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Abstract

Network-on-chip (NoC) is an emerging paradigm for handling the communica-
tion in large system-on-chips. This project investigates the ability to prototype
asynchronous NoCs on FPGAs.

The implementation of asynchronous circuits on standard FPGAs is highly ex-
perimental, therefore the first part of the project has been to establish a design
flow for the implementation of asynchronous circuits on FPGAs. In the project
an asynchronous best-effort NoC for an FPGA has been successfully developed.
The NoC implementation consists of a router and network adapters and is im-
plemented using a 4-phase bundled data handshake protocol. Cores connects
to the network using an OCP interface. To demonstrate the NoC it has been
implemented in a small multi-processor prototype using a mesh topology for the
network.
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CHAPTER 1

Introduction

1.1 Project Description

The scaling of microchip technologies has made it possible to fabricate large
System-on-chip (SoC) designs. Network-on-chip (NoC) is an emerging paradigm
for handling the global communication between subsystems in large SoC designs.
Due to the scaling of microchip technologies the distribution of a global clock
has become increasingly difficult. Designing the NoC using asynchronous design
techniques is an appealing approach because it eliminates the need for a global
clock. Several examples of asynchronous NoC implementations have been pub-
lished. All of them are based on CMOS standard cells designs, which makes it
complicated and expensive to build prototypes of NoC systems.

The purpose of this project is to investigate how to implement FPGA proto-
types of asynchronous NoC systems. This will give researchers the possibility
to perform experiments on different asynchronous NoC designs on an FPGA
prototype and thereby avoiding to use a custom designed chip which is both
expensive and time consuming to build. Because it is targeted at prototyping,
reliability of the NoC is not a key concern. The primary goal is to develop a
working system so emphasis has not been put on high performance or low cost.

The implementation of asynchronous designs on standard FPGAs targeted syn-
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chronous design is highly experimental. The implementation presented in this
thesis is mainly based on the experience collected in a few small projects carried
out on IMM, DTU. The asynchronous FPGA design from these projects have
been extremely simple; only small circuits that calculates the greatest common
divider or generates a list of fibonacci numbers have been implemented. Thus
a major part of this thesis is to establish a design flow for implementing large
asynchronous systems on FPGAs.

1.1.1 Objectives

The objectives of the thesis are:

1. Establish a design flow for implementing asynchronous systems on FPGAs.

2. Develop a simple asynchronous best-effort NoC and implement in on an
FPGA.

3. Develop an FPGA implementation of a multi-processor prototype with
the asynchronous NoC used as interconnect.

1.2 Thesis Overview

The structure of the rest of this thesis is as follows:

Chapter [2]is dedicated to present the experiences learned about the implemen-
tation of asynchronous circuits on FPGAs. It is meant to present a general
design flow for designing asynchronous circuits on FPGAs that is not specifi-
cally targeted at NoC design. It also includes an introduction to asynchronous
design techniques.

Chapter [3] gives an introduction to NoC design and presents the previous work
that have been used for the NoC design.

Chapter [4] [5} and [6] presents the design, implementation, and test of the devel-
oped NoC.

Chapter [7] presents a small prototype utilizing the developed NoC.

Finally chapter [ and [J] contains the discussion and conclusion respectively.



CHAPTER 2

Asynchronous Circuits on
FPGAs

2.1 Introduction

Asynchronous circuit design for FPGAs is not a straight-forward task. FPGAs
are solely intended for synchronous designs, thus the design primitives available
on the FPGA and the available design tools are only intended for synchronous
designs. This chapter will give an explanation of what the challenges in asyn-
chronous FPGA design are and how these challenges are overcome. The chapter
is ended with a design flow guideline for implementing asynchronous circuits on
FPGAs.

Section will give a brief introduction to the fundamental concepts of asyn-
chronous circuit design. Section will present previous work about imple-
menting asynchronous circuits on FPGAs. Section will describe the FPGA
that is used in the project. Section will present the implementation of the
basic asynchronous design elements. Section [2.6] will describe how timing is con-
trolled when implementing asynchronous circuits. The last section will give
guidelines for the design flow for the implementation of asynchronous circuits
on FPGAs.
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2.2 Asynchronous Circuit Design

In traditional synchronous designs the flow of data is controlled by a global
clock. In asynchronous design the flow of data is controlled locally between
neighboring components using a request/acknowledge handshake protocol. The
absence of a global clock gives asynchronous circuits some different properties
compared to synchronous circuits. Some of the advantages are:

e Low power consumption — components are only active when they are ac-
tually used.

e high operating speed — the operating speed is not limited to the slowest
component. The circuits will operate at their natural speeds.

o Low EMC noise — the local “clocks” tend to tick at random points in time.

e No clock distribution/skew problems — there is no clock!

The following sections will give a brief introduction to the fundamental concepts
of asynchronous circuit design. For an in-depth presentation of asynchronous
circuit design the reader is referred to [24], which also have been used as the
source for the theory presented in the following sections.

2.2.1 Handshake Protocols

The handshaking between neighboring registers is carried out using a handshake
protocol. The basic operation of a handshake protocol is: the sender sends a
request to the receiver to inform that is has new data for it; when the receiver
has captured the data, it acknowledges the request; and the sender is able to
take its request down to be ready for another handshake. Two main types
of handshaking protocols exists: bundled-data and dual-rail. In bundled-data
protocols request and acknowledge uses separate signals, that are bundled with
the data signal to form the handshake channel. In a dual-rail protocol the
request signal is encoded into the data signals. In this project only the bundled-
data protocol is used, thus dual-rail will not be presented here.

Figure (b) shows an example of the 4-phase bundled-data protocol. The
sender sets the data signals and asserts the request signal. The receiver reads
the data and responds by asserting the acknowledge signal. When the receiver
sees that the acknowledge signal has been asserted, it pulls down the request sig-
nal. The receiver ends the transaction by pulling the acknowledge signal down.
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Figure 2.1: The 4-phase bundled data protocol.

Note that the request and acknowledge signal must return to zero before the
transaction ends. A more efficient 2-phase bundled-data protocol exists where
the superfluous return-to-zero transition is avoided. In the 2-phase protocol a
request or acknowledge event is encoded as a signal transition on the control
wire, e.g. a0 — 1 or a1l — 0 transition, in contrary to the 4-phase bundled-data
where a request or acknowledge event is encoded by the level of the respective
control wire.

Depending on if it is the receiver or it is the sender who initiates the transaction,
handshake channels can be grouped into another two types: push channels and
pull channels. In push channels the sender initiates the transaction by sending a
request to the receiver. The request signal tells the receiver that the sender has
data for it. In pull channels the roles are interchanged, i.e. the receiver initiates
the transaction using the request signal, and the request tells the sender that
it is ready to receive data. To distinguish between pull and push channels the
initiating part is marked with a dot on the diagram as shown on figure a).

All bundled data protocols have the timing requirement that the sequence of
events at the sender’s side is preserved at the receiver’s side. For a 4-phase
bundled-data push channel this means that the designer must assure that the
the receiver sees valid data before the request is asserted. If the data signals
are delayed, e.g. by propagating through combinatorial logic, the request signal
must also be delayed accordingly. This is referred to as delay matching. To delay
a signal a delay element is used. In figure a) a delay element is inserted on
the request signal. The inserted delay must at least match the delay through
the combinatorial circuit that the data signals propagates through.
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The time interval in which data is valid during the handshaking phase is de-
scribed by the data validity scheme. For at 4-phase bundled-data channel four
different data validity schemes exists: early, broad, late, and extended early.

e FEarly data validity: data are valid from the rising request event to the
rising acknowledge event.

e Broad data validity: data are valid from the rising request event to the
falling acknowledge event.

e Late data validity: data are valid from the falling request event to the
falling acknowledge event.

e Extended early data validity: data are valid from the rising request event
to the falling request event.

The choice of data validity scheme affects the implementation of the handshaking
components.

In synchronous designs signals are only required to carry the correct value during
a well defined period around clock-ticks. In between clock-ticks the signals
may exhibit hazards or transitions. In asynchronous designs this is not allowed
because all signal transitions have a meaning. For example, a hazard on an
acknowledge signal will make the sending circuitry believe that the receiver
already has captured the data, even though this is not the case. Consequently
asynchronous circuits requires that all control signals must be valid and hazard
free at all times.

2.2.2 The Muller C-Element

To be able to design hazard free control citcuits a new component is needed: the
Muller C-element. The C-element has the property that it indicates both when
all inputs are low and when all inputs are high. In comparison a conventional
AND gate only indicates when all inputs are high and a conventional OR gate
only indicates when all inputs are low.

The Muller C-element is a state holding component which is 0 if both inputs are
0 and 1 if both inputs are 1. If the inputs are 01 or 10 the C-element will keep
its previous state. Figure[2.2shows the gate symbol and the truth table for the
C-element. The use of the C-element in a handshake component is shown in
figure (c). This circuit is a single stage of the Muller pipeline, which is the
backbone of almost all asynchronous control circuits.
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Figure 2.3: Mutex component: (a) symbol, and (b) possible implementation
(from [24]).

2.2.3 Mutual Exclusion

Handshake components with more than one input channel usually requires that
the input requests are mutual exclusive, i.e. only one request is high at a time.
Since the requests may arrive at exactly the same time a mutual exclusion
(mutex) component is needed. Figureshows the mutex symbol and a possible
CMOS transistor level implementation (from [24]). The mutex should exhibit
the following behavior: If only one request is asserted the corresponding output
should be asserted. If both inputs are asserted but one of them is asserted
before the other, the late request should be held back and only allowed to
propagate when the other request has been taken down. If both request are
asserted at the same time, the mutex must make an arbitrary decision of which
signal should be allowed to propagate first. A possible implementation of a
mutex component has two cross-coupled NAND-gates, which enables one input
to block the other. If two requests arrives simultaneously the cross-coupled
NAND-gates will become metastable, hence a metastability filter is needed at
the outputs. The shown implementation of the metastability filter is a CMOS
transistor level implementation. In section a metastability filter that can
be implemented in an FPGA is presented.



8 Asynchronous Circuits on FPGAs

2.3 Previous Work

The previous work about implementing asynchronous circuits on FPGAs is very
limited. A number of special courses and course projects (from the course 02204
— Design of Asynchronous Circuits) supervised by Prof. Jens Sparsg have inves-
tigated the implementation of basic asynchronous design elements. The 02204
course project by Knud Hansen and Guillaume Saoutieff [T1] is the first project.
A LUT based C-element is implemented together with a fork, a join, a merge, a
mux, and a demux component. A simple circuit computing the GCD (greatest
common devisor) is implemented on a Xilinx Spartan-II FPGA. All components
are based on the 4-phase bundled-data handshake protocol. In a later 02204
course project by Tue Lyster and Morten Thomsen [15] an asynchronous symbol
library for the Xilinx schematics editor (Xilinx ECS) based on the components
created in [I1] is created. In the special course project Asynchronous Clircuits
in FPGA by Mikkel Stensgaard [26] a number of improvements and additions
have been made. The implementation of the components presented in [11] has
been improved to better fit the anatomy of an FPGA. The delay element is now
implemented as a chain of AND gates. A design flow for implementing Petrify
circuits is presented. Un-, semi- and fully-decoupled latch controllers and mux
and demux components are specified by STGs and implemented using Petrify.
The latch controllers are tested in a FIFO and in a FIFO-ring circuit. Again the
GCD circuit is used as test circuit for the other components. All components
are added to a VHDL library. The circuits have been implemented on a Xilinx
Spartan-ITE FPGA. In the special course Asynchronous Circuits on FPGAs by
Morten Rasmussen, Christian Pedersen, and Matthias Stuart [2I] the imple-
mentation of the components from [26] is changed to fit a new VHDL library.
The library is extended with 4-phase dual-rail implementations of the compo-
nents from [26]. The new library allows for easy switching between the two
types of handshake protocols. The following new components are added: adder,
subtracter, inverter, shifter, and comparator. Also, the library is documented in
a complete library reference. The library utilizes user-defined data types which
must be converted by wrappers for successful implementation. In the special
course Implementation of Asynchronous Circuits in FPGAs by Esben Hansen
and Anders Tranberg-Hansen [I0] another complete redesign of the library has
been carried out after evaluation of the existing library from [2I]. They found
that the use of user-defined data-types made it too tedious to implement even
simple circuits. New 4-phase bundled data components are added: a register
file, a block-ram based memory, a AND-, OR-, NOR-, and a XOR- component,
and a simple ALU. The components are tested in a simple Fibonacci circuit
on a Spartan-3 FPGA. Also, oscilloscope measurements of the delay element
is performed. A user guide for using the library is included along with a com-
plete library reference. In the 02204 course project FPGA Implementation of an
Asynchronous Arbiter by Mads Kristensen and Jon Lassen [14] a mutex and an
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arbiter component is implemented. The mutex is implemented solely in LUTs
and it is based on a standard gate mutex design presented by Ran Ginosar [§].
The design of the arbiter is based on the design from [24] and is implemented
on a Xilinx Spartan-3 FPGA.

In the Aspida project [13] made by a consortium between FORTH-ICS, Po-
litecnico di Torino, University of Manchester, and IHP Microelectronics a de-
synchronized implementation of the DLX RISC CPU is presented. The DLX
RISC CPU is a 5-stage pipelined CPU similar to the MIPS processor. De-
synchronization is a method for converting an existing synchronous design into
an asynchronous systems. When de-synchronization is performed all pipeline
flip-flops are taken out and replaced by latches and asynchronous control cir-
cuits. The asynchronous pipeline latches are implemented so they are guaran-
teed to provide an equivalent behavior as the clocked flip-flops. This is done
without touching the datapath at all. In this way the global clock is completely
replaced by handshake signals. Delay elements must be inserted on the request
path to match the delay of the combinatorial blocks between the asynchronous
pipeline latches. The processor has been implemented on a Xilinx Spartan-2E
FPGA and on a chip.

Details from the set of previous work presented here, which are interesting for
this project, is presented in the relevant sections in the report.

2.4 FPGA Basics

This section will give a short introduction to the Xilinx FPGA used in the
project and the development tools provided by Xilinx.

For the project the XC5VSX50T Xilinx Virtex-5 FPGA is used. The Virtex-
5 is the newest FPGA generation supplied by Xilinx. The description of the
FPGA is focused on how the logic resources are organized, because it is the
most interesting from an asynchronous design point of view.

The FPGA consists of a large array of Configurable Logic Blocks (CLBs). Each
CLB is connected to a switch matriz which handles the routing between the
CLBs. A CLB contains two slices placed in separate columns. The slices does
not have any direct connection between them, but each slice has a carry-chain
which connects slices in the same column. Figure shows the row and column
relationship between CLBs and slices and the slice numbering scheme. The slice
numbering is important for RPM creation, which is described in section [2.6.3
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Figure 2.4: Arrangement of CLBs and slices, from [35].

Each slice contains four Look-Up Tables (LUTSs), four storage elements, multi-
plexers and carry-logic. The LUTs are used as logic functions generators and
have 6 inputs and two outputs. The extra output allows the LUT to perform
two different logic functions, if the functions have common inputs. The storage
elements can be configured to behave either as a latch or as a flip-flop. In the
asynchronous design components presented later in this chapter, the LUTs are
also used as state-holding elements by feedback-coupling the output.

The FPGA has a total of 32640 LUTs and the same number of flip-flops/latches.
Earlier generations of Xilinx FPGAs only had 4-input LUTS, thus with 6-input
LUTs more logic can be packed into fewer LUTs.

The ISE software package is the logic design environment provided by Xilinx.
Below is a description of the most important ISE tools which have been used
during the project:

Project Navigator is the primary user interface for ISE. Most other tools can
be accessed from here.

XST is the Xilinx synthesizer. Performs the logic synthesization of the VHDL
to Xilinx specific netlist files.

MAP performs the mapping from the synthesized netlist to FPGA primitives.

PAR performs place and route of the mapped design.
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Floorplanner used to perform floorplanning tasks. It can be used before MAP
and after PAR. Before MAP it is used to assign constraints to the design.
After PAR it can be used to manually make changes to the floorplan. It
can also be used in an iterative process of re-assigning constraints and
rerunning MAP and PAR.

FPGA Editor can be used to manually fine-tune the design after PAR. It can
also be used as a detailed viewer of the place and routed design.

Design constraints are used to constrain the final implementation produced by
the tools, e.g. tell the tools to place two logic functions in the same slice. Con-
straints can be added in two ways: Directly in HDL or in the User Constraints
File (UCF). Constraints added in the UCF file is not read until after synthesis.
Not all constraints can be added in HDL. The Xilinx Constraints Guide [29]
documents all the available constraints.

Simulations of the design can be performed on four different levels of abstrac-
tions:

Behavioral simulation is an RTL level simulation of the design. It is used
to validate correct functionality of the design. No timing information is
included, so all signals changes instantaneously.

Post-Translate simulation is a gate-level functional simulation of the synthe-
sized design. Is used to verify that the design has been synthesized cor-
rectly. Still no timing information is included.

Post-MAP simulation is run after MAP and provides partial timing informa-
tion. The simulation includes gate delays but no routing delays. It is
primary used as a debug step if Post-PAR simulation fails.

Post-PAR simulation provides full timing information. It simulates the design
after place and route and contains both gate and routing delay.

For the Behavioral simulation FPGA primitives is simulated using a library
called UNISIM while after synthesis the SIMPRIM library is used. The SIM-
PRIM library uses a more detailed model of the primitives. For asynchronous
design the primary simulation modes used is the Behavioral and Post-PAR.
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Figure 2.5: C-element LUT implementation and truth table

2.5 Asynchronous Design Elements for FPGAs

Section [2.2) presented the fundamental concepts of asynchronous circuit, where a
number of asynchronous design elements was presented. This section will present
FPGA implementations of these basic building blocks along with a synchronizer
component.

2.5.1 C-Element

The C-element is a simple state holding device much similar to a set-reset latch.
The truth table was shown in figure (p. @ The implementation presented
here is from the asynchronous circuit FPGA design library presented in [I0] and
it has not been changed for the use in this project.

The C-element can be implemented in a single LUT primitive with the output
looped back to one of the inputs. This is shown in figure A generic value is
used to define the desired reset value for proper initialization. The instantiated
LUT is a 1ut4_1 primitive which is a LUT with local output. This instructs
the tool to use local routing for the feedback signal.

In figure an example of a VHDL instantiation of a C-element is shown. The
truth table values from figure b) is used as the initialization value. The
implementation of the C-element is found in appendix |A.5.1.2] (p. [127)).
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c_element: lut4_1
generic map (
init => "11101000" & reset_vector
)
port map (
i0 => a,
il => b,
i2 => s_out,
i3 => reset,
lo => s_out

)s

Figure 2.6: VHDL instantiation of a C-element, from [10]

2.5.2 Mutex

The mutex component was introduced in section and figure (p- [
showed a possible implementation of mutex. As shown on the figure a metasta-
bility filter is needed on the output to prevent the circuit from propagating pos-
sible undefined values, resulting from a metastable state at the cross-coupled
NAND gates. An FPGA implementation of a mutex component is presented
in [I4] with satisfactorily results. This implementation has been used for this
project. The VHDL code for the mutex implementation is found in appendix

(v. [129).

The following will be presented in this section:

e The implementation of the mutex from [T4].

e Some small modifications to the implementation to optimize it for a Virtex-5
FPGA.

e A solution to post place and route simulation problems of the mutex that
has not been covered in [14].

An FPGA implementation of the mutex can (of course) only use the primitives
available on the FPGA. The metastability filter in figure 2:3]is a CMOS tran-
sistor level implementation, thus it cannot be implemented in an FPGA. In [§]
Ran Ginosar presents a mutex component build only from standard gates. The
standard gate mutex design is shown in figure The design still uses two
cross-coupled NAND gates to let one input block the other. The metastability
filter is implemented by two AND gates with one inverted input. Each of the
four gates can be implemented in one LUT primitive.

The circuit cannot be considered as a safe design; if the NAND gates gets
into metastability, they will stay there for an unknown length of time, but will
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Figure 2.7: A mutex component build from standard gates

eventually choose one side randomly. While the NAND gates are in a metastable
state, the AND gates will have unspecified behavior, because their inputs are
undefined. However, If the NAND gates stabilizes “fast enough”, the AND
gates will not “see” the metastability for a long enough period to propagate the
undefined inputs. To assure that the NAND gates stabilizes as fast as possible,
they should be placed in the same slice to minimize the routing delay.

Another reason to place the NAND gates in the same slice, is to optimize the
fairness of the mutex. The fairness is very dependant on the wire delays be-
tween the gates. If the wire delay of the cross-coupling signal from NAND_1 to
NAND_2 is larger than the wire delay from NAND_2 to NAND_1 the R2 will
get higher priority than R1, since the NAND_1 gate will be blocked faster. To
make the implemented mutex as fair as possible the wire delays between the
two nand-gates should be kept as equal as possible.

The mutex presented in [I4] is implemented on an older FPGA generation with
only two LUTSs in each slice, so the mutex occupies two slices. Therefore the
implementation has been changed slightly to fit the mutex in a single slice.
Everything else is unchanged.

In the implementation of the mutex the four gates are placed in the same slice
using rloc constraints (further explained in section . This will keep the
wire delays between the gates as equal as possible. However it is not possible to
specify the exact placement within the slice, hence some variations in the wire
delays may occur. In an actual example from a post place and route simulation,
the wire delay from NAND_1 to NAND_2 is 186 ps while the wire delay from
NAND_2 to NAND_1 is only 130 ps. In this example the R2 signal will have
priority, however the priority may be different when implemented on a FPGA
since the relation between the delays may be different for an actual circuit.
The small delay difference internal in the mutex component will most likely be
insignificant compared to the difference in wire delay experienced by the input
signals.
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Figure 2.8: Printout from Modelsim showing an oscillating mutex.

The mutex has not been analyzed for Mean-Time-Between-Failure (MTBF).
The theory for determining the MTBF of the mutex is the same as for the
synchronizer which will be presented in section In fact a synchronizer
is a special case of a mutex, where the clock is connected to one of the inputs
[20]. Since this project is aiming at system prototyping and not at in-production
systems, the standard gate mutex is used without any further analysis or testing
for MTBF and fairness.

There exists some issues with simulation of the mutex after place and route
that has not been covered in [I4]. In an actual circuit the NAND gates will
not stay in a metastable state forever. This situation is different when it comes
to simulation. During simulation the metastable state will result in an infinite
oscillation between 0 and 1. In a behavioral (RTL) simulation the simulation
will stop due to the oscillation. This happens because the simulation cannot
proceed to the next delta-time and an iteration limit reached error is issued.
During a post place and route simulation the oscillation will propagate to the
outputs with a period matching the wire- and gate-delays. Figure shows
this situation. The period of oscillation is 476 ps for all oscillating signals which
matches with the wire and gate delays of the simulation model.

In the case of a behavioral simulation the problem is easily solved by using a
higher-level (non-synthesizable) simulation model of the mutex. This solution
is used in [I4].

In the case of a post place and route simulation the solution is not so easily
solved. If the design hierarchy is kept all the way from synthesis to place and
route it will also be possible to insert a strictly behavioral simulation model of
the mutex into the post place and route simulation model. But if the design
is flattened during synthesis it will be very tedious to insert another simulation
model. Also, the timing behavior of the mutex will be lost. Therefore another
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Figure 2.9: NAND stages of an unfair mutex. (a) shows the desired NAND
stage. (b) shows the possible FPGA implementation of the circuit.

solution is needed. Two other solutions have been considered:

e Implementation of an unfair mutex.

e Make the implemented mutex unfair, by changing the simulation model.

Both solutions tries to break the oscillation by making the gate delay of one
of the NAND gates larger than the other. By only changing the simulation
model some inconsistency will be introduced between the actual circuit and the
simulated circuit. If the changes made have minimal influence on the timing
behavior of the mutex this inconsistency can be neglected.

The delay model used in the SIMPRIM simulation library effects how the mutex
simulation problem can be solved. In VHDL delays can be modeled in two ways:
as transport delays and as inertial delays. A transport delay models an ideal
device with infinite frequency responses, where any input pulse will produce an
output pulse. An inertial delay models devices with finite frequency responses,
where an input pulse must have a minimum length before an output pulse is
produced, otherwise it will be rejected. By studying the source code of the
SIMPRIM simulation library it can be seen that the delay model for wire and
gate delays are specified in a library called VITAL (VHDL Initiative Towards
ASIC Libraries) which models the delays as transport delays. A simple solution
could be to change the delay model used in the library to inertial delays. This
will however affect the simulation of all components in the design, which is not
desirable.

The first solution considered is the implementation of an unfair mutex. An
unfair mutex should have unequal gate delays of the NAND gates. This will
give the fast gate priority over the slow gate. In figure a) this situation is
illustrated with gate delays of 1 and 2 respectively. The LUT primitives in an
FPGA all have the same timing characteristics, therefore it is only possible to
imitate a slow gate as a concatenation of two gates, as shown in in figure b).
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Figure 2.10: Delay specification of a 2-input NAND gate with reset from the
simulation SDF file. (a) original and (b) is modified to decrease the delay for
the ADR4 port.

Due to the transport delay model used in the SIMPRIM simulation library the
circuit in figure (b) will still oscillate, because all pulses on the O2_1 signal
will propagate to the the O2 signal. Consequently it is not possible to solve the
simulation problem by implementing a simple unfair mutex.

The chosen solution to solve the oscillation problem is to alter the post place and
route simulation model. The post place and route simulation model consists of
two files: an VHDL netlist file and an SDF file. The VHDL netlist instantiates
simulation models of the FPGA primitives from the Xilinx SIMPRIM library.
The SDF file specifies all wire and gate delays used in the simulation. The format
of the SDF file is specified using the Standard Delay Format Specification [1§].
In figure m(a) an example of a delay specification for a NAND gate with a
reset input is shown. Wire delays are modeled as delays at the input ports and
is specified as PORT delays. Gate delays are specified as I0PATH delays. Both
wire and gate delays can be specified individually for each input. A delay is
specified as the rising and falling delay for the particular input and the unit is

ps.

To solve the oscillation problem one of the NAND gates should be made faster
than the other by decreasing the PORT and/or the IOPATH delays in the SDF
file. It is only necessary to decrease the delay of the specific input connected
to the other NAND gate; the other inputs can be leaved untouched. This will
make the propagation delay through entire mutex element unaffected by the
delay change. How much should the delay be decreased to kill the oscillation?
Because the transport delay model is used in the simulation model the combined
wire and gate delay through the gate must be 0 before the oscillation is killed.
In figure (b) the modified SDF delay specification is shown. Figure
shows a simulation of the mutex after modification of the SDF file.
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Figure 2.11: Simulation of the mutex after modification of the SDF file.

A Perl script that modifies all instances of NAND pairs in an SDF file as de-
scribed above has been written and can be found in appendix (p- [105)).

2.5.3 Delay Elements

In asynchronous circuit design the ability to delay a signal in a precise and
predictable manner is crucial. When performing delay matching of an asyn-
chronous circuit a delay element is inserted in the request path to delay the
request signal by an equal amount of time compared to the delay experienced
by the data signal, or to put in another way: the minimum delay of the de-
lay element should at least match the maximum delay experienced by the data
signals. When designing traditional synchronous circuits the maximum allowed
clock frequency of a design is solely determined by the maximum delay through
the combinatorial circuit, i.e. synchronous designs are inherently insensitive to
the minimum delay of a combinatorial circuit.

In the datasheet for the Virtex-5 FPGA [34] the maximum delay through a
LUT is specified to be between 0.08ns — 0.10ns EL but the minimum delay is
unspecified. The only guarantee about minimum delays given by Xilinx is that
hold times are never violated. In general minimum delays in CMOS designs
are usually not very well defined, since there can be large variations with e.g.
change of temperature, supply voltage, etc. In an answer to a question posted in
a newsgroup (dated 1996) [I] an Xilinx employee estimates that the minimum
delay through a LUT approximately will be 25% of the specified maximum
delay. It has not been possible to find any official estimates from Xilinx. This
ratio between minimum and maximum delays are given for variations in supply
voltage, temperature, and processing, so the delay difference between two LUT's
on the same chip, under the same operating conditions, must be expected to be
much lower. In this project no incidents have been encountered where a design
have failed due to the aforementioned delay variations. The problems may be
more prominent if the designs are tested on more different FPGAs and under
varying operating conditions.

1Varies with the speedgrade of the FPGA
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Figure 2.12: Asymmetric delay element.

A circuit using the 4-phase bundled data handshake protocol can be designed
such that, it is only necessary to insert delays on the rising edge of the request
signal. Delays on the falling edge will only slow down the circuit. An asymmetric
delay element with this property is shown in figure A transition from high
to low will have to propagate through the entire chain of AND gates, while a
low to high transition only have to propagate through the last AND gate. The
signal will be delayed by the combined amount of gate and routing delay in the
LUT chain.

In the rest of this section the following points will be presented:

e The implementation of the delay element presented in one of the special
course projects [10].

e The implementation of the delay element used in Aspida [I3]

e The implementation of the delay element used in this project.

In [10] an FPGA implementation of an asymmetric delay element is presented.
The implementation instantiates a chain of LUT-instantiated AND gates con-
nected as in figure 2.12] The number of AND-gates in the delay element is
parameterized. To avoid that the synthesizer optimizes the LUT-chain away
the keep constraint is applied to the signals connecting the gates. The keep
constraint is a synthesis and mapping constraint that tells the synthesizer and
mapper not to merge the two components connected by the signal into one
component, thus keeping the signal in the design.

The design of the delay element used in Aspida project [13] is a little different
than the one presented in [I0]. It consists of two parts: a symmetric part and
an asymmetric part. The symmetric part is used to generate a pulse delay and
consists of a chain of a even number of inverters. The pulse delay is used to
control the pulse width of the latch control signal. The asymmetric part is used
to generate a matched delay and consists of a chain of AND gates similar to the
one in figure[2.12] They also use the keep constraint to avoid that the synthesizer
optimizes the delay element away. In the delay element used in the Aspida
project [I3] they experience a “keep conflict” error when the keep constraint
is assigned to two signals which in fact are the same signal. This happens
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with the first AND gate in the LUT-chain. They solved this issue by inserting
two inverters in front of the first AND gate. To improve the predictability
of the delay element, they manually restrict the physical placement of each
delay element to a specific area of the FPGA by applying a constraint called
area_group using the Floorplanner tool. By constraining the placement of the
delay elements they experience improved predictability without using extensive
floorplanning. They also observe increased predictability when the available
area is small and decreased predictability when the available area is increased.
The other option they have tried is to manually assign each LUT in the delay
element to physical slice placement using the loc constraint. They claim that
when the loc constraint is used, the predictability of the delay is nearly 100%.
However, it turned out that the use of loc constraints had a very negative
impact on the optimization of the datapath, especially when the utilization of the
FPGA resources was high. Their conclusion is that the use of the area_group
constraint gives almost the same predictability, as when loc constraints are
used, and it requires less floorplanning and it does not have the optimization
issues of the datapath experienced with the loc constraint.

The implementation of the asymmetric delay elements used in this project is
a modified version of the asymmetric delay element presented in [10]. The
implementation is modified by constraining the placement of the LUTSs in the
delay-chain to improve predictability. Constraining the placement will minimize
variations in the routing delay, and thereby improve the predictability. The

VHDL code for the delay element is found in appendix [A.5.1.1] (p. [125)).

A different approach is used for constraining the placement of the delay ele-
ments, than the one used in Aspida. Instead of constraining the delay LUTSs
to a physical area of the FPGA, only the relational placement between the
LUTs in the delay element are constrained. This allows the tool to place the
complete delay element anywhere on the FPGA area, while maintaining the
internal placement of the LUTSs in the delay element. This is done by assigning
rloc constraints to the LUTs. A component constrained using rloc is referred
to as an relationally placed macro (RPM) in the Xilinx documentation. The
use of RPMs is explained in more detail in section [2.6.3

The layout of the delay LUTSs is shown in figure[2.13] The delay LUTSs are placed
such that the signal between two consecutive LUTSs in the LUT-chain will have to
be routed to the neighboring CLB in the vertical direction. The main reason for
creating the delay element as an RPM is to improve the predictability, however
placing the delay LUTSs such that longer routing path is required will improve
the performance of the delay element, i.e. increasing the delay without using
additional LUT resources. Only a limited experimentation of different placement
layouts have been tried. If the layout in figure is changed, such that the
routing is done in the horizontal direction instead of in the vertical direction, the
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Figure 2.13: Arrangement of delay LUTs.

tool will issue an error, that the routing resources between the CLBs have been
exhausted. Hence, a more optimal placement may exist, but if the utilization of
routing resources is near saturation the performance of neighboring logic may
be affected.

The issues with keep conflicts experienced in Aspida have not been experienced
in this project. The version of the XST synthesizer that is used in this project
automatically solves keep conflicts. However, it has been observed that the
synthesizer will optimize the first AND gate into a simple buffer LUT. This
optimization does not change the intended function of the LUT-chain since the
signal still have to propagate through the LUT.
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Figure 2.14: Modelsim print of a delay element simulation of size 10 showing
the 0 — 1 and 1 — 0 delay.

Figure shows a print of a Modelsim simulation of a delay element with a
size of 10. The asymmetric properties are clearly shown with a low — high
delay of 6.3 ns and a high — low delay of 1.1 ns. In section [2.6.1] a number
of experiments of the size and predictability of the delay element in different
contexts are presented.

2.5.4 Synchronizer

When a synchronous system communicates with the outside world it must use a
synchronizer circuit. All inputs to the system that does not come from the same
clock domain must be passed through a synchronizer to assure proper synchro-
nization with the local clock-domain. The synchronizer will assure that the input
signal satisfies the setup and hold time requirements of the local clock-domain.
The problem with synchronization is well-known and described in many text-
books on digital design, e.g. in [27]. In a GALS (Globally Asynchronous Locally
Synchronous) design with several local clocked synchronous circuits connected
by an asynchronous interconnect, such as the system presented in chapter |7}
a synchronizer is needed on the signals coming in from the interconnect. The
most common synchronizer design is to let the asynchronous signal pass through
a series of flip-flops clocked with the clock of the synchronous system. This is
also the method applied in this project. Figure [2.15]shows a synchronizer design
with two flip-flops.

