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Abstract
Digital 3D scanning of general objects often include manual processes. No scan can be done in one sweep since
the object will always be held or rest in a way, which obscures parts of the object. This project seeks to reduce
the manual part by automating a software based alignment of partially overlapping scans of an object.

The goal of the project is to describe and implement a global alignment algorithm, ultimately get the algorithm
implemented as part of the DTU 3D scanning software.

The proposed algorithm is developed by Zhou et al. 2016 and boasts global efficient 3D registration without
the need of a local initialisation, like the classical Iterative Closest Point algorithm do. The full mathematical
background of the algorithm is explained in detail. Additionally thorough testing of the algorithm have been
performed to find eventual limitations, which is an important aspect of the project. Tests are performed both on
a small model of the Stanford Bunny with some modifications and large scans obtained at DTU Imaging.

The implementation performs well on small datasets where parameters can be tweaked easily, however it is not
robust enough to handle real scanned datasets. The main faults of the implementation lie within the Fast Point
Feature Histogram estimation and correspondence matching. The performance of the implementation can be
optimised further.

The implementation by the original authors performed well in all tests and computation time were quite effi-
cient, so with further development it is possible to integrate the method in a 3D Scanner pipeline.
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Danish summary

Manuelle processer kan sjældent undgås, når generelle objekter 3D-skannes digitalt. Skanninger kan på nu-
værende tidspunkt ikke fange hele objekter, da objektet altid skal ligge eller holdes, hvilket obskurer dele af
objektet. I dette projekt forsøges det at reducere mængden af manuelt arbejde, der skal til at afstemme orien-
teringen af delvis overlappende skanninger for et objekt.

Målet med projektet er at beskrive og implementere en global afstemnings algoritme, ultimativt undersøges det
om en sådan algoritme kan implementeres i et realtidssystem til skanning af objekter på DTU.

Den foreslåede algoritme er udviklet af Zhou et al. 2016 er i stand til effektiv global afstemning, uden brug af
et lokalt udgangspunkt som den klassiske Iterative Closest Point algoritme kræver. Projektet inkluderer en fuld
gennemgang af den matematiske baggrund, der skal til for at forstå og implementere algoritmen. Endvidere er
algoritmen blevet testet i et forsøg på at identificere begrænsninger og mangler. Test er blevet udført både på
Stanford Kaninen og på skanninger af objekter foretaget på DTU.

Implementeringen giver gode testresultater for kanindatasættet, hvor parametre kan blive justeret let, imple-
menteringen er ikke robust nok til at håndtere skanninger. Problemerne for implementeringen ligger primært
i udregningen af Fast Point Feature Histogrammerne og korrespondanceestimeringen. Ydermere kan opti-
meringer på beregningstiden stadig foretages.

Den originale implementering af Zhou et al. 2016 præsterer godt i alle test og beregningstiderne er lave, derfor
med videreudvikling af implementeringen er det muligt at integrere algoritmen i en 3D-skannings proces.
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CHAPTER 1 Introduction
Companies are specialising in methods to construct digital three dimensional models from the real world,
making 3D scanners a very widespread technology. A vast variety of objects are scanned ranging from teeth to
landscapes, and most of the methods used today are based on photogrammetry. Google and other companies are
using photos taken from air-crafts to construct height maps of the terrain used for maps and other applications.
The cinematography industry spend vast amounts of time on photogrammetry, using large camera set-ups to
capture very precise 3D models of actors, these models can then be used as base material for computer graphics.
Although widespread as it is, challenges still exist for the technology.

The imaging section at the Technical University of Denmark have built a 3D scanner in the form of a structured
light scanner. The scanner is constructed from a turntable for the object, a projector, which projects a number
of line based patterns onto the object, these patterns are used to find correspondences between the images taken
by the two cameras (See Figure 1.1 for an illustration). The correspondences are then used in a triangulation
to define a 3D point cloud. However, the point clouds created need to be cleaned and modified before they are
useful.

Figure 1.1: Sketch of the DTU 3D scanner.

At any given time only parts of the object can be seen by the cameras. Because of this, a number of partial
scans are created using the turntable. The partial scans can be aligned since the rotation between each scan is
known from the turntable.
However, the object is resting on the turntable and the contact area will not be part of any scan. To obtain a
full model, the object must be manually reoriented inside the scanner. This produce a number of partial scans
which must then be correctly aligned in order to complete the model of the object. This process of aligning
partial 3D models to each other is called a registration process and is the goal of this project.

The project aims to describe, implement and test a global alignment method, which can be used for registration
of multiple scans. The method should be automatic and robust making it possible to integrate as part of the
3D scanner pipeline currently active at DTU Imaging. Since the implementation should be part of a real-time
application it must be efficient to avoid significant delays while yielding a proper level of precision.



2 Introduction

1.1 Global and local alignment

Within the fields of computer vision and computational geometry two different issues in regards to alignment
of models exist, the local and the global alignment problem. Local alignment refer to a situation where a good
guess of the transformation is known, or only small changes have been made between each model. Given the
turntable setup defined above, if we did not record how much the turntable changes between each scan, but we
do know the change is relatively small, we could use a local method to find the transformation between the
models.

However, when an object is completely reoriented on the turntable the change is in general too large for a local
alignment to be possible. The local methods would probably find some local minima but the models would not
be aligned properly. This is where global alignment methods are important. These methods aim to be robust
toward any initial positions of the models. In general two approaches are used, try to find the transformation
directly or estimate some rough transformation and let a local refinement take over when the solution is close.
The direct approaches often use a feature driven or statistical method to locate correspondences and then align
these.

1.1.1 Background and existing work

Estimation of rigid object transformations have been done for many years and over time the general problem size
has increased. Today point clouds including millions of points are generated from scanners and the alignment
of these needs to be efficient. An analysis by Eggert et al. 1997 deemed closed form solutions superior to
iterative methods, both in terms of robustness and efficiency. However, all of these methods rely on computing
the Singular Value Decomposition or the Eigen System of some matrices set up during the computations. These
measures require some regularity in the data and are prone to errors under noise additions. Additionally these
methods were efficient at the time but the increase in computational power and optimisations in the iterative
methods have rendered these closed form solutions obsolete.

One of the most, if not the most, popular method for estimating alignments of data sets is the Iterative Closest
Point (ICP) algorithm. ICP is a method, which have been altered and improved by many scientists since its
initial development in the early 80’s [Rusinkiewicz and Levoy 2001]. The method is a simple local registration,
fairly efficient and will always converge to a local minima. These features have made it a popular refinement
method for rough global methods. However, there do exist a number of problems with this method, as the many
attempts to improve it show. First of all, even if the method is efficient, it requires a Nearest Neighbour search
in every iteration, which is not an efficient computation.

In an attempt to accelerate the algorithm Qiu et al. 2009 implemented a GPU accelerated Nearest Neighbour
Search. Qiu and the other authors did achieve a significant speed-up for the method compared to the original
CPU based method however, their method did not tackle the algorithmic complexity of ICP, it only achieves a
way to use more resources. Additionally the method still requires an initial transformation of the model.

Another optimisation to the ICP algorithm was done by Yang et al. 2013. These authors tackled the problem
of local minima. The ICP algorithm is very susceptible to local minima in the optimisation, with outliers and
noise it can produce some poor results. The changes made in the article by Yang, included a Branch and Bound
outer loop computing an initial guess for the ICP algorithm, which then refine the intermediate result. This way
Branch and Bound was used to traverse the solution space searching for a better solution and ICP ensured this
solution was locally optimal. This addition to the algorithm did indeed remove the need for an initial alignment
of the surfaces, but still gave no significant improvement of the algorithmic complexity.

In recent years machine learning and data mining have received a great deal of attention, and have opened up
a wide range of data and feature driven methods for a wide range of mathematical disciplines. Back in 2008
a couple of scientists at the Technical University of Munich published a method to give ICP a good initial
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transformation, by pairing correspondences between surfaces and estimating a transformation based on these
pairs. The article by Rusu, Blodow, Marton, et al. 2008 describes the features they estimated and how this gave
a good initial transformation, even for big sets of data without relying on statistical methods like the Fuzzy
method by Tarel and Boujemaa 1995 does. This feature based method handles the initial alignment of surfaces
quite efficiently and performs quite well. Improvements to the performance of the method and removal of
redundant features was done in the article by Rusu, Blodow, and Beetz 2009. However, their estimation of the
transformation relied on a sub-sampling method of the points matched by the Fast Point Feature Histograms
(FPFH) developed in the article.

