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Abstract—Earlier work has demonstrated generative mod-
els capable of synthesising near photo-realistic grey-scale
images of objects. These models have been augmented
with colour information, and recently with edge information.
This paper extends the Active Appearance Model frame-
work by modelling the appearance of both derived feature
bands and an intensity band. As a special case of feature-
band augmented appearance modelling we propose a dedi-
cated representation with applications to face segmentation.
The representation addresses a major problem within face
recognition by lowering the sensitivity to lighting conditions.
Results show that localisation accuracy of facial features is
considerably increased using this appearance representation
under diffuse and directional lighting and at multiple scales.
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I. Introduction

MODELS capable of synthesising complete images of
objects have over the past few years proven their

worth when interpreting unseen images. Applications in-
clude real-time tracking of deformable objects [1], [2], face
recognition [3], [4], [5], and recovery of anatomical struc-
tures in magnetic resonance images [6], [7], [8], [9], ultra-
sound images [10] and x-rays [9], [11]. The key idea to all of
these generative models is to perform a per-pixel compar-
ison between unseen input images and synthesised images
and subsequently drive these to equality.

In this paper, we investigate a generative model that has
proven widely applicable. The Active Appearance Models
(AAMs) [12], [13] have been applied to most of the ex-
amples given above. As Cootes et al. [14] the appearance
of edge strength is modelled, but in contrast this is aug-
mented with colour information and conventional raw in-
tensities. We show that a considerable gain in accuracy can
be achieved, merely by selecting a more appropriate rep-
resentation of the particular object class being modelled.
As such, this paper demonstrates that mature image pro-
cessing methods can co-exist in rewarding symbiosis with
a modern generative model-based vision technique.

II. Active Appearance Models

Active Appearance Models [12], [13] establish a compact
parameterisation of object variability, as learned from a
training set by estimating a set of latent variables. The
modelled object properties are usually shape and pixel in-
tensities. The latter is henceforward denoted texture. From
these quantities new images similar to the training set can
be generated.

Objects are defined by marking up each example with
points of correspondence over the set either by hand, or

by semi- to completely automated methods. The key to
the compactness of these models lies in proper compensa-
tion of shape variability prior to modelling texture variabil-
ity. Models failing in doing this, such as Eigen-faces [15],
experience major difficulties in modelling variability in a
compact manner.

Exploiting approximate prior knowledge about the local
nature of the optimisation space, these models can be fitted
to unseen images in a fraction of a second, given a reason-
able initialisation.

Variability is modelled by means of a Principal Compo-
nent Analysis (PCA), i.e. an eigen analysis of the disper-
sions of shape and texture. Shapes are brought into align-
ment using a Generalised Procrustes Analysis (GPA) [16],
and textures are warped into correspondence using a thin-
plate spline [17] or piece-wise affine warp, thereby compen-
sating for any variation in shape. Let x and t denote the
shape and texture mean, respectively. The (ranked) model
parameters, c, can then generate new instances in a simple
linear manner:

x = x + Φsc , t = t + Φtc (1)

where Φs and Φt are eigenvectors obtained from the train-
ing set. The object instance, (x, t), is synthesised into an
image by warping the pixel intensities of t into the geom-
etry of the shape x.

By defining a suitable measure of fit, M(c, I), the model
could be matched to an unseen image, I, using stan-
dard optimisation techniques such as conjugate-gradient,
Levenberg-Marquardt or Metropolis-Hastings in a simu-
lated annealing scheme. However, AAMs do not. In-
stead, residual vectors between the model and image,
δt = tmodel − timage are regressed against known displace-
ment vectors, δc, using reduced-rank regression:

δc = Rδt (2)

Embedded into an iterative updating scheme, this has
proven to be a very efficient way of matching these models
to unseen images. For large models (many texture sam-
ples) built on large training sets, this approach becomes
quite resource demanding w.r.t. memory and computation.
However, recent experiments [18] have shown that estimat-
ing the Jacobian, ∂(δt)

∂c , over the training set using a simple
weighting scheme, in practice yields better results than the
regression approach with far less computational and sto-
rage requirements. In the work below the regression ap-
proach has been taken.

