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ABSTRACT
We use the combined Wishart-Loewner method to successfully detect
change and direction of change in truly multitemporal, multilooked
quad/full polarization synthetic aperture radar image data in the co-
variance matrix representation. Based on in situ data interpretations
of the obtained results are given for three selected fields. Histograms
of the Wishart test statistics in a wooded no-change area shows good
agreement with the theoretical distributions.

1. INTRODUCTION

This paper uses a method based on the complex Wishart distribution
described in [1,2] for change detection in truly multi-temporal, multi-
look, quad/full polarization synthetic aperture radar (SAR) data in the
covariance matrix representation. Many authors have worked with bi-
temporal change detection in such data, see for example [3–7].

We also use the Loewner order to determine whether radar sig-
nal as measured by the definiteness of the difference of covariance
matrices has increased or decreased over time, i.e., to determine the
direction of change [8–10].

2. TEST STATISTICS AND THEIR DISTRIBUTIONS

Below we very briefly recapitulate the main results from [1] on the
test statistics Q and Rj , and the corresponding probabilities for find-
ing smaller values of −2ρ lnQ and −2ρj lnRj relating to change
detection in a series of k ≥ 2 covariance matrix representation mul-
tilook SAR data with all (including the off-diagonal) elements in the
covariance matrix, see [11].

The average covariance matrix for multilook polarimetric SAR is
defined as [11]
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where 〈·〉 denotes ensemble averaging and ∗ denotes complex conju-
gation. Srt denotes the complex scattering amplitude for receive and
transmit polarization (r, t ∈ {h, v} for horizontal and vertical polar-
ization). 〈C〉 is Hermitian also known as self-adjoint, i.e., it is equal
to its own conjugate transpose.

2.1. Test for equality of several complex covariance matrices

For the logarithm of the likelihood ratio test statistic Q for testing
whether a series of k ≥ 2 complex variance-covariance matrices Σi
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are equal, i.e., Σ1 = Σ2 = · · · = Σk we get (for the real case
see [12]; for the case with two complex matrices see [3, 13])

lnQ = n{pk ln k +

k∑
i=1

ln |Xi| − k ln |
k∑

i=1

Xi|}.

Here | · | denotes the determinant, n is the equivalent number of looks,
the Xi = nΣ̂i = n〈C〉i (and the Σi) are p by p (p = 3 for full
pol data, p = 2 for dual pol data, and p = 1 for single channel
power data), and the Xi follow the complex Wishart distribution,
Xi ∼WC(p, n,Σi).

Because Q tests for equality in all matrices simultaneously, it is
termed an omnibus test statistic.

For full and dual pol data (p = 3 and p = 2, respectively) with
all off-diagonal elements in the covariance matrix and with
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the probability of finding a smaller value of −2ρ lnQ is

P{−2ρ lnQ ≤ z} ' P{χ2(f) ≤ z} +
ω2[P{χ2(f + 4) ≤ z} − P{χ2(f) ≤ z}],

where z = −2ρ ln q and q is a particular realization (the observed
value) of the stochastic variable Q.

2.2. Test for equality of first j ≤ k matrices

If the above −2ρ lnQ test statistic shows that we cannot reject the
hypothesis Σ1 = Σ2 = · · · = Σk, there is no change over the time
span covered by the data. If we reject the hypothesis, there is change
at some time point. To find that time point, we test whether the first
j (1 < j ≤ k) complex variance-covariance matrices Σi are equal,
i.e., given that Σ1 = Σ2 = · · · = Σj−1, then the logarithm of the
likelihood ratio test statistic Rj for testing Σj = Σ1 is

lnRj = n{p(j ln j − (j − 1) ln(j − 1)) +

(j − 1) ln |
j−1∑
i=1

Xi|+ ln |Xj | − j ln |
j∑

i=1

Xi|}.

Furthermore, the Rj constitute a factorization Q =
∏k

j=2Rj or

lnQ =

k∑
j=2

lnRj .