Zhou et al. 2016 used the FPFH to estimate point correspondences between several surfaces and then defined
a minimisation problem, which can be solved directly to find a global solution to the registration problem.
This algorithm was called Fast Global Registration and is the main focus of this project. Zhou and the other
authors show great results and efficient calculations compared to the ICP based methods primarily since Nearest
Neighbour search is no longer needed in every iteration. But the article describing the method contains a number
of steps not described in full, thus it is difficult to implement the method based on the article.
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CHAPTER 2 Theoretical setup
In the article "Fast Global Registration" by Zhou et al. 2016, an algorithm under the same name boasts efficient
global alignment of partially overlapping surfaces, without the need for preprocessing an initial alignment. The
algorithm is based on correspondences from feature matching between the surfaces and an optimisation problem
including a robust penalisation. The goal of this chapter is to give a thorough explanation of the algorithm and
theories behind it. Some parts of the article are not well described, primarily the connection to Lie Groups and
definition of residuals and Jacobians for the optimisation problem. These parts will be explained in detail here.

2.1 Mathematical background

Rigid transformations on Rn are a subset of the affine transformations. Affine transformations are defined
through y = Ax + t, but when A is a rotation matrix t can be interpreted as a translation vector. These
transformations can be represented by a (n+1)×(n+1) matrix [Eade 2017]. The introduction of an additional
dimension for the matrix is the result of homogeneous coordinates playing a part [Aanæs 2018].

Homogeneous coordinates are a representation of points in Rn through a vector in Rn+1. Representation in
homogeneous coordinates add a scaling factor as an additional dimension to the vector. This scaling is also
applied to the other dimensions by multiplication x = (x1, x2, ..., xn) = (sx1, sx2, ..., sxn, s) = xhom. The
mapping between inhomogeneous and homogeneous are done by finding the vector such that this scaling is 1.
This mean a point can be represented as homogeneous coordinates by an infinite amount of vectors. (4, 6, 2),
(2, 3, 1), (1, 1.5, 0.5) all represent the point (2, 3) in 2D.

Homogeneous coordinates are used widely in computer-vision and graphics. A light source in a scene, infinitely
far away can be represented with a direction by the homogeneous vector (4, 3, 1, 0) since the mapping back to
inhomogeneous 3D coordinates would lead to the point, (4/0, 3/0, 1/0) ≈ (∞,∞,∞) which is at infinity but
does not retain information about the direction of the light.

The benefit of using homogeneous coordinates for our problem becomes apparent with the affine transforma-
tions. For a regular point an affine transformation is described by the product of a rotation matrix and the
addition with a translation vector. This operation does however simplify into a linear matrix multiplication in
homogeneous coordinates,(

y
1

)
= T

(
x
1

)
=
[
R t
0 1

](
x
1

)
=
(
Rx+ t

1

)
.

This formulation of points in 3D connects the rotation and translation to the transformation matrix T . These
types of transformations represented as matrices and vectors are one of the primary reasons to use homogeneous
coordinates in computer-vision.

The matrix T is an element of the Lie Group called SE(n). SE(n) is called the group of direct affine isometries
or, more intuitively for the subject of this thesis, the group of rigid motions in n dimensions.
Simplifying the transformation to a linear map rather than an affine one is not the only benefit of this formula-
tion. The Lie Groups are topological groups as well as manifolds [Gallier 2001], meaning tangent spaces and
other favourable properties exists for these groups.

For the optimisation procedure, described in section 2.3, differentials of the transformation matrices are needed.
This is where the introduction of Lie Algebras are needed. Since the SE(3) group is a semi-direct product of
SO(3) and R3 we can use some of their properties to simplify the derivation of the Lie Algebra called se(3).

From Gallier 2001 we know that the tangent basis for rotation matrices SO(3) is the set of skew symmetric
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matrices. Finding the differential directions for the translation part of SE(3) is quite simple. From this we can
define the elements of the algebra by the following basis elements,

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

These 6 matrices represent the directional derivatives of the tangent space for SE(3). The vector
ξ = (α, β, γ, a, b, c) describe the contributions of the 6 directions, 3 contributions alter the rotation and 3 alter
the translation. The combination of the vector and the 6 matrices define the Lie Algebra se(3),

Ω =


0 −γ β a
γ 0 −α b
−β α 0 c
0 0 0 0

 .

In order to prove that this is the algebra associated with SE(3) we need to examine the curve ω(t) = exp(tΩ),
where the matrix exponential is defined as the series [Hartley 2016],

exp(A) = I +
∞∑
n=1

An

n! .

If ω(t) ∈ SE(3), ∀t ∈ R, then Ω define the Lie Algebra. First split the Lie Algebra as follows,

Ω =
[
U u
0 0

]
.

Now examine the curve for any time t,

ω(t) = exp(tΩ)

= I +
∞∑
n=1

(tΩ)n

n!

= I +
∞∑
n=1

tn

n!Ω
n

= I + t

1!

[
U u
0 0

]
+ t2

2!

[
U2 Uu
0 0

]
+ t3

3!

[
U3 U2u
0 0

]
+ · · ·

=
[
I + t

1!U + t2

2!U
2 + t3

3!U
3 + · · · t

1!u+ t2

2!Uu+ t3

3!U
2u+ · · ·

0 1

]
=
[
exp(tU) V u

0 1

]
,

V = I + t2

2!U + t3

3!U
2 + · · · .

The multiplication tU does not change that U is skew symmetric, therefore we know from Hartley 2016 that
exp(tU) ∈ SO(3) is a rotation matrix. So we now have to show V is not divergent.
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First let us examine the effect of multiplying a skew symmetric matrix with itself.

U =

 0 −γ β
γ 0 −α
−β α 0

 .

U2 =

 0 −γ β
γ 0 −α
−β α 0

 0 −γ β
γ 0 −α
−β α 0


=

−γ2 − β2 αβ γα
αβ −γ2 − α2 γβ
αγ βγ −β2 − α2

 .

U3 =

−γ2 − β2 αβ γα
αβ −γ2 − α2 γβ
αγ βγ −β2 − α2

 0 −γ β
γ 0 −α
−β α 0


=

 0 −
(
−β2 − γ2) γ + γα2 (

−β2 − γ2)β − βα2(
−α2 − γ2) γ − γβ2 0 β2α−

(
−α2 − γ2)α

γ2β −
(
−α2 − β2)β −γ2α+

(
−α2 − β2)α 0


=

 0
(
−α2 − β2 − γ2) (−γ)

(
−α2 − β2 − γ2)β(

−α2 − β2 − γ2) γ 0
(
−α2 − β2 − γ2) (−α)(

−α2 − β2 − γ2) (−β)
(
−α2 − β2 − γ2)α 0


=
(
−α2 − β2 − γ2)U.

So after 3 multiplications a pattern appear. This pattern can be exploited for proving V is not diverging, lets
describe the rotational part of ξ by the symbol ξR = (α, β, γ). The factor in front of the matrix can then be
described as −(ξ>RξR).

But since this is used in an infinite sum, examine how the matrices can be expressed for an arbitrary index [Eade
2017].

θ2 = ξ>RξR,

U2n+1 = (−1)nθ2nU,

U2n+2 = (−1)nθ2nU2.

(2.1)

With these observations we are ready to examine V again. The benefit of the above is, that one might rewrite the
sum to find a known infinite series. It is possible to split the sum into even and odd indices and use Equation 2.1.
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V = I +
∞∑
n=1

tn+1

(n+ 1)!U
n

= I +
∞∑
n=0

tn+2

(n+ 2)!U
n+1

= I +
∞∑
n=0

t2n+2

(2n+ 2)!U
2n+1 +

∞∑
n=0

t2n+3

(2n+ 3)!U
2n+2

= I +
∞∑
n=0

t2n+2

(2n+ 2)!
(
(−1)nθ2nU

)
+
∞∑
n=0

t2n+3

(2n+ 3)!
(
(−1)nθ2nU2)

= I + t2U

∞∑
n=0

(−1)n (tθ)2n

(2n+ 2)! + t3U2
∞∑
n=0

(−1)n (tθ)2n

(2n+ 3)!

