-sample variation within a machine
set-point was a non-stationary process, and that it was well described by an
ARIMA(2,1,1) model. Since the molding process was found to be non-stationa-
ry, a control strategy is indeed needed.

In Paper D an alternative method for in-line quality charting is suggested. The
method is for continuous control by attributes, and can thus be applied for
example for evaluating conformance of visual characteristics.

3.5 Limitations

In the entire work presented here, attention has been given only to the length
of the parts. However, other characteristics of the parts define the quality of the
parts just as well. Visual characteristics and the ultimate strength of the parts
are two other important quality aspects.

That the parts have the same length does not necessarily mean that the other
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characteristics of the parts are the same as well. However, a similar approach
for dealing with other characteristics than dimensions can be taken. It is for
example possible to design experiments for binary responses.

In the shrinkage study in Paper E, only one shot is measured. The effect of
the molding variables is not considered. For example viscosity can affect how
much the polymer is compressed in the cavity and therefore how much shrink-
age will take place. One suggestion would be to study the influence of ma-
chine settings on shrinkage in a designed experiment similar to the the one in
Paper A.



Chapter 4

Conclusion

The majority of the literature on control of the injection molding process is
concerned with closed mathematical/physical models of subprocesses. There
is, however, a lack of empirical evidence that such models provide a satisfac-
tory description of the transfer of variation in such highly complex processes
as a multi-cavity injection molding process.

In the present work the observed variation in injection molded part dimen-
sions has been considered. In particular the variation between cavities in multi-
cavity molds has been studied in various ways. The thesis suggests alternative
approaches for dealing with the injection molding process. The proposed ap-
proaches are illustrated with actual production data from the manufacturing of
molded parts for a medical device.

In actual production data it was found that the largest single contribution to
the variation in the finished parts was due to the difference between cavities
and accounting for 46 % of the total variation. Consequently, any efforts in
improving the quality of the product should pay special attention to the cavity-
to-cavity variation. The second greatest source of variation was the change in
machine set-points accounting for 12 % of the total variation.

A simple graphical method for bringing out systematic patterns in data from
a multi-cavity mold has been suggested. Upon applying the method on data
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from a 16 cavity mold, a clear pattern was found in the part of the variation
arising from the cavities positions in the mold.

A designed experiment with eight machine variables showed that two factors
had a significant influence on the cavity-to-cavity variation. Shorter injection

time resulted in lower variation, and so did longer cooling time. Thus, a proper
choice of levels for the machine variables would result in more consistent qual-
ity of the molded parts. Since longer cooling time affects the production rate
in a negative way, it was illustrated how a compromise between quality and
production rate could be found.

Furthermore a simple model for the in-control variation for a multi-cavity
molding process was suggested. The model differentiates between assignable
causes affecting all cavities, and assignable causes affecting only one or a few
cavities. Based on the suggested process model a charting procedure has been
introduced. The charting procedure is controlling the two types of assignable
causes separately. Furthermore a capability index taking the cavity-to-cavity
variation into account has been suggested. Using the average of the percentage
non-conforming from each cavity the resulting index is equivalent to the con-
ventionalCy,, index with respect to the percentage of non-conforming parts.

Finally, it was found that within set-points, the quality variable (part length)
was not exhibiting stationary behaviour, indicating that there is a need for
monitoring and controlling the process. A multivariate analysis of 21 process
variables was carried out. It was found that a change in machine set-point was
reflected by two principal components. Thus, there seems to be great potential
in monitoring the process variables using a multivariate approach.
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Abstract

Eight process factors were studied to improve the quality of a plastic part used
in a medical device. The part is produced from multi-cavity injection mold-
ing. Using a fractional factorial design the factors influencing the mean length
and the cavity-to-cavity variation were identified. It was found that holding
pressure, injection time, holding pressure time, and back pressure all had a
significant influence on the mean length of the parts. Injection time and cool-
ing time were the only significant factors with respect to the cavity-to-cavity
variation.

1 Introduction

Dimensional variation in injection molded plastic parts is a common problem
in the plastics industry. In a single-cavity mold, dimensional variation is ob-
served from run to run. In a multi-cavity mold, there may also be cavity-to-
cavity variation, even though all of the cavities are filled with the same poly-
mer melt and under the same molding conditions. In either case, variations in
critical dimensions can cause problems in subsequent down-the-line assembly
operations due to, for example, mismatch between mating parts.

According to Whelan and Goff (1996) many engineers tend to believe that the
process variables and machine settings selected for the manufacture of a partic-
ular component, for example a car bumper, are very similar to those required
for the production of syringe assemblies. In reality the process parameters
which are considered important for the manufacture of one product do not have
the same importance for other products. In this paper we introduce a system-
atic approach to identifying the key variables for a particular part. Furthermore
we use the key variables to find an optimal setting and to formulate a control
strategy.

Several authors have used design of experiments as a tool for finding a suitable
level of the machine settings to produce parts that live up to certain quality re-
quirements. Deliz and Caraballo (1995) used a fractional factorial experiment
to find the processing conditions that would minimize the out-of-roundness
while centering diameter and length at their nominal values. Also Xia and
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Mallick (1997) and Blyskal (1994) applies DOE techniques to find optimal
settings with respect to some dimensional measure. However, all the above
focus on explaining variations in the mean, the cavity-to-cavity variation is not
touched upon. Furthermore Acharya and Mahesh (1999) uses design of exper-
iments to identify which process parameters affected the aesthetic aspects of
a product, and Beard (1999) suggests using design of experiments for process
validation.

Most systematic investigations of the effect of various molding parameters fo-
cus only on their effect on the mean and not on the variation.

2 The Experiment

A hollow cylindrical part used in a medical device and produced by injection
molding was studied for quality improvement. The part in question is produced
in a 16 cavity mold and is a part of an assembly consisting of seven molded
parts. The quality characteristic that is investigated is the length of the part.
The length is measured a week after the part has been produced in order to
incorporate possible differences in shrinkage patterns of the individual parts.

2.1 Planned experiment

Nine factors were chosen for the experiment based on our experience and
knowledge of the process. The levels were chosen such that they were clearly
outside ordinary operating conditions but not further than we would still expect
to get a usable product out. The nine factors included in the study are listed in
Table 1 together with their levels. The barrel temperature is controlled by four
heater bands, therefore the four values for each level of this factor.

Our objective for the experimentation is to find which factors and factor com-
binations influence mean length and cavity-to-cavity variation mostly. Using

a so-called (Box et al. (1978)°—* fractional factorial design, an experiment

was designed. The design chosen involves 32 experiments, and because the
process needs some time to stabilize after each new set point it was intended
to carry out the experiment over two consecutive days. This was done by in-
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Variable Low level High level

A Mold temperature Cooling No cooling

B Holding pressure 53 bar 63 bar

C Injection time 0.3 sec 1.6 sec

D Fill/postfill switch 12.5 mm 16.5 mm

E Barrel temperature (205,215,205,185) (235,245,235,215)
F Holding pressure time 2.5 sec 4.5 sec

G Back pressure 5 bar 30 bar

H Cooling time 2 sec 6 sec

J Travel 47.5 mm 51.5 mm

Table 1: Factors and levels

troducing two blocks to the experimental design.

The chosen design was one resolutidnwhich means that main effects were
confounded with three factor interactions and two factor interactions were con-
founded with other two factor interactions. Tfe * design suggested by Box

et al. (1978) leads to the following defining relations

I =BCDEF = ACDEG = ABDEH = ABCE/J. (1)

The block generator is chosen in such a way that it is free of main effects
and two factor interactions. The block generator I satisfies these require-
ments. All experiments wittll EF' = +1 are carried out on the first day, and
experiments witAEF' = —1 are carried out on the second day.

2.2 The actual experiment

Not everything went as planned.

The particular mold was usually operated without cooling. To investigate if
cooling has any effect on part quality we wanted to include cooling in our
experiment. But on the day of the experiment it was found that the cooling
channels were clogged. It was not possible to fix the problem on the spot and
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thus it was decided to continue without cooling.

The experiment was carried out on one of the production machines. On the sec-
ond day of experimentation the machine could not be taken out of production
as planned. Consequently only the first block of the experiment was actually
performed.

As a result the design actually performed is a resolufibh design instead of
aresolution/V. In a resolution/ 17 design some main effects are confounded
with two factor interactions. The alias structure of this design is shown up
to and including two-factor interactions in Table 2. The first column is the
underlying complete* factorial design for the factor®-E. The factorA
(cooling) was taken out of the experiment.

B = EG

C = EH

BC = GH = R

D = EJ

BD = FH = GJ

CD = FG = HJ

BCD = EF

E = BG = CH = DJ
BE = G

CE = H

BCE = DF = CG = BH
DE = J

BDE = CF = DG = BJ
CODE = BF = DH = CJ
BCDE = F

Table 2: Alias structure for the®—* performed experiment.

From a physical perspective interactions with barrel temperature (factor E) are
not very likely. Thus, if three-factor and higher interactions are negligible and
we further assume that interactions with barrel temperature are negligible as
well, this design will after all give clear estimates of all main effects except
barrel temperature. Barrel temperature is confounded with two-factor interac-
tions between holding pressure and back pressure, between injection time and
cooling time, and between fill/postfill switch and travel. Especially the former
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two are both quite possible.

For 8 factors in 16 experiments we could have had a resoldfiddesign in-
stead of the resolutiohl I design we ended up with, but circumstances turned
out otherwise.

From each of the 16 different parameter settings two shots were collected and
measured. Each shot consists of 16 parts, one from each cavity. The results
are displayed in experimental order in Figure 1 with the numbers 1-16 being
the cavity numbers. For every experiment the letters on the x-axis denotes the
experiment. When a letter is present the corresponding factor was on its high
level in that experiment. It is clear from the figure that the mean as well as
the standard deviation of the length measurements changes greatly from one
experiment to the next. The horizontal line in the figure is the target length.
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Fig. 1. The measured length of the molded parts in each of the 16 experiments
(2 replicates). The numbers 1-16 are the cavity numbers.
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3 Analysis

The two repetitive shots were all taken within a minute of each other. In Fig-
ure 1 we can see that the shot-to-shot variation is very limited. The two shots
made under the same parameter conditions are very similar. See for example
the treatmentéy;” where the six lowest measurements are two measurements
from cavities 7, 10 and 15. However, the observed shot-to-shot variation may
not be representative for the process dynamics in general. The two shots should
not be regarded as true replicates. Raw material variations and influence from
environmental factors may cause shots further apart to be much more different
than two consecutive shots.

If the very limited shot-to-shot variation is used as error in the statistical analy-
sis we will almost certainly falsely conclude that too many of our experimental
factors have an effect. To avoid finding all or almost all the factors significant
we decided to average the results from the two repetitions and subsequently
analyze the mean over all 16 cavities and the variance between the cavities.

3.1 Analysis of mean length

Table 3 contains the effect estimates and sums of squares for the 15 effects esti-
mated for the mean of the 16 cavities. The effects are again ordered according
to the underlying complet2! factorial design.

An analysis of variance leads to a model with six significant factors. Table 4
summarizes the analysis of variance for this model. The residuals from the
fitted model are displayed in a normal probability plot in Figure 2. From this
figure it seems that the distribution of residuals has heavier tails than the nor-
mal distribution. This indicates a violation of the analysis of variance assump-
tion of equal variances. The response in our analysis is the mean length of
the 16 cavities. And we saw from Figure 1 that the cavity-to-cavity variation
varies greatly with experimental conditions. Thus the variance homogeneity
assumption is probably violated. However, the identified effects are all very
significant, so we still believe that they are real.