Fig. 1. EMISAR L-band monthly data March-August covering an agricultural region near Foulum, Denmark, logarithms of eigenvalues as
RGB (lnλ1 is red, lnλ2 ≤ lnλ1 is green, and lnλ3 ≤ lnλ2 is blue; same stretch to all lnλ1, same (but different) stretch to all lnλ2, etc.

Change may occur at more than one time point. Hence we estab-
lish what we call an omnibus change path for each pixel, see [1, 2].

For full and dual pol data (p = 3 and p = 2, respectively) with
all off-diagonal elements in the covariance matrix and with
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the probability of finding a smaller value of −2ρj lnRj is

P{−2ρj lnRj ≤ z} ' P{χ2(g) ≤ z} +
ω2j [P{χ2(g + 4) ≤ z} − P{χ2(g) ≤ z}],

where z = −2ρj ln rj and rj is a particular realization (the observed
value) of the stochastic variable Rj .

2.3. The Loewner order

For scalar quantities it is easy to establish whether one quantity is
larger than another, for example, we can check whether the difference
between them is positive, negative or zero. For matrices this is a
more complicated matter. The Loewner (or Löwner) order provides

a partial ordering of matrices [8–10]. Here in our context it gives a
direction of change: does the radar response X1 at time point one and
X2 at time point two increase or decrease (or does it possibly change
structure or nature) between the two time points? To establish the
Loewner order we calculate the definiteness of the difference X1 −
X2. If X1 − X2 is positive definite, we write X2 <L X1, if
X1 −X2 is negative definite, we write X1 <L X2.

3. CASE STUDY ON EMISAR DATA

The EMISAR [14, 15] L-band data used (which are also reported on
in [1, 2]) are acquired on t1 = 21 March, t2 = 17 April, t3 = 20
May, t4 = 16 June, t5 = 15 July, and t6 = 16 August. The 13-look
images are 1024 rows by 1024 columns 5m pixels, see [1] for more
details. Descendingly ordered eigenvalues of the data are shown as
RGB in Figure 1. Figure 2 shows the results of pairwise consecu-
tive test for change: positive definite matrix difference in red (i.e.,
Xti+1 <L Xti ), negative definite matrix difference in green (i.e.,
Xti <L Xti+1 ), indefinite matrix difference in yellow, all where
P -values, i.e., the change probabilities in the Wishart based test are
larger than 99%. Red regions exhibit significant change and have
stronger backscatter at ti, green regions exhibit significant change and
have stronger backscatter at ti+1, and yellow regions exhibit signifi-
cant change with a nature so that the Loewner order cannot determine
which backscatter is stronger. Hence, the Loewner order gives a mea-



Fig. 2. Pairwise consecutive tests (row-wise March-April, April-May, May-June, June-July, July-August), P -values for finding smaller values
of −2ρ2 lnR2, i.e., change probabilities thresholded at 99% and Xti −Xti+1 positive definite (red), P > 99% and Xti −Xti+1 negative
definite (green), P > 99% and Xti − Xti+1 indefinite (yellow). Red regions have stronger backscatter at time point ti, green regions
have stronger backscatter at time point ti+1. Yellow means significant change with indefinite matrix difference. The gray scale no-change
background is the temporal average of 〈SvvS

∗
vv〉 of all six images. Note the three fields marked A (spring barley), B (winter wheat) and C

(peas) in the top-center image.