= I + t2

(tθ)2U

∞∑
n=0

(−1)n (tθ)2n+2

(2n+ 2)! + t3

(tθ)3U
2
∞∑
n=0

(−1)n (tθ)2n+3

(2n+ 3)!

From Christensen 2012 we know that these sums are very close to the cosine and sine series. Adjust for the
differences and we can describe the sums by the following,

∞∑
n=0

(−1)n (tθ)2n+2

(2n+ 2)! = 1− cos(tθ),

∞∑
n=0

(−1)n (tθ)2n+3

(2n+ 3)! = tθ − sin(tθ).

Introducing these into V clear the rest of the way to a solution.

V = I + t2

(tθ)2U

∞∑
n=0

(−1)n (tθ)2n+2

(2n+ 2)! + t3

(tθ)3U
2
∞∑
n=0

(−1)n (tθ)2n+3

(2n+ 3)!

= I + t2

(tθ)2U(1− cos(tθ)) + t3

(tθ)3U
2(tθ − sin(tθ))

= I + 1− cos(tθ)
θ2 U + tθ − sin(tθ)

θ3 U2.

This prove V is convergent for any value of t since ||ξR|| 6= 0 for any skew symmetric matrix.

Since V is convergent V u ∈ R3 for any t and ω(t) = exp(tΩ) ∈ SE(3), ∀t ∈ R, so Ω is the Lie Algebra for
SE(3).

2.2 Correspondences

Finding good correspondences is paramount for finding a good registration, since these are the points used
for minimising the distance between the surfaces. Most iterative algorithms re-estimates the correspondences
in each iteration, which is often a big performance hit. In this algorithm the correspondences are estimated
initially and then they are not updated again. Since the correspondences are only computed once then a robust
system must be used for estimating these. The correspondences are estimated through the "Fast Point Feature
Histograms" developed by Rusu, Blodow, and Beetz 2009 because of the great robustness.

Establishing the correspondences is done in a couple of stages, first the feature histograms are computed for
all points on each surface. Features are computed on a number of different scales to determine points holding
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unique features. Second step is to match up points on different surfaces which hold similar features. Corre-
spondences are tested to reduce the amount of incorrect pairs as the final step.

The entire process from feature estimation to correspondence pairing is summarised in Algorithm 3.1.

2.2.1 Feature estimation

For all points (p) in the data set the goal is to estimate a set of features, which represent a local patch of the
surface. The surface normal (n) is used for all points so if these are not present from the dataset they must be
estimated. Features are estimated by finding the neighbourhood Nk which contain all points with a distance
smaller than rk to p. For each pk ∈ Nk assign p and pk an index i or j, these indices are given to make the
feature consistent regardless of the order of p and pk. The index i is assigned to the point with the smallest
angle between the surface normal at the point and the line connecting the points ∠(ni, p−pk) < ∠(nj , p−pk),
j is then assigned to the other point. Now a Darboux frame is defined by the 3 vectors,

u = ni, v = (pj − pi)× u, w = u× v.

The features are computed as angles relating the Darboux frame to the normals of the two points,

f1 = v · nj ,

f2 = u · (pj − pi)
||pj − pi||

,

f3 = arctan (w · nj , u · nj) .

Here arctan(a, b) is a robust implementation of tan−1 (a
b

)
.

These features are then organised into a 6 bin histogram by checking if the value of the feature is above or
below a certain threshold (s1, s2 or s3). These histograms are summed up over all neighbours and divided by
the number of neighbours. This way the feature histogram, which Rusu, Blodow, and Beetz 2009 called the
Simplified Point Feature Histogram (SPFH), describe the percentage of points in the neighbourhood, which
have features falling in each category.

In order to better describe the neighbourhood of each point a second step is computed. Once SPFH has been de-
termined for all points, Fast Point Feature Histograms (FPFH) can be computed by the following computation.
Given a point p go through all neighbours and add a weighted contribution to the SPFH for p,

F(p) = Fs(p) + 1
K

∑
pk∈Nk

1
||p− pk||

Fs(pk),

with K being the number of neighbours.

2.2.2 Uniqueness and persistence of features

The features estimated above describe the surface around each point, but they do not describe if that point is
unique in any way. A plane will have the same features for all points on the interior of it, however the corners
and edges will have different features. In order to determine the unique points on the surface a bit of statistics
is applied. First the average histogram µ is computed, then all points are ranked after the signed distance to the
average histogram for each feature. These distributions can be modelled by Gaussian distributions and can then
be used to define a cut off for unique points far away from the mean,

||F(p)− µ|| > ασ,
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where α is a scale defining how unique the point should be and σ is the standard deviation of the estimated
Gaussian. The set of unique points for the neighbourhood size rk is called Pk.

To ensure the chosen features are valid over different scales of the neighbourhood, all of the above is computed
for a multiple of radii rk. Then the set of points used to describe the surface will be the points that are marked
as unique for all the chosen values of rk,

P =
⋂
Pk.

2.2.3 Defining the correspondences

After computing the features and determining the persistent points for the surfaces in question it is now possible
to pair them up to define the set of correspondences. A Nearest Neighbour search is conducted between the sur-
faces in feature space to list the closest neighbour of P1 and P2. These correspondences will be refined by two
additional operations. A reciprocity test is done, meaning only points which are mutually nearest neighbours
will be classified as a correspondence. Lastly a tuple test is performed by picking 3 random correspondences
from the dataset [Zhou et al. 2016]. The 3 correspondence pairs are marked as compatible if the ratio of the
distances between the points in each set is close to 1,

∀i 6= j, τ <
||pi − pj ||
||qi − qj ||

≤ 1
τ
,

where τ = 0.9. The computation here ensures the distances between points on surface 1 and surface 2 is
roughly the same for all correspondences. If points a and b are paired with respectively c and d, then the pairs,
(a, c) and (b, d), are only valid if the distance between a and b is about the same as c and d. Using 3 pairs give
a robust set of correspondences.

2.3 Optimisation

The correspondences can be used to define a minimisation problem used to estimate the transformation between
surfaces. The optimisation problem is defined by Zhou et al. 2016, and is here replicated with parts of the
derivation expanded upon to clarify how the algorithm should be implemented. Algorithm 3.2 shows a short
version of the theory presented in this section.

2.3.1 Defining the objective

The objective function defined by Zhou et al. 2016 is defined by the following equation,

arg min
T

∑
(p,q)∈K

ρ(||p− Tq||).

The goal is to estimate the 4 × 4 transformation matrix T . p and q are represented using homogeneous coor-
dinates since the transformation can be represented as a linear function instead of an affine one. The penalty
function (ρ) used by Zhou and the others is a scaled Geman-McClure estimator, where the penalty scale is
called ν,

ρ(x) = νx2

ν + x2 .



2.3 Optimisation 11

Additionally a line process (L = {lp,q}) is introduced in order to handle discontinuities in the objective[Black
and Rangarajan 1996]. Introducing this line process changes the objective of the minimisation to the following.

E(T,L) =
∑

(p,q)∈K

lp,q ||p− Tq||2 +
∑

(p,q)∈K

Ψ(lp,q), (2.2)

with a prior term Ψ defined by,

Ψ(lp,q) = ν
(√

lp,q − 1
)2
.

This introduction must not change the optimal solution, therefore an optimal solution with respect to the line
process must also be an optimal solution to the original problem. To show that the solution is preserved examine
the partial derivative of Equation 2.2 with respect to lp,q ,

∂E

∂lp,q
= ||p− Tq||2 + ν

√
lp,q − 1√
lp,q

.