Box and Cox (1964) discussed how to deal with inhomogeneous error struc-
tures through transformations of the response variable. This method is very
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Estimated  Sum of

Effect Df. effect Squares
(Intercept) 70.1931

B 1 0.0538 0.0116
C 1 -0.0759  0.0230
BC 1 -0.0005 <0.0001
D 1 -0.0135  0.0007
BD 1 -0.0110  0.0005
CD 1 -0.0034 <0.0001
BCD 1 0.0093  0.0003
E 1 0.0496  0.0098
BE = G 1 0.0532  0.0113
CE = H 1 0.0272  0.0029
BCE 1 -0.0040  0.0001
DE = J 1 0.0120  0.0006
BDE 1 -0.0075  0.0002
CDE 1 -0.0021 <0.0001

1

BCDE

F 0.0776  0.0241

Table 3: Estimated effects and sums of squares with mean level as response.

Sum of Mean

Source of variation Df. Squares Square F, P-value

B (Holding pressure) 1 0.0116 0.0116 42.025 0.0001
C (Injection time) 1 0.0230 0.0230 83.597 <0.0001
E (Barrel temperature) 1 0.0098 0.0098 35.649 0.0002
F (Holding pressure time) 1  0.0241 0.0241 87.320 <0.0001
G (Back pressure) 1 0.0113 0.0113 41.091 0.0001
H (Cooling time) 1 0.0029 0.0029 10.698 0.0097
Residuals 9 0.0025 0.0003

Table 4: Analysis of variance for the analysis of the mean length.
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Fig. 2: Normal probability plot of residuals from analysis of mean length.

good when the variation can be reasonably described by a monotone function
of the mean. However, in our case we see that low cavity-to-cavity variation
occurred at several different levels of the mean. Consequently it is not possible
to find a transformation that will stabilize the variance.

Instead a weighted analysis has been used, where the observations are weighted
with the inverse cavity-to-cavity variance. See Draper and Smith (1998) for

a more thorough introduction to weighted analyses. The residuals from this
analysis are found in Figure 5. Residuals from the weighted analysis of vari-
ance model look more like normally distributed errors. Table 5 summarizes
the weighted analysis of variance.

In Figure 3 the changes in the average response is displayed for the four signif-
icant factors. And the size of the significant effects are displayed in Figure 4.

The four significant factors are in good agreement with our experience with
the process. Traditionally holding pressure and injection speed are believed to
be among the most important factors for part dimensions, and it is usually the
variables used by the molder to control dimensions.
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Sum of Mean
Source of variation Df. Squares Square Fy P-value
B (Holding pressure) 1 223696 22.3696 13.520 0.0036
C (Injection time) 1 16.3680 16.3680 9.893 0.0093

F (Holding pressure time) 1  66.2827 66.2827
G (Back pressure) 1 354379 35.4379

Residuals 11 18.2003 1.6546

40.060 0.0001
21.418 0.0007

Table 5: Weighted analysis of variance of mean length.
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Fig. 3: Average response curves.

Increasing the holding pressure or the holding pressure time will give a bet-
ter compression of the melt which will lead to less shrinkage and therefore
longer parts. By increasing the injection time the injection speed is decreased
which will in turn decrease the pressure transmission during the holding pres-
sure stage. This will result in greater shrinkage which will again cause shorter

parts.
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Fig. 5: Normal probability plot of residuals from weighted model.

3.2 Analysis of cavity-to-cavity variation

In most other applications of DOE to injection molding only the effect on the
mean has been studied. Another great concern is how parameters affect the
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cavity-to-cavity variation.

According to Bartlett and Kendall (1946) a logarithmic transformation of ob-
served variances will serve well as a basis for analysis of variance heterogene-
ity. Thus if we use the log-transformed cavity-to-cavity variance as response
we can perform an analysis of variance to evaluate the effect of the eight factors
on the cavity-to-cavity variation.

Estimated Sum of
Effect Df. effect Squares

B 1 0.3770  0.5684
C 1 1.8435 13.5945
BC 1 -0.2385  0.2276
D 1 0.1659 0.1101
BD 1 -0.1337  0.0715
CD 1 0.1050 0.0441
BCD 1 0.5937  1.4098
E 1 -0.4521  0.8176
BE = G 1 -0.1376  0.0758
CE = H 1 -0.6630 1.7581
BCE 1 -0.2623  0.2753
DE = J 1 0.2626  0.2758
BDE 1 0.1925 0.1482
CDE 1 0.0187 0.0014
BCDE = F 1 -0.1865 0.1391

Table 6: Effect estimates and sums of squares for analysis of cavity-to-cavity
variation.

Table 6 shows the effect estimates and sums of squares for the 15 effects from
this experiment. The analysis shows that main effects C (Injection time) and
H (Cooling time) have significant influence on the cavity-to-cavity variation.
Table 7 summarizes the analysis of variance with the logarithmic transformed
cavity-to-cavity variance as response. In Figure 6 the relative size of the two
significant factors is displayed.

It has wide implications for the control of the process that injection time is
among the most important effects both with respect to the mean and to the
cavity-to-cavity variation. Especially since injection time (or injection speed)
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Sum of Mean
Source of variation Df. Squares  Square F, P-value
C (Injection time) 1 13.5945 13.5945 42.438 <0.0001
H (Cooling time) 1 1.7581 1.7581 5.488 0.0357
Residuals 13 4.1644 0.3203

Table 7: Analysis of variance for cavity-to-cavity variation.
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Fig. 6: Effect on cavity-to-cavity variance.

is among those variables often used for controlling the process. When using
the injection time to adjust the mean level the cavity-to-cavity variation will
change as well.

The residuals of the model look quite satisfactory. In Figure 7 the logarithm of
the residual sum of squares is plotted against the value of lambda in a Box-Cox
transformation (Box and Cox (1964)). This figure reveals that minimum of
log(RSS) occurs for a lambda of zero which is the log-transformation, proving
that this was indeed a suitable transformation.

Another way to analyse the observed variances could be through generalized
linear models, see e.g. McCullagh and Nelder (1990). However, the results
from the analysis of the log-transformed variances did not give any reason to
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Fig. 7: Box-cox transformation for standard deviation.

do so.

4 Optimal settings

We will use what we learned about the influence of the eight factors on the
mean length and on the cavity-to-cavity variation to find a suitable set point
for the process. Our goal for a good set point is to be on target with minimum
cavity-to-cavity variance. The target value for the length of the part is 70.13
mm.

First the cavity-to-cavity variation should be made as small as possible by
keeping injection time on the low level and cooling time on the high level.
However, injection time has significant influence on the mean length as well.
So we will have to compensate by choosing appropriate levels of the remain-
ing factors such that the mean level comes on target. The factor combination
shown in Table 8 leads to a mean length on target.

Another important characteristic of the process is the cycle time. It must be
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Variable Value

B Holding pressure 53 bar
C Injection time 0.3 sec
F Holding pressure time 2.5 sec
G Back pressure 5 bar

H Cooling time 6 sec

Table 8: Optimum processing conditions for performed experiment.

appreciated that injection molding is a mass production process. Lower cycle
times means higher productivity. So most injection molders are very concerned
about keeping the molding cycle time as low as possible, and the greatest com-
ponent of the cycle time is the cooling time.

Having cooling time on the high level means adding 4 seconds to every cy-
cle. In this particular process adding 4 seconds to the cycle time is a consid-
erable extension of the cycle time. As the influence of the injection time is
even greater than that of the cooling time we should look in to the possibility
of injecting even faster and then lower the cooling time from the 6 seconds.
However, if the melt is injected too fast into the mold the risk of burn marks
becomes a serious issue.

Some compromise between the cycle time and cavity-to-cavity variation should
be sought.

5 Control

In the previous sections we learned the effect of the eight molding factors on
the part dimensions. We used this knowledge to find an optimal set point for
the process. However, this set point is only optimal so far the process behaves
as it did during the experiment. Variations in the raw material or the outside
humidity may affect the part dimensions such that the chosen set point will no
longer lead to the mean length being on target.

To compensate for the systematic drift in the process mean we look into differ-
ent methods for feedback adjustment. Our overall goal for a good control strat-
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egy is that we want to control the mean such that it is on target with minimum
cavity-to-cavity variance. First we assume that the cavity-to-cavity variation is
not affected by the process drift, i.e. injection time on the low level and cooling
time on the high level will still give the lowest cavity-to-cavity variation.

A simple and robust feedback adjustment procedure is to compensate for only
a proportionGG of each deviation in the mean from the target. Box and Luceno
(2000) has shown that repeatedly applying this simple procedure is equiva-
lent to applying an exponentially weighted moving-average (EWMA) with a
smoothing constarit — G.

Another approach is the model based control introduced by Astréom (1970).
This approach is based on finding a suitable model for the dynamical behaviour
of the process, for example in the ARMA class of models (Box et al. (1994)).
The simplest method for model based control is the so-called minimum vari-
ance control where the squared deviation from target expected under the par-
ticular model is minimized, i.e.

m}n (J = E[(:&t—i—k\t - yref)Q]) ’ (2)

where g, ; is the k step prediction at time¢ under the particular process
model. In the computation of this prediction the observed mean atttiime
used. A potential shortcoming of the minimum variance controller is that it
only considers the quality and does not take the variation of the control variable
into account. If some kind of cost is associated with making adjustments these
costs should be included in the cost function, as e.g. in

min (J = B{(rkje = Yres)’] + i) ®

whereu; is the control variable andl is a cost associated with making adjust-
ments. This is called LQG control.

It is sometimes inconvenient to make repeated adjustments in the above-men-
tioned manner. For example when the operator has to do the interventions
manually. Another great concern is that when considerable measurement error
is present we run the risk of making adjustments based on noise. If we adjust
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the process every time the observations deviate from target we will just intro-
duce more variation to the process. However, from the two shots measured in
every experiment, an estimate of the measurement error can be obtained. If the
observations deviate less than the measurement error from target, there is no
need to adjust the process.

Box and Luceno (2000) suggests a bounded adjustment scheme for this type
of problems. Action is taken only when, at timea measure of present and
possibly past deviations falls outside tabled limits. In this way we will only
take action when we are certain that the mean has actually changed.

6 Conclusion

Using a fractional factorial design with eight factors, it has been investigated
how eight process factors influenced the mean length and the cavity-to-cavity
variation in the production of a hollow cylindrical part from a multi cavity
mold. It has been found that holding pressure, injection time, holding pressure
time, and back pressure all had a significant influence on the mean length of
the parts.

Furthermore it was found that injection time and cooling time were the only
significant factors with respect to the cavity-to-cavity variation. The cavity-to-

cavity variation contributes well to the overall variation of the process. Con-
sequently, this result has great practical implications for improvement of the
process. A proper choice of levels for the machine variables will result in
higher quality parts.

Based on these results an optimal set-point for the process is suggested. Also
ways of controlling the process are briefly discussed.
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1 Introduction

A company is producing a medical device that consists of seven components
all made in plastic by injection molding. The parts are produced from multi-
cavity molds having between 8 and 24 cavities. The company wants to know
if parts meet specifications or not. The latter can occur if the viscosity of
the melted plastic is incorrect or a cavity malfunctions, possibly due to a clog
somewhere. Problems with the viscosity can affect the product from all cavi-
ties, but a clogged cavity only affects the output of that particular cavity. It is
important to detect both an assignable cause that results in all cavities shifting
out of control and an assignable cause in which one or a few cavities shifts out
of control. Typically, these two types of assignable causes have different root
causes, and the distinction facilitates the identification of the problem and the
solution.