A synchronizer will always suffer from metastability problems. If the asyn-
chronous input changes during the decision window of the flip-flop the output
of the flip-flop may become metastable and stay in the metastable state for an
arbitrary period of time. By having more concatenated flip-flops in the synchro-
nizer the probability that the output of the synchronizer becomes metastable
can be reduced, however it can never be removed completely. In the Xilinx Ap-
plication Note Metastable Recovery in Virtex-II Pro FPGAs [2] the MTBF of
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Figure 2.15: Synchronizer design with two concatenated flip-flops.

a synchronizer flip-flop is measured for a Virtex-II Pro FPGA. The conclusion
is that if a two flip-flop synchronizer is used the metastable delay can safely be
ignored for speeds below 200 MHz. It also states that for this conclusion to hold,
the routing delay between the two flip-flops should be minimized. The MTBF
is a statistically defined value and is calculated by the following formula:

6K2~7'

MTBE = o i

where F'1 is the frequency of the clock input of the flip-flops, F2 is the fre-
quency with which the asynchronous input changes, K1 is a device dependent
constant describing the likelihood of going into metastability, K2 is the time in-
terval available for resolving the metastability, and 7 is a device dependent time
constant. Note that the formula assumes that the changes of the asynchronous
input is uniformly distributed over the clock period. The formula is equivalent
to the one presented in [27]. It has not been possible to find information target-
ing the Virtex-5 FPGA, but it is expected that due to the newer process used
the MTBF is further improved.

In the implementation of the synchronizer the two flip-flops should be placed
in the same slice component using the rloc constraint to minimize the routing
delay between them. Details on the use of rloc is found in section [2:6.3] The

implementation is found in appendix [A.5.1.4] (p. [131)).

2.6 Controlling Timing

Controlling timing is vital for any digital design. In asynchronous designs the
delay matching process is highly dependant of the ability to control path delays
in the design.

In section the predictability of the delay elements is investigated through
a series of simulation experiments. In the Xilinx design flow the preferred way
to control timing is by assigning timing constraints to the design. The ability
to use these timing constraints on asynchronous designs are explained in section
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[2:6.2 Another method which can ease the delay matching process is the ability
to create design macros with repeatable timing metrics. This method is called
relationally placed macros. Some problems have been encountered for creating
relationally placed macros of asynchronous components. Section [2.6.3| explains
this.

2.6.1 Delay Element Experiments

The delay element presented in section does not give fixed delay lengths
for a given size. Even though the delay through a LUT is fixed for all LUTs
on the FPGA, variations in the wire routing will lead to variations in the delay
produced by the delay element. In this section a number of experiments based
on post place and route simulations of the delay element will be presented.

The purpose of the experiments is to document a number points:

e How large is the delay of a delay element of a given size.

e How predictable is the delay of a delay element, i.e. how large are the
fluctuations of the produced delay of delay elements with equal sizes.

e How the use of placement constraints affects the predictability.

e If changing the size of a delay element will affect the timing of the datap-
ath, such that the delay to be matched will change.

To investigate if the context in which a delay element is used affects the pre-
dictability, the delay element simulations are performed in two scenarios:

e Delay elements alone.

e Delay elements instantiated in a larger design.

By simulating the delay elements in a larger design the fluctuations of the delay
of the datapath can be measured.

For the simulations where the delay elements is instantiated in a larger design,
the measurements are performed on the delay elements in a FIFO stage of the
NoC router presented in section The FIFO stage is connected to an input
port of the router and the depth of the FIFO is one. No IO buffers are inserted
when the design is implemented. A simulation module is used to send data
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into the FIFO. Only measurements on the rising edge of the request signals are
performed.

After the delay simulations was performed an error was discovered in the design
of the FIFO stageﬂ Therefore, the FIFO stage presented in section differs
from the one used for the delay simulations. This does not affect the conclusions
about the delay simulations, since the delay observations are general for any
circuit.

The FIFO stage includes three delay elements; one for each of the three request
signals. Figure[2.16]shows the section of the FIFO stage used in the simulations.

In the rest of this section the following results will be presented:

e The ratio between gate delays and wire delays in the delay element.

e Comparison of the delay produced by a placement constrained delay ele-
ment and an unconstrained delay element when simulated alone.

e The same comparison but with the delay elements instantiated in a NoC
router.

e Correlation between the size of the delay elements and the delay to be
matched in the datapath. Changing the size of a delay element affects the
overall placement of the design, resulting in variations in the delay to be
matched.

When the delay element is simulated alone, there is no wire delay on the input
signal, because it is the only component in the design. For the simulations of
the FIFO stage the delays are measured from the output of the C-elements to
the output of the delay element, i.e. the wire delay between the C-element and
the delay element is included in the measurement. The delay which the delay
element must match are measured from the output of the C-element to when
data is stable on the output of the latch. In the simulations the size of the
delay elements are varied from 2 to 30 LUTs. Since each FIFO stage includes
three delay elements, three independent measurements can be made from each
simulation. Both post map and post place and route simulations are presented.
Because a post map simulation does not include wire delays, the post map delay
will be the same for all equal sized delay elements.

The simulation results with delay elements alone are shown in figure The
constrained graph is for the delay element where the LUT placement has been

2The latch was wrongly set to be opaque when EN = 0. The latch should be opaque when
EN = 1.
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Figure 2.16: Section of the FIFO stage used in the simulations.

constrained as shown in figure 2.13] on page 2I] The unconstrained graph is
a delay element where rloc constraints have not been applied. The post map
graph is completely linear and satisfies the equation

delay = 80 - size

which agrees with a LUT delay of 80 ps, as specified in the data sheet. Using
linear regression to approximate an equation for the post place and route delays

in figure (forced through (0,0)) gives

delayunconstrained =352 - size

delayconstrained =478 - size

The gate delay only constitutes from 18% to 23% of the total delay giving ap-
proximately a 1:5 ratio between gate and wire delays. In the Xilinx Constraints
Guide [29] it is stated that the routing delay typically accounts for 45% to 65%
of the total path delay for a combinatorial circuit. So the contribution of the
routing delay is larger than expected. Constraining the placement of the de-
lay LUTs results in an average increase in the resulting delay of approximately
35% The predictability of the unconstrained delay element is quite good, with
only small fluctuations in the delay. The constrained delay element is even
better with almost no fluctuations. The small fluctuations for the constrained
delay element can be explained by the fact, that even if the LUTSs in the delay
element are constrained to a specific slice, the internal placement within the
slice can still vary, and also the chosen routing between slices can deviate from
one another. The conclusion of the simulations of the delay elements alone is
that the predictability is improved for the placement constrained delay elements
compared with the unconstrained delay elements but the unconstrained delay
elements still produces fairly predictable delays. The constrained delay elements
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Figure 2.17: Simulations of a single delay element, with and without placement
constraints.

produces larger delays for the same size, due to the longer routing caused by
the placement.

Figure shows the simulation results for the delay elements in the FIFO
stage. A stage has 3 request signals: rh, ri, and re. Figure [2.18(a) shows
the simulations with the unconstrained delay element and figure [2.18(b) shows
the simulations for the constrained delay element. Comparing the unconstrained
delay element when it is inserted in a larger design and when it is simulated alone
shows comparable predictability for small sizes. For larger sizes significant delay
fluctuations are observed. An increase in the size of 2 results in a single case in
an additional delay of more than 6 ns. For the constrained delay element the
produced delays are free from such large fluctuations. Both the unconstrained
and the constrained delay element produces larger delays when inserted in a
larger design compared with the single case. The reason for this is the extra
wire delay from the output of the C-element to he input to the delay element.
Variations of this wire delay can also explain the decreased predictability of the
constrained delay element. Constraining the placement of the delay elements
increases the predictability of the delay when the delay element is used in a larger
design. It is expected that the fluctuations of the unconstrained delay element
will be even more noticeable for larger designs with a higher LUT utilization
ratio.
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Figure 2.18: Delay simulations of a FIFO stage. (a) Using unconstrained delay
elements. (b) Using constrained delay elements. (a)
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Figure 2.19: Delays in the datapath to be matched.

When performing delay matching of a circuit, changing the size of a delay el-
ement will affect the delay that the delay element should match. In fact, even
a small change in the design will affect where logic is placed thus altering the
routing and thereby changing the timing parameters. To investigate how signif-
icant this effect is the size of the delay element versus the delay to be matched
in the datapath has been measured. For the simulations the same setup as in
figure has been used with a complete router design. The measurements are
shown in figure[2.19] The x-axis is the size of the delay elements and the y-axis
is the time interval from when the request signal is asserted to the output of
the latch is stable. The graphs show fluctuations in the delay to be matched of
more than 3 ns. This indicates that extra overhead is needed when a circuit is
delay matched to account for delay fluctuations in the datapath.

2.6.2 Timing Constraints

In the Xilinx design flow the preferred way to control timing is by assigning tim-
ing constraints to the design. This section will describe the timing constraints
that are available to control the timing of a design.

The guidelines for assigning timing constraints provided by Xilinx are found in
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the Xilinx Constraints Guide [29]. Two groups of timing constraints exists:

Global timing constraints affects all paths in the clock domain. Global tim-
ing constraints are used to specify global constraints for clock signals,
input/output pads, and combinatorial pin-to-pin paths. They are most
commonly used on clock signals.

Specific timing constraints are assigned to a specific path in the design. A
specific timing constraint can either be a static path constraint or a multi-
cycle path constraint. A multi-cycle path constraint is used when the
timing of the path between two registers must be constrained to a multiple
of the register clock. A static constraint is assigned to a pad-to-pad path
without registers.

All timing constraints are assigned in the UCF file and is applied after synthesis.

To constrain a clock net it must be assigned a name using the tnm_net con-
straint and the desired clock period are assigned to the clock net using the
timespec period constraint. The design tool will try to optimize the datapath
to meet the timing constraint applied to the clock net. If there is not specified
any global clock constraints the design tool will identify possible internal clock
signals in the design and perform optimizations according to these local clocks.
This is referred to as Performance FEvaluation mode by Xilinx. Performance
Evaluation mode is only used when Timing Driven Packing and Placement is
enabled in the mapper. Timing Driven Packing and Placement is one of the
phases of the Xilinx mapping process. For older platforms, than the Virtex-5,
timing driven packing and placement was optional, but for the the Virtex-5 it
is a required step of the mapping process [32]. In an asynchronous-only design
there will typically not be any global clock constraints. Therefore the designer
should be aware of the optimizations performed when Performance Evaluation
mode is active.

The static path constraints are the only constraints that are not related to a
clock, therefore they are the only timing constraints applicable to asynchronous
components. When assigning a static path constraint the pad-to-pad delay must
be constraint to an absolute time period, e.g. 10 ns. Because timing constraints
are assigned to the design after synthesis, the process of assigning constraints to
all instances of a component can be cumbersome since all the pin-names must
be identified in the post-synthesis net-list.

Static path constraints could be used in the delay matching process. The com-
binatorial delay experienced by the data signals could be constrained to a rea-
sonable time period. The delay element should then be dimensioned according
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to the constrained delay. The problem with this approach is to determine how
large the constrained delay should be. It will be hard to avoid a large over-
head of the constraint delay, and as a result wasting area and degrading perfor-
mance due to oversized delay elements. To avoid over-constraining the delay a
cumbersome iterative process of design implementation, delay constraining, re-
implementation, and delay re-constraining must be applied. This must be done
individually for all constrained paths in the design. Nonetheless they use this
approach in Aspida [13]. This is manageable because the Aspida design only
contains five delay elements and a well-defined datapath with a priori knowl-
edge of the combinatorial delay from the synchronous implementation. In the
MPSoC system presented in chapter [7] the number of delay elements exceeds
200. Therefore this approach has been abandoned.

The overall conclusion is that the available timing constraints are not very well
suited to control the timing of large asynchronous systems. Due to the manual
process of assigning the timing constraints the process becomes too cumbersome,
unless the number of constrained paths in the design is very small.

2.6.3 Relationally Placed Macros

For timing critical designs Xilinx provides a method for locking the internal
placement of a subcomponent of a design. This method allows the designer to
create a relationally placed macro (RPM) that can be instantiated in another
design with repeatable performance and timing properties. An RPM is a col-
lection of FPGA primitives grouped together in a set in which the placement
of each primitive is relationally constraint. This allows the placer to move the
macro freely around on the chip area without touching the internal placement.

The relational placement of the primitives is defined using the placement con-
straint rloc. rloc is used to assign a primitive to a slice using slice coordinates,
e.g. "X0Y0”. The slice coordinates was described in section (p. E[) If an-
other primitive is assigned to the slice ?X1Y0”, the two primitives will always
be placed in slices next to each other column wise, however nothing is speci-
fied about their absolute placement. A guide describing how to create an RPM
manually is found in an article from the TechXclusive Xilinx magazine [9] and
details about the rloc constraint is found in the Xilinx Constraints Guide [29].

RPMs can be created using two different approaches:

e By manually assign rloc constraints to FPGA primitives in the design.

e Using Floorplanner to create an RPM from a place and routed design.
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The manual assignment of rloc constraints is done in the HDL code. A major
drawback of this approach is that it can only be used for FPGA primitives
directly instantiated in the design. rloc cannot be applied in HDL to primitives
inferred by the design tools. Obviously this approach is only useful for very small
macros. In this project this approach is used in the delay elements in section
253 in the mutex in section [2.5.2] and in Petrify circuits in section 2.7.2}

The Xilinx Floorplanner tool is able to create an RPM macro based on a placed
and routed design. After place and route the design is loaded into Floorplanner,
which extracts the relative placement of all primitives as rloc constraints and
writes them to the UCF file. The netlist and UCF file is then combined to a
macro file, which can be instantiated in another design as a black box macro.
Detailed information about the RPM creation process can be found in the Xilinx
Application note in [3I] and in the Floorplanner documentation [30].

When designing an asynchronous system it will be highly desirable to be able to
delay match small subcomponents individually and then create an RPM macro
component with locked placement. When connecting several RPM macros only
the routing between the macros will be able to inflict incorrect timing. To create
an RPM of a subcomponent the Floorplanner approach must be used, unless the
subcomponent solely consists of instantiated FPGA primitives. Unfortunately
it has not been possible to successfully create an RPM macro of an asynchronous
design using Floorplanner. In the following the problems encountered will be
explained.

When Floorplanner is used to extract the relative placement of the design prim-
itives it does not include all primitives present in the design. Some primitives
are present in the Floorplanner design hierarchy but are unplaced. Other prim-
itives are not even present in the Floorplanner design hierarchy even though
they are present when the design is loaded into FPGA FEditor. It has been de-
termined that all problematic primitives are LUTs which is marked as “route
throughs”. A LUT is used as a “route through”-LUT to let a signal get access
to slice resources that is only accessible through a LUT. This situation may
arise if the internal slice signal dedicated to bypass the LUT are already used
by other logic. Because a “route through” does not perform any function in the
design but is solely used as a routing resource, it may be the reason that it is
not included in the RPM. However, it has not been possible to find any Xilinx
documentation to support this theory. Consequently all C-elements are marked
as “route throughs” LUTs and thereby not included in the RPM macro. The
marking of a C-element as a “route through” does not really make any sense.
As C-elements are a vital part of any asynchronous circuit it is crucial to in-
clude them in the RPM. Also simple mux’es and demux’es have suffered from
the same problem. Even a strictly combinatorial demux circuit is found to give
trouble. It has been tried to rewrite the HDL code to see if that could solve the
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problem, without any success. A description of the problem have been posted
to the Xilinx user forums and the internet newsgroup comp.arch.fpga but no
replies have been received. The forum post is included in appendix Since
also non-asynchronous circuits suffer from problems it is suspected to be caused
by a bug in the Floorplanner software. It should be noted that RPMs can suc-
cessfully be created from other combinatorial circuits using the Floorplanner
tool.

The inability to create RPMs of asynchronous components has the consequence
that a larger margin must be included in the matched delay, however it has not
proved to be a major issue as long as performance does not have high priority.

2.7 Design Flow

This sections aims at describing the design flow for implementing asynchronous
circuits using the Xilinx tools. On the basis of the results from the experiments
on the delay element presented in section [2.6.1] a guideline for delay matching
is presented in section The design flow for implementing Petrify circuits
is presented in In section various settings and constraints used for
the Xilinx tools are described.

2.7.1 Delay Matching Guidelines

This section describes the work flow for performing delay matching of a circuit.
The output port component from the router design (section [4.2.2)) is used as an
example.

Wire and gate delays will introduce different propagation delays for the hand-
shake signals and for the data signals. The 4-phase bundled data protocol
requires that the data are valid before the request signal is asserted. If the
request signals have a smaller path delay than the data signal (which they will
have in most cases) the request signals must be delayed to obey the handshake
protocol. If not, the receiver may latch invalid data.

When measuring the required delay one should make sure that all data signals
make a transition, because all the data signals will have different propagation
delays. In the example below it has been aimed at that all data signals makes a
0 — 1 transition, but to assure that the packet follows the correct path through
the router this has not been possible for all data signals. Figure a) shows
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Figure 2.20: Modelsim print of a request signal in an router output port before
and after delay matching.

a Modelsim print of a handshake transaction in an output port: output_rh is
the request output and output_data is the output of the data latch. A curser
marks the time when the request signal is asserted and another curser marks
when the output of the data latch is stable. The figure shows a difference of 1.4
ns. The chart in figure 2.18] (b) (p. is used to estimate the size of the delay
element. According to the delay chart a size of 3 should give a delay of about 2
ns. To allow for the delay fluctuations mentioned in section 2:6.1] an extra delay
should be inserted. The experience from this project is that in general a delay
overhead of about 2-3 ns is sufficient to cover the delay fluctuations. Thus, the
target is a delay of about 4 ns. According to the delay chart a size of 8 should
give a delay in the target range. After the insertion of a delay element with
size 8, the design is synthesized and implemented again. A Modelsim print of
the handshake transaction after insertion of the delay element is shown in figure
b). After insertion of the delay element the delay overhead is 2.4 ns, which
lies in the target range. It should be noted that a delay overhead of 2-3 ns is a
quite conservative estimate. In many cases a smaller overhead will be sufficient.

In a larger design with many instances of the same component it is not feasible to
manually check if each and every delay element is sufficiently large. By following
the handshake protocol it is guaranteed that the correct data is latched, but even
if the handshake protocol is not completely obeyed data might be correctly



2.7 Design Flow 35

latched anyway. In other words, the primary goal is not to assure that the
handshake protocol is strictly followed under all circumstances but to assure
that correct data is latched in all cases. The Modelsim simulation tool will issue
warnings if a latch experience setup or hold time violations. If the simulation of
the complete system does not result in any warnings it indicates that the delay
matching is sufficient.

2.7.2 Petrify Circuits

This section presents the design flow for implementing control circuits synthe-
sized by Petrify [6].

Petrify is a tool which synthesizes speed-independent control circuits specified
by State-Transition Graphs (STGs). An STG is a way to specify a timing
diagram in a formal way and is based on Petri nets. The tool Visual STG Lab
(VSTGL) is a visual tool for creating and simulating STGs and it has been used
in this project for the creation of STGs. The input to Petrify is an STG and
the output is a set of boolean equation which implements the circuit. Petrify
automatically solves Complete State Coding (CSC) violations by inserting extra
state variables, however the designer should try to limit the amount of needed
CSC state variables to as few as possible. The amount of needed CSC state
variables can be reduced by redesigning the STG specification.

The general process of implementing a circuit specified by an STG and synthe-
sized by Petrify is described in chapter 6 in [24]. The process of mapping a set
of petrify equations onto an FPGA is described in [26]. Two different methods
is presented in [26]:

e Complex gates.

e Generalized C-elements.

When the target is a complex gate implementation Petrify generates equations
such that each non-input signal is implemented by a single complex gate. The
-cg option is used to instruct Petrify to target a complex gate implementation.
A complex gate must be implemented in a single LUT element, hence the number
of inputs to a complex gate is limited by the number of inputs available on a
LUT. The state-holding capabilities of the complex gate is implemented as a
feedback input, in the same way as in the implementation of the C-element in
section [2.5.1] The reset signal can be implemented using an internal MUX in
the slice such that it does not occupy an input on the LUT. In [26] an FPGA
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Figure 2.21: Implementation of a Petrify circuit using a C-element.

with 4-input LUTs is used, thereby leaving 3 inputs free. With the 6-input
LUTs available in the Virtex-5 FPGA a 5-input complex gates is the maximally
possible to implement. If more inputs is needed Petrify must be used to do
speed-independent preserving decomposition else the circuit will not be hazard
free.

A solution based on generalized C-elements uses a state-holding element. The
state-holding element can be either a set-reset latch or a C-element. Petrify gen-
erates equations implementing the set and reset functions for the state-holding
element. When a SR latch is used the set and reset functions are wired to the
set and reset input of the SR latch respectively. When a C-element is used the
set function is wired to one input and the complemented reset function is wired
to the other input. To be able to control the initial state of the SR latch or
the C-element a reset signal must be used. For the SR latch implementation
an internal mux can be used to save an input of the LUTs implementing the
set/reset functions as with the complex gate. The C-elements already have a
separate reset input. The set/reset functions can have up to six inputs. If a
larger number of inputs is needed several LUTs can be combined in a sum-of-
products configuration. To assure that the sum-of-product implementation is
hazard free, Petrify must be instructed to apply the monotonic cover constraint,
using the -gcm option. With the monotonic cover constraint only one term in
the sum-of-products implementation is allowed to be high at a time, thus elim-
inating the possibilities of static and dynamic hazards. In [26] the generalized
C-elements are implemented using SR latches.

The set/reset functions encountered in this project has a maximum of 6 inputs,
hence every set/reset functions can be implemented in a single LUT primitive.
In the project C-elements is used as the state-holding element for implementing
Petrify circuits. The C-element solution is easier to implement than SR latches
but it should be noted that a solution with SR latches is a more “correct” solu-
tion since it is available as a FPGA primitive. Figure shows a generalized
C-elements implementation using a C-element.
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When implementing the boolean equations representing the set and reset func-
tions it is tempting to let the Xilinx tool do the mapping to LUTs, but this may
lead to corruption of the circuit. The synthesizer will try to reduce the logic
expressions as much as possible; a task that it is brutally good at. To maintain
speed-independence Petrify may insert terms in the boolean expressions which
will seem redundant to the synthesizer, consequently they will be optimized
away. To circumvent these logic optimizations the designer must do the map-
ping to LUTs manually, by instantiating the LUT primitives with the desired
logic function directly in the HDL code. The implementation of the C-element
presented in section has non-inverted inputs. For the implementation of
Petrify circuits a C-element with one inverted input is used. It only differs from
the original C-element by a slight change in the init value.

The circuit generated by Petrify assumes a speed-independent delay model.
Speed-independence assumes positive, bounded but unknown gate delays and
ideal zero-delay wires [24]. Assuming ideal wires is of course not very realistic
but the wire delay can in most cases be lumped into the gate delay for the pur-
pose of delay analysis. Problems may arise if an output is used in several inputs.
If the fork is non-isochronic, i.e. the end-points of the fork experience different
wire delays, the circuit cannot be considered speed-independent. The forks in
an FPGA implemented circuit should always be considered as non-isochronic.
In most cases a circuit with non-isochronic forks will work as intended, how-
ever an unfortunate combination of wire delays where one end of the fork is
much slower than the other, may lead to a circuit malfunction. To circumvent
this problem the relational placement between all LUTs in the Petrify circuit
is locked using the rloc placement constraint. This will minimize the possible
delay fluctuations between different instantiations of the same Petrify circuit.
The strategy used for selecting a relational placement is very simple. Pick an
arbitrary placement where the LUTs are placed next to each other. Do a post
place and route simulation to verify that the circuit works as intended. If the
simulation fails, locate the the faulty signals and replace the affected LUTs.
A more analytical approach where the problematic forks is located beforehand
could be applied, but it has not been considered to be worth the trouble for the
relatively simple Petrify circuits implemented in this project.

For a circuit to work as specified it must be properly initialized. The initializa-
tion values for the state-holding elements that is required for correct function-
ality is listed by Petrify.
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To summarize the procedure for implementing Petrify circuits used in the project:

e Draw and simulate the STG in VSTGL.

e Synthesize with Petrigy using the —~gcm option to use generalized C-elements
and apply the monotonic cover constraint.

e Implement all boolean equations in instantiated LUTs.
e Generalized C-elements is implemented using a C-element component.
e Set the initialization values.

e Lock the relational placement of all components using the rloc constraint.

2.7.3 Tool Settings and Constraints

The Xilinx design tools have a large amount of settings and constraints to control
the synthesis and implementation processes. In this section the use of some of
these settings are explained:

Optimization settings for the synthesis and mapping process.

e The optimize constraint.

The keep constraint.

e The tig constraint.

The keep hierarchy setting.

The use of clock buffers.

In general we want the design tool to perform as few optimizations on the asyn-
chronous components as possible, because the tool will not “understand” the
asynchronous circuits. For Petrify circuits (section it is absolutely crucial
that no optimizations are performed at all, thus mapping the design to LUTs
must be done manually. For other asynchronous components the optimizations
should be kept to a minimum. The process of implementing a circuit is done in
roughly three steps: synthesis, mapping, and place and route. Design optimiza-
tions, that may alter the logical function of the design, are performed during
the synthesis and the mapping processes.
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Goal LUTs HS. Cycle

Area 2050 42 ns
Speed 2210 38 ns
Difference  7.8% 5.3%

Table 2.1: Effect of synthesis optimization settings.

It is not possible to turn of the logic optimization in the synthesizer. The opti-
mization goal can be set to either speed or area and the effort level to normal
or high. Apart from Petrify circuits there has not been observed any incidents
where synthesis optimization has caused failures. The optimizations settings
are global for the design, thus in a mixed design with both synchronous and
asynchronous components all components are affected by the setting. Table 2:1]
show difference in area and performance for a router using a different optimiza-
tion goals. The focus of this project has not been performance, so the synthesis
optimization goal has been set to area in all designs.

In the mapping process optimizations are performed during the cover phase
where logic are assigned to LUTs. The optimization goal can be set to: area,
speed, balanced, or off. The optimization setting can be set either globally or
individually for a component. The global setting is set in the mapping prop-
erties. To use a different optimization setting for an individual component the
optimize constraint is used on the VHDL entity. In an asynchronous-only de-
sign the mapping optimization goal should be set to off globally, and in a mixed
design the optimize constraint should be used to turn off optimizations for the
asynchronous modules only. Optionally the mapper can perform post-placement
logic optimizations to improve timing using the logic_opt switch. This is set
to off by default, and should be left like that.

Even with the mapping cover setting set to off, some optimizations are still
performed during the mapping process. An example of this is the delay element,
where the keep attribute must be assigned to the signals connecting the LUTSs,
or else the mapper will optimize the delay element into a single LUT. When
the keep constraint is attached to a signal it will prevent that the signal is
absorbed into a logic block caused by optimizations, consequently the signal is
kept in the final net-list. To minimize the possibility that the mapper removes
important logic, it is advisable to apply the keep constraint to all signals within
an asynchronous component, even though it is not necessary in most cases.

In a GALS design with both synchronous and asynchronous components, the
asynchronous components must be excluded from the timing analysis performed
by the design tools. If the asynchronous components are not excluded, the
combinatorial delay of the asynchronous components will be included in the
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maximum path delay used to determine the maximum clock frequency. This
situation has similarities with a multi-clock synchronous design where signals
may cross clock domains. The tig (timing ignore) constraint is used in these
situations to exclude a static path from the timing analysis. The tig constraints
tells the tool to ignore all paths fanning forward from the tig-marked net to
be ignored during timing analysis. tig should be assigned to all nets going into
the asynchronous design. The tig is assigned to nets in the UCF file. If the
tig constraint is not used it will be very hard for the tool to meet the clock
constraints because the combinatorial delay of the asynchronous components is
included in the critical path. For larger designs the mapping process will even
fail completely. In an asynchronous-only design there are no clock constraints
to meet, however the tig constraint still affects the run-time of the mapping
process. Due to the Performance Evaluation mode discussed in section the
tool will try to perform timing optimization based on the local clocks it finds in
the design. In Aspida [I3] the tig constraint is only used on the delay elements
to avoid timing optimizations of the delay elements.

The design tool automatically infers clock buffers on signals it believes to be
clock signals. A clock buffer causes the signal to be routed on special low skew
routing resources. Within asynchronous components the tool will find clock
signals and if there are unused clock buffers, it will infer it on the signal. To
avoid this from happening the synthesis property Number of Clock Buffers
should be set to 0. If the design contains any clock signals clock buffers must
be inserted manually.

In the synthesis properties it can be chosen if the design hierarchy should be
kept or the design should be flattened. If the design hierarchy is flattened op-
timizations are performed across hierarchical components. Therefor a flattened
design typically uses less resources. A disadvantage is that it makes it a lot
harder to locate signals in the post-synthesis simulation models. For the pur-
pose of asynchronous design where post place and route simulations are used
extensively it is a big advantage to keep the hierarchy for this reason only.



CHAPTER 3

Networks-on-Chip

This chapter will present the basic theory behind NoC design. The first section
will give a brief introduction to the general NoC design paradigm. In section
the basic concepts of NoC design will be presented. The last section [3.3] will
present the previous work in the field of NoC design that have been used for
this project.

3.1 Introduction to Networks-on-Chip

NoC is an emerging design paradigm for designing the interconnect for large
SoCs. More common SoC interconnects such as busses and point-to-point links
scales poorly when the number of IP cores in the system is increased. The NoC
design paradigm tries to handle the scaling problem of the bus and point-to-
point interconnects.

In large SoC systems a Globally Asynchronous Locally Synchronous (GALS)
design approach is advantageous, due to the difficulties with clock distribution
for large SoC systems. In a GALS system each core operates in their own local
clock domain. Thus, the need for a global clock is eliminated. Due to the lack of
a global clock is seems very intuitively to have an asynchronous interconnect in
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a GALS system. Therefore an asynchronous NoC matches the design challenges
for a GALS based SoC well.

NoC design shares many similarities with the design of parallel computer net-
works. Therefore a large amount of the research carried out in this field is also
applicable for NoC design.

3.2 Basic Concepts

This section presents the basic concepts of the NoC paradigm. The source of
the theory presented in this section is from the article A Survey of Research and
Practices of Network-on-Chip (part of the MANGO PhD thesis [5]) and chap-
ter 10 from the book Parallel Computer Architecture — A Hardware/Software
Approach [1].

A NoC consists of four fundamental components: IP Cores, Network Adapters,
Routers, and Links. A description of each of the NoC components is found
below.

IP Cores The purpose of the NoC is to let the cores in the system communicate
with each other efficiently. Thus, the cores are not an actual part of the
NoC. A core can initiate requests (a master core), or respond to requests
(a slave core) or both. Typical examples of master and slave cores are
CPUs and memories respectively.

Network Adapters (NAs) provides an interface for the core to communicate
with the NoC. Typically the cores uses a memory-mapped interface while
the network is based on message-passing. The NA must translate between
the two types of interfaces. The NA must also handle synchronization
issues between the cores and the network.

Routers are connected to each other in a structural manner to create a network
for the cores to communicate on. The routers route incoming packets to
the desired destination based on a routing algorithm.

Links are used to to connect the routers to each other. The links consists of
control wires and data wires.
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Figure 3.1: An example of a NoC connected in a 3-by-3 mesh topology.

In figure an example of a NoC with four cores connected in a 3-by-3 mesh
topology is shown. The main properties of a NoC is the choice of topology,
routing algorithm, switching strategy, and flow control.

e The topology determines how the network components are physically
connected to each other.

e The routing algorithm determines the route that messages follows
through the network.

e The switching strategy determines how messages traverses the route.

e Flow control determines when messages traverses the route.

The following sections will describe these properties.

3.2.1 Topologies

The topology describes how the routers are connected to each other. The choice
of topology affects many aspects of the NoC, e.g. area, performance, and power.
Many different topologies exists, e.g. meshes, tori, cubes, butterflies, and trees.
Topologies can be either regular or irregular, where irregular topologies can be
created by mixing different types of regular topologies. A direct network have
cores connected to all router nodes, while an indirect network only have cores
connected to a subset of the router nodes. The network in figure is an
example of an indirect network.

In general the choice of topology is a tradeoff between the number of links
between the routers vs. cost. In a topology with many links the average routing
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distance between two cores will be small and consequently the latency through
the network will be low. Most NoCs uses topologies with relatively few links that
is easy to lay out on a 2-d surface. Meshes, tori, and trees have this property and
are therefore popular for NoCs. In the following the mesh and torus topologies
will be described.

Meshes and tori (and cubes) are known together as k-ary d-cubes, where k is
the degree of each dimension and d is the number of dimensions. The mesh in
figure is a 3-ary 2-cube mesh topology. A torus is different from a mesh by
that it connects opposite edges. Therefore tori often uses unidirectional links,
while meshes uses bidirectional links. Tori does not perform well in networks
with with a high amount of local traffic due to the unidirectional links.

3.2.2 Switching strategies

A network can be either packet switched or circuit switched. In a circuit
switched network the route from source to destination is setup before the mes-
sage is transmitted on the network and is not taken down before the transmission
has finished. In a packet switched network the message is split up in a number
of packets that are individually routed from source to destination. Each packet
contains routing and sequence information. The majority of the developed NoCs
utilizes packet switching [5]. The minimum amount of data that can be sent
between two nodes in the network is called a flow control unit (flit). A packet
consists of several flits which are transmitted in series. For packet switched net-
works different packet switching strategies exists: store-and-forward, wormhole,
and virtual cut-through. The three switching strategies are explained below.

Store-and-forward all flits of a packet are received by the node, before any
flits are forwarded to the next node. If the next node does not have
sufficient buffer space, the packet is stalled.

Wormhole when a node receives a flit of packet, the flit is forwarded to the
next node as soon as possible. The tail of the packet is left behind in the
nodes along the route. If the header flit is blocked, all links spanned by
the packet will be blocked.

Virtual cut-through is a compromise between store-and-forward and worm-
hole. Forwarding of flits works in the same way as for the wormhole
strategy, however the header flit is only forwarded to the next node if it
has sufficient buffer space to store the complete packet.
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Protocol Per router cost: Stalling
Latency Buffering
Store-and-forward packet packet at two nodes and the
link between them
Wormbhole header header at all nodes and links
spanned by the packet
Virtual cut-through header packet at the local node

Table 3.1: Costing and stalling for the different switching strategies, from [5].

The wormhole strategy has lower latency and lower buffer requirements com-
pared to store-and-forward. The disadvantage is that the possibility of deadlocks
in the network increases, because a packet can span several links. Virtual-cut
through will benefit from the low latency of the wormhole strategy under nor-
mal load. Under high load the virtual-cut through strategy will approach the
function of a store-and-forward network, where flits are aggregated in the front
node. Thereby the increased possibility of deadlocks from wormhole is removed.
However, virtual cut-through still have the large buffer requirements of the
store-and-forward strategy. Therefore wormhole is the most popular switching
strategy for NoCs. Table summarizes the latency penalty and storage cost
for each of the discussed switching strategies.

3.2.3 Routing algorithms

Routing algorithms are divided into two categories: deterministic and adaptive.
For a deterministic routing algorithm the chosen route is based solely on the
source and destination, i.e. there are only one legal path between a pair of nodes.

An adaptive algorithm allows more than one legal path between a pair of nodes
and the route is determined on a per-hop basis. The choice of routing path
is dynamically determined based on e.g. link congestion. Because each router
must be able to dynamically decide the routing direction, the complexity of the
router implementation increases. The advantage of an adaptive routing algo-
rithm is that it allows for better link utilization, which can improve performance
considerably, especially under high load.