This can be used to find lp,q for a solution which corresponds to the partial derivative vanishing,

0 = ||p− Tq||2 + ν

√
lp,q − 1√
lp,q

,

0 = ||p− Tq||2 + ν − ν 1√
lp,q

,

1√
lp,q

= ||p− Tq||
2 + ν

ν
,√

lp,q = ν

||p− Tq||2 + ν
,

lp,q =
(

ν

ν + ||p− Tq||2

)2

.
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Reintroducing this result into the original objective gives the following,

E(T,L) =
∑

(p,q)∈K

lp,q ||p− Tq||2 +
∑

(p,q)∈K

Ψ(lp,q)

=
∑

(p,q)∈K

(
ν

ν + ||p− Tq||2

)2

||p− Tq||2 +
∑

(p,q)∈K

Ψ(lp,q)

=
∑

(p,q)∈K

(
ν ||p− Tq||

ν + ||p− Tq||2

)2

+
∑

(p,q)∈K

ν


√√√√( ν

ν + ||p− Tq||2

)2

− 1


2

=
∑

(p,q)∈K

(
ν ||p− Tq||

ν + ||p− Tq||2

)2

+
∑

(p,q)∈K

ν

(
ν

ν + ||p− Tq||2
− 1
)2

=
∑

(p,q)∈K

( ν ||p− Tq||
ν + ||p− Tq||2

)2

+
( √

νν

ν + ||p− Tq||2
−
√
ν

)2


=
∑

(p,q)∈K

 ν2 ||p− Tq||2(
ν + ||p− Tq||2

)2 +

(√
νν −

√
ν(ν + ||p− Tq||2)

)2

(
ν + ||p− Tq||2

)2


=

∑
(p,q)∈K

ν2 ||p− Tq||2 +
(√

νν −
√
νν +

√
ν ||p− Tq||2

)2

(
ν + ||p− Tq||2

)2

=
∑

(p,q)∈K

ν2 ||p− Tq||2 + ν ||p− Tq||4(
ν + ||p− Tq||2

)2

=
∑

(p,q)∈K

ν ||p− Tq||2
(
ν + ||p− Tq||2

)
(
ν + ||p− Tq||2

)2

=
∑

(p,q)∈K

ν ||p− Tq||2

ν + ||p− Tq||2

=
∑

(p,q)∈K

ρ(||p− Tq||).

This derivation verifies that introducing and optimising over the line process does not change the solution to the
problem.

2.3.2 Solving the optimisation problem

The objective function defined in Equation 2.2 contains two parameters, however an alternating method called
Coordinate Descent Method [Nocedal and Wright 1999, Chapter 9] can be employed to solve the problem. The
method freezes one parameter and solves a step for the other, alternating between which variable is frozen and
which is being optimised.

When T is fixed the solution for L can be determined. This was done already during the derivation of the partial
derivative of the objective. So when freezing T and updating L, the solution is to update each lp,q by,

lp,q =
(

ν

ν + ||p− Tq||2

)2

.
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To update T fix L. Having L fixed leads to a couple of simplifications to the objective, firstly the prior term
Ψ can be removed and secondly the problem can be formulated as a non-linear least squares problem. These
types of problems have a residual based objective on the following form,

E(T ) = 1
2 ||e(T )||2 ,

where e(T ) is the residual. This is a well known type of problem and several methods have been developed to
solve this. Here the method called Gauss-Newton will be used [Nocedal and Wright 1999, Section 10.3]. In
order to do so the Lie Algebra is now introduced describing a step in the tangent plane for the transformation,
however we use a linear approximation,

T k+1 = exp(Ω)T

≈


1 −γk βk ak

γk 1 −αk bk

−βk αk 1 ck

0 0 0 1

T k
= ΞkT k.

The Gauss-Newton method is a iterative scheme where the variable is updated in each step through solving the
linear system,

J>e Jeξ = −J>e e(T ).

So next step is to compute the residual e(T ) and the Jacobian of the residual Je with respect to the variable ξ.
A very important note here is to map the matrix Ω back into the space SE(3) before updating T . This is done
through the matrix exponential.

With the objective defined we can determine the residual vector in the k’th iteration,

E(T ) =
∑

(p,q)∈K

lp,q
∣∣∣∣p− Ξk−1T k−1q

∣∣∣∣2 .
Since each lp,q is a positive number, they can be moved inside the norm. The sum of squared norms can also
be reformulated by stacking the interior of the norm into a 4K vector, K being the number of correspondences.
Here the k index is suppressed to assist readability,

E(T ) = ||e(T )||2 ,
ei(T ) =

√
lpi,qi(pi − ΞTqi).

So every ei consists of a 4D vector. The Jacobian of this can be computed and will end up as a 4× 6 matrix for
each ei.

Je = ∂

∂ξ

(√
lpi,qi

(pi − ΞTqi)
)
.

The product of Tq does not contain any information about ξ, so define a vector M = Tq which reduce the size



14 Theoretical setup

of the equations.

Je = ∂

∂ξ

(√
lpi,qi (pi − ΞM)

)

= ∂

∂ξ

√lpi,qi

pi −


1 −γ β a
γ 1 −α b
−β α 1 c
0 0 0 1



m1
m2
m3
m4





= ∂

∂ξ

√lpi,qi

pi −

m1
m2
m3
m4

−

−γm2 + βm3 + am4
γm1 − αm3 + bm4
−βm1 + αm2 + cm4

0





= ∂

∂ξ


√
lpi,qi

pi −

m1
m2
m3
m4

−


0 m3 −m2 m4 0 0
−m3 0 m1 0 m4 0
m2 −m1 0 0 0 m4
0 0 0 0 0 0



α
β
γ
a
b
c







= ∂

∂ξ

√lpi,qi
pi −

√
lpi,qi


m1
m2
m3
m4

−√lpi,qi


0 m3 −m2 m4 0 0
−m3 0 m1 0 m4 0
m2 −m1 0 0 0 m4
0 0 0 0 0 0

 ξ


=
√
lpi,qi


0 −m3 m2 −m4 0 0
m3 0 −m1 0 −m4 0
−m2 m1 0 0 0 −m4

0 0 0 0 0 0

 .
All of these derivations give the final expressions for the stacked residual and Jacobian,

e(T ) =


e1
e2
...
eK

 , where ei =
√
lpi,qi

(pi − ΞTqi).

Je(T ) =


Je1

Je2
...

JeK

 , where Jei
=
√
lpi,qi


0 −m3 m2 −m4 0 0
m3 0 −m1 0 −m4 0
−m2 m1 0 0 0 −m4

0 0 0 0 0 0

 .

M =


m1
m2
m3
m4

 = Tqi.

(2.3)

The residuals and the Jacobian have now been defined and can be used in the implementation.



CHAPTER 3 Implementations
All implementations are written in the language C++ and set up in a Microsoft Visual Studio (2017) solution.
Makefiles have been written primarily to run on the DTU server, these are available as well. Additionally
a mix of shell and matlab programming are used for testing and visualising the data and results. All code
and data used in the implementation and testing of the program is included in the github repository https:
//github.com/timfelle/PointCloudRegistration and marked with version v1.0.

PointCloudRegistration Folder Folder containing the implementation.
/lib Sub folder Header files.
/projects Sub folder Visual Studio Projects.
/src Sub folder Source files.
/PointCloudRegistration.sln .sln file Visual Studio Solution for the project.

Testing Folder Folder containing testing scripts.
/data Sub folder Data used in the tests.
/matlab Sub folder Matlab code used in testing and visualising.
/shell Sub folder Shell scripts defining tests of the system.
/submit Sub folder Files containing settings for LSF submission.
/runtests.sh .sh file Shell script designed to run tests.
/submit.sh .sh file Shell script for submitting tests to the DTU server.
/clean_tests.sh .sh file Shell script designed to clean test folders.

Table 3.1: Folder structure of the Github repository.

3.1 General functions and information

In Table 3.1 an outline of the repository structure is shown. The structure is chosen to give a clear separation
of testing and implementation. This chapter will describe the implementation in depth. First describing the
general structure, including an additional program designed to generate datasets used for testing. Emphasis
will be made on the implementations of the FPFH based correspondence estimation as described in section 2.2
and the actual registration algorithm described in section 2.3.

The algorithms require a number of advanced data structures and functions. So we use two libraries to ensure
good implementations of the essential backbone of the program. Open3D is a library designed to handle a wide
range of geometric and computer vision tasks [Zhou et al. 2018]. Eigen3 is needed by Open3D to run along
with a couple of other dependencies, but the vector and matrix operations defined by Eigen is used directly as
well [Guennebaud, Jacob, et al. 2010].