To monitor the quality of molded parts from a multi-cavity mold, individual
control charts for each cavity can be maintained simultaneously. Golmanavich
and Nielson (1993) advocates this approach for monitoring product from a
multi-cavity mold. An out-of-control condition is signaled whenever either the
cavity malfunctions or the process inputs change. Rather than monitoring 16
individual charts, one would prefer to monitor the process using fewer charts.
The disadvantages due to multiple comparisons are also important. As the
number of charts increases, the chance of a false alarm also increases.

It is important to understand that each cavity in an injection mold will have its
own performance characteristics, even when a multi-cavity mold is geometri-
cally balanced. Combining data from several cavities can confuse the picture
by creating distributions with multiple modes or produce average values which
suggest that part dimensions center on the target, when the values actually
straddle the target value symmetrically.

2 Multi-cavity molds

Where large numbers of components are required, particularly when they are
small components, then the economic advantages and fast production capabil-
ities of multiple cavity production are considerable. When desired part weight
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Fig. 1. Sketch of a 16 cavity mold. Cavities are numbered A-P and connected
by the runner system.

is low and the quantity of parts is great, it is common to use multi-cavity molds
for production of the parts. By using a multi-cavity mold the machine time is
used much more efficient, because in every cycle of the process several (the
number of cavities) parts are produced simultaneously, which is usually re-
ferred to as a shot. A multi-cavity mold consists of the forming cavities, a
runner system for distribution of the plastic melt combined with all the nec-
essary equipment for cooling and ejecting the parts. A sketch of a 16 cavity
mold is displayed in Figure 1. The runner system connects the cavities into
four clusters. There is the same flow distance to all four clusters and to all
cavities in a cluster.

To provide part-to-part uniformity in a multi-cavity mold, the cavities should

be cut to equal sizes, and furthermore the runner system should enable each
cavity to fill at the same rate. If the flow distances from the sprue to the various
cavities are equal, the runner system is balanced. As balanced runner systems
contribute to melt uniformity among cavities, dimensional tolerances are easier
to maintain. Unbalanced systems can cause great cavity-to-cavity variations.

In the process control a full shot is sampled and after two hours cooling and
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hardening time the items are measured. A full shot consists of all items pro-
duced in one production cycle, i.e. one item from each cavity. After being
molded the parts from all cavities slide down the same chute into a common
container. However, for traceability purposes each part has the cavity number
molded in it.

An important quality characteristic of the molded parts is the part dimensions.

Especially when the part is assembled with other molded parts it is crucial

that the part is within the specification limits. The part dimensions are usually

highly correlated such that parts longer than the target length will also have
diameters greater than target diameter. Consequently usually only one critical
part dimension is measured.

Figure 2 shows the part length of 7 samples of all 16 cavities. The samples are
several hours apart, and they are collected as part of the process control. The
cavity labels are indicated in the figure by the lettdrd®, and samples from

each individual cavity are connected with lines. From the figure it is seen that
not all the 16 cavities are making parts with the same length, for instance parts
from cavity M are generally shorter than parts from the other cavities.

In Figure 3 the average length for each cavity has been computed and plotted in
various ways to investigate if there are any visible patterns in the length mea-
surements coming from the geographical positions in the mold. If the mold had
been perfectly balanced and perfectly cooled the only cavity-to-cavity variation
left would be the result of dimensional variations in the steel. In this case parts
from all cavities would be spread out randomly around the target length. The
sketch of the mold layout in Figure 1 suggest various conceivable systematic
deviations from such a purely random pattern.

Traditionally in a row-column layout it is reasonable to look for possible row-
and/or column effects and interactions between rows and columns. As the
cooling channels are organized in a row-column design, such effects could be
ascribed to the pattern of cooling ribs.

The two graphs in the first row of Figure 3 are so-called interaction plots be-
tween rows and columns. The graph in the upper left corner of the figure
illustrates the row effect and possible interactions. This graph shows the av-
erage length for all 18 samples versus the column of the mold for each cavity.
The cavity numbers are indicated in the plot, and cavities in the same row of
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limits.

By column By row

Length [mm]

62.56 62.58 62.60 62.62
m
Length [mm]

\N
i
Ul
Al
N
/

N
N
w
IS
=
N
w
IS

column row

By radius By cluster

3 ~ P

© ° ’ e

8|k 8|k 'E
€ 3|6 g £g|B N
E o E o
£ ! Pl ™o ! P
°3 6 Dl Byt “o
§ 0 Al & 21A
- © - ©

©o ©o

2 0

~N ~N

© ©o

1 2 3 1 2 3 4
radius cluster

Fig. 3: Effect on the mean length from cavities positions in the mold.



Presented at JSM '99 59

the mold are connected by lines. We see a clear pattern in the observed average
lengths. Parts from all rows are longer in the second column than the respective
parts from the first column.

A similar pattern is observed in the plot in the upper right corner of Figure 3.
Parts from all columns are shorter in the fourth row than the respective parts
from the third row. The fact that most of the lines in these two plots are nearly
parallel furthermore indicates that there is a systematic effect in the mean
length that can be explained by the rows and columns and that any interaction
between them is negligible. A possible cause of the observed patterns is that
the temperature distribution of the mold is very dependent on the cooling of
the mold. A non-uniform temperature distribution would mean a non-uniform
pressure distribution as well, which would influence part lengths. Cooling
channels would usually run in a grid of horizontal and vertical channels.

The plot in the lower left corner of Figure 3 shows the average part length
versus the distance of the cavity from the center of the mold. Parts from the
four cavities closest to the center of the mold, iF6.G, J and K, are longer

than parts from the four cavities in the corners, i4, D, M and P. The
lengths of the remaining eight cavities falls somewhere in between. One ex-
planation could be that the center cavities are surrounded by steel where the
corner cavities have ambient air on two sides. This might cause the corner
cavities to become colder which in turn would cause less cavity pressure and
shorter parts.

Another effect we wanted to investigate is whether the clusters made up by
the runner system had different means. If the main and secondary runners
had slightly different dimensions the plastic melt would arrive at the different
cavities at slightly different times. In the plot in the lower right corner of
Figure 3 the length versus the cluster is depicted. The only pattern evident
from this plot is that the longest part in each cluster is from a cavity in the
center of the mold, and the shortest part in each cluster is from a cavity from
a corner of the mold. This fact is illustrated by the two lines connecting the
corner cavities and the center cavities respectively.

Figure 3 indicated a systematic pattern to the cavity-to-cavity variation. Parts
from some areas in the mold had more similar average lengths than parts in
general. The greatest effect was seen from the distance of the cavities from
the center of the mold. If reasons are known or can be found for the suggested
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Fig. 5: Effect on the within cavity variation from cavities positions in the mold.

group behaviors, then it may be possible to adjust the causes of the differences.
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Another important quality measure is the within cavity variation. In Figure 4
the standard deviation of the seven samples is shown versus the corresponding
mean length for each of the 16 cavities. From this figure it seems there is no
relation between the standard deviation and the mean length. Therefore, we
want to investigate possible patterns in the within cavity standard deviations of
the seven samples analogous to the analysis for the cavity mean. In Figure 5
the same plots are made on the within cavity standard deviation. However,
from this figure no distinct patterns leap to the eye, indicating that the within
cavity variation does not depend on the cavities position in the mold. Parts
from cavitiesP andF' are seen to have the greatest standard deviations, but no
physical attributes of these two cavities differentiate them from the rest of the
cavities.

3 Multiple stream processes

Measurements from multiple streams posses some inherent features that distin-
guish them from single streams. A multiple stream process consists of several
identical parallel process streams. At sample time, measurements are obtained
from each stream (or a subset of the streams). The measurements are in the
same units and will usually have the same target value.

Other examples of multiple stream processes could be measurements from dif-
ferent spindles or filling heads. But also measurements of identical features on
a single part such as the vanes on a compressor or impeller have the character-
istics of a multiple stream process.

3.1 Multiple stream process model

From the observations made in the analysis of the data in the last section a nat-
ural process model would be a two-way analysis of variance model. However,
other or no patterns at all may arise from analysis of other molds with differ-
ent designs. A more general process model is needed if it shall serve a more
general purpose. In the following model the process streams are modelled as
fixed differences,
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Yy = pj + Ay + ey (1)

where; is the mean of thgth process strean¥; is a normally distributed
random variable with mean 0 and variang§ that represents the variation
common to all streams at timg ande;; denotes independent, normally dis-
tributed random variables with mean 0 and variamée

To detect a change in one stream relative to the others, one approach is to
chart the difference of the average value of all streams and the value of each
individual stream, i.eY;; — /i;. This is sometimes referred to as analysis of
residuals (Ott and Snee (1973)). This would indeed be a suitable approach for
the data in the last section. However, if the cavity-to-cavity variation cannot
generally be regarded as fixed differences, an even more general process model
is needed.

A more general multiple stream process model was suggested by Mortell and
Runger (1995). Assume that there arstreams and leY;; denote the obser-
vation from streany at timet. With subgroup size. = 1 the in-control model

is

Yij=p+ Ar + ey 2

wherey denotes the process meat, is a normally distributed random vari-
able with mean 0 and varianeg, that represents the variation common to all
streams at time, ande;; denotes independent, normally distributed random
variables with mean 0 and varianeé. The stream differences represented by
©; in model (1) are no longer modeled separately but are now included in the
et; term in model (2).

The quantityA; can be interpreted as representing those characteristics of the
product and equipment at tim¢hat are common to all streams, such as viscos-

ity or set injection time. And;; can be interpreted as representing deviations

of the jth stream from the common characteristics caused by assignable causes
such as pressure differences and clogged air vents.
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Fig. 6: A single stream deviates from the others at sample 12.

4 Monitoring multiple stream processes

When monitoring a multiple stream process, it is important to detect any assign-
able cause, and distinguish between assignable causes that affect all streams
and assignable causes that affect only one or a few streams. Typically these
two types of assignable causes have different root causes, and the distinction
facilitates the identification of the problem and the solution.

A separate control chart for each stream might be used in some cases, but such
charting is not sensitive to the type of assignable cause shown in Figure 6.
Measurements from either stream are not unusual by themselves, but in sample
12 the observation from one of the stremas is very unusual in relation to the
other process streams.

It would be desirable to have a chart that simultaneously monitors the data to

detect (1) an assignable cause that shifts the mean level of all of the streams
over time (called an overall assignable cause) and (2) an assignable cause that
changes the mean of one or more streams relative to the remainder (called a
relative assignable cause). In the process model (1) an overall assignable cause
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will affect the A;s and a relative assignable cause will affectdhe.

4.1 Traditional monitoring of multiple stream processes

The problem of conventional charting of multistream processes was discussed
by Bajaria and Skog (1994). In injection molding there are numerous ways
of monitoring the quality of product from a multicavity mold. Wenniges and
Potente (1995) suggest tracking only the worst cavity. The worst cavity thus
becomes a quality-determining or representative cavity for the entire mold.
While Golmanavich and Nielson (1993) and Rauwendaal (2000) recommends
keeping a separate chart for each cavity.

Charting each individual stream makes it difficult to detect any relative assign-
able causes. And furthermore, whef; is large relative tar?, an individual
control chart for each stream is ineffective in detecting a shift in a single stream
of magnitudes. This is because the control limits faf;, for each strear,

need to include the variability od;, (7?4. The control limits forY;; are:

wt3y/(0% + 02/m) (3)

and these variance components are estimated from the available data. A shiftin
asingle stream, that is, a shift in the meargfis difficult (nearly impossible)

for the control chart to detect wher, is large relative tar>. Consequently,

in this case, the singular part of a group control chart is quite ineffective. In
Figure 6 the assignable cause that occurs at time 12 is very difficult for the
individual control chart of any stream to detect.

4.2 Monitoring using the group control chart

A classical approach for monitoring multiple process streams is the so-called
group control chart. See Nelson (1986) and Mortell and Runger (1995) for a
discussion of the group control chart.