A deterministic routing algorithm can be source-routed or use table-driven rout-
ing. With source-routing the source must provide the complete routing path to
the destination in the packet header. Source-routing simplifies the process of
determining the routing direction within the router. The router can directly de-
termine the routing direction by looking at the packet header. However, if the



46 Networks-on-Chip

packet header has a fixed length, the maximum number of hops in the network
is limited by the header length. In table-driven routing each router contains a
routing table where it can look up the routing direction based on the destination
written in the packet header. Thus, the maximum number of hops is not limited
by the header length. The implementation of the routing table will increases
the area of the router.

Some regular topologies allows for very simple routing algorithms. For example
in a k-ary d-cubes topology, dimension order routing can be used. In dimension
order routing for a 2-d mesh, the packet is first routed fully in the z-direction
and then fully in the y-direction. The packet header contains the remaining
distance for each dimension and the routing direction is easily determined from
the remaining distance. Before a router forwards the packet it decrements one of
the distances in the header, in accordance with the routing direction. In k-ary 2-
cubes dimension order routing are also known as zy-routing. For a source-routed
network the source simply inserts a routing path in the header in accordance
with the dimension order routing algorithm.

A routing algorithm can be either minimal or non-minimal. A minimal rout-
ing algorithm always selects the shortest path between source and destination,
while a non-minimal algorithm is allowed to select longer routes between source
and destination. Dimension order routing is an example of a minimal routing
algorithm while most adaptive algorithms is non-minimal due to their dynamic
behavior.

An important aspect of a routing algorithm is, whether it is deadlock free, for the
topology in which it is used. Routing deadlocks may occur in a network when
for example several packets are waiting for each other in a cyclic dependency. If
this happens, none of the packets are able to make any progress. The process of
determining if a routing algorithm is deadlock free for a given topology can be
quite cumbersome. In [7] a guide for determining deadlock freedom is presented.
The xy-routing algorithm described above has the interesting property that it is
proved to be deadlock free for a k-ary 2-cube mesh topology [7]. It is important
to note that the algorithm is only proved to be free from routing deadlocks.
Deadlocks may occur in higher levels of the system. E.g. if the NAs are not able
to consume packets due to dependencies between the cores in the network. Due
to the deadlock freedom of zy-routing it is a popular choice for NoCs.

3.2.4 Flow control

Flow control is the mechanisms used to determine when a message moves along
its route [7]. Flow control is mainly used to ensure correct operation of the
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network, but can also be used to improve utilization of network resources and
to provide predictable performance.

Ensuring correct operation of the network is first and foremost about avoid-
ing deadlocks in the network. For more advanced routing algorithms than zy-
routing, deadlock problems can solved by introducing Virtual Channels (VCs).
VCs are the primary method used for assuring deadlock freedom in wormhole
routed networks. A VC is created by dividing a physical channel into a set of
logical separated channels by adding multiple buffers to the physical channel.
To resolve deadlocks VCs are used to systematically break cyclic dependencies
in the network. VCs can also be used to increase wire utilization, improve
performance and to provide Quality-of-Service (QoS).

Two basic types of QoS exists: best-effort services (BE) and guaranteed services
(GS) [B]. In a BE NoC guarantees are only given for correctness and completion
of a transaction, while in a GS NoC performance guarantees such as bandwidth
and latency guarantees are given. Naturally the complexity of a BE NoC is
much less than a GS NoC.

3.3 Previous Work

NoC research is an emerging field within the SoC research area. Different re-
search groups have published articles about the concepts and implementations of
NoC systems. Both synchronous and asynchronous NoCs have been developed.
For this project three asynchronous NoC implementations have been studied:
MANGO [5], QNoC [23], and Chain [4].

MANGO (Message-passing Asynchronous Network-on-Chip providing Guaran-
teed Services over OCP interfaces) is a NoC developed at IMM, DTU. MANGO
is an asynchronous NoC that provides guaranteed services. The cores connects
to the NoC using the OCP interface. The NoC includes both a BE network and
a GS network. Connection-oriented GS services providing hard bandwidth and
latency guarantees are implemented using virtual channels. Packets are worm-
hole routed in the BE network and source routing is used. In the M.Sc. thesis
OCP Based Adapter for Network-on-Chip by Rasmus Grgndahl Olsen [I7] an
improved design of a NA for the MANGO NoC is presented.

QNoC (Quality-Of-Service NoC) is developed at the Israel Institute of Technol-
ogy. It is an asynchronous multi-service NoC. The QNoC router is composed
of multiple connected input and output ports. The routers are connected in a
2D mesh topology. Credit-based flow control is used to enhance throughput.
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Four classes of services are provided. The article presents both a single service
level router and a multi-service level router. The NoC uses both source and
wormbhole routing.

Chain (Chip Area Interconnect) is an asynchronous BE NoC developed at the
University of Manchester. Chain uses delay-insensitive 1-of-4 for data encoding
and a separate wire is used to signal the end of a packet. The packets in the
network are source routed.



CHAPTER 4

Asynchronous
Network-on-Chip Design

This chapter will present the design of the asynchronous NoC developed in the
project. Section will explain the general design decisions for the developed
NoC. In section the design of the router is presented and the NA design is
presented in section 4.3] Finally in section |4.4] a simple traffic generator for the
NoC is presented.

4.1 General Network Design

Implementation of asynchronous systems on FPGAs are experimental therefore
only a simple BE NoC has been designed. In general the focus has been on
simplicity, while performance have had low priority. The available logic resources
on the FPGA is limited so keeping the area low have also had priority. The
following sections will explain the design decisions made for the general NoC
design.
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4.1.1 Topology

When choosing the topology a topology that maps well onto the structure of the
FPGA should be selected. The complexity of the topology should also be low.
A k-ary 2-cube mesh or torus with unidirectional links are good candidates. A
k-ary 2-cube mesh topology with bidirectional links is chosen for the NoC. The
main reason for this is that it is easier to guarantee deadlock freedom in the
network due to the increased number of links compared to a torus. Combined
with zy-routing deadlock freedom can be guaranteed without implementing vir-
tual channels. The 2-dimensional structure of the topology maps well onto the
structure of the FPGA.

A k-ary 2-cube mesh topology adds the following requirements to the interface
of the router: four ports for network connections, one port for a core connection,
and ports must be bidirectional.

4.1.2 Routing

When choosing the routing strategy emphasis has been on simplicity and re-
duced area utilization.

To reduce the buffer requirements wormhole routing is used. Hence, each router
is only required to buffer a single flit. Consequently packets are allowed to con-
tain an arbitrary number of flits. Wormhole routing also benefits from reduced
packet latency.

To reduce the complexity of the routers a source-routed scheme has been used.
Thus the problem of determining the next hop is moved away from the routers to
the NAs. With source-routing the routers will support any routing algorithm in
which the source is able to determine the complete routing path to the receiver,
but to ensure deadlock freedom it is restricted to use the zy-routing algorithm.

The network does not allow a packet to be routed back in the same direction
as it come from. For the mesh topology that leaves an incoming packet at the
router with four possible routing directions. Therefore only two bits are needed
to encode the routing direction for each hop.

The implementation of virtual channels requires added buffer capacity and
added control circuitry and thereby increases the complexity of the router.
Adding virtual circuits to a BE NoC is done for mainly two reasons: deadlock
avoidance and to increase performance. Deadlock freedom is already guaran-
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teed by the chosen routing algorithm and performance does not have priority.
Therefore virtual channels have not been implemented.

4.1.3 Handshake Channel

The 4-phase bundled data handshake protocol is used. The handshake protocol
is extended with two additional request signals which are used for encoding of
the flit type. This is explained in detail in the next section. All handshake
channels are push channels, hence it is always the sender that initiates the
transaction.

4.1.4 Flit format

A packet consists of several flits. To identify the beginning and the end of a
packet three types of flits are required:

e A header flit indicates the start of a packet and carries the routing infor-
mation.

e An end flit indicates the end of a packet.

o Intermediate flits are all the flits in between the header flit and the end
flit.

The header flit holds the routing path and the subsequent flits holds the packet
data. Each packet consists of exactly one header flit and one end flit. In between
zero or more intermediate flits are allowed. Thus a packet can consist of any
arbitrary number of flits.

The flit type must be encoded into the flit. The conventional way to encode
the flit type is to append the type as extra data bits. This is the approach
used in MANGO [5] and QNoC [23]. In MANGO the BE router uses a single
end-of-packet bit to indicate the flit type. The header flit is identified as the
first flit to arrive after an end-of-packet flit. In QNoC they have three flit types
similar to the types explained above and they are encoded in two bits.

In this NoC a different approach is used. In Chain [4] a 1-to-4 encoding of
the data is used and a separate wire is used to indicate end-of-packet. In this
project a similar approach is used to encode the flit type. Instead of appending
the flit type to the flit data, the handshake channel is used to encode the flit
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header req
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end req
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data header-flit data intermediate-flit data end-flit data

Figure 4.1: The handshake channel used in the NoC.

type. The conventional 4-phase bundled-data handshake channel presented in
section has one request signal and one acknowledge signal. By adding
another two request signals, the flit type can be encoded into the handshake
channel. Figure shows a scenario where a 3-flit packet is transmitted on the
handshake channel using this approach. The flit type is identified by one of the
three request types: header request, intermediate request, and end request.

By encoding the flit type using request signals the complexity of the routers
are further reduced. The control circuits in the router are simplified, since the
flit type does not have to be extracted from the data channel. The latency
through the router is also reduced because the flit type is known immediately,
S0 it is not necessary to wait for the identification of the flit type. The width of
the handshake channel is not affected because the extra request signal should
have been routed as data signals anyway. Therefore, no additional signals are
needed in the handshake channel. However the complexity of the ordinary
handshake components increases due to the additional request signals. Another
disadvantage is that three delay elements is needed when a channel is delay
matched.

4.1.5 Core Interface

The interface by which the cores connects to the NA is called the Core Interface

(CI).

Two different core interfaces have been considered: Open Cores Protocol (OCP)
[16] and WISHBONE [28]. The WISHBONE protocol is an open specification
provided by OpenCores [19]. OpenCores is an open source community for TP
cores. OCP is specified by the OCP International Partnership that has members
from a number of large electronics companies. The two specifications are very
similar and they both fits the purpose of the project. The OCP protocol has
been chosen due to prior use in earlier projects developed at IMM,DTU. This
will allow reuse of components developed in the previous projects.
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Name Width Driver Function

Clk 1 OCP clock

MCmd 3 master  Transfer command
MAddr configurable(32) master  Transfer address
MData configurable(32) master  Write data
SCmdAccept 1 slave slave accepts transfer
SResp 2 slave Transfer response
SData configurable(32) slave Read data

Table 4.1: Required OCP signals.

For the purpose of this project only a small subset of the features in the OCP
specification is needed. Only the features required to connect with the cores
used in the multi-processor SoC system presented in chapter [7]is implemented.
Thus the NA does not support all the required features to be OCP compliant.

The following OCP commands specified in the OCP specification must be sup-
ported by the NA:

Simple write and read transfer Read and write requests sent by the master
are accepted by the slave in the same clock cycle. The read response is
sent in the immediately following clock cycle.

Write with request handshake The slave is allowed to delay the acceptance
of the write requests by an arbitrary number of clock cycles.

Read with request handshake and separate response The slave is allowed
to delay the acceptance of the read request by an arbitrary number of clock
cycles and the slave is also allowed to delay the read response by an arbi-
trary number of clock cycles.

The OCP signals required to implement the required commands are listed in
table The width of the address and data signals are 32 bit because the
target CPU has an address and data width of 32.
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4.1.6 Packet Format

To support the required OCP commands, three packet types are

e Write Request packet.
e Read Request packet.

e Read Response packet.

The write request and read request packets are sent from the master cores to
the slave cores and the read response packet is sent from the slave cores to
the master cores. The flit size is set to 32 bits since it is the width of the
address and data signals of the OCP interface. If a smaller flit size is selected
more flits is required to send a packet and therefore the packet latency will be
increased. However, the routing complexity of the routers will be reduced due to
the narrower data signals. The routing information for the next hop is stored in
two bits as the two MSBs of the header flit. Table shows the packet formats
for the three packet types.
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Flit Name Flit Type

Width Description

header flit header

control flit immediate
addr flit immediate
data flit end

32
7

32
32

Routing information
MCmd and MByteEn
MAddr

MData

(a) Write request packet

Flit Name Flit Type

Width Description

header flit header

control flit immediate
addr flit immediate
data flit end

32
7

32
32

Routing information
MCmd and MByteEn
MAddr

Return routing path

(b) Read request packet

Flit Name Flit Type

Width Description

header flit header
control flit
data flit end

immediate

32

2

32

Routing information
SResp
SData

(¢) Read response packet

Table 4.2: Specification of the packet formats. (a) is the write request packet,
(b) is the read request packet, and (c) is the read response packet.
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Figure 4.2: The router.

4.2 Router Design

The design of the router is highly dependent on the network in which is it used.
The choice of network topology, switching mechanisms, routing algorithm, and
flow control mechanisms all influences the requirements to the router.

The router must support a k-ary 2-cube mesh topology, consequently it must
provide five port: four for connecting with other routers and one for connecting
an IP core. The links are bidirectional so each port consists of an input port
and an output port. The router has a non-blocking crossbar, i.e. every input
port can be connected to any output port in any permutation simultaneously.
FIFO buffers are inserted at the interface of both input ports and output ports.
The depth of the FIFO buffers are configurable. Figure shows a diagram of
the router. In the following sections the design of the input port, the output
port, and the FIFO buffers are presented.
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Figure 4.3: The input port.

4.2.1 Input Port

The purpose of the input port is to route the packet to the correct output port.
The input port has one input handshake channel and four output handshake
channels. The routing direction is controlled by a set of multiplexers. A diagram
of the input port design is shown in figure The header, intermediate, and
end requests are denoted rh, 7i, and re respectively.

The first flit arriving is the header flit which contains the routing direction. The
routing direction is stored in the two MSBs of the header flit. The two routing
direction bits are latched and used as control inputs to the output multiplexers.
The routing direction must be locked to the same destination for all subsequent
flits belonging to the same packet. Therefore the latch is controlled by the
header request signal such that the latch is transparent when rh is high. To
assure that setup and hold times are not violated, the data validity scheme for
the input channel must be broad.
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Depending on the flit type the data signal must be treated differently. If it is
an intermediate or an end flit, the data should be passed through untouched.
If it is a header flit, the data must be rotated two bits. The rotation is done
by a rotate component and a multiplexer is used to switch between the two
data signals. To maintain a broad data validity scheme the data multiplexer is
controlled by a small control circuit consisting of a C-element and an OR gate,
with the header request signal and the acknowledge signal as inputs. In case
of a header flit the multiplexer selects the rotated data signal and keeps the
selection for the complete handshake cycle.

Delay elements must be inserted on all three request channels. The delay el-
ements on the intermediate and the end request signal must match the delay
of the data multiplexer subtracted by the delay of the request de-multiplexer.
Therefore the matched delay is quite small. The delay element on the header
request signal must delay the request signal, until the control signal for the re-
quest de-multiplexer is stable. If the delay is not sufficiently large a glitch may
appear on one of the header request output signals. The delay must also be long
enough for the rotation and multiplexing of the data signal. Consequently the
delay element for the header request signal must be larger than the other two.

4.2.2 Output Port

The output port has four input channels and one output channel. The output
port must arbitrate between contending inputs, such that only one input channel
is granted access to the output channel at a time. Once an input channel has
gained access, it must keep exclusive access until the the complete packet has
been transmitted. The completion of a packet is indicated by the receival of
an end flit. A merge component (see section is used to merge the four
input channel onto the output channel. A diagram of the output port is shown
in figure 4.4

The arbitration is handled by a set of access control circuits and a 4-input mutex
component (see section 4.2.4). Because the flit types are encoded using request
signals the arbitration between contending inputs can be done in a simple way.
Each input channel has associated an access control circuit. When an access
control circuit receives a header request, it will request the mutex for access to
the output port. When access is granted by the mutex the header flit is passed
through to the output. The mutex is not released before an end flit is received.
Other contending inputs will wait silently, with a asserted header request signal,
for the mutex to grant them access to the output channel.

The access control circuit is specified by the STG showed in figure The
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Figure 4.5: STG specification of the access control circuit.

header, intermediate, and end request signals are denoted rh, 7i, and re respec-
tively. The mutex request and grant signals are denoted m_req and m_grant.
The fairness of the arbitration is determined by the mutex component.

Delay elements are inserted on the request signals on the output channel. The
delay elements must match the delay that the data signals experience in the
merge component subtracted by the delay through the access control circuit.

4.2.3 Merge

The merge component has four input channels and one output channels. It
relays handshakes from the input channels to the output channel. It is assumed
that input requests are mutually exclusive. The design of the merge component

is shown in figure

The design is based on the ordinary merge design presented in [24], but it has
been modified to support the three-requests handshake channel. For each input
channel the three request signals must be OR’ed together. The output of the
OR gate and the output ack signal is used to generate the input ack signal
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Figure 4.7: The 4-input mutex.

using a C-element. The added overhead for the 4-input merge component to
support the additional request signals is four 3-input OR gates and two 4-input
OR gates.

To support broad data validity the request signals are OR’ed with the acknowl-
edge signals. This ensures that the data multiplexer selects the active input for
the complete handshake cycle.

4.2.4 Mutex

A 4-input mutex component is needed for the output port design. A 4-input
mutex can be constructed by combining several 2-input mutex components.
QNoC [23] also utilizes a 4-input mutex component and their design is also used
in this project. The 4-input mutex component consists of six 2-input mutex
components arranged in three stages. The design is shown in figure In [23]
an analysis of the fairness of the design is carried out. They proof that the
mutex has a bounded blocking time and a request may be outrun by no more
than two later requests. The proof assumes that the 2-input mutex components
are fair. Even though the mutex will not preserve the original ordering in all
cases, it is considered to be fair enough for the purpose of this project, since
assuring fairness is not a key issue.

4.2.5 Fifo Buffer

FIFO buffers are inserted at each input and output port. The FIFO is designed,
in the regular way, as a chain of handshake latches. This is shown in figure a).
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Figure 4.8: (a) A FIFO consists of a chain of FIFO stages. (b) the design of an
un-decoupled FIFO stage.

Handshake latches for the 4-phase bundled data protocol can be designed in
three different ways, depending on how strong the coupling is between the in-
put channel and the output channel [24]: Un-decoupled, Semi-decoupled, and
Fully-decoupled. The selection between the different types is a tradeoff between
complexity and performance.

The un-decoupled latch controller is the least complex. It does not allow latch-
ing of new data before the previous handshake cycle has finished completely,
i.e. it must wait for Ackyy:|. In other words, it must wait for the superfluous
return-to-zero phase of the handshake to finish. There exists a strict order-
ing between the handshaking on the input channel and the output channel:
ReqoutT = Acki,T and Reqoutl = Ack;pl. During the return-to-zero phase
the latch is transparent. Consequently only every second latch in a FIFO will
hold valid data. It is said to have a Static spread of 2. Also, due to dependencies
with non-neighboring stages in the FIFO, it is unable to take advantage of an
asynchronous delay element.

The semi-decoupled latch controller allows every latch in a FIFO to hold valid
data, by allowing new data to be latched after Reg,,:|. This is achieved by
relaxing the ordering of the handshaking between the input channel and the
output channel to Ackyu:T =< Ack;,]. The Static spread is 1. Like the un-
decoupled it is not able to take advantage of an asynchronous delay element.
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The fully-decoupled latch controller has a Static spread of 1 and is able to take
advantage of the asynchronous delay element. This is achieved by allowing new
inputs to be latched after Ackoy:T. Thus, the handshaking between the input
channel and the output channel is completely decoupled.

Despite the performance advantage of the more advanced latch controllers, an
un-decoupled latch controller is used in the design of the FIFO. The main reason
for this is its simplicity and the fact that performance does not have high priority
in the project.

The design of the handshake latch is shown in figure b). The design is a
muller pipeline handshake latch (figure ¢) p. [7) extended with the extra
request signals and broad data validity. The latch is a level sensitive latch that
is transparent when enable is 0 and opaque when enable is one. The handshake
latch accepts early data validity and produces broad. A C-element is used for
each request signal, and the Ack;, signal is generated by OR’ing the outputs of
the C-elements. The latch control signal is generating by OR’ing the outputs
of the C-elements with the Ack,,; signal to provide broad data validity. The
OR’ing with Ack,,; assures that the latch is kept opaque for the complete
handshake phase.

4.3 Network Adapter Design

The NA handles the communication between the cores and the network. The
NA consists of a Core Interface (CI) and a network interface (NI). The Core
Interface (CI) is a memory-mapped interface and the Network Interface (NI) is
a message-passing interface. As stated earlier The OCP protocol is used at the
CL

An OCP compliant NA for MANGO is presented in [5]. In [I7] an improved NA
for MANGO is presented. Due to the inclusion of GS in MANGO, the NAs are
more complex than what is needed for this project. Therefore, a more simple
design has been made for the NoC.

The NA design consists of a Master NA and a Slave NA. The Master NA is
used with a OCP master core and the Slave NA is used with an OCP slave core.
The NAs must translate an OCP command into a network packet. The three
different packet types was shown in table [£.2] on page [5] The Write Request
and Read Request packets are four flits long, while the Read Response packet
is three flits long. To simplify the design the the NA, it will always transmit a
four flit package. For the Read Response it will append an empty flit.
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When designing the NA the placement of the crossing between the synchronous
and asynchronous domain is important. The number of clock synchronization in
a design should be kept as low as possible, for two reasons: speed and reliability.
Each time a signal is passed through a synchronizer it takes two clock cycles (for
a two-flip-flop synchronizer) and thereby decreases the speed. The possibility of
metastability can never be removed completely, thus the possibility of failure will
always exist. The failure rate will increase with the number of synchronizations
performed. The only way to reduce the possibility of metastability is to increase
the latency by adding more flip-flops in the synchronizer. Therefore the NA is
designed so it is only necessary to perform synchronization one time per packet
transmission.

The design of the master NA and the slave NA is shown in figure [4.9] The
following sections will present the design of the master and slave NA.
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4.3.1 Master NA

The master NA consists of a transmitter part and a receiver part. The transmit-
ter part has a synchronous CI, the OCP Transmit Unit, and an asynchronous
NI, the Async Transmitter. Likewise the receiver part contains the OCP Receive
Unit as CI and the Async Receiver as NI. The synchronous and asynchronous
circuit communicates using the 4-phase bundled data handshake protocol. The
acknowledge that is sent from the asynchronous domain into the synchronous
domain is passed through a synchronizer as the one presented in section

(p. .

The OCP Transmit Unit handles the communication with the OCP interface.
The OCP Transmit Unit latches the OCP command and presents it in the
four-flit package format on its output. The OCP Transmit Unit will determine
the route to the destination by doing a lookup in a hardcoded ROM based on
the 4 MSBs of the destination address (not shown in the figure). When the
packet data is ready it asserts the request signal for the Async Transmitter.
The Async Transmitter performs the serialization of the packet flits onto the
network. When it has finished the transmission, it will finish the handshake
with the OCP Transmit Unit and the master NA is ready for a new transaction.

A more advanced design of the route lookup could be implemented using a
Content Addressable Memory (CAM). This will reduce the memory required to
implement the lookup table, especially for systems with many cores.

The receiver part listens on the NI interface waiting for a packet. When a packet
arrives the Async Receiver latches the packet and asserts the request signal for
the OCP Receive Unit. The OCP Receive Unit will present the packet at the
OCP interface and afterwards finish the handshake with the Async Transmitter.

The OCP Transmit Unit and OCP Receive Unit is designed as mealy type state
machines and the state diagrams is shown in figure [f.10] The STG specification
of the Async Transmitter and Async Receiver is shown in Note that the
Async Receiver is able to receive both 3-flit packets and 4-flit packets, but only
4-flit packets are transmitted in the network. The Async Receiver must be
able to handle that a new header request is received before it has finished the
handshaking with the OCP Receive Unit.
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MCmd = idle

ack =0
ack =1 \MCmd /= idle

STORE
PACKET

sync_req = 0

sync_req = 1

sync_req = 0

STORE
PACKET

sync_req = 1

ack =0

(a) OCP Transmit Unit (b) OCP Receive Unit
State Action State Action
Wait Wait for OCP Command. Wait Wait for new packet at NI.
cmd cmd Unset acknowledge to NI.
Store  Set enable pin for packet Store  Set enable pin for packet
packet register. packet register.

Route  Wait for route lookup to Ack Set acknowledge to NI.

lookup finish, unset enable pin
for packet register, and
set SCmdAccept to finish
OCP transaction.

Req Set request to NI.

Ack Unset request to NI.

Figure 4.10: State diagrams for the Master NA.
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Figure 4.11: STG specifications for the asynchronous transmitter (a) and for
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70 Asynchronous Network-on-Chip Design

4.3.2 Slave NA

The design of the slave NA is very similar to the design of the master NA as
can be seen from figure [1.9] However subtle differences exists. In case of a Read
Request packet, the slave NA must not accept new packets at its NI receive
interface before it has transmitted the Read Response packet onto the network.
Therefore the OCP Transmit Unit must notify the OCP Receive Unit when it
has completed the transmission. Furthermore the OCP specification requires
that the receiver of a response is always ready since the response data is only
valid for one clock cycle. To fulfill these requirements the OCP Receive Unit
and the OCP Transmit unit will in case of a Read Request perform a handshake
using the read_cmd and read_cmd_done signals. Also the return path data from
the Read Request is sent to the OCP Transmit Unit.

The state diagrams for the OCP Transmit Unit and the OCP Receive Unit is
shown in figure {.12) and in figure [f.13|respectively. The Async Transmitter and
Async Receiver circuits are identical with the circuits used in the master NA.
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read_cmd = 1 read_cmd = 0

O read_cmd = 0
WAIT CMD
DONE
read_cmd =1

ack =0

SResp = null
SResp = DVA
STORE
ack=1 DATA
1
g:oj
State Action
Init Wait for a read cmd from NA re-
ceiver. Unset read_cmd_done.
Wait Wait for OCP response cmd.
SResp
Store Set enable pin for packet register.
data
Req Set request to NI and unset en-
able pin for packet register.
Ack Unset request to NI
Wait cmd ~ Set read_cmd_done.
done

Figure 4.12: State diagrams for OCP Transmit Unit in the Slave NA.
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req =0

req =1

SCmdAccept = 1
&& MCmd /= RD

STORE

SCmdAccept = 1 PACKET

&& MCmd = RD

SCmdAccept = 1
&& MCmd = RD

read_cmd_

done =1 SCmdAccept = 0

WAIT CMD
ACCEPT

SCmdAccept = 1

&8& MCmd /= RD SCmdAccept = 0

read_cmd_done = 0

State Action

Wait req  Wait for new packet at NI. Unset
register enable and acknowledge.

Store Set register enable.

packet

Wait emd  Wait for OCP slave to accept
accept OCP cmd.

Wait read Set read_.emd and wait for
cmd done read_cmd_done.

Ack Set acknowledge to NI and unset
read_cmd.

Figure 4.13: State diagrams for OCP Receive Unit in the Slave NA.
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4.4 Traffic Generator Design

For testing purposes a simple traffic generator has been designed. The design
consists of a traffic source and a traffic sink. The traffic source is able to transmit
a predefined set of packets from a ROM. The traffic sink reads the received
packets into a ROM. It is then possible to compare the input trail with the
output trail to verify correct operation.

The design of the traffic source is shown in figure [£.14|(a). Each entry in the
ROM consists of a flit type and flit data. The handshaking is done using a simple
repeater circuit (a Haste repeater [25]) that consists of a single NOR gate. A
synchronous counter clocked on the acknowledge signal is used to increment the
address input of the ROM. The ROM is clocked with the un-delayed request
signal. For proper initialization of the ROM output the clock input is gated
with the reset signal. The flit type is used to control a de-multiplexer to output
the correct request type.

The traffic sink must read the received packets and store them in a ROM. When
the complete input trail has been received the sink ROM data must be read out
of the FPGA. This is possible through the JTAG interface, however Xilinx does
not provide any simple tools that can do that directly. Manual communication
with the JTAG interface is required to extract the data.

Fortunately, the ChipScope tool provided by Xilinx [33] can be used to read the
data into the ROM and extract it afterwards. In other words, it can almost
build the complete sink component. ChipScope is a complex logic analyzer tool
for Xilinx FPGAs. It provides cores that can monitor and store data traces of
any signal in the FPGA during runtime. The ChipScope software is used to

ack
@ " "
. @
1T
rom flit_size >data dataj‘> ILA

(a) Traffic Source (b) Traffic Sink

Figure 4.14: Traffic generator design
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extract and display the data captured by the cores. The ChipScope software
has a GUI interface and is relatively easy to operate.

For the sink design the ILA (Integrated Logic Analyzer) ChipScope core is used
to capture data. The core captures the data on the data signal on the falling
edge of the request signal. When the internal storage of the ILA core is filled,
the data is transmitted to the ChipScope software. The design is shown in figure
[£.14b). An ILA core is needed for each signal that must be monitored in the
design.



CHAPTER 5

Asynchronous
Network-on-Chip
Implementation

This chapter describes the implementation of the designed NoC. The implemen-
tation of the NoC components follows the design flow presented in chapter
Therefore this chapter will only give few relevant comments to the implementa-
tion of the different components.

In section the implementation of the router is described and in section
the implementation of the NAs are described. Finally the traffic generator
implementation is described in section [5.3

5.1 Router

The implementation of the router is divided into 9 VHDL entities which follows
the structure of the design presented in section The VHDL files implement-
ing the router is found in appendix Below each VHDL entity is listed
along with a short description.
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be_router: The top-level router entity. Connects all the ports
and FIFOs with each other. The depth of the input
and output FIFOs are set to 1. Appendix p-

33

fifo: The FIFO. The depth is configurable using a VHDL
generic. Appendix p.[145

fifo_stage: Implements the FIFO stage. Appendix p-

input_port: Implements the Input Port. Appendix p-

header_rotater: Subcomponent of the input_port. Implements the

data multiplexer and the control circuit. Appendix

R523 . [

output_port: Implements the Output Port. Appendix p-
access_control: Implements the STG for the access control circuit.

The Petrify equations is included in the source file.

Appendix @ p- @

mutex4: Implements the four-input mutex component. Ap-
pendix p- {160
merge4: Implements the merge component. Appendix[A.5.2.9]

p.[167

The router is implemented with a configurable flit size. The flit size is defined
in the types.vhd file along with other global constants. types.vhd is found in

appendix [A.5.5.8] (p. [254)).

The encoding of the routing direction used in the header flit is the following:
North = "00"

East = "o1"
South = "10"
West = "11"

As mentioned in the design, the local port is reached by routing the flit back in
the same direction it came from.

The area utilization of each component is listed in tabel The number of
utilized LUTs is excluding delay elements. Thus the total area utilization of the
router is 1295 LUTs and 330 latches The percentage of the LUTs that are used
for delay matching is 29%.
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Component LUTs Latches Delay elements
FIFO stage 3 32 15
Input port 47 2 22
Output port 130 0 24
Access Control 5 0 0
Mutex 24 0 0
Merge 86 0 0
Router 915 330 380

Table 5.1: Area utilization of the router components.
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5.2 Network Adaptor

The implementation of the Master NA and Slave NA is divided into 10 VHDL
entities. The implementation follows the structure from the design presented in
section[d.3|on page[64] The VHDL files implementing the components are found
appendix in The entities is listed below along with a short description:

Master NA
master_na: The top-level entity. Appendix p.

e

ocp_master_transfer_unit: The transmit CI. Appendix p-
ocp_master_receive_unit:  The receive CI. Appendix p-

route_lookup_tables: VHDL package with constants that spec-
ifies the route lookup tables. Appendix

[-5.5.9p- 255
Slave NA
slave_na: The top-level entity. Appendix p.

e

ocp_slave_transfer_unit: The transmit CI. Appendix p. m
ocp_slave_receive_unit: The receive CI. Appendix p-

Common for both NAs
async_transmitter: The transmit NI. Appendix[A5.3.7]p.

async_transmitter_hs_ctrl: Implements the STG for the control circuit
for the transmit NI. The Petrify equations
is included in the source file. Appendix

A.5.3.8p. [190

async_receiver: The receive NI. Appendix p. W
async_receiver_hs_ctrl: Implements the STG for the control circuit

for the receive NI. The Petrify equations
is included in the source file. Appendix

[A.53.10p- [19%

The route lookup table in the Master NA is implemented as a ROM using the
Block RAM resources available on the FPGA. Block RAM can be included in
two ways: inferred by HDL or instantiated as an IP core generated by the Xilinx
Core Generator. When the ROM is inferred by HDL it is much easier to change
the content of the ROM. Therefore that approach has been chosen. The initial-
ization values for the ROM is included in the file route_lookup_tables.vhd as
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Component LUTs Latches Delay elements
Master NA 197 116 12
Slave NA 115 220 12

Table 5.2: Area utilization of the Master NA and Slave NA.

VHDL constants. The initialization values are passed to the Master NA entity
as a VHDL generic.

In the implementation of the async_transmitter STG the C-elements cscl and
csc2 must be initialized to 1 during reset to avoid a glitch on the acknowledge
signal for the OCP Transmit Units (sync_ack_in). The reset value of the two
C-elements is not included in the list of set/reset values in the implementation
specification by Petrify. In the reset state of the circuit the inputs to the two
C-elements should set their outputs to 1. If they are reset to 0 the glitch is
introduced in the moment the reset is removed.

The async_transmitter receives a packet_type signal. This is not used since it
always transmits four flits.

During post place and route simulations a glitch is observed on the sync_ack
signal generated by the Receive CI for both NAs. The signal is used in asyn-
chronous components, so it must be hazard free. The glitch happens because the
signal is not directly connected to the output of a flip-flop, but passes through
combinatorial logic. The glitch is removed by the insertion of a de-glitch flip-
flop.

The area utilization of the Master NA and the Slave NA is listed in table
The number of utilized LUTs is excluding delay elements. Also, Block RAM
usage is not included in the table.

5.3 Traffic Generator

The implementation of the Traffic Generator is divided into 2 VHDL entities.
The implementation follows the structure from the design presented in section
[4:4] The VHDL files implementing the components are found in appendix[A.5.4]
The entities are listed below:
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traffic_source: The Traffic Source. Appendix p.
traffic_sink: The Traffic Sink. Appendix p- 1206

source_rom_data: = VHDL package that specifies the flit data used by

the Traffic Source. Appendix P

The flit data is implemented in a Block RAM based ROM using the same ap-
proach as in the NA and the flit data is specified in the file source_rom_data.vhd.