3.1.1 GenerateData

In order to test the project, consistent ways of generating test data must be established. Therefore the program
GenerateData was written. The program accepts the name of a point cloud, saved in a .ply file, and the
desired file name for the output. The program will then modify the point cloud based on a couple of environment
variables set by the user. The full documentation is located in the README_gen file on github.

The program has a couple of functionalities. Firstly, it can transform a given model by a translation vector and
a pitch-yaw-roll vector as the rotation. These vectors are specified as environment variables for the program,
which are specified by ROTATION=pitch,yaw,roll and TRANSLATION=x,y,z. Rotations are doubles mea-
sured in radians and the translations are any double. The default values of these are 0 to make sure the point
cloud is not changed unintentionally.

https://github.com/timfelle/PointCloudRegistration
https://github.com/timfelle/PointCloudRegistration
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In addition to transforming the model, noise can be added in two different ways. Gaussian noise can be added
to all points in the dataset or outliers can be added by moving a randomly selected subset of the data with
a large Gaussian noise. The noise addition is controlled through the environment variables NOISE_TYPE,
NOISE_STRENGTH and OUTLIER_AMOUNT. Noise strength refer to the standard deviation for the Gaussian noise
and amount of outliers is measured as how large a percentage of points in the model should become outliers.

Addition of noise is done through the following expressions,

Gaussian: p̃ = p+ δ, p ∈ S, δ ∼ N (0, 1% ·R · strength).
Outliers: p̃i = pi + δ, pi ∼ U(S), δ ∼ N (0, 10% ·R).

Here N and U represents the normal and uniform distributions. Outlier indices are pulled from a uniform
distribution and the noise additions are Gaussians with different standard deviations. The standard deviations
are dependent on the radius (R) of the model and scales relatively well for different models.

In Figure 3.1 the Stanford Bunny [Stanford Computer Graphics Laboratory 1994] has been subjected to each
of the capabilities of the data generation program. It is clear to see that the program works as intended. The test
script generateData.sh was used to set-up these figures.

Figure 3.1: These figures show the effects of using the GenerateData program on a Stanford bunny model.
From the top left is a clean version, a version rotated 30, 30, 45 measured in degrees, Gaussian
noise with strength parameter set to 1.5, 5% outliers added and a version with both Gaussian and
outliers added.
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Variable Name Default Value Description
INPUT_PATH ../Testing/data/ Location of data.
OUTPUT_PATH ../Testing/logs/debugging/ Location of transformed models.
ROTATION 0.0, 0.0, 0.0 Model rotation.
TRANSLATION 0.0, 0.0, 0.0 Model translation.
NOISE_TYPE none Type of noise added.
NOISE_STRENGTH 0.0 Strength of Gaussian noise.
OUTLIER_AMOUNT 0.0 Amount of outliers generated.

Table 3.2: Overview of environment variables for the GenerateData program.

3.1.2 Registration

The program Registration is the main driver for the surface registration. This program will handle inputs,
outputs and environment variables used to control the functionality. The full documentation for this driver is
also present in the README located in the PointCloudRegistration folder.

The environment variables, a short explanation and the default values are listed in Table 3.3.

Variable Name Default Value Description
INPUT_PATH ../Testing/data/ Location of data.
OUTPUT_PATH ../Testing/logs/debugging/ Location of transformed models.
OUTPUT_NAME result Base name for the output files.
EXPORT_CORRESPONDENCES false Should correspondences be exported.
FPFH_VERSION project Project or open3d library version.
FGR_VERSION project Project or open3d library version.
TOL_NU 10−6 See section 3.3.
TOL_E 10−6 See section 3.3.
INI_R 0.0001 See section 3.2.
END_R 0.0100 See section 3.2.
NUM_R 100 See section 3.2.
ALPHA 1.50 See section 3.2.

Table 3.3: Overview of environment variables for the Registration program.

3.2 Correspondence estimation

In order to implement the registration algorithm, correspondences for the system to align must be computed
first. This is done through the function computeCorrespondances, which accepts a vector of point clouds as
input and returns a list of correspondence indices. Implementation is split in two stages, first estimate features
and find persistent points for each surface, then find correspondence pairs between the surfaces and attempt to
eliminate erroneous pairs.

In section 2.2 the theoretical background of the FPFH algorithm is described and Algorithm 3.1 show a pseudo
code outline of the algorithm. However the kd-tree data structure, as described in subsection 3.2.2, is an
important part of this algorithm.

In this algorithm neighbours are computed several times so a kd-tree is built on the point cloud positions as part
of the initialisation. Then for each scale (rk) the neighbours of each point is found through the searchRadius
function. The neighbourhood will always include the point we search around since its part of the point cloud,
therefore it must be removed from the neighbourhood list.
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Features are computed and thresholded into the Simplified Point Feature Histograms for each point in the
neighbourhood list. The Fast Point Feature Histograms are collected and stored in a matrix structure from the
eigen library. All contributions are added together and the number of scales which contain persistent points are
counted. This way the FPFH is averaged across the scales for all points.

The averaging of features across scales are done in order to help matching between surfaces since the last
computation of FPFH is not done on the same scale for all surfaces. Again the kd-tree structure is useful. The
feature matrix is cleaned for all non-persistent points and organised into a kd-tree. This kd-tree is then passed to
the nearestNeighbour function. The function locates the persistent points on surface 2 which have features
similar to the persistent points on surface 1. The function is used in both directions so two lists of possible
correspondences are set up.

Now the correspondences are cleaned first by a mutual test, ensuring the nearest neighbours are only saved if
the relation is mutual. Secondly the tuple test described in the end of section 2.2 is carried out. As part of the
tuple test points are randomly selected. Randomly selecting points might examine 2 valid pairs with an invalid
pair, then none of the pairs will be marked valid, therefore the process is repeated several times.

In order to control the computation a couple of environment variables are used. The initial and final scale along
with the number of scales are defined through the three variables INI_R, END_R and NUM_R. The cut-off for
when a point is persistent is controlled through the variable ALPHA, so a point is persistent if,

dist(F(p), µ) > ασ,

where µ is the average feature histogram and σ is the standard deviation for the distance distribution.

These statistic measures only make sense if the scale chosen is capturing geometry with distinct features, so the
selection of scales needs to be done carefully.

3.2.1 Scale selection

An important part of the correspondence computation is selecting scales. The scales referred to here are the
sizes of neighbourhoods used to compute the features of each point. Selecting the scales in a poor way may
result in bad or non-existing correspondences so it is crucial these are selected carefully.

In the implementation scales are selected through the ends of the scale interval INI_R and END_R which rep-
resent a fraction of the bounding box radius, for example from 1% (INI_R = 0.01) to 5% (END_R = 0.05)
of the radius. Then the number of scale jumps are read and (NUM_R) equidistant scales are used. This way
the computation time can be kept fairly low. Using the bounding box radius as a guide to sizes allow models
measured in different units to be used without knowing if they are measured in meters or millimetres.

In the computation the two endpoints can be interchanged, computing from big to small scales or from small to
big. One direction might be better suited to reduce computation time. On some models, especially with a lot of
small Gaussian noise, a lot of points will be marked persistent in small scales while very few will be persistent
for large scales. Here starting by computing the big scales might give a slight performance increase, but since
points must be persistent across all scales the result will be the same.

Another more robust way of selecting the scales could be to compute the features across all scales for all points.
This way some analysis could be done for the points, allowing a couple of scales to be non-persistent for a point
while still allowing it to be marked persistent. This could help avoid problems with bad scale range selection.
At the moment it is up to the user to find a good range.
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3.2.2 Kd-trees

K-Dimensional Balanced Search Trees (kd-trees [De Berg et al. 2008, Chapter 5]) is a data structure often used
to handle searching in multidimensional space. The idea behind the trees are the same as for a regular Balanced
Search Tree, we build a data structure which simplifies lookup at the cost of building the structure. Our multi-
dimensional space will be split along each dimension in turn by the median. This way all data is structured into
the search tree and Nearest Neighbour Searching will be easier. The data structure is especially important for
setting up correspondences between the 6-dimensional feature spaces.

Constructing a kd-tree rely on a geometric approach to database queries. The database "space" is split into areas
with half the datapoints on each side in every branching of the tree. This way it is possible to search through
and find elements in the tree in O(

√
n+ k) time with k denoting the number of points reported [De Berg et al.