This sums up the basic theory of AAMs. For further
details refer to [13], [18], [19].
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III. Multi-band AAMs

Contrary to the above univariate view upon images, the
most frequently used image source – the RGB camera – is
multivariate. Thus, collapsing the red, green and blue band
into a single intensity band looses specificity. As Edwards
et al. [12] we model multiple texture bands by simple con-
catenation. Any correlation between bands is to be picked
up by the principal component analysis analogue to the re-
covered correlation along shape contours. The concept of
texture is consequently extended to encapsulate any corre-
sponding measurement over the training set. Let m denote
the number of texture samples in band i:

ui = [ ui1 ui2 . . . uim ] (3)

The concatenated texture vector will then be for p tex-
ture bands:

t = [ u1 u2 . . . up ] (4)

Henceforth all AAM processing is left unchanged. This
is multi-band modelling of appearance. As hinted this ap-
proach can be taken to all structures of corresponding input
data, three dimensional problems, time-series [7], 3D+time
etc. Often, the hard part is to obtain the correspondence,
in particular for cases with sparse or incomplete data.

IV. The VHE representation

As a special case of multi-band appearance we propose a
representation suitable for segmentation of face-like images.
A secondary aim is to stress the ease with which one can
add feature bands to create new representations suitable
for a particular domain.

The statistical approach to model building has many
striking advantages. Variability, dependencies, etc. are
learned (estimated) from representative example solutions
contrary to being designed (coded) explicitly into the
model. However, some sources of variation are harder to
generalise than others. Given a few people who smile it
is a reasonable task to build a complete model of smiling
mouths, i.e. a model that generalise well. This is due to the
low intrinsic dimensionality of the geometrical deformation
involved in a smile. On the contrary, lighting effects on a
face are very hard to describe. The intrinsic dimensionality
is high; 3D geometry of the face, skin surface (dry, sweaty),
lighting (type, position, colour) etc.

As an alternative to learn the effects of lighting such as
shadows and highlights, we propose a representation less
sensitive to these. First, we notice that lighting effects
have less influence on the hue band in the Hue, Saturation
and Value (HSV) colour space. By modelling hue, we aim
at obtaining the specificity of colour models without the
sensitivity to effects of lighting. Second, as [14] we notice
that edge estimators per se are less sensitive to lighting ef-
fects than raw intensities. Since edge estimators are imple-
mented as numeric differential operators (e.g. Sobel-filters)
these are unfortunately inherently sensitive to noise, which
calls out for some degree of regularisation. This is often
achieved through a modest filtering with a Gaussian kernel

(preferably of the differential operator). Since this damps
the high frequency content of an image, which is less desir-
able in a segmentation application, we choose to retain a
pure intensity-based band. All together these three bands
form the Value, Hue and Edge (VHE) representation:

• V value – The value (intensity) in the HSV colour-space.

• H modified hue – The angular hue, h, of an HSV rep-
resentation modified to accommodate single-band storage.
Since faces have little hue variation, the hue circle is here
collapsed around the approximate circular mean, θ = 0 and
θ + π in the following way:

hmod =
{

h if h < π
2π − h otherwise (5)

Though this introduces ambiguity in hues we expect this to
be acceptable compared to the effects of wrapping angles.

• E edge – The edge strength, calculated as the gradient
magnitude,

g =
√

g2
x + g2

y (6)

where gx and gy are horizontal and vertical gradient images
obtained from numeric differential operators with a suitable
amount of Gaussian smoothing.

V. Experiments

To test the hypotheses regarding the described VHE rep-
resentation a database of 74 face images was compiled:

• Set A – 37 people facing front to the camera with a
neutral facial expression. Lighting conditions were neutral
using diffuse light from above.

• Set B – The same 37 people facing front to the camera
with a new neutral facial expression. Partial non-diffuse
lighting conditions were simulated by adding a directional
light (horizontal lighting from the right, as seen from the
camera).

Still images were recorded using a Sony DV video cam-
era (DCR-TRV900E PAL) in 640×480 JPEG colour format
and subsequently annotated using 58 landmarks. Refer to
figure 1 for example images from Set A and B.

Grey-scale versions were obtained using the standard
luminance-weighting scheme:

G = 0.30R + 0.59G + 0.11B (7)

Alternatively, a Principal Component or Maximum Au-
tocorrelation Factor transform [20] could be applied to the
RGB bands to obtain grey-scale versions.

VHE versions of Set A and B were obtained using the
procedure described previously. Refer to figure 3 for an
example VHE transform. Notice the markedly lower hor-
izontal resolution in the modified hue band. This is due
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Fig. 1. Top row: Example annotation. Bottom row: Cropped ex-
ample images from Set A using diffuse lighting (left) and Set B using
directional lighting (right).

Fig. 2. First combined principal mode, c1, for an AAM built over the
37 images of Set A. Value, modified hue and edge bands are shown
row-wise, top-down. The deformations are c1 = −3σ1 (left), mean
(middle) and c1 = 3σ1 (right) where σ1 is one standard deviation
over the training set. Bands are stretched linearly for display.