The ChipScope ILA core that is used in the sink to collect the data can be
inserted into the design in two ways. The ChipScope software can generate the
ILA cores which can be instantiated in the design in the normal way. ChipScope
can also insert the cores in the design by inserting them in the synthesized net-
list automatically. The last method is a lot easier since no changes is needed in
the VHDL code. However, the last method can not be used in this case. The
synthesizer will remove the data signals from the handshake channel because
they are not connected to anything in the traffic sink, thus they will not be in
the synthesized net-list. Therefore the ILA cores are instantiated manually in
VHDL. Along with the ILA core an ICON control core must also be inserted
in the design. The ICON core handles the communication with the ChipScope
software over the JTAG interface.

The falling edge of the request signal is used as clock input for the ILA core.
This signal must be routed on the dedicated clock nets for the core to work.
This is done by inserting a clock buffer (BUFG) on the signal.

The Traffic Sink contains a delay element to delay the acknowledge signal. If
this delay is not sufficiently large the ILA core will not work properly. A size of
10 is found to work. The ChipScope documentation says it supports frequencies
of up to 500 MHz, thus a delay should not be required. It is expected that the
ILA core fails because it expects a “real” clock signal but it is clocked with the
request signal that does not have a regular period.

The ChipScope cores contains a bug so that they will not work with bus width
larger than 16. The error only happens with some designs and is not officially
recognized by Xilinx. The bug results in an DRC error during the mapping
process. In another post in the Xilinx Community Forums the same issue is
reported [36]. It has not been possible to determine the exact source of the
error.



CHAPTER 6

Asynchronous
Network-on-Chip Test

6.1 Introduction

The NoC components are tested to ensure that they work as intended. The
individual components are tested by post place and route simulations in Mod-
elsim. The router is also tested by running an on-board test using ChipScope.
The primary goal of the tests is to documents that the components works, but
performance is also briefly evaluated.

For component simulation a source and sink simulation component is used to
generate traffic. The VHDL components are found in appendix and
For the simulation and on-board test of the router the traffic generator
presented in section is used.

6.2 FIFO

The FIFO is simulated by attaching a source to the input and a sink to the
output. The depth of the FIFO is set to 12, so a total of 6 valid tokens can
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be in the FIFO simultaneously. The FIFO is the only state-holding component
in the router, so the throughput of the FIFO sets an upper bound for the
throughput of the router. To measure the maximum throughput the source/sink
produces/consumes tokens as fast as possible, i.e. there is 1 ps between the
receival of the acknowledge/request, to the assertion of the request/acknowledge.

The period, P, of the FIFO is the delay between the input of a valid token
and the input of the next valid token [24]. The period is found by measuring
the delay between subsequent assertions of the request header signal and then
divide by three. This is done because there are small variations in the period
for the three request types, thus the average period is measured.

The period of the FIFO is found to
PFIFO = 372/3 = 12.4ns
Which is equivalent to a throughput of 80.6 MHz.

The Modelsim print of a part of the simulation is found in appendix [A227]

6.3 Input Port

The purpose of the simulation is to validate that the Input Port latches the
routing direction from the header flit correctly and that the header is correctly
rotated. A source is attached to the input and a sink is attached to each output.
The source sends a 3-flit packet targeted for each output.

The Modelsim print of the simulation is found in appendix [A:2:2]

6.4 Output Port

The purpose of the simulation of the Output Port is to validate that the arbi-
tration between contending inputs works correctly. A source is attached to each
input and a sink is attached to the output. The sources asserts their header
request signal simultaneously and the Output Port should arbitrate between
the inputs and let them through to the output one at a time. Each source sends
a 3-flit packet. The Perl script to correct the mutexes must be used to run the
simulation.

The Modelsim print of the simulation is found in appendix
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6.5 Router

The router is tested with the Traffic Source and Traffic Sink presented in section
This design is tested both in simulation and on the FPGA using ChipScope
to collect the data at the sinks. These tests are done with a flit size of 16 bits,
due to the problems with ChipScope and large busses mentioned in section [£.4]
The ILA cores must be instantiated in the top-level VHDL component. The
router entity with inserted ChipScope cores can be found in appendix [A75.2.10]
(p. [164]).

A source is connected to each input FIFO and a sink is connected to each output
FIFO of the router. The depth of the FIFOs is 1. The sources repeatedly
transmits a 3-flit packet to the Output Ports in the following sequence:

North — FEast — South — West — North — ...

When the destination is the same as the source, the packet will be routed to
the local port. In this way it is tested that the router routes the packets in the
correct direction and also arbitration is tested. The source data for the traffic

generator is found in appendix |A.5.4.3] m -

The Modelsim print of the simulation is found in appendix [A.2.4 and
the data captured by the ChipScope sinks is found in appendix [A.2.5] A -
The ChipScope plot is exported to the VCD file format and dlsplayed using
Modelsim. Only the beginning of the test is included in the plots.

For the simulation it is not needed to use the Perl script to correct the mutexes.
Due to different wire delays the requests arrives with a large enough temporal

distance so that the mutexes does not start to oscillate.

The ChipScope test does not give any temporal information of how flits traverses
the net. It only lists the sequence with which the flits arrives at the sinks.

It is interesting to note that the sequence with which packets arrives at the
sink is different for the simulation and the on-board test. This must be due to
different arbitration result.

The period with which the sinks consumes flits is approximately

Prouter = 70/3 = 23.3ns

This is equivalent to a throughput of 43 MHz. The period varies with about 1-2
ns between the output ports.
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6.6 Network Adaptor

The NAs are tested in simulation by connecting a Master NA and a Slave NA
through the NIs. A simple OCP master simulation module is connected to the
OCP interface of the Master NA and a simple OCP slave simulation module
is connected to the OCP interface of the Slave NA. The simulation modules is
found in appendix[A.5.6.3|and [A.5.6.4 The OCP master issues a write command
followed by a read command. The OCP slave accepts the write command and
issues a response to the read command which is sent to the OCP master.

Note that this test is rather simplified, e.g. it does not test the case where
another request arrives while processing a previous request.

The Modelsim print of the simulation is found in appendix



CHAPTER 7

Asynchronous NoC-Based
MPSoC Prototype

7.1 Introduction

A small GALS type multi-processor SoC prototype has been developed to demon-
strate the NoC. The system is based on a previous system developed in the
project A NoC-based SoC Executing a Ray Tracer, using Synchronous Multi-
processing at IMM, DTU [22]. In that project an FPGA implementation of a
synchronous NoC-Based SoC that executes a distributed ray tracer application
is presented. The primary goal with the prototype is to demonstrate the NoC,
hence the application which is executed on the system is less important. By
choosing an existing system as the basis for the prototype the “plug’n’play”
functionality of the NoC is demonstrated.

7.2 Synchronous NoC-Based SoC

This section will present the cores used in the synchronous NoC-Based SoC
presented in [22], which is used as the basis for the MPSoC prototype.
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The SoC consists of multiple CPUs communicating using a shared memory
space, in which peripherals are mapped into. The system contains five CPUs,
two RAMs, a semaphore unit, and a UART. OCP is used as the interface be-
tween the cores and the NoC.

The OpenRISC 1200 (OR1200) CPU from OpenCores [19] is used in the system.
It is a 32-bit processor with a 5-stage pipeline. The CPU has an optional cache
system, that has been disabled.

Synchronization methods are not supported by the OR1200, so a memory mapped
semaphore unit provides the required synchronization methods. The semaphore
is acquired using OCP read requests, and write requests are used to release the
semaphore. The result of a semaphore request is transmitted in a read response,
i.e. has the semaphore been acquired or not. A busy waiting scheme is used, thus
a core must keep polling the semaphore unit until the semaphore is acquired.
This generates a lot of unnecessary traffic, but is very simple to implement.

The UART is used to communicate with the outside world over a serial interface.
The UART implementation is also from OpenCores.

The RAMs are implemented using the Block RAM resources available on the
FPGA.

The UART and OR1200 is from OpenCores. Therefore they use the WISH-
BONE interface. OCP wrappers for the cores are used to convert from the
WISHBONE interface. The OR1200 has separate data and instruction memory
interfaces. The OCP wrapper merges these into one interface, so it can be con-
nected to the NoC using a single socket. An OCP wrapper is also provided for
the Block RAM interface.

Two applications has been developed for the system. The first is a simple “Hello
World” program where each CPU sits in an infinite loop and writes messages
to the UART. No data is exchanged between the CPUs. The semaphore for
the UART is acquired and released for each message. This program can be run
with 1-5 CPUs and only 1 RAM. The second application is the full ray tracer
application which requires 5 CPUs and 2 RAMs.

The system is implemented on a Xilinx Virtex-1I FPGA.
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7.3 MPSoC Overview

As much as possible from the base system have been reused in the implementa-
tion of the prototype. Because both systems are OCP based, all the cores can
be reused with no modifications. Also, the source code for the applications can
be reused without modifications. Naturally the type of interconnect is invisible
from the software abstraction level.

Due to exhaustion of resources on the FPGA it has not been possible to fit the
complete system on the FPGA. It has only been possible to fit a system with
three CPUs, one RAM, semaphore, and UART on the FPGA. The possible uti-
lization percentage of the FPGA resources is lower than expected. This is more
thoroughly explained in section As a consequence only the “Hello World”
application can be executed on the system. This is a very simple application,
so parallelism in the NoC is not so thoroughly demonstrated as it would have
been if the complete system could be used. However, it is still sufficient to
demonstrate the NoC.

7.4 MPSoC Design

For the design of the MPSoC system the topology is designed to be used with
the complete system. Therefore the topology is designed for a system with five
master cores and 4 slave cores. It is required that all master cores are able to
communicate with each of the slave cores. The cores are connected in a 3x3
mesh topology as shown in figure

The UART and the semaphore is both connected to router 5. The UART is
connected to the local port, while the semaphore is connected to the unused
east port. The semaphore is not connected to the unoccupied router 6 because
it makes it simpler to ensure deadlock freedom in the system.

Deadlocks may occur in the system due to dependencies in the network and due
to dependencies between the cores in the system. In [I2] deadlock problems in
NoC-based system is covered.

Network deadlocks occurs due to cyclic dependencies in the network. As ex-
plained in section [3:2.3] they can be solved by different methods, e.g. by using
xy-routing. Even if a system is free from network deadlocks, the complete sys-
tem may not be deadlock free. Deadlock freedom in the network assumes that
when a packet reaches the destination-NI, the NI will eventually consume the
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Figure 7.1: Topology with five CPUs, two RAMs, one UART, and one
semaphore.

packet. If this is not the case, the system may deadlock. This situation can
happen due to message-dependencies between the cores in the system.

In this system request-response message-dependencies may exist between the
master cores and the slave cores. A request-response dependency arises if an
incoming request at the slave NI blocks the transmission of a response. The
buffers behind the blocked request, will fill up and the system will deadlock.
Request-response dependencies can be solved by ensuring that enough buffer
space is available at the NIs. The buffers should be so large, that they will
never fill up. The CPUs used in this system has maximally one outstanding
request, because Read requests are blocking. If all CPUs issues a write request
followed by a read request destined for the same core, a maximum of 10 packets
is possible at each Slave NA. Thus, the buffers at the Slave NAs must fit at least
10 packets, to assure that they never will fill up.

The dependencies can also be resolved by using independent request and re-
sponse networks. Separating the request and response networks is done by
only allowing each (unidirectional) link to transfer either request packets or re-
sponse packets. Using this approach an incoming request is never able to block
the transmission of a response. The separation of channels can be done either
physically or logically by using virtual channels. The individual request and
response networks must still be free from routing deadlocks.

To ensure deadlock freedom in the MPSoC system, physically separated request
and response networks are used. If zy-routing is used in the independent request
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Figure 7.2: Request and response net.

Peripheral Address Space

UART 0x80000000 - Ox8fFfEftf
Semaphore  0x40000000 - Ox4fFfFftf
Memory all others.

Table 7.1: Assigned address spaces for peripherals.

and response networks, the system is ensured to be deadlock free, as explained
above. In figure the separated request and response networks for the system
is shown. Each link is marked with the master cores that uses it.

It is sufficient that the buffer capacity of each router is one flit. Therefore the
depth of the input and output FIFOs is set to 1. Due to the un-decoupled latch
controllers two handshake latches are needed to store one flit.

For the “Hello World” application the MEM1 memory core in figure is not
needed. Thus, the system has three memory mapped peripherals. The assigned
address space for each peripherals is listed in table

7.5 MPSoC Implementation

A design with three CPUs, one RAM, one UART, and one semaphore running
the “Hello World” application is implemented. To be able to fit the design on
the FPGA the mesh is reduced to a 3x2 mesh. From figure[7.1] the implemented
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system contains the following cores CPUO, CPU1, CPU2, MEMO, UART, and
SEM. The routers R6, R7, and R8 has been removed. With only three CPUs
and one RAM in the system the three removed routers is not used anyway, so
the original routing within the topology can be kept.

The “Hello World” application is implemented in C and the source code is found

in appendix

The following VHDL entities are used in the implementation of the prototype:

MPSoC_noc: The top-level entity. Appendix p-

noc_mesh: A 3x2 mesh of routers. Appendix @ p. @

0r1200_ocp: OCP wrapper for the OR1200. From [22]. Appendix
P

or1200_mem_if: Used in the OR1200 OCP wrapper to merge the in-

struction and data interface. From [22]. Appendix

B.554p. P44

core_mem_ocp: OCP interface for Block RAM cores. From [22]. Ap-
pendix @ p- @

semaphore_ocp: Semaphore unit. From [22]. Appendix p-

uart16550_ocp: I2Oig}P wrapper for the UART core. From [22]. Ap-
pendix @ p- @

types: VHDL package that specifies global constants. Ap-
pendix p.

MPSoC_noc.ucf The User Constraints File (UCF) where the clock

and tig constraints are assigned. Appendix[A.5.5.10

p- 255

Not included in the list above is the entities for the OR1200 and UART core
from OpenCores and the entities implementing the routers and NAs presented
in chapter [

To make a GALS-like system, two different clocks are used: clk; = 40 MHz
and clky = 16.6 MHz. The FPGA development board has a single 100 MHz
oscillator. It is equipped with an external clock divider that feeds the FPGA
with three different clock frequencies. Because the clocks are derived from the
same oscillator, they cannot be considered to be completely independent. The
clocks are further divided using the Digital Clock Managers (DCMs) available
on the FPGA. clk; is used for CPUO and CPU1 and clks is used for CPU2 and
the slave cores.
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CPUs Routers LUT Util. Run-Time

1 1 19% 12 mins.
2 1 30% 22 mins.
1 9 41% 23 mins.
3 6 65% 96 mins.
2 9 67% 270 mins.
3 9 73% 2430 mins/[]

“Map failed. Utilization numbers are post-synthesis.

Table 7.2: Mapping run-time observations for different configurations, ordered
by run-time.

To exclude the asynchronous components from timing analysis the tig con-
straint is used as explained in section The tig constraint is applied to
all signals in the noc_mesh entity using a wildcard in the UCF file. tig is
also applied to the signals in the NAs that crosses from the synchronous to the
asynchronous domain.

The reported maximum frequencies for the two clocks are:

clky = 59.6 MHz
C”fg = 49.6 MHz

The implementation of this down-scaled system utilizes 52% of the LUT re-
sources.

As previously mentioned it has not been possible to fit the desired system on
the FPGA. With increasing design sizes the run-time of the mapping process
increases significantly and eventually it fails completely. A number of observa-
tions has been collected about the relation between the LUT utilization ratio
and the mapping run-time for different configurations. These are shown in table
It has not been possible to fit a design that utilizes more than 67% of the
LUTSs. After the observations in table[7:2] was collected, an error was discovered
in the implementation of the FIFO stageE Correcting this error resulted in a
significant decrease in the required delay sizes. With the reduced delay elements
a design with 3 CPUs and a 3x3 mesh only uses 62% of the LUTs. This design is
able to pass the mapping process but the place and routing process fails. Place
and route fails with an error that the design is too dense.

It has not been possible to find any documentation from Xilinx that suggests
whether these observations are normal or not. However, in a white paper pub-

IThe error was previously mentioned in section on page
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lished by Altera [3] (Altera is a competing FPGA supplier) they claim that they
are not able to fit (synchronous) designs larger than 65% on a Xilinx Virtex-5
FPGA.

The observations by Altera suggests that there is a general problem with ob-
taining high resource utilizations on the FPGA. However it also seems that the
NoC interconnect utilizes a high amount of the routing resources which lowers
the possible utilization ratio even further.
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7.6 MPSoC Test

The MPSoC prototype is tested by simulation and by an on-board test.

For the simulation three Modelsim prints are included:

1. CPUO sends a Read Request and receives a Read Response.

2. The three CPUs are issuing Read Requests and are blocked by congestion
on the network.

3. MEMO receives a Read Request and sends a Read Response.

The shown parts of the simulation does not provide complete documentation of
correct behavior of the system. It is only meant to illustrate key points in the
simulation. It has unfortunately not been possible to make the Modelsim prints
so it is possible to see the flit data.

In appendix[A-3.1] the simulation of case 1 is showed. The CPU sends out a Read
Request on the OCP interface. The Read Request is accepted by the Master
NA and transmitted onto the network. The Master NA is blocked during the
transmission of the end flit due to congestion on the network. After a while the
Master NA receives the response and presents it on the OCP interface.

In appendix the simulation of case 2 is shown. The transmit NIs of the
three CPUs are shown. They all sends Read Requests onto the network. During
the transmission they are blocked by congestion on the network.

In appendix[A.3.3]the simulation of case 3 is shown. The CI and NI of the MEMO
Slave NA is shown. The Slave NA receives a Read Request and presents the Read
Request at the OCP interface to the MEMO core. The core makes a respond
and the NA sends a Read Response onto the network. From the simulation it
can be seen that the Slave NA has a bug that causes it to present the same
request again on the OCP interface after the transmission of the response. The
core makes a response to the request but it is not transmitted onto the network.
This bug does not cause any failures in this system but it might do in other
systems.

For the onboard test the FPGA is connected to a PC using the serial interface.
The port setting for the serial interface is set to 115200 bps, 8 data bits, one
stop bit, and no parity bit. After programming and reset of the FPGA the
messages from the CPUs is received on the serial interface of the PC. Figure[7.3]
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RealTerm: Serial Capture Program 2.0.0.43
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Figure 7.3: Screenshot showing the output when the “Hello World” program is
running.

shows a screenshot from the terminal program when the “Hello World” program
is running on the FPGA.



CHAPTER 8

Discussion

In this chapter the outcomes of the project will be evaluated along with proposals
for possible future work.

8.1 Evaluation

The primary outcomes of the project is a general design flow for implementing
asynchronous circuits on Xilinx FPGAs and an FPGA implementation of an
asynchronous NoC. In the following these will be discussed.

The primary issues with implementing asynchronous circuits on FPGAs is to
control the timing of the design. The delay elements have fluctuations in the
produced delay and fluctuations have also been observed in the delay of the
datapath. Acceptable predictability of the delay elements have been achieved
by using placement constraints. It has proved to be harder to control the delay
of the datapath. The methods that is used on synchronous designs to provide
fine grained timing control of the datapath has not been found to be useful for
asynchronous designs. In the project sufficiently large delays have been used
to allow fluctuations in the delay of the datapath. In the implementation of
the components the delay sizes are defined per component and is thus the same
for all instantiations of the component. If tighter delay fitting is required, the
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delays must be defined individually for each instantiation of the component. The
delays can then be fitted in an iterative process. This will be very cumbersome
to do without any tool aid. The Xilinx tools provides a method for performing
incremental changes in the floorplan called SmartGuide. SmartGuide uses a
previously place and routed design as a guide for the place and route process
to achieve a similar placement and routing of the design. This method is not
meant to be used after re-synthesis, but the Xilinx documentation says that it
can be used if the synthesized netlists only differs slightly. For improved delay
matching another design of the delay element can also be considered. A delay
element where the size of the delay can be changed without altering the floorplan
will minimize the effects of delay fluctuations in the datapath. A design with a
locally clocked counter with a reset value stored locally using distributed RAM
(LUTSs used as RAM resources) will have this property. The counter could be
clocked by an inverter chain implemented in LUTs. The design of such a delay
element will most likely be larger than the relatively small delay chains used in
this project but it will improve the performance.

In the implementation of the NoC latches are used to store data which is the
normal approach used in asynchronous design because latches are less resource
extensive compared to flip-flips. On an FPGA flip-flops and latches are equally
expensive. By using flip-flops instead of latches it will be possible to relax some
of the timing restrictions. For example, in the implementation of the input port
the requirement of broad data validity can be relaxed by using a rising-edge
triggered flip-flop to store the routing direction. In the FIFO stage flip-flips
clocked on the rising edge of the request signal could also be used. This will
provide broad data validity at the output of the FIFO stage without having
to OR with the acknowledge signal. However this may require larger delay
elements because the data will not be able to propagate through the flip-flop
prior to the rising edge of the request signal, as it will in the case of a latch, due
to the transparency of the latch.

In the design of the router a broad data validity scheme has been consequently
used for all components, although it is only the input port that requires it. The
FIFOs will accept early data validity so the input port and the output port does
not have to provide broad data validity at their outputs for correct functionality.

To encode the flit type the NoC uses additional request signals in the handshake
channel instead of appending the flit type to the flit data. This design simplifies
the design of the router and also lower latency is achieved. However it also
increases the complexity of the merge and FIFO stage components of the router
because they must handle two extra request signals. Another disadvantage is
that the number of delay elements increases from one to three for a handshake
channel. Considering the issues with delay matching it may prove to be a better
solution to append the flit type to the flit data. There has not been experimented
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with the other approach so whether it is a better solution is unknown.

In the simulation of the prototype a bug was found in the Slave NA when Read
Requests are processed. The bug do not cause any errors in the prototype, but
if it is used with other cores it might lead to errors. In general it is believed
that the design of the NAs can be improved in terms of both performance and
area.

For the implementation of Petrify circuits two alternatives exists. Either a LUT-
implemented C-element or a SR latch can be used as state-holding elements. In
the project it was chosen to use C-elements for Petrify circuits and no issues
have been encountered with this approach. On the other hand it should be
noted that using SR latches theoretically is a more robust solution since it is a
well-defined FPGA primitive in contrary to the LUT-implemented C-element.

During the implementation of the prototype it turned out that it was hard to
reach a high utilization of the logic resources on the FPGA. It is unclear whether
it is a general problem or specific for asynchronous design. There seems to be
a general problem with obtaining high utilization ratios for the used FPGA
but there are also indications of that the asynchronous implementation of the
NoC utilizes a considerable amount of routing resources and thereby increases
the utilization issues. Reducing the utilization of routing resources in the NoC
can be done in mainly two ways: simplify the topology or reducing the flit
size. The mesh topology used in the prototype is one of the simpler topologies.
Alternatively a unidirectional torus could be used which will use about half of
the resources compared to a mesh topology. The fewer links in the topology will
result in higher utilization ratios of the links and thereby degrading performance.
Also, it will be harder to ensure deadlock freedom in the topology without using
virtual channels. By reducing the flit size the width of the handshake channels
decreases, and thereby lowering the utilized routing resources. Also, the buffer
sizes in the routers will be reduced. Naturally by decreasing the flit size the
number of flits in a packet will increase thus, the packet latency through the
network will increase. Another possibility of reducing the complexity of the
system is to use simple traffic generators as traffic sources instead of full-fledged
CPUs. To get a traffic generator to act like a CPU a more complex design than
the traffic generators presented in this report is needed. The traffic generators
should implement a state machine such that they can react dynamically to the
traffic in the network.

The issues with low logic utilization affects the usability of the FPGA as a
platform for prototyping asynchronous NoCs. Considering that it is a fairly
simple NoC that has been implemented the possibility of prototyping more
complex NoCs on the FPGA is degraded unless the utilization issues are solved.
Prototyping more complex NoCs will require a larger FPGA. The version of the
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Virtex-5 FPGA that have been used for the project is one of the smaller FPGAs
in the Virtex-5 product line. The largest Virtex-5 has about 6 times as many
slices. It can also be considered to try FPGAs from other manufactures.

8.2 Future Work

The implementation of the NoC is very basic, thus there are many possibilities
for extending it. Some of the more interesting are listed below:

Virtual Channels An obvious extension to the NoC is the addition of VCs.
All the design primitives to add VCs is available, so it is only a matter
of adding additional buffers at the links along with some control circuitry.
This addition should be a fairly trivial task.

Differentiated services A more complex extension is to extend the NoC to
provide differentiated services. Differentiated services can be provided
by having different service levels where high priority streams can take
over lower priority streams. This can be implemented using VCs. To
implement hard service guarantees connection-oriented routing must be
used. In the MANGO NoC connection-oriented routing to provide hard
guaranteed services are implemented by creating a virtual circuit using a
series of connected virtual channels.

Fully de-coupled latch controllers The latch controllers used in the imple-
mentation of the FIFOs are simple un-decoupled latch controllers. Un-
decoupled latch controllers is only able to store valid data in every second
latch in FIFO. By using Semi or fully de-coupled latch controllers valid
data can be stored in every latch, thus the number of handshake latches
can be reduced by a factor of two. A fully de-coupled latch controller will
be able to take advantage of the asynchronous delay element for improved
performance.

Reliability of mutex The MTBF of the mutex component is unknown. The
mutex is implemented solely using LUTs, thus the possibility of metasta-
bility failures may prove to be high. To investigate the reliability of the
mutex experiments can be performed where the mutex is repeatedly put
into metastability over a long time period. Also an analysis of the fairness
of the mutex can be performed.

Delay elements As mentioned in the previous section a different design of the
delay element can be considered.
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Conclusion

The purpose of the thesis has been to implement an asynchronous NoC pro-
totype on an standard FPGA. The previous work about implementing asyn-
chronous circuits on FPGAs is very limited thus a major part of the project have
been to develop a general design flow for the implementation of asynchronous
circuits on FPGAs.

A simple asynchronous best-effort NoC have been developed. The NoC consists
of a router, a slave NA, and a master NA. The router is designed to work in
a mesh topology and uses wormhole routing. Deadlock freedom is assured by
using zy-routing and source routing is used. A packet can consist of an unlimited
number of flits. To identify the beginning and end of a packet three flit types
is used. The flit type is encoded by adding two additional request signals to
the handshake channel. The NAs provides an OCP interface for the cores to
connect to the network. Synchronization is handled using a simple two flip-flop
synchronizer. The area usage of the router is 1295 LUTs and 330 latches where
29% of the LUTs is used by delay elements. The throughput of the router has
been measured to be 43 MHz.

A small multi-processor prototype utilizing the asynchronous NoC have been
developed. The prototype consists of three CPUs and three peripheral units
which are connected by a 3x2 mesh topology. To assure that the system is free
from message-dependant deadlocks a separate request and response net is used.



100 Conclusion

It has not been possible to fit a larger design on the FPGA. It has proven to
be hard to reach a high utilization of the logic resources on the FPGA. It is
suspected to be due to exhaustion of the routing resources. It is unclear if the
implementation of the asynchronous NoC is due to these issues. There seems
to be a general problem of reaching high utilization figures for the FPGA that
has been used for the prototype. However, there are also indications that the
implementation of the asynchronous NoC increases this problem.

The primary issues for implementing asynchronous circuits on FPGAs is the
delay matching process. Also, unwanted optimizations by the design tools have
been problematic. To optimally delay match a circuit the predictability of the
delay of the delay element and the delay of the datapath must both be high. By
using relative placement constraints in the design of the delay element satisfying
predictability have been achieved. To reduce the fluctuations in the delay of the
datapath it has been tried to create macros with locked placement of the design
primitives. Due to unresolved problems with the design tools it has not been
possible to create such macros. As a consequence it is needed to add extra delay
during delay matching. It is not possible to turn off the logical optimizations
performed by the design tools. They can be somewhat controlled by the use
of different settings and constraints. For carefully designed circuits such as the
circuits synthesized by Petrify is has the consequence that it is necessary to do
the LUT mapping and placement manually. For other circuits it has not proven
to be a large issue.
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APPENDIX A

Appendices

A.1 Perl SDF script

#!/usr/bin/perl
#Run script on sdf file to fix simulation problems with the mutecz

if ($#ARGV < O || $#ARGV > 1) { # 1 or 2 arguments note: $#ARGV is the
#subscript of the last element in QARGV
print "Usage: sdf.pl <input file> [<output file>]\n
If <output file> is not specified <input file>
will be used as output file.\n";
exit;

}

$input_file = QARGV[0];
$output_file = $input_file;

#If <output file> specified
if ($#ARGV = 1) {

$output_file = Q@ARGV[1];
¥

print "Input file:\t$input_file\n";
print "Output file:\t$output_file\n";

#0pen sdf file for reading
open(sdf_file, $input_file) || die "Could not open $filename
for reading: $!\n";
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Appendices

#Load file into string array

Q@lines = <sdf_file>;

#Close file
close sdf_file;

#0pen sdf file for writing,
">$output_£file") ||

open(sdf_file,

$instance = 0;
foreach $line (@lines) {

#Match Instance

reusing stdout

die

"Could not open $filename
for writing: $!\n";

if ($line =~ /INSTANCE.+nand_1\)/) {
$instance = 1;
print $line; #Debug

}

if ($instance == 1) {
#Replace "PORT ADR4 (zzz) (zzz))" with
$line ="
#Replace "IOPATH ADR4 0 (zzz) (zzz)" with
$line =~
#print $line; #Debug

}

#Match end of instance: " )"

if ($line =7 /"\s+\)/) {
$instance = 0;

¥

print sdf_file $line;
}

close sdf_file;
print "Done!\n";

"PORT ADR4 ( 0 )( 0 ))"
s/PORT ADR4 \(.+\)\(.+\)\)/PORT ADR4 \( 0 \)\C 0 \)\)/;

"IOPATH ADR4 0 ( 0 )( 0 ))
s/(IOPATH ADR4 0) \C.+\)\NC.+\)\)/%1 \NC 0 \ONC 0 \D\)/;
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NoC Tests

A.2 NoC Tests

A.2.1 FIFO
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A.2.2 Input Port

Flit Type Input Expected Output
rh 0x00000001 0x00000004
ri 0x00000002 0x00000002
re 0x00000003 0x00000003
rh 0x40000011 0x00000045
ri 0x00000022 0x00000022
re 0x00000033 0x00000033
rh 0x80000111 0x00000446
ri 0x00000222 0x00000222
re 0x00000333 0x00000333
rh 0xc0001111 0x00004447
ri 0x00002222 0x00002222
re 0x00003333 0x00003333
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NoC Tests
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A.2.3 Output Port

Flit Type Input Expected Output
rh 0x00000001 0x00000001
ri 0x00000011 0x00000011
re 0x00000111 0x00000111
rh 0x00000002 0x00000002
ri 0x00000022 0x00000022
re 0x00000222 0x00000222
rh 0x00000003 0x00000003
ri 0x00000033 0x00000033
re 0x00000333 0x00000333
rh 0x00000004 0x00000004
ri 0x00000044 0x00000044
re 0x00000444 0x00000444
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A.2.4 Router Simulation

Source Dest. Flit Type Input Expected Output

North East rh 0x4550 0x1541
ri OxAAAO OxAAAO
re 0x5550 0x5550

North South rh 0x8AAO 0x2A82
ri 0x5550 0x5550
re OxAAAO OxAAAQ

North ‘West rh 0xC550 0x1543
ri OxAAAO OxAAAQ
re 0x5550 0x5550

North Local rh 0x0AAO 0x2A80
ri 0x5550 0x5550
re OxAAAO OxAAAO

East North rh 0x4551 0x1544
ri OxAAA1 OxAAA1
re 0x5551 0x5551

East South rh 0x8AA1 0x2A86
ri 0x5551 0x5551
re OxAAA1L OxAAA1

East West rh 0xC551 0x1547
ri OxAAA1 OxAAA1
re 0x5551 0x5551

East Local rh 0x0AAL 0x2A85
ri 0x5551 0x5551
re OxAAA1 OxAAA1

South North rh 0x4552 0x1548
ri OxAAA2 OxAAA2
re 0x5552 0x5552

South East rh 0x8AA2 0x2A89
ri 0x5552 0x5552
re OxAAA2 OxAAA2

South West rh 0xC552 0x154B
ri OxAAA2 OxAAA2
re 0x5552 0x5552

South Local rh 0x0AA2 0x2A8A
ri 0x5552 0x5552

re OxAAA2 OxAAA2
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Source Dest. Flit Type Input Expected Output
West North rh 0x4553 0x154C
ri OxAAA3 OxAAA3
re 0x5553 0x5553
West East rh 0x8AA3 0x2A8D
ri 0x5553 0x5553
re OxAAA3 OxAAA3
West South rh 0xC553 0x154E
ri OxAAA3 OxAAA3
re 0x5553 0x5553
West Local rh 0x0AA3 0x2A8F
ri 0x5553 0x5553
re OxAAA3 OxAAA3
Local North rh 0x4554 0x1550
ri OxAAA4 OxAAA4
re 0x5554 0x5554
Local East rh 0x8AA4 0x2A91
ri 0x5554 0x5554
re OxAAA4 OxAAA4
Local South rh 0xC554 0x1552
ri OxAAA4 OxAAA4
re 0x5554 0x5554
Local Local rh 0x0AA4 0x2A93
ri 0x5554 0x5554
re OxAAAL OxAAA4
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A.2.5 Router On-Board
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A.2.6 Network Adapter

/master_slave_na_test_tb_vhd/clk_i
/master_slave_na_test_tb_vhd/reset_i

Master NA
/master_slave_na_test_tb_vhd/ocp_mcmd_i
/master_slave_na_test_tb_vhd/ocp_maddr_i
/master_slave_na_test_tb_vhd/ocp_mdata_i
/master_slave_na_test_tb_vhd/ocp_mbyteen_i
/master_slave_na_test_tb_vhd/ocp_scmdaccept_o
/master_slave_na_test_tb_vhd/ocp_sresp_o
/master_slave_na_test_tb_vhd/ocp_sdata_o
Slave NA
/master_slave_na_test_tb_vhd/ocp_mcmd_o
/master_slave_na_test_tb_vhd/ocp_maddr_o
/master_slave_na_test_tb_vhd/ocp_mdata_o
/master_slave_na_test_tb_vhd/ocp_mbyteen_o
/master_slave_na_test_tb_vhd/ocp_scmdaccept_i
/master_slave_na_test_tb_vhd/ocp_sresp_i
/master_slave_na_test_tb_vhd/ocp_sdata_i
Master HS Out
/master_slave_na_test_tb_vhd/uut/rh_out
/master_slave_na_test_tb_vhd/uut/ri_out
/master_slave_na_test_tb_vhd/uut/re_out
/master_slave_na_test_tb_vhd/uut/ack_out
/master_slave_na_test_tb_vhd/uut/data_out
Master HS In
/master_slave_na_test_tb_vhd/uut/rh_in
/master_slave_na_test_tb_vhd/uut/ri_in
/master_slave_na_test_tb_vhd/uut/re_in
/master_slave_na_test_tb_vhd/uut/ack_in

/master_slave_na_test_tb_vhd/uut/data_in

1

(5 Y B O B o R O R A

]

0o i

o

2 fo

oonoonoo 11111111 Joooo000f 44444444 )

w000 22222222 00000000

90 ns

o JF o JF Jo
0
00000000
0 1 fo
00000000 Jii111111 )
00000000 122222222 I
0 I Jo
[
0
00000000
[
[

00000000 I- T I X Toooooooo
00000000

o b bve oo bvvoar b bbb b
DO ns 200 ns 300 ns 400 ns 500 ns



NoC Tests 119

Imaster_slave_na_test_to vheek_i [ 1 LT T LI L LI LI LI LTl

/master_slave_na_test_tb_vhd/reset_i

Master NA

/master_slave_na_test_tb_vhd/ocp_memd_i 0

/master_slave_na_test_tb_vhd/ocp_maddr_i 00000000

/master_slave_na_test_tb_vhd/ocp_mdata_i 00000000

/master_slave_na_test_tb_vhd/ocp_mbyteen_i 0

/master_slave_na_test_tb_vhd/ocp_scmdaccept_o

/master_slave_na_test_tb_vhd/ocp_sresp_o 0 Xl X“
/master_slave_na_test_tb_vhd/ocp_sdata_o 00000000 =1
Slave NA
/master_slave_na_test_tb_vhd/ocp_mcmd_o 0 XZ XO
/master_slave_na_test_tb_vhd/ocp_maddr_o 00000000 l“ 100000000
/master_slave_na_test_tb_vhd/ocp_mdata_o 00000000 X:ﬂvw» XUOOOOUOO
/master_slave_na_test_tb_vhd/ocp_mbyteen_o 0 XF XO

/master_slave_na_test_tb_vhd/ocp_scmdaccept_i ‘

/master_slave_na_test_tb_vhd/ocp_sresp_i 0 Xl XO

/master_slave_na_test_tb_vhd/ocp_sdata_i 00000000 Xmsm‘(OOOOUOOO

Master HS Out
/master_slave_na_test_tb_vhd/uut/rh_out j
/master_slave_na_test_tb_vhd/uut/ri_out
/master_slave_na_test_tb_vhd/uut/re_out H

/master_slave_na_test_tb_vhd/uut/ack_out M

/master_slave_na_test_tb_vhd/uut/data_out l l l l X00000000

Master HS In

/master_slave_na_test_tb_vhd/uut/rh_in H

/master_slave_na_test_tb_vhd/uut/ri_in ﬂ_ﬂ
/master_slave_na_test_tb_vhd/uut/re_in ﬂ
/master_slave_na_test_tb_vhd/uut/ack_in H_ﬂ_ﬂ_ﬂ
/master_slave_na_test_tb_vhd/uut/data_in 00000000 X XXX XOODOOOOO

RN R N S N N A
600 ns 700 ns 800 ns 900 ns 1000 ns 1100 ns



120 Appendices

A.3 MPSoC Tests
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A.3.1 Casel
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A.3.3 Case 3
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A.4 RPM Forum Post

Hi,

I have some trouble when I try to generate a RPM using the floorplanner
tool in Xilinx. I’m trying to make a RPM from a quite large design but
cannot get it to work. Now I’m trying with a simplified sub-module of
my design (see below).