sure of direction of detected change. Gray scale regions exhibit no
significant change. From March to April a number of fields are dom-
inated by a change from a strong backscatter in March to a weaker
backscatter in April. This situation corresponds to spring crop fields
that change from plowed soil (rough surface) to sowed soil (smoother
surface), e.g., the VV-backscatter for field A (spring barley) changes
from −16.4 dB to −25.3 dB. From April to May many of the fields
with change are represented by indefinite matrix differences (yellow).
This corresponds to a change in scattering mechanism with smaller
changes in the backscatter coefficients. In this case, it corresponds
to a change from surface scattering or attenuated surface scattering
(through vegetation for the winter crops) to double bounce scattering,
where the vegetation has grown sufficiently in May to scatter back
the forward scattering component from the smooth soil. For field
B (winter wheat), for instance, the VV-backscatter is −18.2 dB and
−18.3 dB in April and May, respectively, where the HH-backscatter
is −23.0 dB and −17.9 dB. The phase difference between HH and
VV change from 35◦ to −74◦. These results indicate the above-
mentioned change from surface scattering to double bounce scatter-
ing. From May to June and from June to July a number of fields show
negative definite matrix differences, and the reason is the increased

backscatter from volume scattering from a higher and denser vege-
tation. For field C (peas) the development stage from May to July
changes from leaf development (12 cm height), over emergence (42
cm height), to development of fruit (69 cm height). For instance, the
cross-polarized backscatter changes from −34.8 dB, over −24.8 dB,
to −18.3 dB, and the entropy changes from 0.53, over 0.76, to 0.86.
These results clearly show an increase in the volume scattering from
May to July. Finally, the positive definite matrix difference seen be-
tween July and August is caused by a decrease in backscatter due to
either harvesting or drying out of the crops, in both cases changing the
scattering from volume scattering to (attenuated) surface scattering.

Figure 3 shows sample and theoretical distributions for−2ρ lnQ
(top row plots) and −2ρj lnRj for a small wooded no change area
just below field B. Judged visually, the sample distributions fit the
theoretical ones nicely.

The following table shows mean values of −2ρ lnQ (top row)
and −2ρj lnRj for the small wooded no change region just below
field B. The first column with numbers shows results for testing t1 =
t2 = · · · = t6, the second column with numbers shows results for
testing t2 = · · · = t6 (omitting t1), the third column with numbers
shows results for testing t3 = · · · = t6 (omitting t1 and t2), etc. Ideal
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A

C



values are the numbers of degrees of freedom.

Omnibus 51.6318 39.3011 29.7337 20.2582 9.8528
t1 = t2 10.7501
t2 = t3 8.6506 7.4819
t3 = t4 10.6303 10.6011 9.2634
t4 = t5 10.7958 10.5534 9.8638 9.7539
t5 = t6 10.7948 10.7335 10.6226 10.5108 9.8528

The following table shows mean values of 1−P{−2ρ lnQ ≤ z}
(top row) and 1 − P{−2ρj lnRj ≤ z} for the small wooded no
change region just below field B. The ideal value is 1/2 for all entries.

Omnibus 0.3360 0.4092 0.4087 0.4024 0.4425
t1 = t2 0.3933
t2 = t3 0.5333 0.6149
t3 = t4 0.4054 0.4039 0.4830
t4 = t5 0.4067 0.4138 0.4461 0.4469
t5 = t6 0.4088 0.4072 0.4097 0.4128 0.4425

Fig. 3. Sample and theoretical distributions for −2ρ lnQ (top row
plots) and −2ρj lnRj for a small wooded no change area just below
field B. Judged visually, the sample distributions fit the theoretical
ones nicely.

4. CONCLUSIONS

We have used a change detection scheme for polarimetric SAR data
based on a combination of the Wishart detector with an associated
p-value and the Loewner order. The Loewner order determines the
direction of significant change as detected by the Wishart test statistic.
This direction is here determined by the definiteness of the pairwise
consecutive matrix differences.

In an example with EMISAR quad/full polarization data, change
and direction of change are successfully detected by the combined
Wishart-Loewner detector and interpreted for three selected fields.

Plots of sample and theoretical distributions of the test statistics
over a no change region show satisfactory agreement.

The methods described here can be used in the analysis of other
SAR data also, for example data from Sentinel-1, Radarsat-2, Terra-
SAR-X, COSMO-SkyMed and GaoFen-3.

Matlab code to perform the above analyses is available on Allan
Nielsen’s homepage with [10].
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