After taking a sample from each of the streams, the maximum and minimum
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sample means are plotted. If both of these points are within a set of control
limits, then clearly the means from all the other streams are also within these
control limits. On this control chart, the control limits are based on the standard
deviation of the subgroup mean from only one product stream.

If a particular stream generates the highest (or lowest) readingcfamsecutive
samples, then the stream is signaled to be off-target. The value selected for
is a trade-off between the risk of false alarms produced by the chart and the
probability of detecting an assignable cause. Consequently, the group control
chart aims at facilitating a parallel attack on both types of assignable causes,
which in turn can lead to process improvements in multiple process streams.

The part of a group control chart that signals whenever a particular stream is an
extreme in- consecutive samples is referred to as the runs control scheme. The
average run length (ARL) of the runs control scheme for an in-control process
is often calculated using the following formula from Nelson (1986):

s"—1

ARL1 =
s—1

(4)

wheres is the number of product streams and the critical number of con-
secutive times that a particular stream is the maximum (or minimum) value.
The notation “ARL1” indicates that it is a one-sided result in the sense that
the ARL is for the event that a stream is the maximum (or minimumy in
consecutive samples.

However, Mortell and Runger (1995) points out some major disadvantages of
the group control chart. For example, that an out of control signal is based
on consecutive high (or low) readings from a single stream. Consequently, if
more than one stream shifts, and if the shifts furthermore are approximately of
the same magnitude, a single stream does not dominate and the detection of
this assignable cause is uncertain.

4.3 Monitoring using principal components

Runger et al. (1996) suggest using principal component analysis to construct
a control chart for multiple process streams. Their approach is to establish
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a control based on two control charts. One chart to detect disturbances from
overall assignable causes (disturbances inA4h&erm), and another to detect
disturbances from relative assignable causes (disturbancesey) tkem).

The first principal components variable (PCV) is the linear combination of the
vectorY; that has the greatest variance. The second PCV is the linear combi-
nation ofY; that has greatest variance among linear combinations with coeffi-
cient vectors orthogonal to the first. The remaining PCVs are defined similarly.
Essentially, PCA is a statistical technique for transforming a setrahdom
variables into a new set afvariables (PCVs) that are mutually independent,
where each PCV is a linear combination of the original variables. See, for
example Jackson (1991) for a deeper discussion of principal components.

Let the covariance matrix &7 be denoted by.. The coefficients of the linear
combination for theth PCV are obtainable from the eigenvector (normalized
to unit length) corresponding to thith largest eigenvalue &f. The eigenvec-
tor is referred to as the principal component direction.

The multiple stream process application is a special case of a multivariate pro-
cess control problem in which the covariance matrix of the observed data has
a special form. Given the model (2)

¥ =0411 + %I (5)

wherel is thes x s identity matrix andl is a vector ofs ones. The eigenvalues
of ¥ arec? + o2 (of multiplicity one) ando? (of multiplicity s — 1). The
corresponding eigenvectors at¢l//s) and any set ok — 1 orthonormal
vectors that are orthogonal 10

Let the vector of PCVs be denotedld@sand letl/; andU » denote the first PCV
and the vector of the last— 1 PCVs respectively. One control chart can be
based or/; = 1'Y /\/s = Y7, Y;/\/s. This chart is essentially the average
of all the streams at timeand is sensitive to an assignable cause that affects
all streams.U; can be shown to be proportional 16> Y. Consequently,
from a multivariate control chart perspectivé, is the chart recommended by
Pignatiello and Runger (1990) and Hawkins (1993) for detecting an equal shift
in all variables.
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Let thes x s matrix G have columns equal to the eigenvectobbénd letG,
andG, be thes x 1 ands x (s — 1) matrix consisting of the first and last- 1
columns ofG, respectively. Thenl/; = G,'Y. From standard results for
PCA, the covariance matrix @&, can be shown to be?I.

A second control chart can be based on the remaining PCVs. Because the
PCVs are based on orthogonal eigenvectors, an assignable cause that shifts the
mean ofY” along the vectoll has no effect on a control chart created from the

s — 1 remaining PCVs.

A standard method of combining several variables in a control chart is to use

the chi-square chart developed by Hotelling (1947). Barthe chi-square
chartis

8?2 = U, (6I) ! = Y'G2GLY /o? (6)

The matrix G2 GY, is the orthogonal projection onto the subspace of the last
s — 1 principal components. From standard results in linear model analysis it
follows that

S?2=Y'(I-GG)Y/o?> =c"2(Y'Y —Y'11'Y /s) 7

and we obtain the result, that
S
§* =02 (Yu-Y) =0 H*. ®
=1

Consequently thé? chart at timet is simply proportional to the variance be-
tween streams obtained frol at timet¢. This between the streams variance
is denotedH 2. Clearly, S? is unaffected by an assignable cause that shifts the
mean of all streams equally.

The approach described above separates tineasurements into two single
variables)Y; andSt?. These two variables are charted separately, and therefore
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the usual performance enhancing measures can be taken, for example CUSUM,
EWMA, etc..

Furthermore, under the proposed process mdgeind S? are independent.
This makes evaluation of the in-control performance of a control based on the
two charts much simpler. Furthermore the principal components monitoring
meet the objective of partioning the control problem into statistics that are
sensitive to the two types of assignable causes.

5 Capability Index for Multicavity Molds

Capability studies offer an excellent opportunity to quantify the potential abil-
ity with which a process can meet customer requirements. Once a process is
in a good state of statistical control, its ability to meet specifications can be
predicted. One popular measure for assessing this capability is call€g,the
index, which is defined as

(9)

) (,u—LSL USL—/!;)
Cpr = min ,

30 30

whereLS L is the lower specification limit ant S L is the upper specification
limit.

Imagine a mold with only two cavities. For the key characteristic of part length
the first has &', index of 2 and the second hag’g, index of 0. This situation
isillustrated in Figure 7. Because the average of the second cavity is positioned
directly on the upper specification limit 50 % of the parts from this cavity will

be non-conforming. AC); index of 2 indicates that the average fill volume

for head 1 is at leadio from either specification limit. At this distance only
0.002 ppm of the parts are non-conforming. Thus, the aggregated output has
an actual overall average of 25 % non-forming parts.

The arithmetic average of the two indices is 1 implying that the average part
length is at leasto from either specification limit, leading customers to believe
that the combined output of the two cavities will have a maximum of 0.27 %
non-conforming parts. This does not agree with the 25 % non-conforming part
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Fig. 7: Output distributions of 2 cavities.

on average that we found above. Thus assigning an avérggef 1 to the
output of these two cavities would be quite misleading.

As an alternative, some quality practitioners combine measurements from all
process streams to compute an overall average and standard deviation. This ap-
proach artificially inflates the overall standard deviation because the variation
between streams is combined with the within-stream variation. In Figure 8 an
example of this is shown. Two cavities are both producing parts well within
specification limits.

The combined output of the two cavities forms a bimodal distribution. By mix-
ing parts from the two output distributions and assuming that it is a normal dis-
tribution one risks to seriously overestimate the percentage of non-conforming
parts from the process, which would penalize the manufacturer without reason.

Instead, Bothe (1999) suggests an alternative method for computing the capa-
bility index. Using an average of the percentage non-conforming from each
cavity the resulting index is equivalent to the conventiofigl index with re-

spect to the percentage of non-conforming parts.
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Fig. 8: Combined output distributions of 2 cavities.

To determine an overall,;, of a process correctly with multiple process streams,
the first step is to estimate the percentage (or ppm) of parts out of specifications
for each stream. The percentage of parts above the upper specification limit is

S

PUSL =

wherep,,; is the percentage above upper specification limit for cayignds
is the number of cavities.

This average is an estimate of the percentage of too long parts a customer will
receive and is therefore an indication of the machines ability to mold parts
below the upper specification limit.

From this overall percentaggy sz, the corresponding quantile in the normal

distribution is computed and denotefdrs;,. The same is done for the lower
specification limit, and the minimum of these téovalues is found,

Zmin, = min(Zrsr,, Zusr)- (11)
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Then the averag€’,;, index is defined a%,,,;,, divided by 3,

Gy = 22 (12)

An advantage of this measure of aggregate capability is that it does not require
the output of all process streams to have the same average, nor even have iden-
tical process spreads. That the process spreads may be unequal is relevant for
mulitcavity molds because they are usually not equal. In addition, this index
has no stipulation that demands the output for each stream to have a normal dis-
tribution. If one has a non-normal distribution, a distribution can be estimated
and the percentage of parts outside each specification limit estimated.

6 An example

In the production of parts used in the medical device discussed in section 1 a 16
cavity mold is used. This is not the same mold analysed in section 2, but one

based on the same design principles. The sampling frequency in the process
control is 16 of every 9000 parts produced.

6.1 Monitoring

The monitoring scheme proposed in section 4.3 will be applied to this situation.
For monitoring the mean of all cavities the average of all 16 cavities will be
used. And to detect a shift in one or a few of the cavitiegg“achart will be
used. Theff? chart is proportional to th8? chart as shown in (8).

Data from 206 process control samples is available. In the time interval cov-
ered by these samples, the process settings have not been changed. From these
206 samples the principal components have been computed. The loadings of
the first principal component is displayed in Figure 9.

It was argued that the first principal component would be the average of all
cavities. This is seen to agree very well with what was observed. The loadings
of the first principal component are approximately the same size, which means
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Fig. 9: First principal component loadings.

that every cavity is given the same weight. Thus, the average of the 16 cavities
will be used to detect a change in the mean of the process. The successive
values of the average of all cavities for all 206 samples is shown in Figure 10.
The control limits for this chart should be based on variation over time, and
not on the variation from stream to stream.

For detection of a shift in the output of one or a few cavitiell & value is
computed for every sample and plotted in a chart

16
H? =% (Vi = Yi)? (13)

=1

whereY;; is the measurement of cavifyin samplet, andy; is the mean of all
16 cavities from sample

In Figure 11 data from the 16 cavities have been plottedfff @hart. Sample
number 99 is seen to give the largést value. In Figure 12 the process control
measurements are displayed for samples 50-100. From this figure it can be
seen that for sample 99, the parts from both cavifieand E are very long.
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Fig. 10: Average length of parts from all cavities.
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Fig. 11: S? chart.

Therefore it seems reasonable that this sample leads to the giatestue.
However, a group chart would not detect this.
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Fig. 12: Individual process control measurements.

6.2 Computation of Capability Index

To determine the overally,;, index for this process, first the percentage of parts
outside each specification limit is estimated for each streamXl_denote the
output distribution for cavityi. X; is assumed to be normal distributed, i.e.
X1 € N(ui,o?). Then the percentage of parts below the lower specification
can be computed as

g

P{X; < LSL} = &( ). (14)

Similarly the percentage of parts above the upper specification limit can be
computed as

USL—,U,l

g

P{X; > USL} =1 — &( ). (15)

Let us assume that for the quality data displayed in Figure 12 the specification
limits are LSL = 70.04 mm, andUSL = 70.20 mm respectively. We will
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Fig. 13: Normal probability plot of length measurements from samples 60-80
for cavity 1.

only need the short-term variability to find the capability of the process. Be-
tween samples 60 and 80 the process is rather stable. Thus this portion of the
quality data are used in the further computations. However, the extreme obser-
vation for cavityG at sample number 68 is not included in the computations.

For cavity A the mean and standard deviation are estimatgd as 70.1132
ando; = 0.0101 respectively. To asses the normal assumption a normal prob-
ability plot of the length measurements of cavity A is displayed in Figure 13.
The normal assumption seems reasonable.