The merge_test entity is a simple demux with 3 select signals for each
data signal.

When I synthesize and implement in Xilinx ISE I use the standard
settings except that I unchecks the insertion of I/0 buffers and
trimming of unconnected signals.

After PAR I load the design into floorplanner and selects
floorplan->replace all with placement.

I get the first problem after executing "replace all with placement".
Two gates in the Design Hierarchy window is still unplaced! I have to
place them manually to get them included in the RPM.

Next issue:

When I count the number of LUTs showing up in floorplanner I only get
18 LUTs including the two unplaced gates. Two LUTs are missing!

So I loads the design into FPGA Editor and I’m able to locate all 20
LUTs. The four problematic LUTs are the 4 3-input OR-gates for or-ing
the select signals together.

The four problematic are all marked as "Route Through"s in FPGA Editor.

What are a route through?
How do I get all LUTs to show up and get placed in floorplanner so
I’m able to generate an RPM of the design?

The target is a Xilinx Virtex-5 FPGA.
Any help is appreciated.

Kind Regards
Jon Neerup Lassen

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity merge_test is
port (

a0,al,a2 : in std_logic;
b0,b1,b2 : in std_logic;
c0,c1,c2 : in std_logic;
d0,d1,d2 : in std_logic;

a_data : in  std_logic_vector(7 downto 0);
b_data : in  std_logic_vector(7 downto 0);
c_data : in std_logic_vector(? downto 0);
d_data : in  std_logic_vector(7 downto 0);
z_data : out std_logic_vector(7 downto 0)

)s



© 00O UthR W

VHDL Code

125

end merge_test;

architecture arch of merge_test is
signal a,b,c,d : std_logic;

begin

data_demux

: process(a0,al,a2,b0,b1,b2,c0,c1,c2,d0,d1,d2,

a_data,b_data,c_data,d_data)

begin

z_data <= a_data;

elsif (b0 or bl or b2) = ’1’ then

z_data <= b_data;

elsif (cO or cl or c2) = ’1’ then

z_data <= c_data;

elsif (dO or dl or d2) = ’1’ then

z_data <= d_data;
else
z_data <= (others => ’0’);
end if;
end process;

end arch;

A.5 VHDL Code

if (a0 or al or a2) = ’1’ then

A.5.1 Async Design Elements

A.5.1.1 as_bd_4p_delay.vhd

as_bd_4p_delay.vhd

-- Dewveloper

-- : Student: 5001434

-- Version 1.1
R by

-- Version 1.2
R by

-- : DTU,

-- Revision 1.0 2?2-22-04
- 1.1 05-01-06
-- : 1.2 08-11-07

Mikkel Stensgaard

Anders Tranberg-Hansen,
Esben Rosenlund Hansen,

Jon Neerup Lassen,

-- mikkel@stensgaard.org

s011509@student.dtu. dk
s011579@student.dtu. dk

s0203100@student . dtu. dk
Technical University of Denmark

Initial version

"Nicetfied" wersion and further a
wrong reference to lut in unisim
library fized. Added "after"-clause

which allows a delay in simulations.

The delay element can now be proper
simulated.

Using rloc constraints to control
placement of luts.
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library ieee;
use ieee.std_logic_1164.all;

library unisim;
use unisim.vcomponents.lut2;
use unisim.vcomponents.lutl;

entity as_bd_4p_delay is
generic (

size : natural range 1 to 30 := 10 -- Delay size
)
port (

d : in std_logic; -- Data 1in

z : out std_logic -- Data out
).

end as_bd_4p_delay;
architecture lut of as_bd_4p_delay is

component lut2
generic (
init : bit_vector := X"4"
)
port (
o : out std_ulogic;
i0 : in std_ulogic;
il : in std_ulogic
)

end component;

signal s_connect : std_logic_vector(size downto 0);
--signal d_inv,o_first : std_logic;
-- Synthests attributes - we don’t want the

-- synthesizer to optimize the delay-chain.

attribute keep : string;

attribute keep of s_connect : signal is "true"; --d_inv
attribute rloc : string;
begin

s_connect (0) <= d;

lut_chain : for index in 0 to (size-1) generate
signal o : std_logic;
type y_placement is array (integer range 0O to 29) of integer;
constant y_val : y_placement :=

(0,1,0,1,0,1,0,1,2,3,2,3,2,3,2,3,4,5,4,5,4,5,4,5,6,7,6,7,6,7);

attribute rloc of delay_lut : label is "XOY" & integer’image(y_val(index)
)

begin
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delay_lut: lut2

generic map(

init => "1
)
port map (
I1 =>d,
I0 => s_co
0 =>o

H

-- Simulate

000" -- And truth-table.

nnect (index),

delay of 1 ns.

s_connect (index+1) <= o after 1 ns;

end generate lut

z <= s_connect (s
end lut;

_chain;

ize-1);

A.5.1.2 as_bd_4p_c2.vhd

-- Dewveloper

-- Version 1.1
- by

-- Rewision

library ieee;
use ieee.std_logic

library unisim;

Mikkel Stensgaard -- mikkel@stensgaard.

Student: s001434

Anders Tranberg-Hansen, s011509@student
Esben Rosenlund Hansen, s011579@student

DTU, Technical University of Denmark

org

.dtu.
.dtu.

1.0 2?2-22-04 Initial version
1.1 05-01-06 "Nicetfied" wersion.
_1164.all;

use unisim.vcomponents.lut4_1;

entity as_bd_4p_c2
generic(

reset_value
)
port (
reset : in st
a : in st
b : in st
z : out st
)

end as_bd_4p_c2;

architecture lut o

is
bit := ’0’ -- Reset walue of output
d_logic; -- Reset (Active low)
d_logic; -- Input 4
d_logic; -- Input B
d_logic -- Output Z

f as_bd_4p_c2 is

-- Create the reset-wvector as a constant
-- using the generic "reset_wvalue".

constant rv : bi

t := reset_value;

dk
dk

constant reset_vector : bit_vector (7 downto 0) := rv&rv&rv&rv&rv&rv&rv&rv;
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-- Internal signals
signal s_out : std_logic;
attribute keep : string;
attribute keep of s_out : signal is "true";
begin
-- The logtical equation defining the C element ts:
-- out_MC = reset AND ((ina AND indb) OR
-- (out_MC AND (in_a OR 4in_b)))
c_element: lutéd_1
generic map (
init => "11101000" & reset_vector
)
port map (
i0 => a,
i1 => b,
i2 => s_out,
i3 => reset,
lo => s_out
)5
-- Connect the internal signals to the outputs
z <= s_out after 1 ns;
end lut;
A.5.1.3 as_bd_4p_mutex.vhd
-- Title as_bd_4p_mutex.vhd
-- Developer : Mads Kristensen, s061732@student.dtu.dk
-- : Jon Lassen, s020310@student.dtu. dk
-- DTU, Technical University of Denmark
-- Revision 1.0 22-05-07 Initial version
-- 1.1 15-12-07 Changed rlocs to fit a Virtezd

library ieee;
use ieee.std_logic_1164.all;
use ieee.math_real.all; -- for UNIFORM

library unisim;

use
use
use
use
use

unisim.
unisim.
unisim.
unisim.

unisim

vcomponents.lut3_1;
vcomponents.lut2_1;
vcomponents.lut3;
vcomponents.lut2;
.vcomponents.lut4_1;

--library as_fpga;
--use as_fpga.as_bd_4p.all;
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entity as_bd_4p_mutex is

generic (
reset_value

bit :=

°07;

seedl positive := 1;
seed2 positive := 1
)
port (
reset in std_logic;
rli,r2 in std_logic;
out std_logic

gl,g2

H

end as_bd_4p_mutex;

-- Reset walue of output
--0Only used for the random number generator for the behavioral

-— Architecture for <mplementation

architecture gate of as_bd_4p_mutex is

Reset (Active
in
mutex out

low)

using the generst

c "reset_wvalue".

Create the reset-vector as a constant

constant rv

bit :=
constant reset_vector

reset_value;
bit_vector (3 downto 0) :=

rv&rv&rv&rv;

attribute rloc

--for wirtezb

attribute
attribute
attribute
attribute

rloc
rloc
rloc
rloc

of
of

of

nand_1:
nand_2:
and_1:
and_2:

label
label
label
label

is
is
is
is

"X0YO";
"X0YO";
"X1Y0";
"X1Y0";

--for wvirtez2

attribute
attribute
attribute
attribute

rloc
rloc
rloc
rloc

begin

of mand_1:
of mand_2:
of and_1:
of and_2:

label
label
label
label

s
s
s
%5

"X0Y1";
"X0Y1";
"X0Y0";
"X0Y0";

-- 3-Bit Look-Up-Table with Local Output
-- performs logic function:

nand_1: lut3_1
generic map (
init => "O011
)
port map (
i0 => ri1,
il =>
i2 => reset,
lo => ol
)

1" & "1111

02_delayed,

not (10 AND 41

AND

-- 3-Bit Look-Up-Table with Local Output
not (10 AND 41 AND

-- performs
nand_2: 1lut3_1
generic map (

logic function:

not (i2))

not (22))

arch.
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init => "O0111" & "1111"

)
port map (
i0 => r2,
i1l => o1,
i2 => reset,
lo => o2
)

--Apply inertial delay to allow simulation. Note this makes

unfair! Is t1gnored when synthesized.
02_delayed <= 02 after 1 ns;

-- 3-Bit Look-Up-Table with normal Output
-- performs logic function: not(20) AND <2 AND not (i2)
and_1: 1lut3

generic map (

init => "0100"& reset_vector
)
port map (

i0 => o1,

i1 => o2,

i2 => reset,

o => gl
)

-- 3-Bit Look-Up-Table with normal Output
-- performs logic function: not(i0) AND %2 AND not (%2)
and_2: 1lut3
generic map (
init => "0100" & reset_vector
)
port map (
i0 => o2,
i1l => ol,
i2 => reset,
o => g2
)

end architecture gate;

-- Architecture for behavioral simulation

architecture behaviour of as_bd_4p_mutex is
signal dummy : std_logic;

begin

mutex: process(rl,r2,reset)
variable rand : real;
variable v_seedl : positive;
variable v_seed2 : positive;
begin

if reset = ’0’ then
gl <= ’07;
g2 <= ’0°;
v_seedl := seedl; --initialize seed wvalues
v_seed2 := seed2;

elsif (rl’event and ri1=’1’) and (r2’event and r2=’1’) then

the mutex

UNIFORM(v_seedl, v_seed2, rand); --get random value between 0 and (

almost) 1
if rand < 0.5 then
gl <= 717,
g2 <= ’07;

gl <= ’07;
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g2 <= 17,
end if;
elsif (r1=’1’) and (r2=’0’) then
gl <= 173
g2 <= ’0’;
elsif (r1=°0’) and (r2=’1’) then
gl <= ’07;
g2 <= 17
elsif (r1=’1’) and (r2=’1’) then
dummy <= dummy; --(NOP)
else
gl <= °0;
g2 <= ’0’;
end if;

end process mutex;

end architecture behaviour;

A.5.1.4 synchronizer.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;
use UNISIM.VComponents.fdc;

entity synchronizer is

port (
clk_in : in std_logic;
reset_1i : in std_logic;
async_in : in std_logic;
sync_out : out std_logic
)

end synchronizer;
architecture Behavioral of synchronizer is

component FDC

generic (INIT : bit:= ’0’);
port (

Q : out STD_ULOGIC;

C : in STD_ULOGIC;

CLR : in STD_ULOGIC;

D : in STD_ULOGIC

N

end component;

signal ffO_out, reset_inv : std_logic;
attribute rloc : string;

attribute rloc of f£f0 : label is "XO0YO";
attribute rloc of ff1 : label is "XO0YO";

begin
reset_inv <= not reset_i;
-- Two ff synchronizer

f£f0 : fdc
port map (
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Q => ffO_out,
C => clk_in,
CLR => reset_inv,
D => async_in

)

ff1 : fdc

port map (
Q => sync_out,
C => clk_in,
CLR => reset_inv,
D => ffO_out

)

end Behavioral;

A.5.2 Router

A.5.2.1 Dbe_router.vhd

library IEEE;
IEEE.STD_LOGIC_1164.ALL;
IEEE.STD_LOGIC_ARITH.ALL;
IEEE.STD_LOGIC_UNSIGNED.ALL;

use
use
use
use

work.types.all;

entity be_router is

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;

port (

reset : in std_logic;
-- Input ports --
north_rh_in : in
north_ri_in in
north_re_in in
north_ack_in out
north_data_in in
west_rh_in in
west_ri_in in
west_re_in in
west_ack_in out
west_data_in in
south_rh_in in
south_ri_in in
south_re_in in
south_ack_in out
south_data_in in
east_rh_in in
east_ri_in in
east_re_in in
east_ack_in out
east_data_in in
local_rh_in in
local_ri_in in
local_re_in in
local_ack_in out
local_data_in in

-- Output ports

flit_data;
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)

north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out

west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out
local_data_out

end be_router;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic
out std_logic
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic
in std_logic
out flit_data;

out std_logic;
out std_logic;
out std_logic;

3
B
B
B

B
B
3
i

B
i
i
i

3

i
3
i
B
B

B

in std_logic;

out flit_data

architecture struct of be_router

-- Component declarations --

component input_port
port (
reset in
-- Input channel
rh_in : in
ri_in in
re_in in
ack_in out
data_in : in
-- Output channel
a_rh_out out
a_ri_out out
a_re_out out
a_ack_out in
a_data_out out
-- Output channel
b_rh_out : out
b_ri_out out
b_re_out out
b_ack_out in
b_data_out out
-- Output channel
c_rh_out : out
c_ri_out out
c_re_out out
c_ack_out in
c_data_out out

-- Output channel

d_rh_out

out

is

std_logic;

std_logic;
std_logic;
std_logic;

std_logic

flit_data;

A4 --

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

B --

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

c --

std_logic;
std_logic;
std_logic;
std_logic;

flit_data
LOCAL --

std_logic;

is

B

i
i
5
5

i
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d_ri_out
d_re_out
d_ack_out
d_data_out

out std_logic;
out std_logic;
in std_logic;
out flit_data

)
end component;
component output_port is
port (
reset : in std_logic;
a_rh : in std_logic;
a_ri : in std_logic;
a_re : in std_logic;
a_ack out std_logic;
b_rh : in std_logic;
b_ri : in std_logic;
b_re : in std_logic;
b_ack out std_logic;
c_rh : in std_logic;
c_ri : in std_logic;
c_re : in std_logic;
c_ack out std_logic;
d_rh : in std_logic;
d_ri : in  std_logic;
d_re : in std_logic;
d_ack out std_logic;
output_rh out std_logic;

output_ri
output_re
output_ack

a_data

b_data

c_data

d_data : in

output_data
)

end component;

component fifo i
generic(

out std_logic;
out std_logic;
in std_logic;

in flit_data;
in flit_data;
in flit_data;
flit_data;

out flit_data

S

--Reset (active

--Handshake

--Handshake

--Handshake

--Handshake

depth positive := 1

);

port (
reset in std_logic;
rh_in : in STD_LOGIC;
ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
data_in : in flit_data;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data

)

end component;

-- Internal signals --

low)

signals

for

signals

for

signals

for

signals

for

--Handshake signals

-- Data signals

input a

input b

input c

IP input

for output port
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crossbar handshake signals
signal north_east_rh, north_east_ri,
north_south_rh, north_south_ri
north_west_rh, north_west_ri,
north_local_rh, north_local_ri
east_south_rh, east_south_ri,
east_west_rh, east_west_ri,
east_north_rh, east_north_ri,
east_local_rh, east_local_ri,
south_west_rh, south_west_ri,
south_north_rh, south_north_ri
south_east_rh, south_east_ri,
south_local_rh, south_local_ri
west_north_rh, west_north_ri,
west_east_rh, west_east_ri,
west_south_rh, west_south_ri,
west_local_rh, west_local_ri,
local_north_rh, local_north_ri
local_east_rh, local_east_ri,
local_south_rh, local_south_ri
local_west_rh, local_west_ri,
std_logic;
-- crossbar data signals
signal north_east_data,
north_local_data,
east_south_data,
east_local_data,
south_west_data,
south_local_data,
west_north_data,
west_local_data,
local_north_data,
local_west_data

--input fifo signals
signal north_input_fifo_rh,
north_input_fifo_ack,
east_input_fifo_rh,
east_input_fifo_ack,
south_input_fifo_rh,
south_input_fifo_ack,
west_input_fifo_rh,
west_input_fifo_ack,
local_input_fifo_rh,
local_input_fifo_ack
-- input fifo data signals
signal north_input_fifo_data,
west_input_fifo_data,
flit_data;

--output fifo signals

signal north_output_fifo_rh,

north_output_fifo_ack,

east_output_fifo_rh,
east_output_fifo_ack,
south_output_fifo_rh,
south_output_fifo_ack,
west_output_fifo_rh,
west_output_fifo_ack,
local_output_fifo_rh,
local_output_fifo_ack

north_south_data,
east_west_data,
south_north_data,
west_east_data,
local_east_data,
flit_data;

north_input_fifo_ri,
east_input_fifo_ri,
south_input_fifo_ri,
west_input_fifo_ri,
local_input_fifo_ri,

std_logic;

east_input_fifo_data,
local_input_fifo_data

north_output_fifo_ri,
east_output_fifo_ri,
south_output_fifo_ri,
west_output_fifo_ri,

local_output_fifo_ri,
std_logic;

north_east_re,
north_south_re
north_west_re,
north_local_re
east_south_re,
east_west_re,

east_north_re,
east_local_re,
south_west_re,
south_north_re
south_east_re,
south_local_re
west_north_re,
west_east_re,

west_south_re,
west_local_re,
local_north_re
local_east_re,
local_south_re
local_west_re,

north_east_ack,
north_south_ack
north_west_ack,
north_local_ack
east_south_ack,
east_west_ack,

east_north_ack,
east_local_ack,
south_west_ack,
south_north_ack
south_east_ack,
south_local_ack
west_north_ack,
west_east_ack,

west_south_ack,
west_local_ack,
local_north_ack
local_east_ack,
local_south_ack
local_west_ack

north_west_data,
east_north_data,
south_east_data,
west_south_data,

local_south_data,

north_input_fifo_re,
east_input_fifo_re,
south_input_fifo_re,
west_input_fifo_re,

local_input_fifo_re,

north_output_fifo_re
east_output_fifo_re
south_output_fifo_re
west_output_fifo_re

local_output_fifo_re

south_input_fifo_data,
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220 -- output fifo data signals
221 signal north_output_fifo_data, east_output_fifo_data,
south_output_fifo_data,
222 west_output_fifo_data, local_output_fifo_data
flit_data;
223
224 attribute keep : string;
225 attribute keep of north_east_rh, north_east_ri, north_east_re,
north_east_ack,
226 north_south_rh, north_south_ri, north_south_re,
north_south_ack,
227 north_west_rh, north_west_ri, north_west_re,
north_west_ack,
228 north_local_rh, north_local_ri, north_local_re,
north_local_ack,
229 east_south_rh, east_south_ri, east_south_re,
east_south_ack,
230 east_west_rh, east_west_ri, east_west_re,
east_west_ack,
231 east_north_rh, east_north_ri, east_north_re,
east_north_ack,
232 east_local_rh, east_local_ri, east_local_re,
east_local_ack,
233 south_west_rh, south_west_ri, south_west_re,
south_west_ack,
234 south_north_rh, south_north_ri, south_north_re,
south_north_ack,
235 south_east_rh, south_east_ri, south_east_re,
south_east_ack,
236 south_local_rh, south_local_ri, south_local_re,
south_local_ack,
237 west_north_rh, west_north_ri, west_north_re,
west_north_ack,
238 west_east_rh, west_east_ri, west_east_re,
west_east_ack,
239 west_south_rh, west_south_ri, west_south_re,
west_south_ack,
240 west_local_rh, west_local_ri, west_local_re,
west_local_ack,
241 local_north_rh, local_north_ri, local_north_re,
local_north_ack,
242 local_east_rh, local_east_ri, local_east_re,
local_east_ack,
243 local_south_rh, local_south_ri, local_south_re,
local_south_ack,
244 local_west_rh, local_west_ri, local_west_re,
local_west_ack : signal is "true";
245
246 attribute keep of north_east_data, north_south_data, north_west_data,
north_local_data,
247 east_south_data, east_west_data, east_north_data,
east_local_data,
248 south_west_data, south_north_data, south_east_data,
south_local_data,
249 west_north_data, west_east_data, west_south_data,
west_local_data,
250 local_north_data, local_east_data, local_south_data,
local_west_data : signal is "true";
251
252 attribute keep of north_input_fifo_rh, north_input_fifo_ri,
north_input_fifo_re, north_input_fifo_ack,
253 east_input_fifo_rh, east_input_fifo_ri,
east_input_fifo_re, east_input_fifo_ack,
254 south_input_fifo_rh, south_input_fifo_ri,

south_input_fifo_re, south_input_fifo_ack,
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attribute keep of

west_input_fifo_rh, west_input_fifo_ri,
west_input_fifo_re, west_input_fifo_ack,
local_input_fifo_rh, local_input_fifo_ri,
local_input_fifo_re, local_input_fifo_ack
is "true";

north_input_fifo_data, east_input_fifo_data,

south_input_fifo_data,

attribute keep of
north_output_fifo_re,

attribute keep of

west_input_fifo_data,
is "true";

local_input_fifo_data

north_output_fifo_rh, north_output_fifo_ri,
north_output_fifo_ack,
east_output_fifo_rh, east_output_fifo_ri,
east_output_fifo_re,
south_output_fifo_rh, south_output_fifo_ri,
south_output_fifo_re,
west_output_fifo_rh, west_output_fifo_ri,
west_output_fifo_re,
local_output_fifo_rh, local_output_fifo_ri,
local_output_fifo_re,
signal is "true";

north_output_fifo_data, east_output_fifo_data,

south_output_fifo_data,

begin

-- Input fifos

north_input_fifo

generic map(

depth

)

port map (
reset
rh_in
ri_in
re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out

data_out

)

east_input_fifo
generic map(
=> 1

depth

)

port map (
reset
rh_in
ri_in
re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

=> 1

west_output_fifo_data,
is "true";

local_output_fifo_data

fifo

=> reset,

=> north_rh_in,

=> north_ri_in,

=> north_re_in,

=> north_ack_in,

=> north_data_in,

=> north_input_fifo_rh,
=> north_input_fifo_ri,
=> north_input_fifo_re,
=> north_input_fifo_ack,
=> north_input_fifo_data

fifo

reset,

east_rh_in,
east_ri_in,
east_re_in,
east_ack_in,
east_data_in,
east_input_fifo_rh,
east_input_fifo_ri,
east_input_fifo_re,
east_input_fifo_ack,
east_input_fifo_data

east_output_fifo_ack,
south_output_fifo_ack,
west_output_fifo_ack,

local_output_fifo_ack

signal

signal

signal
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)

south_input_fifo : fifo
generic map (

depth => 1
)
port map(
reset => reset,
rh_in => south_rh_in,
ri_in => south_ri_in,
re_in => south_re_in,
ack_in => south_ack_in,
data_in => south_data_in,
rh_out => south_input_fifo_rh,
ri_out => south_input_fifo_ri,
re_out => south_input_fifo_re,
ack_out => south_input_fifo_ack,
data_out => south_input_fifo_data
)
west_input_fifo : fifo
generic map (
depth => 1
)
port map (
reset => reset,
rh_in => west_rh_in,
ri_in => west_ri_in,
re_in => west_re_in,
ack_in => west_ack_in,
data_in => west_data_in,
rh_out => west_input_fifo_rh,
ri_out => west_input_fifo_ri,
re_out => west_input_fifo_re,
ack_out => west_input_fifo_ack,
data_out => west_input_fifo_data
)

local_input_fifo : fifo
generic map (

)

depth => 1

port map (

)

reset =
rh_in =
ri_in =
re_in =
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

>
>
>
>
>
>
>
>
>
>
>

reset,

local_rh_in,
local_ri_in,
local_re_in,
local_ack_in,
local_data_in,
local_input_fifo_rh,
local_input_fifo_ri,
local_input_fifo_re,
local_input_fifo_ack,
local_input_fifo_data

-- Output fifos --

north_output

generic map (
depth => 1

)

port map (
reset
rh_in
ri_in

_fifo : fifo

=> reset,
=> north_output_fifo_rh,
=> north_output_fifo_ri,
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re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

)

=> north_output_fifo_re,
=> north_output_fifo_ack,
=> north_output_fifo_data,
=> north_rh_out,

=> north_ri_out,

=> north_re_out,

=> north_ack_out,

=> north_data_out

east_output_fifo : fifo

generic map (
depth => 1

)

port map (
reset
rh_in
ri_in
re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

)

reset,
east_output_fifo_rh,
east_output_fifo_ri,
east_output_fifo_re,
east_output_fifo_ack,
east_output_fifo_data,
east_rh_out,
east_ri_out,
east_re_out,
east_ack_out,
east_data_out

south_output_fifo : fifo

generic map(
depth => 1

)

port map (
reset
rh_in
ri_in
re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

)

reset,
south_output_fifo_rh,
south_output_fifo_ri,
south_output_fifo_re,
south_output_fifo_ack,
south_output_fifo_data,
south_rh_out,
south_ri_out,
south_re_out,
south_ack_out,
south_data_out

west_output_fifo : fifo

generic map (
depth => 1

)

port map (
reset
rh_in
ri_in
re_in
ack_in
data_in
rh_out
ri_out
re_out
ack_out
data_out

)

reset,
west_output_fifo_rh,
west_output_fifo_ri,
west_output_fifo_re,
west_output_fifo_ack,
west_output_fifo_data,
west_rh_out,
west_ri_out,
west_re_out,
west_ack_out,
west_data_out

local_output_fifo : fifo
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generic map (

depth => 1

)

port map(
reset =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>

);

reset,
local_output_fifo_rh,
local_output_fifo_ri,
local_output_fifo_re,
local_output_fifo_ack,

local_output_fifo_data,

local_rh_out,
local_ri_out,
local_re_out,
local_ack_out,
local_data_out

-- Input port imstanciations --

north_input_port : input_port

port map (
reset => reset,
-- north input channel --
rh_in => north_input_fifo_rh,
ri_in => north_input_fifo_ri,
re_in => north_input_fifo_re,
ack_in => north_input_fifo_ack,
data_in => north_input_fifo_data,
-- local channel --
a_rh_out => north_local_rh,
a_ri_out => north_local_ri,
a_re_out => north_local_re,
a_ack_out => north_local_ack,
a_data_out => north_local_data,
-- east channel --
b_rh_out => north_east_rh,
b_ri_out => north_east_ri,
b_re_out => north_east_re,
b_ack_out => north_east_ack,

b_data_out =>

north_east_data,

-- south channel --

c_rh_out => north_south_rh,
c_ri_out => north_south_ri,
c_re_out => north_south_re,
c_ack_out => north_south_ack,
c_data_out => north_south_data,
-- west channel --
d_rh_out => north_west_rh,
d_ri_out => north_west_ri,
d_re_out => north_west_re,
d_ack_out => north_west_ack,
d_data_out => north_west_data

)

east_input_port input_port
port map (

reset => reset,

-- east input channel --

rh_in => east_input_fifo_rh,

ri_in => east_input_fifo_ri,

re_in => east_input_fifo_re,

ack_in => east_input_fifo_ack,

data_in => east_input_fifo_data,

-- north channel

a_rh_out => east_north_rh,
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east_north_ri,
east_north_re,
east_north_ack,
east_north_data,

east_local_rh,
east_local_ri,
east_local_re,

a_ri_out =>
a_re_out =>
a_ack_out =>
a_data_out =>
-- local channel --
b_rh_out =>
b_ri_out =>
b_re_out =>
b_ack_out =>

b_data_out =>

east_local_ack,
east_local_data,

-- south channel --

c_rh_out =>
c_ri_out =>
c_re_out =>
c_ack_out =>
c_data_out =>
-- west channel
d_rh_out =>
d_ri_out =>
d_re_out =>
d_ack_out =>

d_data_out =>
)

south_input_port
port map (

east_south_rh,
east_south_ri,
east_south_re,
east_south_ack,
east_south_data,
east_west_rh,
east_west_ri,
east_west_re,
east_west_ack,
east_west_data

input_port

reset,

channel --
south_input_fifo_rh,
south_input_fifo_ri,
south_input_fifo_re,
south_input_fifo_ack,
south_input_fifo_data,

south_north_rh,
south_north_ri,
south_north_re,
south_north_ack,
south_north_data,
south_east_rh,
south_east_ri,
south_east_re,

reset =>
-- south input
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
-- north channel --
a_rh_out =>
a_ri_out =>
a_re_out =>
a_ack_out =>
a_data_out =>
-- east channel
b_rh_out =>
b_ri_out =>
b_re_out =>
b_ack_out =>

b_data_out =>

south_east_ack,
south_east_data,

-- local channel --

south_local_rh,
south_local_ri,
south_local_re,
south_local_ack,
south_local_data,
south_west_rh,
south_west_ri,
south_west_re,
south_west_ack,
south_west_data

input_port

reset,

-- west tnput channel --

c_rh_out =>
c_ri_out =>
c_re_out =>
c_ack_out =>
c_data_out =>
-- west channel
d_rh_out =>
d_ri_out =>
d_re_out =>
d_ack_out =>
d_data_out =>
)
west_input_port
port map (
reset =>
rh_in =>
ri_in =>

west_input_fifo_rh,
west_input_fifo_ri,
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re_in => west_input_fifo_re,
ack_in => west_input_fifo_ack,
data_in => west_input_fifo_data,
-- north channel --

a_rh_out => west_north_rh,
a_ri_out => west_north_ri,
a_re_out => west_north_re,
a_ack_out => west_north_ack,
a_data_out => west_north_data,

-- east channel --

b_rh_out => west_east_rh,
b_ri_out => west_east_ri,
b_re_out => west_east_re,
b_ack_out => west_east_ack,
b_data_out => west_east_data,

-- south channel --

c_rh_out => west_south_rh,
c_ri_out => west_south_ri,
c_re_out => west_south_re,
c_ack_out => west_south_ack,
c_data_out => west_south_data,

-- local channel --

d_rh_out => west_local_rh,
d_ri_out => west_local_ri,
d_re_out => west_local_re,

d_ack_out =>
d_data_out =>
)

local_input_port
port map (

west_local_ack,
west_local_data

input_port

reset,

channel --
local_input_fifo_rh,
local_input_fifo_ri,
local_input_fifo_re,
local_input_fifo_ack,

local_input_fifo_data,

local_north_rh,
local_north_ri,
local_north_re,
local_north_ack,
local_north_data,
local_east_rh,
local_east_ri,
local_east_re,

reset =>
-- local input
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
-- north channel --
a_rh_out =>
a_ri_out =>
a_re_out =>
a_ack_out =>
a_data_out =>
-- east channel
b_rh_out =>
b_ri_out =>
b_re_out =>
b_ack_out =>

b_data_out =>

local_east_ack,
local_east_data,

-- south channel --

c_rh_out =>
c_ri_out =>
c_re_out =>
c_ack_out =>
c_data_out =>
-- west channel
d_rh_out =>
d_ri_out =>
d_re_out =>
d_ack_out =>

d_data_out =>
)

local_south_rh,
local_south_ri,
local_south_re,
local_south_ack,
local_south_data,
local_west_rh,
local_west_ri,
local_west_re,
local_west_ack,
local_west_data