2008]. With a construction time of O(n log(n)) the kd-tree is well worth considering when large amounts of
small queries are done through a large database. Finding neighbours in a small neighbourhood around points
in a 3D model fits that description quite well.



20 Implementations

Algorithm 3.1 Correspondences using Fast Point Feature Histograms.
Requires: Point cloud with normals.
Initialise: Assign all points of the surface (S) to P . Define the set of used radii R, define threshold for the
features.

Determine FPFH for each surface:
1: for each radius rk ∈ R, do
2: for each point p ∈ S, do
3: Determine the set of neighbours Nk(p) with a distance smaller than rk to p.
4: for each neighbour pk ∈ Nk(p), do
5: Order the pair (p, pk) by angles between connecting line l = p− pk and the normals n, nk.
6: if ∠(l, n) < ∠(l, nk) then,
7: pi = p and pj = pk,
8: else
9: pi = pk and pj = p.

10: end if
11: Set up a Darboux frame for the points pi and pj .

u = ni, v = (pj − pi)× u, w = u× v.

12: Compute the Simplified Point Features,

f1 = v · nj , f2 = u · (pj − pi)
||pj − pi||

, f3 = arctan (w · nj , u · nj) .

13: end for – each pk
14: Set up the Simplified Point Feature Histograms Fs with the thresholds s1, s2 and s3.
15: end for – each p
16: Compute Fast Point Feature Histogram for each p ∈ S,

F(p) = Fs(p) + 1
K

∑
pk∈Nk(p)

1
||p− pk||

Fs(pk).

17: Compute the mean histogram,

µ = 1
P

∑
p∈S
F(p),

18: Compute distance to the mean histogram and standard deviation of distances.
19: If the distance between F(p) and µ is less than α · σ then remove p from P .
20: end for – each rk

Set up the correspondence set:
1: Compute KI , by nearest neighbour search between Pi and Pi+1 in FPFH space.
2: Compute KII , by reciprocity test.
3: Must be mutual closest neighbour.
4: Compute KIII , by tuple test.
5: Pick 3 random correspondence pairs then the following must hold,

∀i 6= j, τ <
||pi − pj ||
||qi − qj ||

<
1
τ
,

where τ = 0.9.
6: Assign K = KIII .
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3.3 Pairwise Fast Global Registration

The pairwise FGR algorithm is implemented in the function fastGlobalRegistrationPair which accepts
inputs for the set of correspondence indices and two point cloud datasets. The pseudo code algorithm is shown
in Algorithm 3.2.

The implementation follow the algorithm described in Algorithm 3.2 closely, but it is worth noting the matrix
exponential. This is a function not under active support from the Eigen library authors, which make inclusion
of unsupported/Eigen/MatrixFunctions necessary. This matrix exponential will map our Lie Algebra
element Ω back into SE(3) as described in section 2.1, so it is of vital importance to have computed.

Environment variables used by this function is the tolerances on penalisation (ν) through TOL_NU and on the
average error used in convergence checks (meanp,q(||p− Tq||), (p, q) ∈ K) by TOL_E.

Algorithm 3.2 Pairwise Fast Global Registration [Zhou et al. 2016]
Initialise: tolerance δ and diameterD of the largest surface, and compute correspondences between the surfaces
through Algorithm 3.1.

1: Initialise T = I , ξ = 0 and ν = D2.
2: while Not converged or ν > δ2 do
3: Set Je = 0, e = 0.
4: for each (p, q) ∈ K, do
5: Compute l(p,q),

l(p,q) =
(

ν

ν + ||p− T kq||2

)2

.

6: Compute M = T kq.
7: Update Je and e,

ei =
√
lpi,qi

(pi − T kqi), Jei
=
√
lpi,qi


0 −m3 m2 −m4 0 0
m3 0 −m1 0 −m4 0
−m2 m1 0 0 0 −m4

0 0 0 0 0 0

 .

8: end for
9: Update T ,

ξ = (α, β, γ, a, b, c) = −(J>e Je)−1J>e e, Ξ(ξ) = exp




0 −γ β a
γ 0 −α b
−β α 0 c
0 0 0 0


 ,

T k+1 = Ξ(ξ)T k.

10: Every 4 iterations, ν = ν
2 .

11: end while
12: Verify whether T aligns Q to P .
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CHAPTER 4 Tests and results
Streamlining and reproducibility of tests are important, so all tests used in this project are provided through
Github. Additionally the test driver runtest.sh was written. runtest.sh is a simple script, which creates
a temporary directory for each test, copies over the executables from the project folder and executes the tests
specified through terminal inputs. This way tests will not interfere with each other even if run in parallel or
updated in the shell folder during execution.

The performance tests are run on the DTU cluster. The CPU used for all computations are the Intel Xeon CPU
E5-2650 v4 2.20GHz see Appendix B for more info on the CPU used.

The simplest test done is just to see if the algorithm works. The bunny have been copied to two separate parts
and a part of the model have been deleted from each. One of the models are transformed and the goal is to
realign the parts. Figure 4.1 illustrates the result of the registration program. The result is very pleasing since
the models are aligned almost perfectly. However this situation can hardly be used to evaluate the performance
of the model, this is a clean model and a 3D scanner will introduce a range of noise and imperfections. So more
testing is required to evaluate the performance of the program.

Figure 4.1: Figure showing the clean bunny before and after running the registration.

4.1 Synthetics

In order to analyse the performance of our method we start by generating synthetic data. This synthetic data will
be based on the Stanford bunny [Stanford Computer Graphics Laboratory 1994]. The bunny will be subjected
to a number of deformations using the GenerateData program described in subsection 3.1.1. The tests will
be done both for outliers, Gaussian noise and a mixture of the two. For all tests the initial position of the
partial bunnies are as shown in Figure 4.1 then the data generation program is used to alter the point cloud. All
synthetic tests can be replicated using the test script noiseTest.

The original transformation is printed from the data generation program, which is one of the good reasons to
generate the synthetic data. In order to determine how well the registration is done we look at the difference
between the original transformation and the estimated one. And to quantify the difference the Frobenius norm
is computed,

Err = ||Ttrue − Test||F .
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4.1.1 Outliers

Type Amount Error
Clean: 3.82 10−4

Outliers: 1% 2.70 10−4

Outliers: 5% 3.86 10−4

Outliers: 10% 4.10 10−4

Table 4.1: Overview of test precision.

First of all 3D scanners often introduce a large number of outlier
points. Dust particles, edges on the background and specular reflec-
tions are some of the common reasons for outliers in a 3D scanner. In
the implementation outliers are simulated by scattering a percentage
of the original data.

Three tests are set up to examine the effect of outliers. The introduced
outliers represent of 1%, 5% and 10% of the point clouds. Figure 4.2
show the final registration for each of these 3 tests. The visual alignment is on point for all 3 tests, even though
for the 10% test, outliers are obstructing the view.

Figure 4.2: Registration of the bunny with outliers added. The amount of outliers in each example is 1%, 5%
and 10%. It is clear to see the registration is working for the two first but the amount of outliers
make it hard to see the bunny in the last.

The registration program was run without changing any parameters, meaning no alteration needs to be done
even with quite heavy amounts of outliers. Table 4.1 shows the normed distance to the original transformation,
so the implementation is quite robust against outliers.

4.1.2 Gaussian noise

Gaussian noise addition is quite simple, however it seems to be difficult for the system to determine persistent
points when Gaussian noise have been added. Figure 4.3 shows the results of two different amounts of noise.
First normally distributed noise with mean 0 and standard deviation 0.01% of the bounding box radius was
added. Introducing such small noise hardly give any visual alteration of the model. It is still possible to
achieve a good registration. Increasing the noise to a standard deviation of 0.05% it was impossible to obtain a
reasonable result at all. This clearly show that the current implementation of the feature estimation is not robust
enough.

In an attempt to illustrate the effect causing the issues for our method, a couple of additional tests were done
through gaussianTest.sh. The correspondences were visualised for a couple of large scales in order to
determine if the Gaussian noise would cause features to behave differently even for large scales. We know
small scales will be affected a lot by the noise. Figure 4.4 shows the correspondence points for both surfaces,
the top line is a scale of 0.1 and the bottom is 0.15. There are only minor differences with and without the
addition of Gaussian noise but it does not seem to be enough to cause issues.