Fig. 3. Top row: VHE representation of a face (left) and value band
(right). Bottom row: Modified hue band (left) and edge band (right).

TABLE I

Leave-One-Out Segmentation Results.

Mean pt.-pt. Mean pt.-crv.
Grey-scale 2.73±0.78 1.35±0.46
Colour 2.84±0.75 1.35±0.40
VHE 2.63±0.64 1.27±0.40

TABLE II

Segmentation Results using Directional Lighting.

Mean pt.-pt. Mean pt.-crv.
Grey-scale 3.51±0.85 1.78±0.49
Colour 3.22±0.67 1.67±0.44
VHE 2.91±0.65 1.40±0.36

Pt.-pt. measures Euclidean distance between corresponding land-

marks of the model and the ground truth, whereas pt.-crv. measures

the shortest distance to the curve in a neighbourhood of the corre-

sponding ground truth landmark.
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to the subsampling of the chrominance bands in the video
formation and the JPEG compression scheme.1

In all experiments AAMs were initialised using a sparse
global search exploiting the convergence distance of each
parameter. Often this is only done in a few selected pa-
rameters. In this case position and scale were adequate.
From the result of the global search a candidate set is cho-
sen and iterated further until convergence. The best of
these converged results denotes the initial position. To im-
prove speed and robustness this is done on models built at
multiple scales. For details see [21].

A. Segmentation of unknown identity using diffuse lighting

To assess the segmentation capabilities under standard-
ised lighting conditions cross-validation were carried out on
three different AAM representations of Set A: grey-scale,
colour and VHE. To obtain optimal performance a leave-
one-out scheme was used. Thus, 37 models were built from
36 examples each leading to 37 evaluations of each repre-
sentation. Input images were subsampled to 320×240 pix-
els prior to any AAM processing. The texture models were
∼8000 pixels/band and it took on average 28 combined pa-
rameters to represent 95% of the variation observed in the
training set.

The results in table I show a subtle increase in accu-
racy for the VHE representation compared to the standard
grey-scale AAM. Unexpectedly, table I shows that the more
specific colour AAM is slightly less accurate than the grey-
scale AAM w.r.t. to mean pt.-pt. distance and equivalent
for the mean pt.-crv. distance, though with a small decrease
in uncertainty for the pt.-crv. measure. This indicates that
the colour AAM slides more along contours. Though de-
signed to handle changes in lighting, the VHE AAM seems
to outperform both the grey-scale and colour AAMs by a
modest amount under controlled lighting conditions.

B. Segmentation of known identity using directional light-
ing

Subsequently, the three representations were tested for
their ability to segment known faces with subtle changes in
expression but major changes in lighting. This was carried
out by building three AAMs, grey-scale, colour and VHE
on Set A (320×240 pixels). Refer to figure 2 for the first
principal mode of the VHE AAM. All three models were
subsequently tested on all images in Set B. Table II shows
an increase in segmentation accuracy of 17% (pt.-pt.) and
21% (pt.-crv.) for VHE compared to Grey-scale. Further,
the VHE has lower uncertainty estimates. From the error
distributions in figure 4 it is noted that the VHE has a
lower maximum error and in general a tail less heavy than
the grey-scale and the colour AAM.2

1This step, which we had no control over, is motivated by a known
decreased sensitivity in the human visual system to high-frequency
chrominance content.

2The break-ups in the log-plot curves for the grey-scale and colour
AAM are due to histogram bins with zero entries.
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Fig. 4. Distribution of pt.-crv. errors using directional lighting.
Shown as normal (top) and log (bottom) plots.

C. Accuracy at different scales

Occasionally, it is not feasible to build AAMs in the orig-
inal input resolution. This can be due to constraints such
as memory consumption, computation time etc. In a case
with high-resolution input but a constraint on the model
size one could ask whether a multi-band model should be
chosen over a single-band model with a higher resolution.

To test this 18 AAMs were built. These were in six
different resolutions using each of the three representa-
tions, grey-scale, colour and VHE. From Set A 27 examples
were selected for training. Image resolutions spanned from
108×80 pixels to full input resolution at 640×480 pixels.
The resulting model sizes were in the range 850 – 92118
texture samples. Using the described initialisation method
all 18 models were evaluated against the remaining 10 ex-
amples of Set A. In figure 5 the mean pt.-pt. error is plotted
against the model size. Here, pt.-pt. errors are measured
in units of pixel width at the used resolution. While the
VHE performs best, figure 5 stresses the fact that a sim-
ple pt.-pt. measure is worthless as performance indicator
without the image resolution or model size given.
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Fig. 5. AAM pt.-pt. accuracy measured as image pixel size vs. model
size (left) and std. of image pixel size vs. model size.
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Fig. 6. AAM pt.-pt. accuracy measured as units vs. model size (left)
and std. of units vs. model size in full (top) and zoomed (bottom)
view.