-- Output port instanciations --
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north_output_

port map (
reset =>
a_rh =>
a_ri =>
a_re =>
a_ack =>
a_data =>
b_rh =>
b_ri =>
b_re =>
b_ack =>

b_data =>

c_rh =>
c_ri =>
c_re =>
c_ack =>
c_data =>
d_rh =>
d_ri =>
d_re =>
d_ack =>

d_data =>

output_rh
output_ri
output_re

port : output_port
reset,

east_north_rh,
east_north_ri,
east_north_re,
east_north_ack,
east_north_data,

south_north_rh,
south_north_ri,
south_north_re,
south_north_ack,
south_north_data,

west_north_rh,
west_north_ri,
west_north_re,
west_north_ack,
west_north_data,

local_north_rh,
local_north_ri,
local_north_re,
local_north_ack,
local_north_data,

=> north_output_fifo_rh,
=> north_output_fifo_ri,
=> north_output_fifo_re,

output_ack =>
output_data =>

north_output_fifo_ack,
north_output_fifo_data

north_east_rh,
north_east_ri,
north_east_re,
north_east_ack,
north_east_data,

south_east_rh,
south_east_ri,
south_east_re,
south_east_ack,
south_east_data,

west_east_rh,
west_east_ri,
west_east_re,
west_east_ack,
west_east_data,

local_east_rh,
local_east_ri,
local_east_re,
local_east_ack,

N
east_output_port : output_port
port map (

reset => reset,

a_rh >
a_ri =>
a_re =>
a_ack =>
a_data =>
b_rh >
b_ri =>
b_re =>
b_ack =>
b_data =>
c_rh >
c_ri =>
c_re =>
c_ack =>
c_data =>
d_rh >
d_ri >
d_re >
d_ack >
d_data >

output_rh

local_east_data,

=> east_output_fifo_rh,
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output_ri => east_output_fifo_ri,
output_re => east_output_fifo_re,
output_ack => east_output_fifo_ack,
output_data => east_output_fifo_data
)
south_output_port : output_port
port map(
reset => reset,
a_rh > north_south_rh,
a_ri => north_south_ri,
a_re => north_south_re,
a_ack => north_south_ack,
a_data => north_south_data,
b_rh => east_south_rh,
b_ri > east_south_ri,
b_re > east_south_re,
b_ack => east_south_ack,
b_data => east_south_data,
c_rh > west_south_rh,
c_ri => west_south_ri,
c_re => west_south_re,
c_ack => west_south_ack,
c_data > west_south_data,
d_rh => local_south_rh,
d_ri => local_south_ri,
d_re > local_south_re,
d_ack > local_south_ack,
d_data => local_south_data,
output_rh => south_output_fifo_rh,
output_ri => south_output_fifo_ri,
output_re => south_output_fifo_re,
output_ack => south_output_fifo_ack,
output_data => south_output_fifo_data
);
west_output_port : output_port
port map (
reset => reset,
a_rh => north_west_rh,
a_ri > north_west_ri,
a_re > north_west_re,
a_ack => north_west_ack,
a_data => north_west_data,
b_rh > east_west_rh,
b_ri => east_west_ri,
b_re => east_west_re,
b_ack => east_west_ack,
b_data => east_west_data,
c_rh => south_west_rh,
c_ri > south_west_ri,
c_re > south_west_re,
c_ack > south_west_ack,
c_data => south_west_data,
d_rh => local_west_rh,
d_ri => local_west_ri,
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d_re =>
d_ack =>
d_data =>

output_rh
output_ri
output_re
output_ack

local_west_re,
local_west_ack,
local_west_data,

=> west_output_fifo_rh,
=> west_output_fifo_ri,
=> west_output_fifo_re,
=> west_output_fifo_ack,

output_data => west_output_fifo_data

N

local_output_

port map (
reset =>
a_rh >
a_ri >
a_re =>
a_ack =>
a_data >
b_rh =>
b_ri =>
b_re =>
b_ack =>

b_data =>

c_rh =>
c_ri =>
c_re =>
c_ack =>
c_data =>
d_rh =>

d_ri =>
d_re =>
d_ack =>
d_data =>

output_rh
output_ri
output_re
output_ack

port : output_port
reset,

north_local_rh,
north_local_ri,
north_local_re,
north_local_ack,
north_local_data,

east_local_rh,
east_local_ri,
east_local_re,
east_local_ack,
east_local_data,

south_local_rh,
south_local_ri,
south_local_re,
south_local_ack,
south_local_data,

west_local_rh,
west_local_ri,
west_local_re,
west_local_ack,
west_local_data,

=> local_output_fifo_rh,
=> local_output_fifo_ri,
=> local_output_fifo_re,
=> local_output_fifo_ack,

output_data => local_output_fifo_data

)

end struct;

A.5.2.2 fifo.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.types.all;
entity fifo is
generic (
depth : positive := 12
)
port (
reset : in std_logic;
rh_in : in STD_LOGIC;
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ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
data_in : in flit_data;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data
);
end fifo;

architecture struct2 of fifo is

component fifo_stage is

Port (
reset : in std_logic;
rh_in : in STD_LOGIC;
ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
data_in : in flit_data;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data

)

end component;

type data_array
signal data

signal rh, ri, re, ack

attribute keep

attribute keep o
attribute keep o
attribute keep o
attribute keep o
attribute keep o

begin

--generate fifo

fifo_chain : for
begin
stage fifo_s
port map (
reset =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>
)

end generate fif

is array (0 to depth) of flit_data;

data_array;

string;
f data signal is "true";
f rh : signal is "true";
f ri : signal is "true";
f re : signal is "true";
f ack signal is "true";
chain

index in O to depth-1 generate

tage

reset,
rh(index),
ri(index),
re(index),
ack (index),
data(index),
rh(index+1),
ri(index+1),
re(index+1),
ack (index+1),
data(index+1)

o_chain;

std_logic_vector (depth downto 0);
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--Assign inputs
rh(0) <= rh_in;
ri(0) <= ri_in;
re(0) <= re_in;
ack_in <= ack(0);
data(0) <= data_in;

--Assign outputs

rh_out <= rh(depth);
ri_out <= ri(depth);
re_out <= re(depth);
ack (depth) <= ack_out;
data_out <= data(depth);

end struct2;

A.5.2.3 fifo stage.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

library UNISIM;
use UNISIM.VComponents.lut4_1;

entity fifo_stage is

port (
reset : in std_logic;
rh_in : in  STD_LOGIC;
ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
data_in : in flit_data;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data

)

end fifo_stage;
architecture Behavioral of fifo_stage is

component as_bd_4p_delay is
generic (

size : natural := 10 -- Delay size
N
port (

d : in std_logic; -- Data in

z : out std_logic -- Data out
N

end component;

component as_bd_4p_c2 is

port (
reset : in std_logic; -- Reset (Actiwe
a : in  std_logic; -- Input A
b : in  std_logic; -- Input B

z : out std_logic -- Output Z

low)
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)

end component;

signal rh_int,ri_int,re_int, rh_int_delayed, ri_int_delayed,
, latch_enable, ack_in_int, not_ack std_logic;

attribute keep string;

attribute keep of rh_int signal is "true";
attribute keep of ri_int signal is "true";
attribute keep of re_int signal is "true";
attribute keep of rh_int_delayed signal is "true";
attribute keep of ri_int_delayed signal is "true";
attribute keep of re_int_delayed signal is "true";
attribute keep of latch_emnable signal is "true";
attribute keep of ack_in_int signal is "true";

begin

latch_enable <= rh_int or ri_int or re_int or ack_out;
ack_in <= rh_int or ri_int or re_int;
not_ack <= not ack_out;

rh_c as_bd_4p_c2
port map(

reset => reset,

a => rh_in,

b => not_ack,

z => rh_int
)
ri_c as_bd_4p_c2
port map (

reset => reset,

a => ri_in,

b => not_ack,

z => ri_int
)
re_c as_bd_4p_c2
port map(

reset => reset,

a => re_in,

b => not_ack,

z => re_int
)

-- delay element
rh_delay as_bd_4p_delay
generic map (
size => 5
)
port map (
d => rh_int,
z => rh_int_delayed
)

-- delay element
ri_delay as_bd_4p_delay
generic map (
size => 5
)
port map(
d => ri_int,

re_int_delayed
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)

z =>

ri_int_delayed

delay element
re_delay : as_bd_4p_delay
generic map(

size => b
)
port map (

d => re_int,

z => re_int_delayed
)
rh_out <= rh_int_delayed;
ri_out <= ri_int_delayed;
re_out <= re_int_delayed;

data_latch : process(latch_enable, data_in)

be

gin

if latch_enable = ’0’ then
data_out <= data_in;

end if;

end process;

end Behavioral;

A.5

2.4

input_port.vhd

library IEEE;

use
use
use
use

IEEE.

IEEE
IEEE
work

STD_LOGIC_1164.ALL;

.STD_LOGIC_ARITH.ALL;
.STD_LOGIC_UNSIGNED.ALL;
.types.all;

library UNISIM;
use UNISIM.VComponents.lut2;
use UNISIM.VComponents.lut4_1;

entity input_port is

po

rt (

reset in std_logic;
-- Input channel --

rh_in : in std_logic;
ri_in in std_logic;
re_in in std_logic;
ack_in : out std_logic;
data_in : in flit_data;
-- Output channel A --
a_rh_out : out std_logic;
a_ri_out : out std_logic;
a_re_out : out std_logic;
a_ack_out : in std_logic;
a_data_out : out flit_data;
-- Output channel B --
b_rh_out : out std_logic;
b_ri_out : out std_logic;
b_re_out : out std_logic;
b_ack_out : in  std_logic;
b_data_out : out flit_data;
-- Output channel C --
c_rh_out : out std_logic;
c_ri_out : out std_logic;
c_re_out : out std_logic;



150

Appendices

c_ack_out
c_data_out

-- Output cha
d_rh_out :
d_ri_out
d_re_out
d_ack_out
d_data_out

)

end input_port;

architecture stru

component as_bd
generic(

in
out
nnel
out
out
out
in
out

LOCAL

ctural of

_4p_delay is

std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data

input_port is

size natural := 10 -- Delay size
)
port (
d : in std_logic; -- Data 1in
z : out std_logic -- Data out
)
end component;
component as_bd_4p_c2 is
port (
reset in std_logic; -- Reset (Actiwve
a : in  std_logic; -- Input 4
b : in std_logic; -- Input B
z : out std_logic -- Output Z
)

end component;

component heade

port (
reset
req_header
ack
data_in
data_out

)

end component;

-- Internal sig
signal data_out
signal
signal
signal
signal

ack st

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

keep
keep
keep
keep
keep
keep
keep
keep

begin

Header rotater

h_rotater

rh_in_delayed,

route_addr
head_rotate

r_rotater is
in
in
in
in
out

nals --
flit_data;

d_logic;

string;

ri_in_delayed,

std_logic;
std_logic;
std_logic;
flit_data;
flit_data

low)

re_in_delayed

std_logic_vector (1 downto 0);
std_logic;

of
of
of
of
of
of
of

data_out
rh_in_delayed
ri_in_delayed
re_in_delayed
ack
route_addr
head_rotate

header_rotater

signal
signal
signal
signal
signal
signal
signal

is
is
is
is
is
is
is

"true";
"true";
"true";
"true";
"true";
"true";
"true";

std_logic;
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port map (
reset => reset,
req_header => rh_in,
ack => ack,
data_in => data_in,
data_out => data_out
)

-- Latch routing address when rTh_in is asserted
-- The routing address ts the two MSBs of the header flit.

routing_addr_latch : process(rh_in, data_in)
begin
if rh_in = ’1’ then
route_addr <= data_in(FLIT_SIZE-1 downto FLIT_SIZE-2);
end if;

end process;

-- delay Th_zn
rh_delay : as_bd_4p_delay

generic map(

size => 12

)
port map (

d => rh_in,

z => rh_in_delayed
)

-- delay Ti_1n
ri_delay : as_bd_4p_delay
generic map(
size => b

)
port map (

d => ri_in,

z => ri_in_delayed
)

-- delay Te_1n
re_delay : as_bd_4p_delay
generic map(
size => b

)
port map(

d => re_in,

z => re_in_delayed
)

-- acknowledge signal
ack_in <= ack;

-- DEMUX the input port to the four different output ports based on
route_addr --

demux : process(route_addr, rh_in_delayed, ri_in_delayed, re_in_delayed,
a_ack_out, b_ack_out, c_ack_out, d_ack_out)
begin
case route_addr is
when "00" => -- port a

a_rh_out <= rh_in_delayed;
a_ri_out <= ri_in_delayed;
a_re_out <= re_in_delayed;

ack <= a_ack_out;
b_rh_out <= ’0°’;
b_ri_out <= ’0’;
b_re_out <= ’0’;

c_rh_out <= ’0’;
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c_ri_out
c_re_out
d_rh_out
d_ri_out
d_re_out
when "O1"
b_rh_out
b_ri_out
b_re_out

<= 07,
<= 07,
<= zo:;
<= 70;;
<= 07,
=> --port b

<= rh_in_delayed;
<= ri_in_delayed;
<= re_in_delayed;

ack <= b_ack_out;
a_rh_out <= ’0’;

a_ri_out <= ’0’;

a_re_out <= ’0’;

c_rh_out <= ’0’;

c_ri_out <= ’0’;

c_re_out <= ’0’;

d_rh_out <= ’0’;

d_ri_out <= ’0’;

d_re_out <= ’0’;

when "10" => --port c

c_rh_out <= rh_in_delayed;
c_ri_out <= ri_in_delayed;
c_re_out <= re_in_delayed;
ack <= c_ack_out;
a_rh_out <= ’0’;

a_ri_out <= ’0’;

a_re_out <= ’0’;

b_rh_out <= ’0°’;

b_ri_out <= ’0’;

b_re_out <= ’0’;

d_rh_out <= ’0’;

d_ri_out <= ’0’;

d_re_out <= ’0’;

when others => --port d

d_rh_out
d_ri_out
d_re_out

ack

a_rh_out
a_ri_out
a_re_out
b_rh_out
b_ri_out
b_re_out
c_rh_out
c_ri_out
c_re_out

end case;

end process;

-- assign data_out to all output channels

a_data_out
b_data_out
c_data_out
d_data_out

<=
<=
<=
<=

<= rh_in_delayed;
<= ri_in_delayed;
<= re_in_delayed;
<= d_ack_out;

<= ’07;
<= 07}
<= 07
<= ’07;
<= ’07;
<= ’07;
<= 07}
<= 07
<= 07

data_out;
data_out;
data_out;
data_out;

end structural;

A.5.2.5 header_rotater.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
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use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

library UNISIM;
use UNISIM.VComponents.lut2;
use UNISIM.VComponents.lut4_1;

entity header_rotater is

port (
reset : in std_logic;
req_header : in std_logic;
ack : in std_logic;
data_in : in flit_data;
data_out : out flit_data
)

end header_rotater;
architecture struct of header_rotater is

component as_bd_4p_c2 is

port (
reset : in std_logic; -- Reset (Active low)
a : in  std_logic; -- Input 4
b : in std_logic; -- Input B
z : out std_logic -- Output Z
)

end component;
signal sel,c_out : std_logic;

attribute keep : string;
attribute keep of sel,c_out : signal is "true";

begin
-- Muz Control --

head_rotate_c : as_bd_4p_c2
port map(

reset => reset,

a => req_header,

b => ack,

z => c_out

)

sel <= c_out or req_header;

-- Move the two MSBs so they become LSBs if sel is asserted

with sel select

data_out <= data_in(FLIT_SIZE-3 downto 0) & data_in(FLIT_SIZE-1

FLIT_SIZE-2) when ’1°,
data_in
when others;

end struct;

A.5.2.6 output_port.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

downto
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use work.types.all;

entity output_port is

port (
reset : in std_logic;
a_rh : in std_logic;
a_ri : in std_logic;
a_re : in std_logic;
a_ack out std_logic;
b_rh : in std_logic;
b_ri : in std_logic;
b_re : in std_logic;
b_ack out std_logic;
c_rh : in std_logic;
c_ri : in std_logic;
c_re : in std_logic;
c_ack out std_logic;
d_rh : in std_logic;
d_ri : in std_logic;
d_re : in std_logic;
d_ack out std_logic;
output_rh out std_logic;
output_ri out std_logic;
output_re out std_logic;
output_ack : in std_logic;
a_data : in flit_data;
b_data : in flit_data;
c_data : in flit_data;
d_data : in flit_data;
output_data out flit_data

)
end output_port;

architecture Behavioral of

component as_bd_4p_delay is
generic (

size natural := 10
);
port (

d : in std_logic;

z : out std_logic
)

end component;

component access_control is

port (
reset : in std_logic; -=
rh_in : in std_logic; --
ri_in : in  std_logic; -=
re_in : in std_logic; --
ack_in out std_logic; --
rh_out out std_logic; --
ri_out out std_logic; -
re_out : out std_logic; -=
ack_out : in std_logic; --
m_req out std_logic; --
m_grant : in std_logic -=

)

--Reset (active

--Handshake signals for

--Handshake signals for

--Handshake signals for

--Handshake signals for

low)

input a

input b

input c

IP input

--Handshake signals

for output port

-- Data signals

output_port is

-- Delay size

-- Data 1in
-- Data out

Reset (Active low)
header request input

intermediate rTequest input

end of packet Tequest input
ack input

header request output
intermediate request output

end of packet rTequest output
ack output

Reqgeust access

Access granted
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end component;

component merge4

port (
reset

a_rh
a_ri
a_re
a_ack

b_rh
b_ri
b_re
b_ack

c_rh
c_ri
c_re
c_ack

d_rh
d_ri
d_re
d_ack

z_rh
z_ri
zZ_Tre
z_ack

a_data
b_data
c_data
d_data
z_data

)

end component;

in

in
in
in
out

in
in
in
out

in
in
in
out

in
in
in
out

out
out
out
in

in
in
in
in
out

is
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;

flit_data;
flit_data;
flit_data;
flit_data;
flit_data

component mutex4 is

port (
reset
ril
r2
r3

)

in
in
in
in
in
ou
ou
ou
ou

end component;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
t std_logic;
t std_logic;
t std_logic;
t std_logic

-- Internal signals

signal a_rh_int, a_ri_int, a_re_int,
b_rh_int, b_ri_int, b_re_int,
c_rh_int, c_ri_int, c_re_int,
d_rh_int, d_ri_int, d_re_int,
z_rh_int, z_ri_int, z_re_int

signal a_m_req, b_m_req, c_m_req, d_m_req,

a_m_grant,

attribute keep

b_m_grant,

string;

--Reset (active low)

--Handshake signals for

--Handshake

--Handshake

--Handshake

--Handshake

signals

signals

signals

signals

-- Data signals

c_m_grant,

for

for

for

for

a_ack_int,

input a

input b

input c

input d

output z

b_ack_int,
c_ack_int,
d_ack_int,
std_logic;
d_m_grant std_logic;
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attribute keep of

begin

a_access_control
port map (

a_rh_int
b_rh_int
c_rh_int
d_rh_int
z_rh_int
a_m_req,
a_m_grant,

is

reset => reset,
rh_in => a_rh,
ri_in => a_ri,
re_in => a_re,
ack_in => a_ack,
rh_out => a_rh_int,
ri_out => a_ri_int,
re_out => a_re_int,
ack_out => a_ack_int,
m_req => a_m_req,
m_grant => a_m_grant

)

b_access_control
port map (

reset => reset,
rh_in => b_rh,
ri_in => b_ri,
re_in => b_re,
ack_in => b_ack,
rh_out => b_rh_int,
ri_out => b_ri_int,
re_out => b_re_int,
ack_out => b_ack_int,
m_req => b_m_req,
m_grant => b_m_grant

)

c_access_control
port map (

reset => reset,
rh_in => c_rh,
ri_in => c_ri,
re_in => c_re,
ack_in => c_ack,
rh_out => c_rh_int,
ri_out => c_ri_int,
re_out => c_re_int,
ack_out => c_ack_int,
m_req => c_m_req,
m_grant => c_m_grant

);

d_access_control
port map (

reset => reset,
rh_in => d_rh,
ri_in => d_ri,
re_in => d_re,
ack_in => d_ack,

N a_ri_int
N b_ri_int
N c_ri_int
N d_ri_int
N z_ri_int

b_m_req,

"true";

access_control

access_control

access_control

access_control

>

B

B

>

>

b_m_grant,

a_re_int,
b_re_int,
c_re_int,
d_re_int,
z_re_int,
c_m_req,
c_m_grant,

a_ack_int,
b_ack_int,
c_ack_int,
d_ack_int,

d_m_req,

d_m_grant signal



VHDL Code

157

rh_out => d_rh_int,
ri_out => d_ri_int,
re_out => d_re_int,
ack_out => d_ack_int,

m_req => d_m_req,
m_grant => d_m_grant

)

mutex : mutex4

port map (
reset => reset,
ri => a_m_req,
r2 => b_m_req,
r3 => c_m_req,
rd => d_m_req,
gl => a_m_grant,
g2 => b_m_grant,
g3 => c_m_grant,
g4 => d_m_grant

)

merge : mergeé

port map (
reset => reset,
a_rh => a_rh_int,
a_ri => a_ri_int,
a_re => a_re_int,
a_ack => a_ack_int,
b_rh > b_rh_int,
b_ri > b_ri_int,
b_re > b_re_int,
b_ack > b_ack_int,
c_rh => c_rh_int,
c_ri => c_ri_int,
c_re => c_re_int,
c_ack => c_ack_int,
d_rh => d_rh_int,
d_ri => d_ri_int,
d_re => d_re_int,
d_ack => d_ack_int,
z_rh => z_rh_int,
z_ri => z_ri_int,
zZ_Tre => z_re_int,
z_ack => output_ack,
a_data => a_data,
b_data => b_data,
c_data => c_data,

d_data => d_data,
z_data => output_data
)

-- delay z_rh
z_rh_delay : as_bd_4p_delay
generic map (
size => 8
)
port map (
d => z_rh_int,
z => output_rh
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)
-- delay z_r1i
z_ri_delay as_bd_4p_delay
generic map (
size => 8
)
port map(
d => z_ri_int,
z => output_ri
)
-- delay z_re
z_re_delay as_bd_4p_delay
generic map (
size => 8
)
port map(
d => z_re_int,
z => output_re
)
end Behavioral;
A.5.2.7 access_control.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
library UNISIM;
use UNISIM.VComponents.lut2;
use UNISIM.VComponents.lut4_1;
entity access_control is
port (
reset : in  std_logic; -- Reset (Active low)
rh_in : in  std_logic; -- header request input
ri_in : in  std_logic; -- intermediate Tequest input
re_in : in  std_logic; -- end of packet request input
ack_in out std_logic; -- ack input
rh_out out std_logic; -- header request output
ri_out out std_logic; -- intermediate Tequest output
re_out : out std_logic; -- end of packet request output
ack_out : in std_logic; -- ack output
m_req out std_logic; -- Reqgeust access
m_grant : in std_logic -- Access granted
)
end access_control;
architecture Behavioral of access_control is
signal ack_in_internal, re_out_intermnal, ri_out_intermnal, cscO, four
std_logic;
attribute keep string;
attribute keep of ack_in_internal, re_out_internal, ri_out_internal, cscO,
four signal is "true";
attribute rloc string;
attribute rloc of rh_out_LUT label is "X0YO";
attribute rloc of m_req_LUT label is "XO0YO";
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attribute rloc
attribute rloc
attribute rloc

of four_LUT
of cscO_c
of re_out_c

label is "X0YO0";
label is "X0YO0";
label is "X1Y0";

begin

--# EQN file for model sky_grant_la

--# Generated by petrify 4.2 (compiled 15-0ct-03 at 3:06 PM)

--# Outputs between brackets "[out]" indicate a feedback to input "out"
--# Estimated area = 18.00

--INORDER = m_grant ack_out r_e_in r_<_in r_h_in ack_in 7T_e_out r_1i_out

r_h_out m_req cscO;
--0OUTORDER = [ack_in] [r_e_out] [r_i_out] [r_h_out] [m_req] [cscO];
--[ack_in] = ack_
-—[r_4i_out] = r_<

--[m_req] = cscO

out;

_in;
-=[r_h_out] = r_h_in m_grant;

+ ack_in;

--[4] = rT_e_out rT_e_in’;

-=[csc0] = [4]’ (r_h_in + cscO) + r_h_in cscO;

--[r_e_out] = cscO (r_e_in + r_e_out) + r_e_in r_e_out;
gC

--# Set/reset pins: reset(csc0)

ack_in_internal <= ack_out;
ri_out_internal <= ri_in;

-=[r_h_out] = r_h_in m_grant;

rh_out_LUT:

generic map (
INIT => X"8")

port map (

N

0
I0

=> rh_out,
=> rh_in,

I1 => m_grant

--[m_req] = cscO

m_req_LUT: LUT2
generic map (
INIT => X"e"

port map (

)

0
I0

--[4]

=> m_req,

LUT2

+ ack_1in;

=> ack_in_intermnal,

I1 => cscO

r_e_out r_e_in’;

four _LUT: LUT2
generic map (
INIT => X"4")

port map (

)

0
I0

=> four,
=> re_in,

I1 => re_out_internal

# mappable onto gC

# mappable onto
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-- C-element with inverted %1

cscO_c: lut4_1l
generic map (

init => "10110010" & X"00"

)

port map (
i0 => rh_in,
il => four,
i2 => cscO,
i3 => reset,
lo => cscO

);

re_out_c: lutd4_1
generic map (

init => "11101000" & X"00"

)
port map (
i0 => re_in,
il => cscO,
i2 => re_out_internal,
i3 => reset,
lo => re_out_internal

)

--Assign outputs

re_out <= re_out_internal;
ri_out <= ri_out_internal;
ack_in <= ack_in_internal;

end Behavioral;

A.5.2.8 mutex4.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mutex4 is

port (
reset : in std_logic;
ril : in  std_logic;
r2 : in std_logic;
r3 : in std_logic;
r4d : in std_logic;
gl : out std_logic;
g2 : out std_logic;
g3 : out std_logic;
g4 : out std_logic

)

end mutex4;

input

architecture structural of mutex4 is

component as_bd_4p_mutex is
generic(
reset_value

bit := ’07;

-- Reset walue of output

--Only used for the random number generator for the behavioral arch.
--Must be seeded with some random wvalue before simulating in modelsim
--by e.g. wusing a tcl script
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seedl

seed2
)
port (

reset

rli,r2

gl,g2
)

positive
positive := 1

in std_logic;
in std_logic; -=
out std_logic

in

end component as_bd_4p_mutex;

-- Reset (Active

-- mutezxz out

low)

-- Configure below which mutex architecture to use --
-- Use as_fpga.as_bd_4p_mutex (behaviour) for simulation --
-- Use as_fpga.as_bd_4p_mutez(gate) for synthesis --

--for all:
signal riil,

ke
ke
ke
ke
ke
ke
ke
ke
ke

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

begin

-- Implement

mutexl as._
port map (
reset =>
ril =>
r2 =>
gl =>
g2 =>
N
mutex2 as_
port map (
reset =>
ri =>
r2 =>
gl =>
g2 =>
)
mutex3 as_
port map (
reset =>
ri =>
r2 =>
gl =>
g2 =>
)
mutex4 as_
port map (
reset =>
ri =>
r2 =>
gl =>

ri2, r21, r22, r31, r32, r41,
ep : string;

ep of r1l : signal is "true";
ep of ri12 signal is "true";
ep of r21 signal is "true";
ep of r22 signal is "true";
ep of r31 signal is "true";
ep of r32 signal is "true";
ep of r4il signal is "true";
ep of r42 signal is "true";

s a four-input mutexes from
bd_4p_mutex

reset,
rl,
r2,
rii,
r21

bd_4p_mutex

reset,
r3,
rd,
r31,
r41

bd_4p_mutex

reset,
rii,
r31,
ri2,
r32

bd_4p_mutex

reset,
r21,
r41,
r22,

as_bd_4p_mutez use entity work.as_bd_4p_mutex (gate);

rd2 std_logic;

a net of 6 two-input mutezes.
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g2 => r42
)
mutexb as_bd_4p_mutex
port map (
reset => reset,
ri => r22,
r2 => r32,
gl => g2,
g2 => g3
)
mutex6

port map (

reset =>

ril =>
r2 =>
gl =>

)

end structural;

g2 =>

as_bd_4p_mutex

reset,

ri2,
rd2,
gl,
g4

A.5.2.9 merged4.vhd

library IEEE;
use IEEE.
use IEEE.
use IEEE.
use work

entity merge4d is

port (
reset

a_rh
a_ri
a_re
a_ack

b_rh
b_ri
b_re
b_ack

c_rh
c_ri
c_re
c_ack

d_rh
d_ri
d_re
d_ack

z_rh
z_ri
zZ_re
z_ack

a_data
b_data

in

in
in
in
out

in
in
in
out

in
in
in
out

in
in
in
out

out
out
out
in

in
in

STD_LOGIC_1164.ALL;
STD_LOGIC_ARITH.ALL;
STD_LOGIC_UNSIGNED.ALL;
.types.all;

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic; --Handshake
std_logic;
std_logic;
std_logic;
std_logic; --Handshake
std_logic;
std_logic;
std_logic;
std_logic; --Handshake
std_logic;
std_logic;
std_logic;
std_logic; --Handshake
std_logic;

std_logic;

std_logic;

flit_data;
flit_data;

--Reset (active

signals

signals

signals

signals

-- Data signals

low)

--Handshake signals for

for

for

for

for

input a

input b

input c

input d

output z



VHDL Code

163

c_data : in flit_data;
d_data : in flit_data;
z_data : out flit_data

) .

end merge4;
architecture structural of merge4 is

component as_bd_4p_c2 is

port (
reset : in std_logic; -- Reset (Active low)
a : in  std_logic; -- Input A
b : in std_logic; -- Input B
z : out std_logic -- Output Z
N

end component;

-- Internal signals --

signal a_req, b_req, c_req, d_req, a_ack_int, b_ack_int, c_ack_int,

d_ack_int : std_logic;
signal mux_control : std_logic_vector (3 downto 0);

attribute keep : string;

attribute keep of a_req : signal is "true";
attribute keep of b_req : signal is "true";
attribute keep of c_req : signal is "true";
attribute keep of d_req : signal is "true";
attribute keep of a_ack_int : signal is "true";
attribute keep of b_ack_int : signal is "true";
attribute keep of c_ack_int : signal is "true";
attribute keep of d_ack_int : signal is "true";
attribute keep of mux_control : signal is "true";
begin

z_rh <= a_rh or b_rh or c_rh or d_rh;
z_ri <= a_ri or b_ri or c_ri or d_ri;
z_re <= a_re or b_re or c_re or d_re;

a_req <= a_rh or a_ri or a_re;
b_req <= b_rh or b_ri or b_re;
c_req <= c_rh or c_ri or c_re;
d_req <= d_rh or d_ri or d_re;

a_ack <= a_ack_int;
b_ack <= b_ack_int;
c_ack <= c_ack_int;
d_ack <= d_ack_int;

a_ack_c_element : as_bd_4p_c2
port map (
reset => reset,
a => z_ack,
b => a_req,
z => a_ack_int
)

b_ack_c_element : as_bd_4p_c2
port map (
reset => reset,

a => z_ack,
b => b_req,
z => b_ack_int

)
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c_ack_c_element

d_ack_c_element

data_mux

port map (
reset =>

a =>
b =>
z =>

);

port map (

reset =>
a =>
b =>
z =>

)

reset,
z_ack,
c_req,
c_ack_int

reset,
z_ack,
d_req,
d_ack_int

d_req, d_ack_int,

as_bd_4p_c2

as_bd_4p_c2

process (a_req, a_ack_int, b_req,
a_data, b_data, c_data,

begin

if (a_req or a_ack_int) = ’1’ then
z_data <= a_data;

elsif (b_req or b_ack_int) = ’1’ then
z_data <= b_data;

elsif (c_req or c_ack_int) = ’1’ then
z_data <= c_data;

elsif (d_req or d_ack_int) = ’1’ then
z_data <= d_data;

else
z_data <= FLIT_ZERO;

end if;

end process;

end

structural;

A.5.2.10 be_router_boardtest.vhd

library IEEE;
IEEE.STD_LOGIC_1164.ALL;
IEEE.STD_LOGIC_ARITH.ALL;
IEEE.STD_LOGIC_UNSIGNED.ALL;

use
use
use
use
use

work.types.

all;

work.source_rom_data.all;

entity be_router_boardtest is
port (

)

reset
north_alive
east_alive
south_alive
west_alive
local_alive

in

out
out
out
out
out

end be_router_boardtest;

architecture Behavioral of be_router_boardtest is

component be_router is

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

port (
reset : in std_logic;
-- Input ports --
north_rh_in : in std_logic;
north_ri_in : in std_logic;
north_re_in : in  std_logic;

c_ack_int,
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end

north_ack_in
north_data_in

west_rh_in
west_ri_in
west_re_in
west_ack_in
west_data_in

south_rh_in
south_ri_in
south_re_in
south_ack_in
south_data_in

east_rh_in
east_ri_in
east_re_in
east_ack_in
east_data_in

local_rh_in
local_ri_in
local_re_in
local_ack_in
local_data_in

-- Output ports
north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out

west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out
local_data_out

component ;

out std_logic
in flit_data

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;

in flit_data

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data

component traffic_source
generic(

)

ROM : rom_type

port (

:= ROM_ZERO

5

i
3
B
B

i

5
i
5
i

5
B
i
3
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reset : in std_logic;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data

);

end component;

component traffic_sink

port (
reset : in std_logic;
rh_in : in STD_LOGIC;
ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
alive : out std_logic;

-- ILA Signals --
ILA_clk : out std_logic
);

end component;

component icon

port

(
controlO : out std_logic_vector (35 downto
controlil : out std_logic_vector(BS downto
control?2 : out std_logic_vector (35 downto
control3 : out std_logic_vector(BS downto
controléd H out std_logic_vector(BS downto

)

end component;

0);
0);
0);
0);
0)

component ila

port
(
control : in std_logic_vector (35 downto
clk : in std_logic;
trig0 : in std_logic_vector(lS downto
)

end component;

component BUFG
port (
0 : out STD_ULOGIC;
I : in STD_ULOGIC
)

end component;
signal rst : std_logic;
-- Handshake signals

signal north_rh_in, north_ri_in, north_re_in,
east_rh_in, east_ri_in, east_re_in,

0);

0)

north_ack_in,
east_ack_in,
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south_rh_in,
west_rh_in,
local_rh_in,
north_rh_out ,
east_rh_out,
south_rh_out,
west_rh_out,
local_rh_out,

std_logic;