Attempting to start at a larger scale was tested as part of the parameter tuning for the Gaussian bunny, however
results were poor. This points to small scale features playing an important part in the registration process, the
larger scales might not be affected by the Gaussian but they are not descriptive enough to be used on their own.
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Figure 4.3: Registration of the bunny with added Gaussian noise. Addition of noise with the strength parameter
set to first 0.01 then 0.05, corresponding to a standard deviation of 0.01% and 0.05% of the model
radius.

Figure 4.4: Correspondences for the clean model (left) and with Gaussian noise added (right). Top line is with
a scale of 0.1 and bottom row is with a scale of 0.15.

4.1.3 Additional models

All of the above shows that the implementation works for the Stanford Bunny which is one of the classical
shapes. In addition to the bunny, tests were performed on a couple of other models. The armadillo monster
[CadNav 2019a] is a low-poly model, which is clear from the spacing between points. A lying giraffe [CadNav
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2019b] have been separated in 2 and a bike [CadNav 2019c] have been split in 3 parts. The giraffe have a fairly
uniform distribution of points, while the points on the bike is collected closely around high curvature areas like
the wheels.

Both the bike and giraffe needed no alteration of parameters to complete, and the armadillo did need a bit of
tweaking. However, the armadillo is small enough to pose no problem.

Figure 4.5: A couple of registrations for a subsampled armadillo monster, giraffe and bike.

4.2 Open3D vs project implementation

In addition to the implemented version of the algorithms Open3D included a version of these as well. These
have been used to test how well the implementation is performing. A couple of things were measured, how
well the different versions registered the clean bunny, along with the time it took to complete the computations.
Additionally some large datasets were used to see how the implementations handled an increasing number of
points and surfaces.

Version Error Time bunny Time 2 Time 4 Time 6
Project 4.27 10−5 14.09 1990 NA NA
Open3D FPFH 9.04 10−5 3.34 483 1679 4574
Open3D FGR 1.68 10−6 3.24 20 63 137

Table 4.2: Overview of the comparison test results. Error measure and computation time for the full scale
datasets are shown. Time is measured in seconds.

The project version is the implementation described in chapter 3, the Open3D FPFH version use the library
version of the feature computations and the registration algorithm described in this thesis. The Open3D FGR
version uses the library version to complete every step of the registration process.

The test contains 2 different parts. First an estimation of the precision for the 3 methods when the Stanford
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Bunny is the model. Again parts of the bunny have been removed in the two datasets. The goal is to estimate the
correct transformation and the error is measured as the Frobenious norm of the difference between the correct
and the estimated transformation ε = ||Ttrue − Test||F . In addition to testing the precision the computation
time is measured for the process of aligning the bunny.

The second part of the test is a performance test. A seal skull have been scanned using the scanner here at DTU
[M. T. Olsen et al. 2016]. This dataset contain a lot of points and 18 point clouds have been generated for each
orientation of the skull in the scanner. To compare the implementations the registration of 2, 4 and 6 of these
point clouds have been done and the computation time is measured.

It is very clear that the project implementation is the least efficient by far. Additionally it took a long time
tuning the parameters used to get decent results, however for the bunny set the precision of the methods are
fairly even, with the Open3D registration yielding the best result.

For large datasets the project version is completely pointless, even just two large surfaces take ages to compute.
The two other versions perform way better with the full implementation in Open3D outperforming everything
as expected.

4.3 Real test

In the real world, spurious outliers come from dust, reflections or other unintended features the scanner picks
up. Imperfections in the camera, or surface can cause small Gaussian like perturbations of the data points.
This added to the generally large size of real data can post a range of issues for registration algorithms. The
outliers and noise can make it difficult to identify good points for correspondences and make the registration
less precise. The large datasets can make tuning parameters take increasingly more time since each test will
take a considerable time to complete.

Two datasets have been used in testing the implementation, a scanned seal skull by M. T. Olsen et al. 2016 and
a fox skull scanned by Wilm n.d. Both of the skulls have been scanned here at DTU by the scanner mentioned
in the introduction. Both of these sets represent the quality expected from a real world dataset.

From the results in section 4.2 it is clear that the project implementation of FPFH features and correspondence
mapping is infeasibly slow for any type of real data set. Therefore the tests here are performed by using Open3D
to match correspondences and the project optimisation algorithm. In addition the full FGR implementation in
Open3d have been used in order to compare the results.

Figure 4.6: An illustration of the amount of outliers present in the scanned data.
Due to the amount of noise present within the model a small addition to the matlab routines have been added. A
flag can be set in order to run an outlier removal function pcdenoise. Figure 4.6 clearly shows why it is needed
to run such a function. The outliers make it difficult to evaluate the result. It should be noted that the registration
is completed including all outliers and de-noising is only done to give a visual aid for the illustrations here.
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The final registration of both datasets is represented in Figure 4.7. The top 6 figures are the seal skull while the
bottom 8 are the fox. The project and Open3D implementation results are shown as the top and bottom row
respectively. Both methods perform fairly well on most of the sections, however a couple of the 17 point clouds
do get misplaced by the project implementation. The Open3D implementation performed remarkably well and
required little tweaking.

Computation time is still remarkably high for these tests, in excess of 12 hours for each dataset. This is the
time spent for the complete set. And it is quite clear from section 4.2 that the Open3D implementation does not
require most of this computation time.

Figure 4.7: These figures show the test results from full scale tests.

(a) Test of the seal dataset. Top row is the project implementation, bottom row contain the open3d version. The datasets are
for both rows the left, right and upright.

(b) Test of the fox dataset. Top row is the project implementation, bottom row contain the open3d version. The datasets are
for both rows the left, right, upright and upside down.



CHAPTER 5 Points of improvements and
future work

It is clear from the testing performed, that several parts of the implementation can be improved. The goal of the
project is to insert the implementation as part of a 3D scanner pipeline, however it is not nearly efficient enough
to be implemented in a real-time application. So currently two major parts of the implementation should be
optimised. First of all, the features are not robust enough, it requires a large amount of tweaking to get results
that are even meaningful, and for large datasets this might not even be feasible due to the computation time
required for each test. The second problem is computational performance. It takes way too long to get a result
and for big sets of data it is infeasible to get a result.

5.1 Feature estimation

The feature estimation process seems to be the bottleneck at the moment. The implementation of the feature
estimation is way slower than the Open3D version. This is of course expected, since Open3D is a well structured
library, and undoubtedly performance have been an important aspect of the development. The performance of
the implementation here is way slower than expected. In the comparison test it performed 5-7 times slower
than the version using Open3D-FPFH. In addition to the performance, spurious outliers for the large datasets
and the problems shown when adding Gaussian noise show a lack of robustness for the implementation.

A couple of things can be done to improve performance. Using some advanced techniques like openMP to run
the computations multi-threaded could be done. Computing the FPFH features for all surfaces can be run in
parallel which might speed-up the computations. Re-examining the inner parts of the computations and how
variables are handled could possibly give some performance increase, resizing vectors or similar for each radius
might be done in a better way.

Robustness of the features might be improved in several ways. One option would be to look into the statistics
used to select persistent features. These statistics could be computed across all scales and one could implement
a threshold to allow a point to be non-persistent for a few scales and still be marked persistent.

Looking into the bins set up for the features is another possible improvement. Currently all 3 measures are split
into 2 bins. One could introduce additional bins for the measures to help separate points. Open3D seem to use
a total of 36 bins, so it is possible they did some changes to how they compute the features.

Since kd-trees are already built for each surface, it is fairly efficient to search through and find points which
does not have many neighbours, this could possibly be used to find outliers and neglect these from the feature
computation. This could assist both performance and robustness of the correspondences.

Feature estimation could be improved by using other methods. Khoury et al. 2017 propose a method using
Convolutional Neural Networks to compute a family of parametrised features. These features can then be
identified on a surface very quickly giving very robust and efficient features.
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5.2 Registration

The registration algorithm seems to be working quite well. It is precise and efficient, however the way multi-
surface registration is done could use some additional work. Currently only pairs of surfaces are registered
together, surface 0 and 1, then 1 and 2 and so on. Zhou et al. 2016 describe a method to combine the optimisa-
tions of multiple surfaces into a single computation. This included organising correspondence sets into an array
and run the optimisation for an array of transformations.