Now the percentage of parts below the lower specification limit for caxdity
can be computed as

70.04 — 70.1132

d
( 0.0101

); (16)

and similarly the percentage of parts above the upper specification limit can be
computed as
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70.1132 —70.2

o
0.0101

)- (17)

The same is done for the other 15 cavities, and the total and average percentage
of parts below and above the corresponding specification limits can be com-
puted. Table 1 displays these results for all 16 cavities. The overall percentage
of parts below the lower specification limit is an estimate of the true process
percentage non-conforming. This average is labgled and is an indication

of the process’ ability to mold parts with length above hel..

Percentage Percentage
Cavity | below LSL | above USL
A 0.00 0.00
B 0.00 0.00
C 0.00 1.15
D 0.00 1.44
E 0.02 0.00
F 0.00 0.00
G 0.00 0.00
H 0.00 0.01
[ 0.15 0.01
J 0.00 0.00
K 0.00 0.00
L 0.00 0.00
M 0.00 0.00
N 0.00 0.00
@) 0.00 0.00
P 0.28 0.70
% “out” for
all cavities 0.03 0.20
Avg. % “out”
for process 0.002 0.013

Table 1: Averaging the percentage non-conforming from the 16 cavities.

From these overall percentagés,s; andpy sy, the corresponding quantiles
in the normal distribution are computed. THgs; value corresponding to a
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prsr, 0f 0.002 % is 4.11. And th&/yy sz, value corresponding to gy sy, of
0.013 % is 3.65. Now the averagg,. index is defined as the smaller of these
two estimated Z values divided by 3:

min(4.11, 3.65)

= 1.21. 18
: (18)

Average’,, =

If this is not an acceptable quality level, then the process must be improved.
From examining Table 1 improvement should first concentrate on moving cav-
ities C and D to the middle of the tolerance.

7 Conclusion

In this paper it was found that a major contribution to the variation in the qual-
ity characteristic of parts produced by a multi-cavity mold was the cavity-to-
cavity variation. Moreover a clear pattern was found in this part of the variation
arising from the cavities positions in the mold. If reasons are known or can be
found for the suggested group behaviors, then it may be possible to adjust the
causes of the differences.

It was argued that parts from a multi-cavity mold has a very special variation
structure due to the cavity-to-cavity differences that should be accounted for. A
simple model for the in-control variation for a multiple stream process reflect-
ing the overall and relative variation was introduced. Based on the suggested
process model a charting procedure has been introduced. The charting proce-
dure is controlling the overall and the relative assignable causes separately.

Furthermore a capability index taking the cavity-to-cavity variation into ac-
count has been suggested. Using the average of the percentage non-conforming
from each cavity the resulting index is equivalent to the conventiopalndex

with respect to the percentage of non-conforming parts.
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Abstract

Some methods for multivariate monitoring the injection molding process vari-
ables are suggested. It has been illustrated that the multivariate analysis of
process data is extremely valuable prior to monitoring the process variables.
In actual process data, two principal components were found to reflect the
changes in set-points very well. Furthermore two distinct levels of variation
were identified. The macro variation was the variation from set-point to set-
point. And the micro variation was the variation within set-points. Moreover

it has been found that the variation caused by cavity differences was the great-
est source of variation in the observed variation in the length measurements.
Seven different set-points were included in the analysis. The variation caused
by the different set point was the second greatest contribution to the overall
variation.

1 Introduction

One of the main reasons for developing effective process monitoring is that
the injection molding process is particularly vulnerable with respect to quality
control. In some instances, stringent quality requirements force the manufac-
turer to test one hundred per cent of the produced item. This approach is totally
uneconomic and in many instances handling of the molded components could
contaminate the product and could even cause damage.

Another major problem with monitoring only the finished product is the time
span between production and measurement of the samples. After being molded
the parts need to become dimensionally stable before measured. This delay
could cause hours of production to be outside specifications before changes to
the process are being made.

The availability of cheaper and more advanced sensor technology has resulted
in injection molding machines being better equipped for monitoring purposes.
If focus was on monitoring the process rather than the product, this delay would
not be an issue. Multivariate statistical process control is increasingly being
recoginized as a valuable tool for providing early warning of process changes
and also for achieving a better understanding of the process.



82

Another approach for better control of the process is that of predictive mod-
eling where the quality of the molded parts are predicted from the values of
the process variables in each cycle. An empirical process model is build from
either a designed experiment or from online measurements, and this model is
used for prediction. A lot of ongoing research is taking place in the applica-
tion of neural networks to quality prediction. See for example Wortberg et al.
(1997) and Petrova and Kazmer (1999).

Injection molding is subject to high frequency disturbances that often affect
only one or two shots and then disappear without a trace. A typical example
is localized contamination of raw materials that may affect one shot without
affecting any of the shots before or after it. Random samples and measure-
ments of parts are not well suited to detect this type of variation. A sufficiently
accurate model, however, will be able to detect cycles which will lead to prod-
uct of an inferior quality. Injection molding machines are often equipped with
part diverters that allow monitoring computers to direct potentially defective
parts to the scrap bin. This is what Berkery (1993) refers to as the exception
catching strategy.

2 Injection molding process data

A hollow cylindrical part used in a medical device is produced in large quanti-
ties by means of injection molding.

For every cycle of the injection molding process 21 key process variables are
recorded through sensors in the injection molding machine. The recorded vari-
ables are listed in Table 1 below. The process variables are categorized into
four main types, stroke, time, temperature, and pressure.

Each variable can be grouped into one of two types, controllable or consequen-
tial. A controllable variable is set to a particular and controlled at this value
within a defined tolerance band. And a consequential variable is one which
cannot be set directly. It is the ultimate result of several controllable variables.
The consequential variables are marked with a '*" in Table 1.

For every cycle of the process these 21 variables are recorded, and for every
box of molded parts produced the average and standard deviation is calculated
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Strokes

Times

1 Screw stroke
2 Melt cushion *

3 Change over position

4 Charging time
5 Dwell time
6 Injection time

7 Cycle time *
8 Cooling time

Temperatures

Pressures

9 Nozzle temp

10 Barrel zone 1 temp
11 Barrel zone 2 temp
12 Barrel zone 3 temp
13 Mold temperature

18 Injection pressure, peak *
19 Hydr. pressure at point
of change over *

20 Back pressure, peak *

21 Holding pressure, peak *

14 Crosstemperature
15 Heater temp 1

16 Heater temp 2

17 Oil temp

Table 1: The 21 process variables monitored in each cycle.

and stored for each variable. A box consists of all parts produced from the
12 cavity mold in approximately 100 cycles. In Figure 1 the average for all
recorded process variables are shown for each of 2300 consecutive boxes pro-
duced.

3 Multivariate statistical process control

Traditionally only the quality variables are used to evaluate whether the mold-
ing process is in a state of control. However, when the process variables
are monitored as well they are usually monitored in individual control charts.
Beard (1999) suggests to define limits for some key variables such that molding
anywhere inside the process window always will lead to an acceptable part.

However, the process performance is a multivariate property and must also be
treated as such. By this it is meant that a process in control must simultane-
ously have the right combination of all the individual process variables. Each
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Fig. 1: Averaged process variables for 2300 consecutive boxes produced. Each

box represents approximately 100 cycles on which the average is applied.

individual process variable has little meaning by itself.
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In such situations monitoring univariate control charts on each of the process
variables can be very misleading and hard to interpret. This is illustrated in
Figure 2 with two correlated variables. The point indicated by theis well

within the control limits for each of the two variables independently. However,
the indicated point is clearly unusual when the relationship between the two
variables is taken into consideration.

Fig. 2: Univariate and multivariate data plots.

The argument for using proper multivariate techniques for monitoring the pro-
cess rather than separate univariate control charts is the same as that of using
designed experiments (DOE) rather than performing experiments on one vari-
able at a time. The presence of variable interactions in DOE leads to the same
difficulties in interpreting the results of one factor at a time experimentation
as does the presence of correlation among variables in interpreting univariate
SPC charts. Also see MacGregor (1997) for a discussion on the multivariate
nature of quality.

3.1 Principal component analysis

Often the highly correlated variables that are recorded in a manufacturing pro-
cess are the result or manifestation of a relatively small number of physical
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characteristics of the process. Consequently, recorded measurementg of the
variables often fall in a lower-dimensional subregiorkedimensional space.

A principal component analysis is concerned with explaining the variance-
covariance structure of a set of variables through a few linear combinations
of these variables.

Consider an by k£ data matrix,X, representing: observations on each éf
variables. The principal components are then defined as:

T=XP

where X is the normalised data matri® is the matrix of coefficients (load-
ings) which show the relative importance of each variable to the corresponding
principal component.T' is the matrix of principal component scores which
act as surrogates for the observations. The loadings for the individual princi-
pal components are the eigenvectors of the sample correlation mxtfiXJ,

while the eigenvaluesX() of the sample correlation matrix are a measure of
the amount of variation explained by each individual principal component. For
a more thorough description of principal component analysis see for example
Johnson and Wichern (1998).

3.2 Traditional multivariate control chart techniques

The original multivariate monitoring chart introduced by Hotelling (1947), the
T? chart, can be applied to a large number of variables. Unlike the ellipse
format, it is not limited to two variables. Moreover, the points are displayed

in time order rather than as a scatter plot, and this makes patterns and trends
visible.

For thejth point, theT™ statistic is defined as

T° = (¢; — 2/ Sz, - 2), (1)

whereS is an estimate of the covariance matii,



87

A great advantage of tHE? chart is that it offers a single method for indicat-
ing a general shift in the mean vector of the process. Howevef, tteatistic

is not immediately interpretable and once it signals, more work is needed to
diagnose which variable or variables have shifted. To cope with interpretablil-
ity problem most authors recommend use of other charts in addition @%he
chart.

TheT? in (1) can also be expressed in terms of the sum of the principal com-
ponent scores divided by the eigenvalue of the corresponding principal com-
ponent

A /2
7= ;Y )
i=1

wheret; is the principal component score for tfth principal component and
A; Is the corresponding eigenvalue. See for example Jackson (1991) for more
details.

The first stage in applying PCA for process monitoring is to collect a reference
data set when the process is operating under normal operating conditions and
is producing good quality product. PCA is then applied to this reference set
and the principal component scores of observed future process measurements
are then computed using the loadings from the reference data set.

3.3 Other multivariate control charts

Other multivariate control charts are mainly variations of THestatistic that
Hotelling developed. However, Hotelling¥ is based entirely on the most re-

cent observations of the process variables and consequently the procedure sig-
nals only when a relatively large shift in the mean vector occurs. To make the
monitoring more sensitive to smaller shifts in the mean application of EWMA
and CUSUM methods have been proposed.



88

3.4 Monitoring with moving PCA

Moving PCA (MPCA), proposed by Kano et al. (2000), is based on the idea
that a change of operating conditions can be detected by monitoring directions
of principal components.

In order to detect a change of PCs, the reference PCs representing a normal
operating condition should be defined, and the angles between the reference
PCs and the PCs representing a current operating condition should be used as
a basis for monitoring. The index; can be used for evaluating the change of
PCs,

Ai(t) =1 — [wi(t) wyo]

wherew; (t) denotes the reference 4h PC. Bothw; andw;, are unit vectors.

For applying MPCA, reference PCs and control limits must be determined.
The following procedure is adopted:

1. Acquire time-series data when a process is operated under a normal con-
dition. Normalize each column (variable) of the data matrix, i.e. adjust
it to zero mean and unit variance.

2. Apply PCA to the data matrix, and define the reference Rfgs,

3. Determine the size of time-window;. Generate data sets with sam-
ples from the data by moving the time-window. Apply PCA to the data
sets, and calculate PCs;.