-- Data signals

signal north_data_in,

local_data_in,

north_data_out,
local_data_out

south_ri_in,
west_ri_in,
local_ri_in,
north_ri_out,
east_ri_out,
south_ri_out,
west_ri_out,
local_ri_out,

east_data_in,

east_data_out,
flit_data;

south_re_in,
west_re_in,
local_re_in,
north_re_out,
east_re_out,
south_re_out,
west_re_out,
local_re_out,

south_data_in,

south_data_out,

south_ack_in,
west_ack_in,
local_ack_in,
north_ack_out,
east_ack_out,
south_ack_out,
west_ack_out,
local_ack_out

west_data_in,

west_data_out,

-- Chipscope signals
signal north_sink_ila_control,
south_sink_ila_control,
west_sink_ila_control, local_sink_ila_control,
north_source_ila_control,
east_source_ila_control, south_source_ila_control,
west_source_ila_control, local_source_ila_control
std_logic_vector (35 downto 0);

east_sink_ila_control,

signal north_ila_clk,
local_ila_clk,north_req,
north_ila_clk_buf,
west_ila_clk_buf,

attribute keep

east_rh_out,
south_rh_out,

west_rh_out,
local_rh_out,
signal is

attribute keep of
west_data_in,

north_data_in,
local_data_in,

east_ila_clk,

string;
attribute keep of north_rh_in,
east_rh_in,
south_rh_in,
west_rh_in,
local_rh_in,
north_rh_out,

>

B

north_data_out,

attribute keep of north_sink_ila_control,

west_data_out,

south_sink_ila_control,

west_sink_ila_control,
north_ila_clk,

begin
BUFG_reset BUFG
port map (
0 => rst,
I => reset

)

east_req,
east_ila_clk_buf,
local_ila_clk_buf

north_ri_in,
east_ri_in,

south_ri_in,
west_ri_in,

local_ri_in,
north_ri_out,

east_ri_out,
south_ri_out,

west_ri_out,
local_ri_out,

east_ila_clk,

south_ila_clk

"true";

east_data_in,

east_data_out

local_ila_clk

signal is

"true";

south_req,
south_ila_clk_buf,

north_re_in,
east_re_in,
south_re_in,
west_re_in,
local_re_in,
north_re_out,

east_re_out,
south_re_out,

west_re_out,
local_re_out,

local_data_out

west_ila_clk,
west_req, local_req,

std_logic;

north_ack_in,
east_ack_in,
south_ack_in,
west_ack_in,
local_ack_in,
north_ack_out

east_ack_out,
south_ack_out

west_ack_out,
local_ack_out
south_data_in,

south_data_out,
signal is "true";

east_sink_ila_control,

local_sink_ila_control,
south_ila_clk,

west_ila_clk,
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BUFG_north_ila_clk : BUFG
port map (
0 => north_ila_clk_buf, -- Clock buffer output
I => north_ila_clk -- Clock buffer input
)

BUFG_east_ila_clk : BUFG
port map (
0 => east_ila_clk_buf, -- Clock buffer output
I => east_ila_clk -- Clock buffer input
)

BUFG_south_ila_clk : BUFG
port map (
0 => south_ila_clk_buf, -- Clock buffer output
I => south_ila_clk -- Clock buffer input
)

BUFG_west_ila_clk : BUFG
port map (
0 => west_ila_clk_buf, -- Clock buffer output
I => west_ila_clk -- Clock buffer input
)

BUFG_local_ila_clk : BUFG
port map (

0 => local_ila_clk_buf, -- Clock buffer output
I => local_ila_clk -- Clock buffer input
)
-- ICON core instance
i_icon : icon
port map
(
controlO => north_sink_ila_control,
controlil => east_sink_ila_control,
control?2 => south_sink_ila_control,
control3 => west_sink_ila_control,
control4d => local_sink_ila_control
)
--- SOURCES --

north_source: traffic_source
generic map (
ROM => north_source_rom_data

)

port map (
reset => rst,
rh_out => north_rh_in,
ri_out => north_ri_in,
re_out => north_re_in,
ack_out => north_ack_in,
data_out => north_data_in

)

east_source: traffic_source
generic map (
ROM => east_source_rom_data

)
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port map (
reset =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>

)

south_source:
generic map(

rst,
east_rh_in,
east_ri_in,
east_re_in,
east_ack_in,
east_data_in

traffic_source

ROM => south_source_rom_data

)

port map (
reset =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>

)

rst,
south_rh_in,
south_ri_in,
south_re_in,
south_ack_in,
south_data_in

west_source: traffic_source

generic map (

ROM => west_source_rom_data

)

port map(
reset =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>

N

local_source:
generic map(

ROM => local_

rst,
west_rh_in,
west_ri_in,
west_re_in,
west_ack_in,
west_data_in

traffic_source

source_rom_data

)

port map(
reset => rst,
rh_out => local_rh_in,
ri_out => local_ri_in,
re_out => local_re_in,
ack_out => local_ack_in,
data_out => local_data_in

)

-- SINKS --

north_sink : traffic_sink

port map(
reset => rst,
rh_in => north_rh_out,
ri_in => north_ri_out,
re_in => north_re_out,
ack_in => north_ack_out,
alive => north_alive,
ILA_clk => north_ila_clk

)N

north_sink_ila
port map

ila
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control

clk

trig0
)

east_sink

port map(
reset
rh_in
ri_in
re_in
ack_in
alive
ILA_clk

);

=> north_sink_ila_control,

=>
=>

north_ila_clk_buf,
north_data_out

traffic_sink

east_sink_ila

port map
(

control
clk
trig0
);

south_sink

port map (
reset
rh_in
ri_in
re_in
ack_in
alive
ILA_clk

);

=>
=>
=>

=> rst,

=> east_rh_out,
=> east_ri_out,
=> east_re_out,
=> east_ack_out,
=> east_alive,
=> east_ila_clk

ila

east_sink_ila_control,
east_ila_clk_buf,
east_data_out

traffic_sink

south_sink_ila

port map
(

control
clk
trig0
)

west_sink

port map(
reset
rh_in
ri_in
re_in
ack_in
alive
ILA_clk

)

=>

=>

=> rst,

=> south_rh_out,
=> south_ri_out,
=> south_re_out,

south_ack_out,

>
=> south_alive,
>

south_ila_clk

ila

south_sink_ila_control,

south_ila_clk_buf,
south_data_out

traffic_sink

west_sink_ila

port map
(

control
clk
trig0
)

local_sink
port map(

=>
=>
=>

=> rst,

=> west_rh_out,
=> west_ri_out,
=> west_re_out,
=> west_ack_out,
=> west_alive,
=> west_ila_clk

ila

west_sink_ila_control,
west_ila_clk_buf,
west_data_out

traffic_sink
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reset => rst,
rh_in => local_rh_out,
ri_in => local_ri_out,
re_in => local_re_out,
ack_in => local_ack_out,
alive => local_alive,
ILA_clk => local_ila_clk

)

local_sink_ila ila

port map

(
control => local_sink_ila_control,
clk => local_ila_clk_buf,
trigo => local_data_out

)

router: be_router PORT MAP(

reset
north_rh_in
north_ri_in
north_re_in
north_ack_in
north_data_in
west_rh_in
west_ri_in
west_re_in
west_ack_in
west_data_in
south_rh_in
south_ri_in
south_re_in
south_ack_in
south_data_in
east_rh_in
east_ri_in
east_re_in
east_ack_in
east_data_in
local_rh_in
local_ri_in
local_re_in
local_ack_in
local_data_in
north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out
west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out
south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out
east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

rst,
north_rh_in,
north_ri_in,
north_re_in,
north_ack_in,
north_data_in,
west_rh_in,
west_ri_in,
west_re_in,
west_ack_in,
west_data_in,
south_rh_in,
south_ri_in,
south_re_in,
south_ack_in,
south_data_in,
east_rh_in,
east_ri_in,
east_re_in,
east_ack_in,
east_data_in,
local_rh_in,
local_ri_in,
local_re_in,
local_ack_in,
local_data_in,
north_rh_out,
north_ri_out,
north_re_out,
north_ack_out,
north_data_out,
west_rh_out,
west_ri_out,
west_re_out,
west_ack_out,
west_data_out,
south_rh_out,
south_ri_out,
south_re_out,
south_ack_out,
south_data_out,
east_rh_out,
east_ri_out,
east_re_out,
east_ack_out,
east_data_out,
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local_rh_out => local_rh_out,
local_ri_out = local_ri_out,
local_re_out => local_re_out,
local_ack_out => local_ack_out,
local_data_out => local_data_out

)

end Behavioral;

A.5.3 Network Adapter

A.5.3.1 master_na.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

entity master_na is
generic (
routing_table : route_lookup_table_type
)
port (
clk_i : in std_logic;
reset_i : in std_logic;

-- OCP interface

ocp_MCmd_i : in MCmdEncoding;

ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);
ocp_MData_i : in  std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_i : in  std_logic_vector (3 downto 0);
ocp_SCmdAccept_o : out std_logic;

ocp_SResp_o : out SRespEncoding;

ocp_SData_o : out std_logic_vector (addr_width-1 downto 0);

-- transmit hs channel

rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

-- receive hs channel

rh_in : in std_logic;
ri_in : in std_logic;
re_in : in std_logic;
ack_in : out std_logic;
data_in : in flit_data

)

end master_na;
architecture Behavioral of master_na is

component ocp_master_transfer_unit is
generic (

routing_table : route_lookup_table_type
)
port (

clk_i : in std_logic;
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)

reset_i

-- OCP Interface
ocp_MCmd_i
ocp_Maddr_i
ocp_MData_i
ocp_MByteEn_i
ocp_SCmdAccept_o

-- Async inferface
sync_req_out
sync_ack_out
packet_type_out
header_flit_data
control_flit_data
addr_flit_data
data_flit_data

end component;

in std_logic;

in MCmdEncoding;

in std_logic_vector (addr_width-1

downto 0);

in std_logic_vector (addr_width-1 downto 0);

in std_logic_vector (3 downto 0);

out std_logic;

out std_logic;
in std_logic;
out std_logic;
out flit_data;
out flit_data;
out flit_data;
out flit_data

component ocp_master_receive_unit is
port (

)

clk_i
reset_1i

-- OCP Interface
ocp_SResp_o
ocp_SData_o

-- Async inferface
sync_req_in
sync_ack_in
sresp_flit
sdata_flit

end component;

in std_logic;
in std_logic;

out SRespEncoding;

out std_logic_vector (addr_width-1

in std_logic;
out std_logic;
in flit_data;
in flit_data

component synchronizer is

port (
clk_in : in std_logic;
reset_i : in std_logic;
async_in : in std_logic;
sync_out out std_logic
)

end component;

component async_transmitter is
port (

)

reset
sync_req_in
sync_ack_in

packet_type_in
header_flit_in
control_flit_in
addr_flit_in
data_flit_in
rh_out

ri_out

re_out

ack_out

data_out

end component;

in
in
out
in
in
in
in
in
out
out
out
in
out

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;
flit_data;
flit_data;
flit_data;
std_logic;
std_logic;
std_logic;
std_logic;
flit_data

downto 0);
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component async_receiver

port (
reset in
rh_in in
ri_in in
re_in in
ack_in out
data_in in
sync_req_out out
sync_ack_out in
header_flit_out out
control_flit_out out
ad_flitO_out out
ad_flitl_out out

)

end component;

is

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
flit_data;
std_logic;
std_logic;
flit_data;
flit_data;
flit_data;
flit_data

signal transmit_req,transmit_ack,transmit_ack_sync,transmit_packet_type,
std_logic;

signal transmit_header_flit,

attribute keep
attribute keep of transmit_req,

receive_req,

receive_req_sync,

receive_ack

transmit_control_£flit,

transmit_data_flit, receive_sresp_flit, receive_sdata_flit

H
string;

can put TIG on them

begin

ocp_transfer

generic map (

routing_table =>
)
port map(
clk_i =>
reset_i =>

-- OCP Interface
ocp_MCmd_i =>

receive_ack
in UCF

ocp_master_transfer_unit

routing_table

clk_i,
reset_i,

ocp_MCmd_i,
ocp_Maddr_i,
ocp_MData_i,
ocp_MByteEn_i,
ocp_SCmdAccept_o,

transmit_req,
transmit_ack_sync,
transmit_packet_type,
transmit_header_f1lit,
transmit_control_£flit,
transmit_addr_£flit,
transmit_data_flit

async_transmitter

set_1i,

transmit_req,
transmit_ack,

ocp_Maddr_i =>
ocp_MData_i =>
ocp_MByteEn_i =>
ocp_SCmdAccept_o =>
-- Async inferface
sync_req_out =>
sync_ack_out =>
packet_type_out =>
header_flit_data =>
control_flit_data =
addr_flit_data =>
data_flit_data =>

)

async_transmit

port map (
reset > re
sync_req_in =>
sync_ack_in =>
packet_type_in =>
header_£flit_in =>
control_flit_in =>
addr_flit_in =>

transmit_packet_type,
transmit_header_flit,
transmit_control_£flit,
transmit_addr_flit,

signal is

"true";

transmit_addr_£flit,

flit_data

—-—S0 we
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data_flit_in =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>
)
transmit_sync synchr
port map(
clk_in => clk_i,
reset_1i => reset_i
async_in =>
sync_out => transmi
N
ocp_receive ocp_mast
port map (
clk_i
reset_i

-- OCP Interface
ocp_SResp_o
ocp_SData_o

-- Async inferface
sync_req_in
sync_ack_in
sresp_flit
sdata_flit

N

async_receive async_

port map(
reset =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
sync_req_out =>
sync_ack_out =>
header_flit_out =>
control_flit_out =>
ad_flitO_out =>
ad_flitl_out =>

)

receive_sync synchro

port map (
clk_in => clk_i,
reset_i => reset_i
async_in => receive
sync_out => receive

N

end Behavioral;

A.5.3.2

library IEEE;
use IEEE.STD_LOGIC_1164.
use IEEE.STD_LOGIC_ARITH

transmit_data_flit,
rh_out,

ri_out,

re_out,

ack_out,

data_out

onizer

B

transmit_ack,

t_ack_sync

er_receive_unit

=> clk_i,
=> reset_i,

=> ocp_SResp_o,
=> ocp_SData_o,

=> receive_req_sync,
receive_ack,
receive_sresp_flit,
=> receive_sdata_flit

receiver

reset_i,

rh_in,

ri_in,

re_in,

ack_in,

data_in,
receive_req,
receive_ack,

open,
receive_sresp_flit,
open,
receive_sdata_flit

nizer

>

-req,

_req_sync

ocp_master_transfer_unit.vhd

ALL;
.ALL;
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use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;
entity ocp_master_transfer_unit is
generic (
routing_table : route_lookup_table_type
)
port (
clk_i : in std_logic;
reset_i : in std_logic;
-- OCP Interface
ocp_MCmd_i : in  MCmdEncoding;
ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);
ocp_MData_i : in  std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_i : in  std_logic_vector (3 downto 0);
ocp_SCmdAccept_o : out std_logic;
-- Async wnferface
sync_req_out : out std_logic;
sync_ack_out : in std_logic;
packet_type_out : out std_logic;
header_flit_data : out flit_data;
control_flit_data : out flit_data;
addr_flit_data : out flit_data;
data_flit_data : out flit_data
)
end ocp_master_transfer_unit;
architecture Behavioral of ocp_master_transfer_unit is
type state is (WAIT_CMD, STORE_PACKET, ROUTE_LOOKUP, REQUEST, ACKNOWLEDGE);

signal
signal
signal
signal

constant control_flit_zero_part

current_state, next_state : state;
MCmd : MCmdEncoding;
MAddr, MData : std_logic_vector (addr_width-1 downto 0);

MByteEn : std_logic_vector (3 downto 0);

(others => ’0°);

std_logic_vector (FLIT_SIZE-1 downto 7) :=

signal ocp_register_en, sync_req : std_logic;
signal reverse_path : flit_data;
signal route_lookup_value : std_logic_vector (2xFLIT_SIZE-1 downto 0);
begin
next_state_logic : process(current_state, ocp_MCmd_i, sync_ack_out)
begin
case current_state is
when WAIT_CMD =>

ocp_register_en <= ’07;

ocp_SCmdAccept_o <= ’07;

sync_req <= ’07;

if ocp_MCmd_i /= MCmd_IDLE then
next_state <= STORE_PACKET;
else
next_state <= WAIT_CMD;
end if;

when STORE_PACKET =>

ocp_register_en <= 717
ocp_SCmdAccept_o <= ’07;
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sync_req <= ’0’;

next_state <= ROUTE_LOOKUP;
when ROUTE_LOOKUP =>

ocp_register_en <= ’0’;
ocp_SCmdAccept_o <= 17
sync_req <= ’0’;

next_state <= REQUEST;
when REQUEST =>

ocp_register_en <= ’0’;
ocp_SCmdAccept_o <= ’0’;
sync_req <= ’17;
if sync_ack_out = 1’ then
next_state <= ACKNOWLEDGE;
else
next_state <= REQUEST;
end if;
when ACKNOWLEDGE =>
ocp_register_en <= ’0’;
ocp_SCmdAccept_o <= ’0’;
sync_req <= ’0’;
if sync_ack_out = ’0’ then
next_state <= WAIT_CMD;
else
next_state <= ACKNOWLEDGE;
end if;

end case;
end process;

state_register : process(clk_i, reset_i)
begin
if reset_i = ’0’ then --active low

current_state <= WAIT_CMD;
elsif rising_edge(clk_i) then
current_state <= next_state;
end if;
end process;

ocp_cmd_register : process (clk_i,ocp_register_en)
begin
if rising_edge(clk_i) then
if ocp_register_en = ’1’ then
MCmd <= ocp_MCmd_ij;
MAddr <= ocp_Maddr_i;
MData <= ocp_Mdata_i;
MByteEn <= ocp_MByteEn_i;
end if;
end if;

end process;

route_lookup_process : process(clk_i,ocp_Maddr_i)

begin
if rising_edge(clk_i) then

route_lookup_value <= routing_table(conv_integer (Maddr (addr_width-1

downto addr_width-4)));
end if;
end process;

--forward path

header_flit_data <= route_lookup_value (2*FLIT_SIZE-1 downto FLIT_SIZE);

--return path

reverse_path <= route_lookup_value (FLIT_SIZE-1 downto 0);
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-- Control flit
control_flit_data <= control_flit_zero_part & MCmd & MByteEn;
-- Address flit
addr_flit_data <= MAddr;
-- reverse_path (RD) or data flit (WR)
data_flit_data <= reverse_path when MCmd = MCmd_RD else
MData;
packet_type_out <= ’1’ when MCmd = MCmd_WR else
00
-- deglitch ff om sync_regq
deglitch : process(clk_i,reset_i,sync_req)
begin
if reset_i = ’0’ then
sync_req_out <= ’07;
elsif rising_edge(clk_i) then
sync_req_out <= sync_req;
end if;
end process;
end Behavioral;
A.5.3.3 ocp_master_receive_unit.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;
entity ocp_master_receive_unit is
port (
clk_i : in std_logic;
reset_i : in std_logic;
-- OCP Interface
ocp_SResp_o : out SRespEncoding;
ocp_SData_o : out std_logic_vector (addr_width-1 downto 0);

-- Async inferface

sync_req_in : in std_logic;
sync_ack_in : out std_logic;
sresp_flit : in flit_data;
sdata_flit : in flit_data

)

end ocp_master_receive_unit;

architecture Behavioral of ocp_master_receive_unit is
type state is (WAIT_REQ, STORE_PACKET, ACKNOWLEDGE);

signal current_state, next_state : state;
signal ocp_register_en, sync_ack : std_logic;
begin
next_state_logic : process(current_state, sync_req_in)
begin

case current_state is
when WAIT_REQ =>
sync_ack <= ’0’;
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ocp_register_en <= ’0’;
if sync_req_in = ’1’ then
next_state <= STORE_PACKET;
else
next_state <= WAIT_REQ;
end if;
when STORE_PACKET =>
sync_ack <= ’07;
ocp_register_en <= ’1°;

next_state <= ACKNOWLEDGE;
when ACKNOWLEDGE =>

sync_ack <= 17,
ocp_register_en <= ’0’;
if sync_req_in = ’0’ then
next_state <= WAIT_REQ;
else
next_state <= ACKNOWLEDGE;
end if;

end case;
end process;

state_register : process(clk_i, reset_i,next_state)
begin
if reset_i = ’0’ then --active low

current_state <= WAIT_REQ;
elsif rising_edge(clk_i) then
current_state <= next_state;
end if;
end process;

ocp_cmd_register : process (ocp_register_en)
begin
if ocp_register_en = ’1’ then

ocp_SResp_o <= sresp_flit (1 downto 0);
ocp_SData_o <= sdata_flit;
else
ocp_SResp_o <= (others => ’0’);
ocp_SData_o <= (others => ’0’);
end if;
end process;

-- deglitch ff onm sync_ack

deglitch : process(clk_i,reset_i,sync_ack)
begin
if reset_i = ’0’ then
sync_ack_in <= ’0’;

elsif rising_edge(clk_i) then
sync_ack_in <= sync_ack;
end if;
end process;

end Behavioral;

A.5.3.4 slave_na.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;
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entity slave_na is

port (
clk_i in std_logic;
reset_i in std_logic;

-- OCP interface
ocp_MCmd_o
ocp_Maddr_o
ocp_MData_o
ocp_MByteEn_o

out
out
out
out

ocp_SCmdAccept_i in
ocp_SResp_i in
ocp_SData_i in

transmit hs channel

rh_out out std_logic;
ri_out out std_logic;
re_out out std_logic;
ack_out in std_logic;
data_out out flit_data;
-- receive hs channel
rh_in in std_logic;
ri_in in std_logic;
re_in in std_logic;
ack_in out std_logic;
data_in in flit_data

)

end slave_na;

architecture Behavioral of sla

component ocp_slave_receive_
port (
clk_i in s
reset_i in s
-- OCP Interface
ocp_MCmd_o out
ocp_Maddr_o out

ocp_MData_o out
ocp_MByteEn_o out
ocp_SCmdAccept_i in s
-- Async inferface
sync_req_in in
sync_ack_in ou
header_flit_in in
control_flit_in in
addr_flit_in in
data_flit_in in

--control
read_cmd_out

MCmdEncoding;
std_logic_vector (addr_width-1
std_logic_vector (addr_width-1
std_logic_vector (3 downto 0);
std_logic;

SRespEncoding;
std_logic_vector (addr_width-1

downto 0);
downto 0);

downto 0);

ve_na is
unit is

td_logic;
td_logic;

MCmdEncoding;

std_logic_vector (addr_width-1 downto 0);
std_logic_vector (addr_width-1 downto 0);
std_logic_vector (3 downto 0);

td_logic;

std_logic;

t std_logic;
flit_data;
flit_data;
flit_data;
flit_data;

read_cmd_done
reverse_header
);

end component;

component ocp_slave_
port (

clk_i

reset_1i

out std_logic;
in std_logic;
out flit_data

transfer_unit is

in std_logic;
in std_logic;
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-- OCP Interface

ocp_SResp_i : in SRespEncoding;
ocp_SData_i : in std_logic_vector (addr_width-1 downto

-- Async inferface
sync_req_out
sync_ack_out
header_flit_out
control_flit_out
data_flit_out

--Control

read_cmd_in : in
read_cmd_done : out
header_flit_in ¢ in

)

end component;

component synchronizer is

port (
clk_in : in  std_log
reset_i : in std_log
async_in : in std_log
sync_out : out std_log
)

end component;

out std_logic;
in std_logic;
out flit_data;
out flit_data;
out flit_data;

std_logic;
std_logic;
flit_data

ic;
ic;
ic;
ic

component async_transmitter is

port (
reset : in  std_logic;
sync_req_in : in std_logic;
sync_ack_in : out std_logic;
packet_type_in : in  std_logic;
header_flit_in : in flit_data;
control_flit_in : in flit_data;
addr_flit_in : in flit_data;
data_flit_in : in flit_data;
rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data

)

end component;

component async_receiver is

port (
reset : in  std_logic;
rh_in : in std_logic;
ri_in : in std_logic;
re_in ¢ in std_logic;
ack_in : out std_logic;
data_in : in flit_data;
sync_req_out : out std_logic;
sync_ack_out : in std_logic;
header_flit_out : out flit_data;
control_flit_out : out flit_data;
ad_flitO_out : out flit_data;
ad_flitl_out : out flit_data

N

end component;
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136 signal transmit_req,transmit_ack,transmit_ack_sync,transmit_packet_type,
receive_req, receive_req_sync, receive_ack,

137 read_cmd, read_cmd_done : std_logic;

138

139 signal transmit_header_flit, transmit_control_flit, transmit_addr_flit,

transmit_data_flit,
140 receive_header_flit, receive_control_flit, receive_addr_f1lit,
receive_data_flit ,reversed_header : flit_data;

141

142 attribute keep : string;

143 attribute keep of transmit_req, receive_ack : signal is "true"; --so we
can put TIG on them in UCF

144

145 Dbegin

146

147 ocp_receive : ocp_slave_receive_unit

148 port map (

149 clk_i => clk_i,

150 reset_i => reset_i,

151

152 -- OCP Interface

153 ocp_MCmd_o => ocp_MCmd_o,

154 ocp_Maddr_o => ocp_Maddr_o,

155 ocp_MData_o => ocp_MData_o,

156 ocp_MByteEn_o => ocp_MByteEn_o,

157 ocp_SCmdAccept_i => ocp_SCmdAccept_i,

158

159 -- Async inferface

160 sync_req_in > receive_req_sync,

161 sync_ack_in => receive_ack,

162 header_flit_in > receive_header_flit,

163 control_flit_in > receive_control_flit,

164 addr_flit_in > receive_addr_flit,

165 data_flit_in > receive_data_flit,

166

167 --control

168 read_cmd_out => read_cmd,

169 read_cmd_done => read_cmd_done,

170 reverse_header => reversed_header

171 )

172

173 ocp_transfer : ocp_slave_transfer_unit

174 port map (

175 clk_i => clk_i,

176 reset_i => reset_i,

177

178 -- OCP Interface

179 ocp_SResp_i => ocp_SResp_i,

180 ocp_SData_i => ocp_SData_i,

181

182 -- Async inferface

183 sync_req_out => transmit_req,

184 sync_ack_out => transmit_ack_sync,

185 header_flit_out => transmit_header_flit,

186 control_flit_out => transmit_control_flit,

187 data_flit_out => transmit_data_flit,

188

189 --Control

190 read_cmd_in => read_cmd,

191 read_cmd_done => read_cmd_done,

192 header_flit_in => reversed_header

193

194 )

195

196 async_transmit : async_transmitter
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port map (
reset => reset_i,
sync_req_in => transmit_req,
sync_ack_in => transmit_ack,
packet_type_in => transmit_packet_type,
header_flit_in => transmit_header_flit,
control_flit_in => transmit_control_flit,
addr_flit_in => (others => ’07), -- no addr flit for read

rTesponse packets

data_flit_in => transmit_data_flit,
rh_out => rh_out,
ri_out => ri_out,
re_out => re_out,
ack_out => ack_out,
data_out => data_out

)

transmit_sync : synchronizer

port map (
clk_in => clk_i,
reset_1i => reset_i,
async_in => transmit_ack,
sync_out => transmit_ack_sync

N

async_receive : async_receiver

port map(
reset => reset_i,
rh_in => rh_in,
ri_in => ri_in,
re_in => re_in,
ack_in => ack_in,
data_in => data_in,
sync_req_out => receive_req,
sync_ack_out => receive_ack,
header_flit_out => receive_header_flit,
control_flit_out => receive_control_flit,
ad_flitO_out => receive_addr_£flit,
ad_flitl_out => receive_data_£flit

N

receive_sync : synchronizer

port map(
clk_in => clk_i,
reset_1i => reset_i,
async_in => receive_req,
sync_out => receive_req_sync

)

end Behavioral;

A.5.3.5 ocp_slave_transfer_unit.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

entity ocp_slave_transfer_unit is
port (
clk_i : in std_logic;
reset_1i : in std_logic;
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-- OCP Interface
ocp_SResp_i
ocp_SData_i

-- Async inferface
sync_req_out
sync_ack_out
header_£flit_out
control_flit_out
data_flit_out

--Control
read_cmd_in
read_cmd_done
header_flit_in

);

in SRespEncoding;
in std_logic_vector (addr_width-1 downto 0);

out std_logic;
in std_logic;
out flit_data;
out flit_data;
out flit_data;

in std_logic;
out std_logic;
in flit_data

end ocp_slave_transfer_unit;

architecture Behavioral of ocp_slave_transfer_unit is

type state is (INIT,

WAIT_SRESP, STORE_DATA, REQUEST, ACKNOWLEDGE,

WAIT_READ_CMD_DONE) ;

signal current_state,

constant control_flit_zero_part
(others => ’0’);

signal ocp_register_en, sync_req

begin

next_state_logic
read_cmd_in)
begin

next_state state;

std_logic;

process (current_state, ocp_SResp_i, sync_ack_out,

case current_state is

when INIT =>

sync_req <= ’07;

read_cmd_done <= ’0’;
ocp_register_en <= ’0’;
if read_cmd_in ’1’ then
next_state <= WAIT_SRESP;
else
next_state <= INIT;
end if;
when WAIT_SRESP
sync_req <= ’0°’;
read_cmd_done <= ’0’;

if ocp_SResp_i

SResp_DVA then

ocp_register_en <= ’1°;
next_state <= REQUEST;
else
ocp_register_en <= ’0’;
next_state <= WAIT_SRESP;
end if;
when STORE_DATA
sync_req <= ’07;
ocp_register_en <= ’1°;
read_cmd_done <= ’07;
next_state <= REQUEST;
when REQUEST =>
sync_req <= ’1°7;
ocp_register_en <= ’0’;
read_cmd_done <= ’07;

std_logic_vector (FLIT_SIZE-1 downto 2)
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if sync_ack_out = ’1’ then
next_state <= ACKNOWLEDGE;
else
next_state <= REQUEST;
end if;
when ACKNOWLEDGE =>
sync_req <= ’0’;
read_cmd_done <= ’0’;
ocp_register_en <= ’0’;
if sync_ack_out = 0’ then
next_state <= WAIT_READ_CMD_DONE;
else
next_state <= ACKNOWLEDGE;
end if;
when WAIT_READ_CMD_DONE =>
sync_req <= ’0’;
read_cmd_done <= ’1°;
ocp_register_en <= ’0’;
if read_cmd_in = ’0’ then
next_state <= INIT;
else
next_state <= WAIT_READ_CMD_DONE;
end if;

end case;
end process;

state_register : process(clk_i, reset_i)
begin
if reset_i = ’0’ then --active low

current_state <= INIT;
elsif rising_edge(clk_i) then
current_state <= next_state;
end if;
end process;

ocp_cmd_register : process (clk_i,ocp_register_en)
begin
if rising_edge(clk_i) then
if ocp_register_en = ’1’ then
control_flit_out <= control_flit_zero_part & ocp_SResp_i;
data_flit_out <= ocp_SData_ij;
end if;
end if;

end process;
header_flit_out <= header_flit_in;

-- deglitch ff om sync_req
deglitch : process(clk_i,reset_i,sync_req)
begin
if reset_i = ’0’ then
sync_req_out <= ’0’;
elsif rising_edge(clk_i) then
sync_req_out <= sync_req;
end if;
end process;

end Behavioral;

A.5.3.6 ocp_slave_receive_unit.vhd

library IEEE;
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use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

entity ocp_slave_receive_unit is

port (
clk_i : in std_logic;
reset_i : in std_logic;

-- OCP Interface

ocp_MCmd_o : out MCmdEncoding;

ocp_Maddr_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MData_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_o : out std_logic_vector (3 downto 0);
ocp_SCmdAccept_i : in std_logic;

-- Async inferface

sync_req_in : in std_logic;
sync_ack_in : out std_logic;
header_flit_in : in flit_data;
control_flit_in : in flit_data;
addr_flit_in : in flit_data;
data_flit_in : in flit_data;
--control

read_cmd_out : out std_logic;
read_cmd_done : in  std_logic;
reverse_header : out flit_data

)

end ocp_slave_receive_unit;
architecture Behavioral of ocp_slave_receive_unit is

type state is (WAIT_REQ, STORE_PACKET, WAIT_CMDACCEPT, ACKNOWLEDGE,
WAIT_READ_CMD_DONE) ;

signal current_state, next_state : state;
signal ocp_register_en, read_cmd, sync_ack : std_logic;
begin

read_cmd_out <= read_cmd;

next_state_logic : process (current_state, ocp_SCmdAccept_i, sync_req_in,
control_flit_in, read_cmd_done)
begin
case current_state is
when WAIT_REQ =>

sync_ack <= ’07;
ocp_register_en <= ’0’;
read_cmd <= ’07;
if sync_req_in = ’1’ then
next_state <= STORE_PACKET;
else
next_state <= WAIT_REQ;
end if;
when STORE_PACKET =>
ocp_register_en <= ’1°7;
sync_ack <= ’0’;
if control_flit_in(6 downto 4) = MCmd_RD then --MCmd field
read_cmd <= ’17’;
else
read_cmd <= ’0°’;

end if;
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--check SCmdAccept immediately
if ocp_SCmdAccept_i = ’1’ then
if control_flit_in(6 downto 4) = MCmd_RD then
next_state <= WAIT_READ_CMD_DONE;

else
next_state <= ACKNOWLEDGE;
end if;
else
next_state <= WAIT_CMDACCEPT;
end if;

when WAIT_CMDACCEPT =>

ocp_register_en <= ’1°;

sync_ack <= ’0’;

if control_flit_in(6 downto 4) = MCmd_RD then --MCmd field
read_cmd <= ’1°;

else
read_cmd <= ’0’;

end if;

if ocp_SCmdAccept_i = ’1’ then

if control_flit_in(6 downto 4) = MCmd_RD then
next_state <= WAIT_READ_CMD_DONE;

else
next_state <= ACKNOWLEDGE;
end if;
else
next_state <= WAIT_CMDACCEPT;
end if;
when WAIT_READ_CMD_DONE =>
sync_ack <= ’0’;
ocp_register_en <= ’0’;
read_cmd <= 17
if read_cmd_done = ’1’ then
next_state <= ACKNOWLEDGE;
else
next_state <= WAIT_READ_CMD_DONE;
end if;

when ACKNOWLEDGE =>

ocp_register_en <= ’1°;
sync_ack <= 17
read_cmd <= ’0’;
if sync_req_in = ’0’ then
next_state <= WAIT_REQ;
else
next_state <= ACKNOWLEDGE;
end if;

end case;
end process;

state_register : process(clk_i, reset_i,next_state)
begin
if reset_i = ’0’ then --active low

current_state <= WAIT_REQ;
elsif rising_edge(clk_i) then
current_state <= next_state;
end if;
end process;

ocp_cmd_register : process (clk_i,ocp_register_en)
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begin
if rising_edge(clk_i) then

if ocp_register_en = ’1’ then
ocp_MCmd_o <= control_flit_in(6 downto 4);
ocp_MByteEn_o <= control_flit_in(3 downto 0);
ocp_Maddr_o <= addr_flit_in;
ocp_MData_o <= data_flit_in;

else
ocp_MCmd_o <= (others => ’07); -- must be set to IDLE

ocp_MByteEn_o <=

ocp_Maddr_o
ocp_MData_o
end if;
end if;

end process;