In a typical benchmarking scheme pixel distances relates
to a physical measure. In this experiment we define the
physical measure a unit which is the width of a pixel at the
input resolution, i.e. 640×480 pixels. The unit equivalent
of figure 5 is shown in figure 6. From the zoom in figure 6
(bottom) it is seen that the VHE representation performs
best for models larger than ∼5000 texture samples.

If the choice should only regard the resolution of grey-
scale AAMs figure 6 (bottom) shows that the rate of im-
provement in unit accuracy is far smaller for models with
more than ∼3000 texture samples.

Remarkably, the colour AAM had the lowest over-all unit
accuracy and unclear trends in both unit mean and unit
standard deviation plots.

VI. Implementation

All conducted experiments were based on an ex-
tended version of the AAM-API, which is an AAM
implementation in C++ by one of the authors. A
beta version of the AAM-API can be downloaded from
http://www.imm.dtu.dk/~aam/ This page also gives sev-
eral examples on AAMs in other contexts.

VII. Discussion

Experiments have shown that a simple pre-processing of
input images can increase segmentation accuracy on a lim-
ited set of facial images. The VHE representation outper-
forms conventional grey-scale AAMs and colour AAMs in
cases with diffuse and partial directional illumination. The
substantial – though not breathtaking dramatic – gain is
obtained with negligible computational costs compared to
colour AAMs but at the cost of a three times larger texture
model compared to grey-scale AAMs.

Though stretched highly for display reasons, figure 2 in-
dicates areas where the hue is ill-defined, e.g. at the eyes
where the saturation is near zero. Further, in this discrete
24bit RGB setting, pixels near zero intensity also results in
ill-defined hue angles. These areas could be learned from
the training set and subsequently down-weighted. This
would lead to better models.

Circumventing the need for two texture bands to repre-
sent the cyclic hue as shown may be too primitive. Colour
ambiguity is introduced at all colour angels ±θ measured
from the point of collapse (in this case pure red at angle 0).
However, in the presented case the loss in colour specificity
is more than compensated by the gain from the over-all de-
crease in lighting sensitivity. This may not always be the
case. For human faces though, hue is concentrated around
the angle 0/360 [22]. For applications with limited and ap-
proximate unimodal distribution of hue – other than faces
– the circular mean should be estimated (see e.g. [23]) to
ensure a proper representation. For multimodal cases two
texture bands should be used.

Concatenating all bands with a subsequent common lin-
ear normalisation as done in AAMs seem less optimal. In
the VHE case the three subbands all have substantially
different statistics suggesting that bands should be nor-
malised separately using possibly non-linear means of nor-
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malisation. This was earlier done on ultrasound images
[10] with great success. In an initial stage this was ap-
plied to the edge band with limited success. The error in-
creased due to the emphasis that was put on the noisy low
to medium intensities, i.e. areas where the gradient are ill-
defined. This could possibly be solved by a non-linear edge
weighting scheme as suggested in [14] or by using a more
elaborate regularisation prior to the gradient estimation,
e.g. the anisotropic Perona-Malik diffusion scheme [24] or
similar.

Finally, instead of patching the problem of non-Gaussian
sources a more graceful solution would be to address the
core of the problem. Namely, that PCA is based on as-
sumptions of normally distributed variables. As such, In-
dependent Component Analysis (ICA) [25] could prove to
be a good replacement of the celebrated PCA.

VIII. Conclusions

Given the presence of colour information in a face seg-
mentation task we have experienced the presented VHE
representation to be an appealing alternative to model raw
RGB intensities, in particular when dealing with change in
lighting conditions. Using diffuse and partial directional
lighting and at multiple scales, the VHE representation
yielded higher accuracy than the conventional grey-scale
and colour AAM. Only for very small models, grey-scale
AAMs were more accurate, when measured relative to the
size of the original input image. However, as absolute mea-
sures, the VHE performed best.

From the current experiments, the VHE representation
should be preferred over the colour ditto. Further, com-
pared to the grey-scale representation, the VHE should
also be preferred if the required extra memory and compu-
tational power are available. For applications other than
face segmentation, we have suggested modifications needed
to utilise this intensity, hue and edge representation.

We have sought to promote the idea of modelling de-
rived features combined with intensity information. Re-
sults showed that with subtle changes to a conventional
grey-scale AAM framework and simple domain specific pre-
processing a considerable increase in accuracy can be ob-
tained. We anticipate that this also holds for other do-
mains.
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