4. Calculate the inde¥;, and determine the control limits.

For on-line monitoring, the data matrix representing a current operating con-
dition is updated by moving the time-window step by step, and it is scaled by
using the mean and the variance obtained at step 1. Then, PCA is applied to
the data, and the indet; is calculated at each step. For updating PCs step by
step, recursive PCA algorithm can be used (Li et al. (2000)) instead of using
the time window.
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3.5 Multivariate monitoring for autocorrelated data

Recently several methods of applying control charts to autocorrelated data are
found in the literature. Alwan and Robert (1988) and Montgomery and Mas-
trangelo (1991) all present a similar approach to the problem of autocorrelated
data. To fit an appropriate time series model to the observations and apply
control charts to the stream of residuals from this model.

For multivariate process control with autocorrelated data the literature is still
very sparse. Runger (1996) suggest taking a a state-space approach to the
modelling.

4  Application to injection molding process

To study the multivariate nature of the process variables displayed in Figure 1,
a principal component analysis is applied. Itis found that the first four principal
components explain 72 % of the total variation in the data.

The loadings of the first four principal components are shown in Figure 3. The
numbers below the bars in the figure are the variable numbers from Table 1.
These loadings show in what directions of the 21 dimensional space that the
variation mainly takes place. The first principal component is the difference
between on the one hand side the average of the duration of different stages
of the process, and the average of the cushion and the various pressures on the
other. The second principal component is the average of the four temperatures
of the molding machine.

The scores of the four principal components at titr&re computed as the
product of the loadings from Figure 3 and the vector of process variables at
time ¢t. Time series plots of the scores of the first four principal components
are shown in Figure 4. It is noticed that principal components one and four
go through changes of their levels. Both principal components one and four
can be interpreted as a difference between the average of some controllable
variables, and the average of some consequential variables.

That the process operates in regimes is even more clear in the scatter plots of
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Principal component 1

too2 3% 4 5 6 7 8 % w0 mow» W oy B 19 A 2A

Principal component 2

too2 3 4 5 6 7 8 % 0w oB» o ®wow B 1 A 2A

Principal component 3

too2 3% 4 5 6 7 8 8 0 Wmo o» oW owo B 1 2 2

Principal component 4

o2 3% 4 5 6 7 8 8 0 Wm o» W ow B 18 A 2A

Fig. 3: Loadings of first four principal components. Variable numbers refer to
numbers in Table 1.

scores from the first four principal components shown in Figure 5. Especially
principal components one and four versus each other seems to give an interest-
ing pattern. In Figure 6 the scores of the fourth principal component are shown
versus the scores of the first principal component. The numbers in the figure
are the corresponding box numbers, where each box is the average of 100 cy-
cles. In Figure 6 seven distinct clusters can be identified, and it is clear from
this figure that the variation of the process takes place in more than one level.
The macro or cluster-to-cluster variation is caught by principal components
one and four. And the more high frequency micro or box-to-box variation is
the variation within clusters.

Taking a closer look into the operator log book for the molding machine, it is
found that these clusters coincide with changes in the machine settings. Thus
the cluster-to-cluster variation is due to manual changes in the operating con-
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Principal component 1

0 50 100 150 0

Principal component 2

0 ) 100 150 0

Principal component 3

0 ) 100 150 20

Principal component 4

Fig. 4: Principal component scores for the first four principal components.

ditions of the molding machine. Consequently the box-to-box variation can be
assigned to local variations in raw material etc. A similar pattern in the princi-
pal components due to set-point changes is reported by Weighell et al. (2000)
in the study of a polymer film manufacturing process.

4.1 Monitoring within clusters

The methods proposed in the previous section could all be applied to the injec-
tion molding process. The first stage in applying PCA for process monitoring is
to collect a reference data set when the process is operating under normal oper-
ating conditions and is producing good quality product. PCA is then applied to
this reference set and the principal component scores of observed future pro-
cess measurements are then computed using the loadings from the reference
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Fig. 5: Scatterplot of principal component scores for the first four principal
components for all process variables in Figure 1.
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Fig. 6: Fourth principal component scores versus first principal component
scores. The numbers correspond to the box humber.
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data set.

As reference data set the cluster in the north-east corner of Figure 6 (high
scores on both PC1 and PC4) will be used. If the process is stable within set-
points, such that the measured characteristics are influenced only by variations
in common causes, then the principal components will exhibit similar scores
for all seven set-points. The process scores are computed for all process mea-
surements using the loadings from the reference data set. In Figure 7 the scores
are shown in scatter-plots for the first four principal components.

ap2 ApL o g g 0 39 3 a7

PC1

" 262 260 -258 256 -254

-162 -161 -160 -159 -158

PC3

172 173 174 175 176 177

PC4

30 -29 28 -27

262 260 258 256 264 | j j j " 172 173 174 175 116 177

Fig. 7: Scatterplot of principal component scores for all process variable mea-
surebents with principal components based on only one set-point.

Again some clusters related to the set-points can be identified in Figure 7. This
means that within set-points the correlation between the process variables is not
the same. Consequently extreme care should be applied in choosing reference
data set and control limits.
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5 Relationship to quality measurements

For every two boxes produced one shot of all 12 cavities is sampled and mea-
sured at the QC lab. In Figure 8 the average and standard deviation of the
length measurements from the 12 cavities are displayed. All numbers are in
mm. Just after box number 1000 the mean length is noticed to increase about
0.04 mm. This change coincides with a change between the two clusters with
clusters with the lowest scores on the fourth principal component in Figure 6.
The very high standard deviation approximately in sample 1400 is due to only
one very long part that is probably a bad measurement. Therefore this obser-
vation is removed in further analysis.

70.66

Average length
70.62

70.58

0 500 1000 1500 2000
Sample no

Length standard deviation
0.02 0.03 0.04 0.05 o0.06

0 500 1000 1500 2000
Sample no

Fig. 8: Average and standard deviation of QC measurements.

With a sufficiently accurate model, the quality of the molded parts can be pre-
dicted on-line. However, because the process variables, with the exception of
the mold temperature, are measured on the machine as opposed to the mold,
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there are limitations to the predictions they can provide. Also the difference

in aggregation levels of the quality and the process variables respectively has
an impact on the possibility of modeling the relationship between the process
and the quality variables. The quality measurements are only one sample from
more than 200 cycles whereas the process control variables are average values
computed from more than 100 cycles.

Furthermore one should generally be very careful when building models based
on in-control data. In Box et al. (1978) some hazards of fitting regression
equations to happenstance data are discussed. Instead of building a model to
be used for predicting the quality from the process variables, we will rather
build models with the objective of analyzing the variation between and within
set-points.

When building a model to predict the mean quality of the parts it is important
to keep in mind that the variation in the process variables takes place in at least
two levels. Since we are not trying to build an operational model but rather
just study the variation, we will build two separate models to see what pro-
cess variables are important to the macro variation and to the micro variation
respectively.

First we will try to find a suitable model for the micro variation. For this
purpose the cluster in the West corner of Figure 6 has been chosen. As we do
not know the exact value of the process variables of the measured shot we will
use the averages from the box the shot belongs to instead. As response we use
the average of the 12 cavities.

A model with four significant terms gives R? of 0.23. The four significant
parameters are:

Screw stroke

Melt cushion

Barrel zone 2 temperature

Holding pressure, peak.
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To find a model for the macro variation we choose to use only every 10th QC
sample in the entire data set. However, the influence of the micro varitaion is
not eliminated in this way, only reduced.

A model with four significant parameters is estimated. This model givié$ a
value of 0.49. The four significant parameters are:

Screw stroke
Charging time
Oil temperature

Holding pressure, peak.

It may be dangerous to rely too much on fR&values. However, they do give

a rough indication of how well the variation is explained by the explanatory
variables. In the case above it is clear that the variation in the length measure-
ment is poorly explained by variations in the process variables within the same
set-point. The variation in length measurements between set-points is more
correlated with the changes in process variables from set-point to set-point.

5.1 Time series model for quality data

From the analysis above it was found that the variation within set-points was
not well described by the variation in the process variables. Another way of
describing this micro variation is by means of times series analysis. In each
of the seven set-points a times series model describing the sample-to-sample
variation was found.

Figure 9 shows the standardized residuals from fitting this model, as well as
autocorrelation function and partial autocorrelation function. Neither of these
contradicts the model.

Itis not possible to fit a reasonable ARMA model to the quality data from either
of the set-points. However, an ARIMA model was found to describe the data
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ARIMA Model Diagnostics: c.sub

Plot of Standardized Residuals

B
o

o | |

!

0 m m E) [ 0

ACF Plot of Residuals

00

T g 0 5 ] 5

PACF Plot of Residuals

] § 10 5 E) 5

00

P-values of Ljung-Box Chi-Squared Statistics

4 § 8 U 2 1"
15

ARIMA(2,1,2) Model with Mean 0

Fig. 9: Diagnostic plots for ARIMA models fitted to observations from single
cluster.

in each cluster well. This indicates that the observed quality averages is not a
stationary process. The correlation structure within each cluster is described
well by an ARIMA(2,1,1) with very similar parameters.

6 Separation of the variation

It is of great interest to compare the different sources of variation in the part
quality measurements. From the data discussed previously it is possible to
identify three major sources of variation. The first is the impact from changes
in the machine settings on the product quality. The second is the variation from
box to box within a set-point. Finally the variation between cavities is known
to be an important factor in the overall variation of the finished parts.
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To assess the sources of variation the following mixed effects model is consid-
ered

Lijk = S; + R(S) i) + ok + €iji 3)

wheres; is set-point, R(S);(;) is the jth sample within théth set-point, and
cr. is the effect of cavityk. S; and R(S);(;) are interpreted as random effects.
In Table 2 the resulting analysis of variance table is displayed.

Sum of Mean

Source of variation df squares  square F value
Set-point 6 1.4531 0.2422 608.53
Sample within set-point 1106 1.1469 2.61

Cavities 6.0345 0.5486 1378.46

Residual 12232 4.8680 0.0004

Table 2: Analysis of variance table.

To find the variance components associated with each of these sources of vari-
ation the expected mean squares must be determined. Table 3 shows the ex-
pected mean squares for model (3).

Source of variation Expected Mean Squares
Set-point 0% + 12074 +1806.80%
Sample within set-point o2 + 120%(5)

Cavities o2 +1113(3° ¢3)/12
Residual o?

Table 3: Expected mean squares table.

o% is the variation due to changes in set-pohﬂg(s) is the variation due to

samples within set-point, an(" ¢?)/12 is the mean square for the cavity
effect.

Now the variance components associated with each source of variation can
be determined. The standard deviations due to set-points, samples within set-
points, and cavities are shown below
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VO _)/12 = 0.0222 (4)
OR

s) = 0.0073
o5 = 0.0116

The two greatest sources of variation are seen to be the variation between
set-points and the variation between cavities. Samples within a set-point do
not contribute much to the overall variation, indicating that compared to the
changes in set-points the process is very stable. The greatest contribution to
the observed overall variation is the variation between cavities. The cavity-
to-cavity standard deviation is twice as big as the standard deviation of the
set-point variance component

The proportion of the total variance explained by cavity differences is 46 %.
For set-points and samples within set-points, the corresponding proportions are
12 %, and 5 % respectively. The residual variation accounted for the remaining
37 %.

7 Conclusion

Some methods for monitoring the process variables of the injection molding
process have been suggested. The methods proposed are based on principal
component analysis and take the multivariate nature of the variables into ac-
count. Itis illustrated in an example how a retrospective multivariate analysis

of production can facilitate a deeper understanding of the correlation structure
of that data which can assist in building a proper monitoring strategy.