An intermediate update which might improve robustness could be to merge surfaces as registrations are com-
pleted. This way a larger and larger portion of the surface is present to be aligned to and the amount of good
correspondences should go up.

An idea could be to examine rings in the correspondences, meaning require correspondences to form a ring
between the surfaces. Having 3 surfaces and given correspondence pairs (p1, p2) on surface 1 and 2, and
(p2, p3) on surface 2 and 3, then (p3, p1) should also be a correspondence. This could assist the robustness of
the method and could be implemented either as a hard requirement or given a weight to make the optimisation
prioritise these rings of correspondences higher than regular pairs.

5.3 Alternative methods

Some of the methods mentioned in subsection 1.1.1 might have been performing well against the method
described here. It would be interesting to see how much tuning is required if good results should be obtained
by a method like the Go-ICP by Yang et al. 2013 or the SAC-IA used by Rusu, Blodow, and Beetz 2009 in their
test of the FPFH features. The method presented in this paper did perform fairly well in the tests conducted
here. Tuning parameters ended up taking a very long time and so far, satisfactory results were not found for
the real datasets. The methods Go-ICP and SAC-IA show good results in the articles presenting them, just like
the FGR. So a head-to-head test of the methods could be appropriate to find strengths and weaknesses for the
methods.

Following the ideas proposed by Qiu et al. 2009 and Park et al. 2010, one might get a computational benefit by
using the CUDA language for computations on GPU. Today the possible benefit of using GPU for computations
is huge, as shown in T. Olsen and Lorenz 2018. It does require a very parallel process and quite large datasets
to justify. Computing the feature estimations could provide huge speed-ups from this approach.

Extending the method to operate on triangular mesh could be a good way to allow more detailed features to be
computed. Normal estimations are faster to compute and more precise, neighbours are fast to find for all points
and do not require a kd-tree or similar data structure to compute. A very well established set of operations like
sub-sampling are also defined for a triangular mesh. A clever sub-sampling could help neglect points on planes,
planar points very rarely contain any features useful for setting up correspondences.



CHAPTER 6 Conclusion
The Fast Global Registration algorithm presented by Zhou et al. 2016 boasts high precision at a very low
computational cost. Their article describe the algorithm well, even though parts of the theory heavy sections
needed some digging to understand and reproduce the implementation.

This project have managed to extend the description of FGR by Zhou et al. 2016 and verify the derivation hinted
at in the original article. Mainly the necessary introduction to Lie Groups, Lie Algebras and the exponential
map was an important addition. Introducing the Lie Algebra se(3) simplified the optimisation updates and did
clarify the sentence,
"T is updated by applying ξ to T k using equation 7, then mapped back into the SE(3) group." [Zhou et al.
2016].
The clarification of this line resulted in section 2.1 and was necessary for solving the optimisation.

The algorithm was implemented as it was derived and described through the project, however, performance is
not as good as Zhou et al. 2016 described. This lack in performance is primarily due to a lack in programming
experience and not the method. The results presented in the testing section show poor results for real-world
datasets, even though the original implementation of the method performed well [Zhou et al. 2018].

For the small datasets tested, the implementation completed as part of this project performed quite well, even
with addition of large quantities of outliers. The precision was retained through outlier addition, however
Gaussian noise additions even on a scale not visible on the renderings gave rise to incorrect results. For large
datasets the project implementation written for the project is not performing well. Most surfaces in the skull
datasets were correctly aligned but a few of them were not.

The Fast Global Registration algorithm developed by Zhou et al. 2016 is an efficient, precise algorithm. How-
ever, it is not trivial to implement, and parts of the theoretical background were brushed over in the original
article. It was possible to derive and describe the theoretical background and a simple implementation were
completed. The implementation perform well on small datasets where parameters can be tweaked easily. Inte-
grating this algorithm as part of a pipeline for 3D-scanning could be a great step toward an automated system
for scanning general objects.
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APPENDIX A Project evaluation
This project did not follow the plan completely. A bunch of problems arose with the testing, parameters needed
a lot of tuning and some of the datasets required a very large amount of time to test due to scan sizes. However
the original implementations were done on time as well as most of the preliminary chapters of the project.
The risk assessment did end up being correct since the testing parts of the project did take more time than
anticipated. The project was planned with a lot of additional time in the end for revisions so the conclusion of
the project were not in jeopardy.

A bug found in the last week did change a large amount of the testing and result section, along with the
conclusions of the project. This caused the need for re-running all tests, which takes a lot of time.

Project plan

The project was completed in the time between August 27th 2018 and January 27th 2019. Table A.1 shows an
outline of when the different parts were completed.

Activity Planned completion Time of completion
Hand-in Project Plan 26th of September 2018 17th of September 2018
Theory examination complete 1st of October 2018 1st of October 2018
Testing framework complete 1st of October 2018 20th of October 2018
Poster session ?? –
All Implementations ready 1st of December 2018 18th of January 2019
All tests concluded 17th of December 2018 25th of January 2019
Sections ready for the report 1st of January 2019 23rd of January 2019
Report ready for external proof reading 13th of January 2019 24th of January 2019
Report ready for print 23rd of January 2019 27th of January 2019
Hand-in Final report 27th of January 2019 27th of January 2019
Presentation ready 8th of February 3rd of February
Defence of thesis 10th of February 6th of February

Table A.1: Project plan including expected and actual dates.
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A.1 Original plan

This is the original project plan as handed in and approved September 17, 2018.

Motivation

3D scanning of general objects include some of manual labour at the moment. No scans can be done in one
sweep since the object will always be held, or rest in a way which obscures part of the object. This project will
aim to reduce the manual part by automating the software based alignment of multiple scans of the same object.

Goals

The goal of the project is to implement a global alignment algorithm which can remove the manual process
of registration of multiple partial scans of the same object. The ultimate goal of this is to get the algorithm
implemented as part of the DTU 3D scanning software. The proposed algorithm is developed by Zhou et al.
2016 and boasts global efficient 3D registration without the need of a local alignment like ICP. A part of the
project will be to test the implementation thoroughly to find eventual limitations.

If this goal is met within a reasonable time some optimisations of the 3D scanning process will be explored.
Currently a turntable is programmed to scan from some set angles, lets say every 18 degrees for 20 scan angles.
However some objects might have concavities which are poorly caught by this method. So dynamically setting
the scan direction could provide a better scan, possibly with fewer angles and therefore a lower time investment.

Technical goals

Performance:
The implementation should be able to compute within a reasonable time. Optimal would be real-time for actual
data, however within a couple of minutes (2-3 minutes) could be classified as acceptable.

Precision:
The implementation should produce a result of similar quality to manual alignment combined with a couple of
iterations of ICP.
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Project plan and risk analysis

This section describes the current deadlines and the risk assessment of the individual parts of the project. The
risk assessment is based on a 1 to 5 scale, where 1 is almost risk-free and 5 is very uncertain. As seen in
Table A.3 no part of the project is deemed high risk since this project does not depend on external data or other
factors which is outside the control of the author.

Activity Time of completion
Hand-in Project Plan 26th of September 2018
Theory examination complete 1st of October 2018
Testing framework complete 1st of October 2018
Poster session ??
All Implementations ready 1st of December 2018
All tests concluded 17th of December 2018
Sections ready for the report 1st of January 2019
Report ready for external proof reading 13th of January 2019
Report ready for print 23rd of January 2019
Hand-in Final report 27th of January 2019
Presentation ready *8th of February
Defence of thesis *10th of February

Table A.2: Project plan including expected dates. *Not yet determined.
Activity Risk
Hand-in Project Plan 1
Poster session 2
Implementations 3
Testing 3
Report 1
Presentation 1

Table A.3: Risk estimates of the individual parts of the report.
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APPENDIX B CPU Information
The CPU information is obtained by running the lscpu command. The output from the command is the
following.

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Thread(s) per core: 1
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
Stepping: 1
CPU MHz: 2499.975
BogoMIPS: 4405.86
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K
NUMA node0 CPU(s): 0-11
NUMA node1 CPU(s): 12-23
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