Two principal components were found to catch the changes in set-points very
well. There was clearly two levels of variation. The macro variation was the
variation from set-point to set-point. And the micro variation was the variation
within set-points. Regression analysis showed that the mean length variation
between set-points was better described by changes in the process variables
than the variation within set-points. However, the variation within set-points
was described well by a non-stationary times series model.

Based on a mixed effects model it has been found that the variation caused by
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cavity differences was the greatest source of variation in the observed varia-
tion in the length measurements, explaining 46 % of the total variance. Seven
different set-points were included in the analysis. The variation caused by the
different set-points was the second greatest contribution to the overall varia-

tion, explaining 12 %.
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Abstract

This paper describes a new application of moving sum charts to continuous ac-
ceptance sampling by attributes. The procedure is especially efficient for qual-
ity requirements of very low proportion non-conformities. For the proposed
charts the ARL function is derived. It is shown that in the case where a non-
conforning unit is only expected very rarely during sampling, a moving sum
chart and a CUSUM chart are equivalent. Furthermore is introduced a measure
for the average number of units produced before a shift is noticed. This new
measure is an effective tool for comparison of quality control procedures with
different sampling frequencies. The moving sum method is compared to lot
based acceptance plans and it is found that with a lower proportion of prod-
uct inspected the moving sum plan will give the same or better assurance of
quality.

1 Introduction

Acceptance sampling is being de-emphasized as a quality control tool in favor
of up front process improvements. A major reason is that the essential focus
of acceptance sampling is on decisions regarding the product and generally not
on the process. However, there are situations encountered in manufacturing
where acceptance sampling is still useful. One such situation is where au-
thorities require acceptance procedures regarding the product. There is a need
methods to assure that the quality is in compliance with the desired level. In
the pharmaceutical industry this is often the situation.

For measurements on a continuous scale the so-called acceptance control charts
introduced by Freund (1957) serve the dual purpose of monitoring the process
and providing acceptance rules for product. However, for measurement by at-
tributes such procedures are not readily available and often management resorts
to the use of standard lot acceptance sampling plans.

In this paper we discuss various techniques that combine procedures for prod-
uct acceptance with a process-oriented approach and we propose a sampling
procedure aimed at both product acceptance and process control. The goal is
to prevent foreseeable defects as quickly as possible, such that corrective ac-
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tion can be taken before the defect is built into a large amount of parts. The
method proposed is a continuous sampling scheme based upon moving sums.
The method is illustrated by an industrial example.

2 Continuous Sampling

Today many manufacturing operations do not result in the natural formation
of lots. However, often the product is accumulated into lots for the purpose
of inspection. Continuous sampling is an inspection technique to be used for
in process acceptance as an element of a line producing a continuous flow of
product. There is no accumulation of product and no interruption of the flow of
product. In the following a brief review is given of the most important methods
for performing continuous sampling.

2.1 Lot Acceptance

One common way of dealing with acceptance sampling of product from a con-
tinuous process is to group the product artificially into lots and perform ordi-
nary acceptance sampling to sentence each lot. In this way there is no possi-
bility of catching the error early. Usually the plan used would be taken from a
standard collection of acceptance sampling.

One obvious and major disadvantage of the lot based approach is the time lag
between production of the product and the inspection results. Quality informa-
tion is often received too late to have any effect on the quality of the present
production. Another disadvantage can be that accumulation of product into
lots requires additional storage space and logistics efforts.

2.2 CSP-1

The most widely studied continuous sampling plan is the CSP-1 introduced by
Dodge (1943). These sampling plans consist of alternating sequences of sam-
pling inspection and screening (i.e. 100 % inspection) if a non-conforming unit
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is found during sampling. The zero-defect rule appears to be in harmony with
contemporary philosophy and with quality requirements in the ppm range. The
sampling plan is fully determined by the sampling frequency and the screening
interval.

The CSP-1 sampling plans are indexed by their Average Outgoing Quality
Limits (AOQLs). For plans with very low AOQL'’s, sampling and screening
intervals imply intensive inspection. This is an inherent feature of the AOQL
approach. Often in acceptance sampling the AOQL falls close to the point of
inflection on the OC curve thus making it a rather pessimistic measure of the
expected quality. Furthermore, in practice the cause of a certain defect should
be caught and corrected long before the quality becomes as bad as AOQL. Be-
cause of the pessimistic nature of AOQL it is difficult to choose the appropriate
plan to match specific requirements to the product quality which will often be
formulated in terms of AQL.

Several modifications and extensions of the CSP-1 procedure have been pro-
posed, see e.g. Dodge (1970). This work includes a relaxation of the zero
defect rule. More recently attempts have been made to match the CSP-1 plans
with lot based sampling plans, see e.g. Wasserman (1990).

The psychological aspect of the CSP-1 procedure is not to be underestimated.
The fact that every time a non-conforming unit is found there is a “punish-
ment” in form of 100 % inspection demonstrates to everyone involved in the
production that quality is taken seriously and that essentially only zero defects
is acceptable.

In general, the requirement of these plans to switch back and forth from 100
% inspection to sampling inspection is both costly and difficult to schedule.
For manufacturing plants there are seldomly extra resources available to install
on-line, 100 % inspection at arbitrary times for arbitrary periods. So resource
constraints may require that product continues to be sampled with fixed fre-
guency.

2.3 Beattie plans

A convenient inspection procedure would be to base the decision upon a modi-
fied Shewhart control chart for the number of defectives. A procedure like this
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would be similar to the acceptance control chart developed by Freund (1957)
only for attributes data. The flow of product is accepted as long as points are
within the limits of the control chart and rejected if the last point is beyond
the limits. The main drawback of a procedure like this is that it would require
very large sample sizes if protection against low proportion non-conformities
is wanted. A plan that accumulates evidence gathered from previous samples
may be preferred to one that makes a decision based only on the last sample.

Beattie (1962) proposed an acceptance sampling procedure based upon a CU-
SUM procedure. Beattie's procedure combines two CUSUM procedures, one
for use when the product is in a zone of acceptability, and a second when
the product is not acceptable. In a CUSUM procedure a $jraf successive
values of(d—k) is being accumulated, whetiés the number of defective items

in the sample and is a constant for the actual CUSUM chart. The product is
accepted as long as the sum of defe§tss less thar (the “decision interval”)

and every time the sum becomes negative it is reset to zero. Where the Beattie
plan differs from the traditional CUSUM procedure is that ibecomes greater
thanh the product is rejected and the cumulation restartefd -ath’, where

h andh' are positive constants. The sampling continues and the product is
rejected untilS is less tharh again.

A major advantage of Beattie plans over CSP-1 plans is that they do not require
periods of 100 % inspection. In periods of rejection the sampling is continued
until there is evidence that the quality has improved again. Still the Beattie
plans are not very well known. They are for instance hardly covered in any
introductory texts to statistical quality control.

3 Moving Sums used for quality control

When dealing with very low proportions of non-conformities and reasonable
sample sizes we will rarely expect to get a non-conforming unit in our sample.
In this case the decision intervadl, of the CUSUM will be less than one but
greater tharl — k. This means that a single non-conforming unit in the cumu-
lative sum will not cause the chart to signal. However, if two non-conforming
units appear within a time window @f/ &k samples the chart signals. Due to the
reset procedure the memory of the CUSUM is limited to theAg&tsamples.
This is illustrated in Figure 1. Because of this limited memory the CUSUM
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procedure is equivalent to considering the sum of the Adst samples, and
hence the CUSUM procedure is equivalent to the moving sum procedure.

N

Fig. 1: lllustration of the CUSUM for the following series of non-conformities:
0,0,1,0,0,0,0,0,0,0.

The moving sum procedure is basically the same as the moving average control
chart. In the moving sum the total sum of non-conforming unitssnccessive
samples of sample size are used for making a decision about the product that
theser samples cover. If more than one non-conforming unit is present in the
r samples, the product covered by thessamples is rejected. When a new
sample is taken the oldest sample is no longer part of the sum.

One important aspect of the moving sum procedure is its simplicity. It is much
easier for the practitioner to understand a decision rule based on the sum of
the number of non-conforming units in the lastsamples compared to the rule
based on the CUSUM. In addition it may be more difficult to relate the value
of the CUSUM to how the process is performing compared to the status of a
moving sum.
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3.1 ARL for the Moving Sum

In order to derive expressions for the ARL function of the proposed moving
sum procedure a Markov chain representation of the procedure is introduced.
The ARL function enables a comparison of the characteristics of this procedure
with those of other procedures. Consider a moving sum where only one defect
is allowed in the case of = 6 samples. In Figure 2 an illustration of the
seven acceptable states of the Markov chain is shown. Each box represents
one of the last six samples, and the number written inside is the number of
non-conforming units in that sample.

---|o|o|o|o|o|o|--- State 1

---|o|o|o|o|o|1|--- State 7
---|o|o|o|o|1|o|--- State 6
---|1|0|o|0|0|0|--- State 2

Fig. 2: Acceptable states for the Markov chain.

In general the number of acceptable states for the Markov chain wilHbé,
because one non-conforming item can be inanfthe samples or all samples

can be conforming. The non acceptable states are all the states with two or
more defects in the sum. These states are merged into one absorbing state
(State 8) in the transition probability matrix shown below, where transition
probabilities not shown are zero.
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With p as the non-conformance probability we have that(1 — p)™ is the
probability of zero non-conforming units in the new sample of sizeand
p1=mp(1—p)™ ! is the probability of one non-conforming unit in the sample.

This matrix of transitional probabilities is a so-called phase type distribution
transtition matrix. From Neuts (1975) we have that more generally we can
write the matrix of transition probabilities for phase type distributions as

(1)

T ¢
P—[o 1].

From the same source we find that the probability density of the time until
absorption for a Markov chain given by the matrix (1) is

P{X=n}=a'T" "t en=1,2,...,inf

wheree is a vector of ones ana the initial probability vector. The probability
generating function is given by

R(z) = za/(I — 2T)~'t°, 2

From the probability generating functidiy z) the expected number of samples
till absorption is found by differentiating with respect4@nd puttingz equal
to 1. By utilizing that the row sum is equal to one, Be + t° = e, we obtain
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E{X}=ad(I —T) e (3)

The expected waiting time till absorbtion is the average run length (ARL).
The expression (3) may be reduced using symbol manipulating software like
Mathematica. With initial probability vectar = (1,0,...,0), i.e. state 1 as
initial condition, and for- samples in the moving sum the reduced expression
for the ARL is

r—2 4
I = @
—(L+ (m(1+ 3221 —p)™) (1 —p)™ — 1)p)
(1=p)*™ +p+m(l—p)mp—1 '

Now for every combination of andm it is easy to find the ARL-function

with an ordinary spreadsheet. This makes it possible for the quality assurance
personnel to design the plan rather easily. For a procedure based on CUSUM
charts it is often necessary to make tedious simulations of the ARL-function
which requires considerable more computer skills.

The ARL function has been calculated for combinations efqual to 4 and

12, andm equal to 10 and 30. The results are shown in Figure 3. It is noticed
that for sample sizen = 10 the number of samples included is of greater
importance compared to the case= 30.

Next the ARL has been calculated for all combinations between 2 and 14
andm between 10 and 30. In Figure 4 contour plots are showmp fer(.01.

The contour lines naturally coincides with the r*m hyperbole. It is noticed
that when more than four samples are included in the sum the contour lines
becomes very flat. So including more samples in the moving sum means less
compared to increasing the sample size.
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3.2 Delimiting the defect

When there is evidence that the process mean is greater than desired, action
should be taken to adjust the process. When there is convincing evidence that
the process mean is back where required, the product should be accepted again.
Another problem is dealing with non-conformities in what was already pro-
duced. We believe that the solution to this problem should be dictated by the
practical circumstances. One idea is to simply go badamples from the
alarm. Another method could be to adopt the philosophy of the Beattie plans
and go backwards with another moving sum.

3.3 Generalizing the results

We have shown that in the case where the new sample is either zero or one
the CUSUM is identical to a moving sum. This is a very important case for
practical purposes. However, it is possible to write the Markov chain for any
fixed number of allowed non-conforming units in the sum. When the number
increases so does the complexity of the Markov chain. More work is needed
on investigating the difference of a CUSUM and a moving sum procedure in
the case where two or more non-conforming unit are accepted in the moving
sum.

4 Example

We want to compare the moving sum procedure with a lot based acceptance
plan.

A medical device is produced by means of injection molding in a continuous
process. Previously the quality control has been carried out by lot sampling
procedures. A particular visual non-conformance hagl@i, = 0.4%. The
product is artificially grouped into lots of siz&=10 000. From ISO 2859-1

we find sample size and acceptance numheri¢) = (200,2).

In this case inspection is far more costly than the cost of product. Therefore
the long screening intervals needed by a CSP-1 plan are simply not realistic in
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this case. Instead we choose to compare the above lot based acceptance plan
with a moving sum consisting of = 3 samples each of size. = 20 with

respect to how efficient they are at detecting a shift. The same proportion of
product is sampled, i.e.

whereM is the total amount of product covered by theamples. See Figure 5
for an illustration of the symbols.

Since the sampling frequency of the two procedures are very different the usual
ARL measure is not the most appropriate one to compare. Snow et al. (1992)
introduced the concept of average unit run length (AURL) as a way to com-
pare ARLs when the sample sizes differed. We choose to use the term AURL
to describe a slightly different concept, viz. the average number of product
produced before a shift is detected. Basically the ARL is the average number
of samples taken before a sample indicates that the process mean has shifted.
The ARL is defined as

1
~ P{Rejectionp}

where P{Rejectionp} is the probability of rejection of independent samples.
ARL,,; can be calculated as

ARLlot (p)

1

ARLjo(p) = 1-0C(p)

and hence for the lot based sampling the AURL becomes:

AURLi(p) = N % ARL;0(p)

For the moving sum the AURL can similarly be calculated as

AURL,,s(p) = M/r x ARL;,s(p) = m* N/n x ARLy,s(p)
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M/t

M

Fig. 5: M is the number of product units covered by thesamples in the
moving sum, i.e M /r is the number of units covered by one sample.

In Figure 6 the logarithm of the AURL is shown for each of the two strategies.
We notice that the AURL-curve of the moving sum is completely below that
of the lot based strategy. This means that for any given quality the moving
sum has a lower AURL than the lot based sampling procedure. For a quality
p = 0.01 the difference in AURL is 16357. That is in average 16357 more
parts would have been produced before detection when using the lot based
strategy. The price we have to pay for an earlier detection is a higher rate of
false alarms.

Another strategy would be to match the AURL close to AQL of the moving
sum to the AURL of the lot based strategy. By sampling less frequently the
AURL of the moving sum is shifted upwards. This is demonstrated in Figure 7
where the proportion of product sampled is now 5 % smaller than it was in
Figure 6. Now we find that for qualities close to 1 % we get approximately the
same AURL. And for qualities greater than 1 % the moving sum will signal
earlier than the lot based plan. Thus with less inspection we obtain a better
assurrance when using the moving sum method compared to the standard lot
based method.
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Fig. 6: AURL for same proportion sampled.
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Fig. 7: AURL for moving sum with smaller proportion sampled than the lot
based approach.
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5 Conclusion

This paper has presented a new continuous sampling procedure based on mov-
ing sums. Itwas shown that in the case of very low proportion non-conformities
and reasonable sample sizes the moving sum and the CUSUM procedure are
exactly the same. An expression for the ARL of the moving sum was found
thus making it possible for the users to design their own plans with an ordinary
spreadsheet.

It was demonstrated that with less inspection effort a better quality assurance
was achieved in the sense that bad qualities were detected much faster. Fur-
thermore it was found that for comparisons between procedures with different
sampling frequencies the suggest®td R measure was appropriate.

We are convinced that the moving sum also more generally will perform very

close to the CUSUM procedure. In the attributes case it is possible to set up
Markov chains and thus to obtain expressions for the ARL with any number of

non-conforming units in the sum. Also more work could be done in the area of

delimiting the cause of the defect in what was already produced.
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1 Introduction

The reduction in volume, that occurs when a molded part is ejected from a mold

and allowed to cool, is known as shrinkage. Because of shrinkage most plastics
components are smaller than the mold used to produce them. Shrinkage is a
result of two factors - a normal decrease in volume due to temperature and

pressure, and relaxation of the stretching caused by carbon-carbon linkages.
As there are more carbon-carbon linkages in the direction of the orientated

flow, there will be more shrinkage in this direction.

In multi-cavity molds, each cavity of the mold fills at a different time. This is
the result of minor differences in flow paths, temperature, and gating/rheologi-
cal effects. The pressure exerted on the plastic at the end of the filling process
is time dependent, which means that, since each cavity fills at a different time,
each final pressure will be different. Since plastic shrinkage is a linear function
of cavity pressure, each cavity will shrink differently depending on when it
filled.

According to most sources the majority of the shrinkage occurs during the first
20 days. However, it is impractical to wait till 20 days after the part is produced
before it can be evaluated if the part meet specifications. If the part is too short
and the process has not been adjusted it is likely that a great proportion of the
parts produced during those 20 days are too short as well.

2 Shrinkage data

A hollow cylindrical part used in a medical device is studied in a shrinkage
study. The part is produced in a multi-cavity mold with 16 cavities.

A sample of parts from all 16 cavities of a mold is measured 24 times over the
first 20 days after the parts are produced. The parts are measured 14 times over
the first 24 hours after production, and then once a day for the 8 succeeding
days. And finally the last two measurements are made after 15 and 20 days.

The data are displayed in Figure 1. The shrinkage curves have similar shape but
differ between cavities. One of the objectives of the analysis is to investigate
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Fig. 1. Shrinkage of the length of 16 parts - one part from each cavity. Each
part is measured 24 times during the first 20 days after produced.

if there are any patterns in the difference in the shrinkage curves. This result is
interesting because it will indicate if the variation observed between parts from
different cavities could be due to difference in shrinkage patterns.

3 Models for the shrinkage

A major reason for the interest in modelling shrinkage is to determine sensible
control limits based on on a model for the shrinkage. Say, every part must
meet specifications afterdays. Tracing back from there using a valid model
for the shrinkage will give control limits for every control point wanted. This
is illustrated in Figure 2.
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length at time t1

Length
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for stable length

Fig. 2: Control limits based on model for the shrinkage. The dotted lines are
the tolerance limits aftef days.

3.1 Traditional model

Traditionally the shrinkage is described by an exponential decay model. In a
previous analysis of the data it was found that the function below gave a good
description of the shrinkage.

The part length at time, Y (¢), can be expressed as

Y(t) = At70 = Ae blos®) (1)

whereA is the length of the part at time 0 ahds the decay rate.

This function can be written as an ordinary linear regression model

logY =log A —blog(t) + ¢
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or in the more general notation of a general linear model

Y= 0o+ X +e

with Y’ =logY, By = log A, /1 = —b, andX = log(t).

A shortcoming of model (1) is the position of its asymptote

lim Ae~blost =,
t—00

insinuating that the plastic parts eventually will shrink to length zero. This
differs somewhat from both experience and our understanding of what is going
on. In our case experience tells us that after approximately 14 days no more
shrinkage can be observed.

3.2 Suggested model

Even though model (1) seemed to fit the data well it did not agree with our

understanding of what is physically taking place. Consequently an alternative
model for the shrinkage is suggested. A crucial shortcoming of model (1) is the
position of the asymptote. Since it is not possible to model an asymptote with
a linear model we will look in the class of nonlinear models for an appropriate

model.

If we ignore the grouping of the length measurements into cavities and fit a

common model to all the cavities, the length of the pgyt,at timet; produced
in cavity 7 is modeled as

Yij = co+ Are™"Y + gy )

where the error terms; are assumed to be independently distributel¥ & o2).
The interpretation of the parameters is as follows:
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Fig. 3: Boxplots of residuals from a common model for all cavities. Each
boxplot represents residuals from one cavity.

co is the value of the asymptote
A; is the total length lost in shrinkage

b1 is arate constant of the exponential decay.

An exponential model like model (2) can arise as the solution of a first order
differential equation and is often encountered in engineering applications.

The model is estimated using non-linear regression in S-plus. The least squares
method used in the S software is described by Bates and Watts (1992). Also
in Bates and Watts (1988) a more thorough treatment of non-linear regression
can be found.

In Figure 3 the boxplots of the residuals by cavity tend to be mostly negative
for some cavities and mostly positive for others. Because a single shrinkage
curve is used for all subjects, the individual differences noticed in Figure 1 are
incorporated in the residuals, thus inflating the residual standard error.
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Fig. 4: Boxplots of residuals from a model with individual parameters for each
cavity. Each boxplot represents residuals from one cavity.

To fit a separate exponential model to each cavity, thus allowing the cavity
effects to be incorporated in the parameter estimates, we express the model as

Yij = coi + Arie” " + g 3

where, as before, thg; are independen¥ (0, o2) errors.

The boxplots of the residuals by cavity, shown in Figure 4, indicate that the
cavity effects have been accounted for in the fitted model.

The plot of the individual 95% confidence intervals for the coefficients in
model (3), shown in Figure 5, gives an idea about their variability among cav-
ities.

The constantsd;; do not seem to vary substantially among cavities, but the
remaining parameters do. A new model with commbnparameter and in-
dividual ¢y and by is consequently fitted to the data. This model is written
as
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Fig. 5: Parameter confidence intervals from fitting model (3) to data.

Yij = coi + Are il gy (4)

Source df SS MS
Model (3) (Full) 336 5.957 0.0177
Model (4) (Sub) 352 6.4375 0.0183

Table 1: Residual sum of squares for models (3) and (4).

The effect of thed; parameter can be determined fravhS4, = M Sy —
M S, with degrees of freedomif,, = 15. Thus the effect ofA; can be
tested using the test statistic

_ MSa,

7 =
MSsub

which is distributed ag"(dfa,,df ;). With the present data we get =
1.694 which corresponds to the 95.4 % quantile if'éL6, 336) distribution.
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Thus the conclusion is that thé, parameters are not significantly different.
This means that the total shrinkage of a part is the same no matter what cavity
the part comes from.

The estimated parameters of model (4) are displayed in Figure 6. It seems that
parts from cavity 1-8 are having greatgrparameter than the last 8.

The plot of the fitted curve with the observations overlayed, presented in Fig-
ure 7, shows that the general trend in the data is captured well by the model.
However, there is a common tendency in the deviations from the curves. This
tendency is further displayed in Figure 8 where the residuals are plotted in time
sequence for each cavity.

When performing the same test on the parameters it is concluded that they

are not all the same. This means that parts from the different cavities shrink
with different rates. However, usually the same shrinkage curve would be
applied to all cavities. If calculations of the mean and standard deviations in
the process control are based on values predicted by the model, the estimates
could be seriously disturbed.
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The difference in shrinkage rates indicate that any observed differences in part
dimensions are not only due to differences in cavity steel dimensions.

4 Conclusion

In this paper shrinkage curves of parts produced from a multi-cavity mold have
been analysed using non-linear regression techniques. It has been found that
the total shrinkage of a part is the same, no matter what cavity produced that
part. However, the rate of the shrinkage is not the same for all cavities. Thus
values of the stable length predicted from 2 hour measurements risk being
upset by this fact. Furthermore the difference in shrinkage rates indicate that
any observed differences in part dimensions are not only due to differences in
cavity steel dimensions.
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