-- If the packet

<=
<=

reverse_header_register
begin
if rising_edge(clk_i) then

if read_cmd =

10t

reverse_header <=

end if;
end if;

end process;

(others => ’0%);
(others => ’0’);
(others => ’07);

is a RD request, store the reverse path
process(clk_i, read_cmd, data_flit_in)

hen
data_flit_in;

-- deglitch ff on sync_ack_in - Glitch observed inm post-par

deglitch

begin

if reset_i = ’0°
sync_ack_in <=

then
)OJ;

process (clk_i,reset_i,sync_ack)

elsif rising_edge(clk_i) then

sync_ack_in <=
end if;

end process;

end

Behavioral;

sync

_ack;

A.5.3.7 async_transmitter.vhd

library IEEE;
IEEE.STD_LOGIC_1164.ALL;
IEEE.STD_LOGIC_ARITH.ALL;
IEEE.STD_LOGIC_UNSIGNED.ALL;

use
use
use
use

work.types.all;

entity async_transmitter is
port (

reset
sync_req_in
sync_ack_in
packet_type_in
header_flit_in
control_flit_in
addr_flit_in
data_flit_in
rh_out

ri_out

re_out

ack_out
data_out

in
in
out
in
in
in
in
in
out
out
out
in
out

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;
flit_data;
flit_data;
flit_data;
std_logic;
std_logic;
std_logic;
std_logic;
flit_data

sim.
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end async_transmitter;

architecture Behavioral of async_transmitter is

component async_transmitter_hs_ctrl is

port (
reset
sync_req_in
sync_ack_in
rh_out
ri_out
re_out
ack_out
header_flit_out
control_flit_out
addr_flit_out
data_flit_out
)5

end component;

in

in

out
out
out
out
in

out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

component as_bd_4p_delay is

generic (

size natural
N
port (

d : in std_logi

Z : out std_logi
)

end component;

signal rh, ri, re, header_flit_en,

data_flit_en

begin

data_mux

data_flit_en, header_flit_in,

data_flit_in)
begin
if header_flit_en

cs
[

10

-- Delay size

-- Data in
-- Data out

std_logic;

110

then

data_out <= header_flit_in;

elsif control_flit_en

’1’ then

data_out <= control_flit_in;

elsif addr_flit_en

210

then

data_out <= addr_flit_in;

elsif data_flit_en

11

then

data_out <= data_flit_in;

else

data_out <= FLIT_ZERO;

end if;
end process;

hs_ctrl
port map (
reset
sync_req_in
sync_ack_in
rh_out
ri_out
re_out
ack_out
header_flit_out
control_flit_out
addr_flit_out

async_transmitter_hs_ctrl

reset,
sync_req_in,
sync_ack_in,

rh,
ri,
re,

ack_out,
header_flit_en,
control_flit_en,
addr_flit_en,

control_flit_en,

addr_flit_en,

process(header_flit_en,control_flit_en,addr_flit_en,
control_flit_in,

addr_flit_in,
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data_flit_out
);

rh_delay
generic map (
size => 4
)
port map(
d => rh,
z => rh_out

)

ri_delay
generic map (
size => 4
)
port map(
d => ri,
z => ri_out

)

re_delay
generic map (
size => 4
)
port map(
d => re,
z => re_out

)

end Behavioral;

A.5.3.8

library IEEE;

=> data_flit_en

as_bd_4p_delay

as_bd_4p_delay

as_bd_4p_delay

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;

use UNISIM.VComponents.

use
use
use

UNISIM
UNISIM
UNISIM

.VComponents
.VComponents

.VComponents.

lut2;
.1lut3;
.lutd;

luté_

async_transmitter_hs_ctrl.vhd

1;

entity async_transmitter_hs_ctrl is
port (

);

reset
sync_req_in
sync_ack_in
rh_out

ri_out

re_out

ack_out
header_flit_out
control_flit_out
addr_flit_out
data_flit_out

in

in

out
out
out
out
in

out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

end async_transmitter_hs_ctrl;

architecture Behavioral of async_transmitter_hs_ctrl

is
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signal sync_req, ack, header_flit, rh, control_flit, ri, addr_flit,
data_flit, sync_ack, re, cscO, cscl, csc2,
zero, one, four, five, eight, nine, eleven, twelve, fourteen,
seventeen, eighteen, twenty,
not_one, not_five, not_nine, not_twelve, not_cscl, not_eighteen,
not_twenty, not_sync_req, not_control_flit : std_logic;

attribute keep : string;
attribute keep of sync_req, ack, header_flit, rh, control_flit, ri,
addr_f1lit, data_flit, sync_ack, re, cscO, cscl, csc2,
zero, one, four, five, eight, nine, eleven, twelve, fourteen,

seventeen, eighteen, twenty : signal is "true";

attribute rloc : string;

attribute rloc of zero_LUT : label is "X0YO";
attribute rloc of one_LUT : label is "X0YO";
attribute rloc of four_LUT : label is "X0YO";
attribute rloc of five_LUT : label is "X0YO";
attribute rloc of eight_LUT : label is "X1Y0";
attribute rloc of nine_LUT : label is "X1Y0";
attribute rloc of eleven_LUT : label is "X1Y0";
attribute rloc of twelve_LUT : label is "X1Y0";
attribute rloc of fourteen_LUT : label is "X1Y1";
attribute rloc of seventeen_LUT : label is "X1Y1";
attribute rloc of eighteen_LUT : label is "X1Y1";
attribute rloc of twenty_LUT : label is "X1Y1";
attribute rloc of cscO_c : label is "X0Y2";
attribute rloc of cscil_c : label is "X0Y2";
attribute rloc of csc2_c : label is "X0Y2";
attribute rloc of rh_LUT : label is "XO0Y2";
attribute rloc of ri_LUT : label is "X1Y2";
attribute rloc of re_LUT : label is "X1Y2";
attribute rloc of header_flit_c : label is "X1Y2";
attribute rloc of control_flit_c : label is "X1vY2";
attribute rloc of addr_flit_c : label is "X2Y2";
attribute rloc of data_flit_c : label is "X2Y2";
attribute rloc of sync_ack_c : label is "X2Y2";

# EQN file for model async_transmitter_lo

# Generated by petrify 4.2 (compiled 15-0ct-03 at 3:06 PM)

# Outputs between brackets "[out]" indicate a feedback to input "out”
# Estimated area = 83.00

INORDER = sync_req ack header_flit rTh control_flit ri addr_flit data_flit
sync_ack re cscO cscl csc2;

OUTORDER = [header_flit] [rh] [control_flit] [ri] [addr_flit] [data_flit]
[sync_ack] [re] [csc0] [csc1l] [csc2];

[0] = cscO’ sync_req csc2;

[1] = ack’ cscO header_flit;

[header_flit] = [1]’ ([0] + header_flit) + header_flit [0]; #

mappable onto gC

[rh] = cscO’ header_flit;

[4] = cscO header_flit’ csc2;

[5] = ack’ cscO0’ control_flit;

[control_flit] = [5]7 ([4] + control_flit) + control_flit [4]; #

mappable onto gC
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- [ri] = csc0”’ addr_flit + cscO control_flit;

-- [8] = control_flit’ cscl csc2’;

-- [9] = ack’ cscO cscl’;

-- [addr_flit] = [9]’ ([8] + addr_flit) + addr_flit [8]; # mappable
onto gC

-- [11] = c¢scO addr_flit’ cscl’;

-- [12] = ack’ cscO’ cscl’;

-- [data_fl4t] = [12]’ ([11] + data_flit) + data_flait [11]; # mappable
onto gC

--= [14] = csc0’ cscl’ data_flit’;

-- [sync_ack] = csc1’ ([14] + sync_ack) + sync_ack [14]; # mappable
onto gC

-- [re] = cscO data_flit;

--= [17] = ack (rh + addr_flit);

-- [18] = ack addr_flit’ csc2’;

-- [ecsc0] = [18]° ([17] + csc0) + cscO [17]; # mappable onto gC

-- [20] = cscO addr_flit;

-- [ecsc1] = [20]’ (csc2 + cscl) + cscl csc2; # mappable onto gC

-- [csc2] = sync_req’ (control_flit’ + csc2) + control_flit’ csc2; #

mappable onto gC

# Set/reset pins: reset (header_flit) reset(control_flit) reset (addr_flit)

reset (data_flit) reset(csc0)

[0] = cscO0”’ sync_req csc2;

zero_LUT : LUT3
generic map (

INIT => X"08")

port map (

)

0 => zero,

I0 => csc2,
I1 => sync_req,
I2 => cscO

[1] = ack’ cscO header_flit;

one_LUT : LUT3
generic map (

INIT => X"08")

port map (

)

0 => one,

I0 => header_flit,
I1 => cscO,

I2 => ack

[rh] = cscO0’ header_flit;

rh_LUT: LUT2
generic map (

INIT => X"2")

port map (

);

0 => rh,
I0 => header_flit,
I1 => cscO0

[4] = cscO header_flit’ csc2;

four _LUT : LUT3
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generic map (
INIT => X"20")

port map (
0 => four,
I0 => csc2,
I1 => header_flit,
I2 => cscO
)

-- [5] = ack’ cscO0’ control_flit;

five_LUT : LUT3
generic map (
INIT => X"02")

port map (
0 => five,
I0 => control_£flit,
I1 => cscO,
I2 => ack
)

- [ri] = csc0’ addr_flit + cscO control_flat;

ri_LUT : LUT4
generic map (
INIT => X"88f8")

port map (
0 =>ri,
IO => control_flit,
I1 => cscO,
I2 => addr_flit,
I3 => csc0

)
-- [8] = control_flit’ cscl csc2’;

eight LUT : LUT3
generic map (
INIT => X"04")

port map (

0 => eight,

I0 => csc2,

I1 => cscl,

I2 => control_flit
N

-- [9] = ack’ cscO cscl’;

nine_LUT : LUT3
generic map (
INIT => X"04")

port map (
0 => nine,
I0 => cscl,
I1 => cscO,
I2 => ack
N

-- [11] = cscO addr_flit’ cscl’;
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eleven_LUT : LUT3

generic map (
INIT => X"10

port map (
0 => eleven,
I0 => cscl,

"y

I1 => addr_f1lit,

I2 => cscO
);

-- [12] = ack’

csc0’

twelve_LUT : LUT3

generic map (
INIT => X"O01

port map (
0 => twelve,
I0 => cscl,
I1 => cscO,
I2 => ack

)

-= [14] = csc0’

fourteen_ LUT
generic map (

"

cscl’

LUT3

INIT => X"01")

port map (

0 => fourteen,
I0 => data_flit,

I1 => cscl,
I2 => cscO
)

cscl’;

data_flit ’;

-- [re] = cscO data_flit;

re_LUT: LUT2
generic map (

INIT => X"8")

port map (
0 => re,

IO => data_flit,

I1 => cscO
)

-- [17] = ack (rh + addr_flit);

seventeen_LUT
generic map (

LUT3

INIT => X"eO")

port map (

0 => seventeen,
I0 => addr_flit,

I1 => rh,
I2 => ack
);

-- [18] = ack addr_flit’ csc2’;

eighteen_LUT

LUT3
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generic map (
INIT => X"10")

port map (
0 => eighteen,

)

I0
I1
I2

=> csc2,
=> addr_f1lit,
=> ack

[20] = cscO addr_flit;

twenty_LUT: LUT2
generic map (
INIT => X"8")

port map (

)

0
I0

=> twenty,
=> addr_£f1lit,

I1 => cscO

-- C-elements

[header_flit] = [1]° ([0] + header_flit) + header_flit [0]; #
mappable onto gC
-- C-element with inverted 11 input
header_flit_c: luté4_1
generic map (
init => "10110010" & x"0O0O"
)
port map (
i0 => zero,
il => one,
i2 => header_flit,
i3 => reset,
lo => header_flit
N
[control_flit] = [5]’ ([4] + control_flit) + control_flit [4]; #
mappable onto gC
-- C-element with inverted <1 input
control_flit_c: luté4_1
generic map (
init => "10110010" & x"00"
)
port map (
i0 => four,
il => five,
i2 => control_£flit,
i3 => reset,
lo => control_flit
N
[addr_flit] = [9]° ([8] + addr_flit) + addr_flit [8]; # mappable

onto gC

-- C-element with inverted <1 input
addr_flit_c: lut4d_1

generic map (

init => "10110010" & x"00"

)
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port
i0
i1
i2
i3
lo
)

map (

=> eight,

=> nine,

=> addr_flit,
=> reset,

=> addr_£f1lit

[data_flit] = [12]° ([11] + data_flit) + data_flit [11]; # mappable
onto gC

-- C-element with inverted i1 input

data_

flit_c: lutd_1

generic map (
init => "10110010" & x"OO"

)
port
i0

);

map (

=> eleven,

=> twelve,

=> data_flit,
=> reset,

=> data_flit

[sync_ack] = cscl’ ([14] + sync_ack) + sync_ack [14]; # mappable
onto gC

-- C-element with inverted i1 input

sync_

ack_c: lut4d_1

generic map (
init => "10110010" & x"00"

)
port
i0

)

map (

=> fourteen,
=> cscl,

=> sync_ack,
=> reset,

=> sync_ack

[csc0] = [18]° ([17] + csc0) + cscO [17]; # mappable onto gC

-- C-element with inverted %1 input

cscO_

c: lut4d_1

generic map (
init => "10110010" & x"00"

)

port
i0

)

map (

=> seventeen,
=> eighteen,
=> c¢scO0,

=> reset,

=> cscO

[csc1] = [20]° (csc2 + cscl) + cscl csc2; # mappable onto gC

-- C-element with inverted i1 input

cscl_

c: lut4d_1

generic map (
init => "10110010" & x"ff" -- Set to 1 to avoid glitch during reset.

)

port
i0
i1

map (
=> csc2,
=> twenty,
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)

-- C-element with inverted %0 and <1
csc2_c:

i2
i3
lo

=> cscl,
=> reset,
=> cscl

[csc2] = sync_req’
mappable onto gC

lut4_1

generic map (

)

init => "01110001"

port map (

)

i0 => control_£flit,
il => sync_req,

i2 => csc2,

i3 => reset,

lo => csc2

-- Assign in/outputs

sync_req <=
sync_ack_in <=
rh_out <=
ri_out <=
re_out <=
ack <=
header_flit_out <=
control_flit_out <=
addr_flit_out <=
data_flit_out <=

end

Behavioral;

(control_flit’ + csc2) + control_flit’

& x"ff" -- Set to

sync_req_in;
sync_ack;

rh;

ri;

re;

ack_out;
header_£flit;
control_flit;
addr_£flit;
data_flit;

A.5.3.9 async_receiver.vhd

library IEEE;

use
use
use
use

IEEE.
IEEE.
IEEE.
work.

STD_LOGIC_1164

types.all;

.ALL;

STD_LOGIC_ARITH.ALL;
STD_LOGIC_UNSIGNED.ALL;

entity async_receiver is
port (

)

end

reset

rh_in

ri_in

re_in

ack_in

data_in
sync_req_out
sync_ack_out
header_flit_out
control_flit_out
ad_flitO_out
ad_flitl_out

async_receiver;

architecture Behavioral

in
in
in
in
out
in
out
in
out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
flit_data;
std_logic;
std_logic;
flit_data;
flit_data;
flit_data;
flit_data

of async_receiver

csc2;

input

1 to avoid glitch during reset.

is
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component async_receiver_hs_ctrl is

port (
reset
sync_req_out
sync_ack_out
rh_in
ri_in
re_in
ack_in
header_latch_out
control_latch_out
ad_latchO_out
ad_latchl_out

);

end component;

signal header_latch_en,

std_logic;
begin

as_hs_ctrl

in
out
in
in
in
in
out
out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

control_latch_en, ad_latchO_en, ad_latchl_en

async_receiver_hs_ctrl

port map (
reset > reset,
sync_req_out => sync_req_out,
sync_ack_out => sync_ack_out,
rh_in => rh_in,
ri_in => ri_in,
re_in => re_in,
ack_in => ack_in,
header_latch_out => header_latch_en,
control_latch_out => control_latch_en,
ad_latchO_out = ad_latchO_en,
ad_latchl_out > ad_latchil_en
)
header_latch process(header_latch_en, data_in)
begin
if header_latch_en = ’1’ then
header_flit_out <= data_in;
end if;
end process;
control_latch process (control_latch_en, data_in)
begin
if control_latch_en = ’1’ then
control_flit_out <= data_in;
end if;
end process;
ad_latchO process (ad_latchO_en, data_in)
begin
if ad_latchO_en = 1’ then
ad_flitO_out <= data_in;
end if;
end process;
ad_latchil process (ad_latchl_en, data_in)
begin
if ad_latchli_en = ’1’ then
ad_flitl_out <= data_in;

end if;
end process;
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end Behavioral;

A.5.3.10 async_receiver_hs_ctrl.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNI
use UNISIM.
use UNISIM.
use UNISIM.
use UNISIM.
use UNISIM.
use UNISIM

SIM;

VComponents.lut4_1;
VComponents.lut6;
VComponents.lut5;
VComponents.lut4;
VComponents.lut3;

.VComponents.lut2;

entity async_receiver_hs_ctrl is

port (
reset
sync_re

q_out

sync_ack_out

rh_in
ri_in
re_in
ack_in

header_latch_out

in std_logic;
out std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
out std_logic;
out std_logic;

control_latch_out : out std_logic;
ad_latchO_out
ad_latchl_out

)

out std_logic;
out std_logic

end async_receiver_hs_ctrl;

architecture Behavioral of async_receiver_hs_ctrl is

signal rh,ri,re,sync_ack,header_latch,ack,control_latch,ad_latchO,ad_latchl

,sync_req,cscO,cscl,
zero, one,
std_logic;

attribute

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

keep

two, four, five, six,

string;

attribute keep of rh,ri,re,sync_ack,header_latch,ack,control_latch,
ad_latchO,ad_latchl,sync_req,cscO,cscl,

zero, one, two, four, five,

signal is "true";

rloc

rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of
rloc of

string;

zero_LUT
one_LUT
two_LUT
four_LUT
five_LUT
six_LUT

eight _LUT
nine_LUT
eleven_LUT
twelve_LUT
sync_req_c
header_latch_c
ack_c
control_latch_c
ad_latchO_c
ad_latchil_c

six,

label
label
label
label
label
label
label
label
label
label
label
label
label
label
label
label

eight,

nine,

nine,

eight,
is "X0YO0";
is "X0YO";
is "X0YO";
is "X1YO";
is "X1YO";
is "X1Y0";
is "X1Y0";
is "XO0vY1";
is "XO0vY1";
is "XO0vY1";
is "X0Y1";
is "X1vY1"“;
is "X1vY1"“;
is "X1vY1"“;
is "X1vY1";
is "X0Y2";

eleven,
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78
79
80
81
82
83
84
85
86
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attribute rloc of cscO_c : label is "XO0Y2";
attribute rloc of cscl_c : label is "XO0Y2";
begin

--# EQN file for model async_receive
--# Generated by petrify 4.2 (compiled 15-0ct-03 at 3:06 PM)

--# Outputs between brackets "[out]" indicate a feedback to input "out"

--# Estimated area = 75.00

--INORDER = rh ri re sync_ack header_latch ack control_latch ad_latchO

ad_latchl synmc_req cscO cscl;

--0OUTORDER = [header_latch] [ack] [control_latch] [ad_latchO] [ad_latchl] [

sync_req] [cscO0] [cscl];
--[0] = sync_ack’ rh cscO;
--[1] = 7% cscO cscl + cscl’ (ad_latchl + ad_latchO) + header_latch;
--[2] = ad_latch0’ control_latch’ header_latch’ ad_latchl’;
--lack] = [2]° ([1] + ack) + ack [1]; # mappable onto gC
--[4] = 7ri cscl”’;
--[5] = cscO0’ (ri + 7re);
--[6] = ad_latchO re’ ri’;

--[ad_latch0] = [6]’ ([5] + ad_latch0) + ad_latchO [5]; # mappable
gC

--[8] = re cscO;

--[9] = ack’ re’ cscO0’ cscl’;

--[sync_req] = cscO’ ([9] + sync_req) + sync_req [9]; # mappable
gC

--[11] = ad_latch0 ri + sync_ack;
--[12] = re’ ad_latchl + control_latch ri’;

--[csc0] = [12]° ([11] + csc0) + cscO [11]; # mappable onto gC

--[csc1] = re’ (control_latch + cscl) + control_latch cscl;
mappable onto gC

#

--[header_latch] = rh ([0] + header_latch) + header_latch [0]; #
mappable onto gC

--[control_latch] = cscO ([4] + control_latch) + control_latch [4];
# mappadble onto gC

--[ad_latchl] = cscO ([8] + ad_latchl) + ad_latchl [8]; # mappable

gC
--# Set/reset pins: reset(ad_latch0) set(csc0) reset(cscl) reset(
control_latch) reset(ad_latchl)

--zero: [0] = sync_ack’ rh cscO;

zero_LUT : LUT3
generic map (
INIT => X"08")

port map (
0 => zero,

I0 => cscO,
I1 => rh,
I2 => sync_ack

)

--[1] = 7% cscO cscl + cscl’ (ad_latchl + ad_latchO) + header_latch;
one_LUT : LUT6
generic map (

INIT => X"fffeaafeaafeaafe")

port map (
0 => one,

onto

onto

onto
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I0 > header_latch,
I1 => ad_latchO,

I2 => ad_latchl,

I3 => cscl,

I4 => cscO,

I5 => ri

)
--[2] = ad_latch0’ control_latch’ header_latch’ ad_latchl’;

two_LUT : LUT4
generic map (
INIT => X"0001")

port map (
0 => two,
I0 => ad_latchl,
I1 => header_latch,
I2 => control_latch,
I3 => ad_latchO

)

--[4] = ri cscl’;
four_LUT: LUT2
generic map (

INIT => X"4")

port map (

0 => four,
I0 => cscl,
I1 => ri

)

--[5] = csc0’ (ri + re);
five_LUT : LUT3
generic map (

INIT => X"Oe")

port map (

0 => five,
I0 => re,
I1 => ri,

I2 => cscO
)

--[6] = ad_latchO re’ ri’;
six_LUT : LUT3
generic map (

INIT => X"10")

port map (

0 => six,
I0 => ri,
I1 => re,

I2 => ad_latchO
)

--[8] = re csc0;
eight LUT : LUT2

generic map (
INIT => X"8")
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port
0
10
I1

)

--[9]

nine

map (

=> eight,
=> cscO,
=> re

= ack’ re’ csc0’ cscl’;

_LUT : LUT4

generic map (

IN

port

)
--[11]

elev

IT => X"0001")

map (
=> nine,
=> ack,
=> re,
=> c¢scO0,
=> cscl

= ad_latchO ri + sync_ack;

en_LUT : LUT3

generic map (

IN

port
0
10
I1
12

);

--[12]

IT => X"ea")

map (

=> eleven,
=> sync_ack,
=> ri,

=> ad_latchO

= re’ ad_latchl + control_latch ri’;

twelve_LUT : LUT4
generic map (

IN

port

);

IT => X"44f4")

map (

=> twelve,

=> ri,

=> control_latch,
=> ad_latchl,

=> re

-- C-element with inverted i1 input
ack_c: lutd_1
generic map (

init => "10110010" & x"0O0O"

)
port
i0
il
i2
i3
lo
);

map (

=> omne,
=> two,
=> ack,
=> reset,
=> ack

-- C-element with inverted %1 input

ad_1

atchO_c: lut4_1

generic map (
init => "10110010" & x"00"
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)
port map (
i0 => five,
il => six,
i2 => ad_latchO,
i3 => reset,
lo => ad_latchO
)

-- C-element with inverted i1 input
sync_req_c: lut4_1
generic map (

init => "10110010" & x"00"
)
port map (

i0 => nine,

i1 => cscO,

i2 => sync_req,

i3 => reset,

lo => sync_req

)

-- C-element with inverted i1 input
cscO_c: lut4_1
generic map (

init => "10110010" & x"11" -- 4initialize to 1

)

port map (
i0 => eleven,
il => twelve,
i2 => cscO,
i3 => reset,
lo => cscO

)

-- C-element with inverted <1 input
cscl_c: lut4d_1
generic map (

init => "10110010" & x"00"

)
port map (
i0 => control_latch,
i1 => re,
i2 => cscl,
i3 => reset,
lo => cscl
)

--C-element
header_latch_c: lut4_1
generic map (

init => "11101000" & x"O0O"

)
port map (
i0 => rh,
il => zero,
i2 => header_latch,
i3 => reset,
lo => header_latch
)

--C-element
control_latch_c: lut4_1
generic map (
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init => "11101000" & x"0O0"

)
port map (
i0 => cscO,
il => four,
i2 => control_latch,
i3 => reset,
lo => control_latch

);

--C-element
ad_latchil_c: 1luté4_1
generic map (

init => "11101000" & x"O0O"

)
port map (
i0 => cscO,
i1l => eight,
i2 => ad_latchil,
i3 => reset,
lo => ad_latchil

)

-- Assign in/outputs

sync_req_out <= sync_req;
sync_ack <= sync_ack_out;
rh <= rh_in;

ri <= ri_in;

re <= re_in;

ack_in <= ack;

header_latch_out <= header_latch;
control_latch_out <= control_latch;
ad_latchO_out <= ad_latchO;
ad_latchl_out <= ad_latchl;

end Behavioral;

A.5.4 Traffic Generator

A.5.4.1 traffic_source.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.types.all;
use work.source_rom_data.all;

entity traffic_source is
generic(

ROM : rom_type := ROM_ZERO
)
port (
reset : in std_logic;
rh_out : out STD_LOGIC;
ri_out : out STD_LOGIC;
re_out : out STD_LOGIC;
ack_out : in STD_LOGIC;
data_out : out flit_data
)

end traffic_source;
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architecture Behavioral of traffic_source is

component as_bd_4p_delay is
generic(

size : natural range 1 to 30 := 10 -- Delay size
)
port (

d : in std_logic; -- Data 1in

z : out std_logic -- Data out
N

end component;

signal req, req_delayed, rom_clk, ack, reset_delayed : std_logic;

signal req_type : std_logic_vector (1 downto 0);
signal count : unsigned(5 downto 0);
signal rom_value : std_logic_vector (FLIT_SIZE+1 downto 0);

attribute keep : string;
attribute keep of req, req_delayed, rom_clk, ack, reset_delayed, req_type,
count, rom_value : signal is "true";

begin

req <= (not reset_delayed) or (not ack);
rom_clk <= not((not reset) or (not req));
ack <= ack_out;

req_delay : as_bd_4p_delay
generic map(
size => 10

)
port map(

d => req,

z => req_delayed
)

reset_delay : as_bd_4p_delay
generic map (
size => 10

)
port map (
d => reset,
z => reset_delayed
)
req_control : process(req_type, req_delayed)
begin
if req_type = "01" then -- rh
rh_out <= req_delayed;
ri_out <= ’07;
re_out <= ’07;
elsif req_type = "10" then -- ri
rh_out <= ’07;
ri_out <= req_delayed;
re_out <= ’07;
elsif req_type = "11" then -- re
rh_out <= ’07;
ri_out <= ’07;
re_out <= req_delayed;
else

rh_out <= ’07;
ri_out <= ’07;
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re_out <= ’0’;
end if;
end process;

counter : process(reset, ack_out)
begin
if reset = ’0’ then

count <= "000000";
elsif rising_edge (ack_out) then
if count < 2 then
count <= count + 1;
else
count <= "000000";
end if;
end if;
end process;

--Inferred ROM (Will be inferred as block ram. But no reset,

up !)
rom_block : process(rom_clk)
begin
if rising_edge(rom_clk) then
rom_value <= ROM(conv_integer (count));
end if;
end process;

data_out <= rom_value(FLIT_SIZE-1 downto 0);

req_type <= rom_value(FLIT_SIZE+1 downto FLIT_SIZE); --two

end Behavioral;

A.5.4.2 traffic_sink.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

entity traffic_sink is

port (
reset : in std_logic;
rh_in : in STD_LOGIC;
ri_in : in STD_LOGIC;
re_in : in STD_LOGIC;
ack_in : out STD_LOGIC;
alive : out std_logic;

-- ILA Signals --
ILA_clk : out std_logic
)

end traffic_sink;

architecture Behavioral of traffic_sink is

component ila
port

2t’1ll mess it

MSBs
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31 (

32 control in std_logic_vector (35 downto 0);

33 clk in std_logic;

34 trigo in flit_data

35 )

36 end component;

37

38 component as_bd_4p_delay is

39 generic(

40 size natural range 1 to 30 10 -- Delay size

41 )

42 port (

43 d in std_logic; -- Data in

44 z out std_logic -- Data out

45 )

46 end component;

47

48 signal req_in, req_delayed std_logic;

49 signal data flit_data;

50

51 signal count unsigned (24 downto 0);

52

53

54 begin

55

56  mm T s oo — -

57 --

58 -- ILA core instance

59 -- Note: If hierarchy ts kept, it is not possible to instantiate the ILA
core in a sub-entity

60 @ o mm s oo —— i — -

61 -- i_ila ila

62 -- port map

63 -- (

64 -= control => ILA_control,

65 -- clk => reqg_in,

66 -- trig0 => data_in

67 -- )

68

69 ILA_clk <= req_in;

70

71 req_in <= rh_in or ri_in or re_in;

72 ack_in <= req_delayed;

73

74

75 --Delay must be quite large before it works in chipscope. 4 doesn’t work -
10 does!

76 --It might not be chipscope that is the problem, it should work with
frequencies up to 500Mhz.

77 ack_delay as_bd_4p_delay

78 generic map (

79 size => 10

80 )

81 port map (

82 d => req_in,

83 z => req_delayed

84 )

85

86 end Behavioral;

A.5.4.3 source_rom_data.vhd
1 -- Traffic Source ROM initialization values
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library IEEE;

use
use

IEEE.std_logic_1164.all;
work.types.all;

package source_rom_data is

constant ROM_ZERO : rom_type

constant north_source_rom_data

);

constant east_source_rom_data

)

--east (0100010101010000)
0 => "01" & x"4550",
1 => "10" & x"AAAO",
2 => "11" & x"5550",
--south (1000101010100000)
3 => "01" & x"8AAO",
4 => "10" & x"5550",
5 => "11" & x"AAAO",
--west (1100010101010000)
6 => "01" & x"c550",
7 => "10" & x"AAAO",
8 => "11" & x"5550",
--local (0000101010100000)
9 => "01" & x"OAAO",
10 => "10" & x"5550",
11 => "11" & x"AAAO",
others => "00" & x"0000"

--north (0000010101010001)
0 => "01" & x"0551",
1 => "10" & x"AAA1",
2 => "11" & x"55561",
--south (1000101010100001)
3 => "01" & x"8AA1",
4 => "10" & x"b5551",
5 => "11" & x"AAA1",
--west (1100010101010001)
6 => "O01" & x"cbb1",
7 => "10" & x"AAA1",
8 => "11" & x"5551",
--local (0100101010100001)
9 => "01" & x"4AA1",
10 => "10" & x"55561",
11 => "11" & x"AAA1",

others => "00" & x"0000"

->

->

constant south_source_rom_data

--north (0000010101010010)

0 => "01" & x"0552",
1 => "10" & x"AAA2",
2 => "11" & x"55562",
--east (0100101010100010)
3 => "01" & x"4AA2",
4 => "10" & x"5552",
5 => "11" & x"AAA2",
--west (1100010101010010)
6 => "01" & x"cbb2",
7 => "10" & x"AAA2",
8 => "11" & x"55562",
--local (1000101010100010)
9 => "01" & x"8AA2",
10 => "10" & x"5552",

->

->

->

(others => "O00"&FLIT_ZEROD);

rom_type := (
(0001010101000001)

(0010101010000010)

(0001010101000011)

(0010101010000000)

rom_type := (

(0001010101000100)

(0010101010000110)

(0001010101000111)

(0010101010000101)

rom_type := (

(0001010101001000)

(0010101010001001)

(0001010101001011)

(0010101010001010)

"1541"

ngA82 "

"1543"

2480 "

"1544"

"3 486"

"1547"

npA85 "

"1548"

"2489"

"154b"

noA84 "
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)

11

=> "11" & x"AAA2",

others => "00" & x"0000"

constant west_source_rom_data

)

--north (0000010101010011) ->
0 => "01" & x"0553",
1 => "10" & x"AAA3",
2 => "11" & x"5553",
--east (0100101010100011) ->
3 => "01" & x"4AA3",
4 => "10" & x"5553",
5 => "11" & x"AAA3",
--south (1000010101010011) =->
6 => "01" & x"8553",
7 => "10" & x"AAA3",
8 => "11" & x"5553",
--local (1100101010100011) ->
9 => "01" & x"cAA3",
10 => "10" & x"AAA3",
11 => "11" & x"5553",
others => "00" & x"0000"

constant local_source_rom_data

)

--north (0000010101010100) =->
0 => "01" & x"0554",
1 => "10" & x"AAA4",
2 => "11" & x"5554",
--east (0100101010100100) ->
3 => "01" & x"4AA4",
4 => "10" & x"5554",
5 => "11" & x"AAA4",
--south (1000010101010100) ->
6 => "01" & x"8554",
7 => "10" & x"AAA4",
8 => "11" & x"5554",
--west (1100101010100100) ->
9 => "01" & x"cAA4",
10 => "10" & x"5554",
11 => "11" & x"AAA4",
others => "00" & x"0000"

end source_rom_data;

package body source_rom_data is

end source_rom_data;

A.5.5 MPSoc

A.5.5.1 MPSoC_noc.vhd

library IEEE;

use
use
use
use
use

IEEE.

IEEE
IEEE
work
work

STD_LOGIC_1164.ALL;

.STD_LOGIC_ARITH.ALL;
.STD_LOGIC_UNSIGNED.ALL;
.types.all;
.route_lookup_tables.all;

rom_type := (
(0001010101001100)

(0010101010001101)

(0001010101001110)

(0010101010001111)

rom_type := (

(0001010101010000)

(0010101010010001)

(0001010101010010)

(0010101010010011)

"154c"

"o A84"

"154E"

"D ASF "

n1550"

ngA91 "

n1552"

npA93 "
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-—--- Uncomment the following library declaration if instantiating
---- any Xilinz primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.bufg;
entity MPSoC_noc is
port (
clkO_i : in std_logic;
clkil_i : in std_logic;
reset_i : in std_logic;
tx : out std_logic;
rx : in std_logic;
running : out std_logic
)
end MPSoC_noc;
architecture struct of MPSoC_noc is
component or1200_ocp is
port (
clk_i in std_logic; -- Clock
rst_i in std_logic; -- Reset
-- OCP Master interface signals
ocp_MCmd_o : out MCmdEncoding; -— 0OCP master command
ocp_Maddr_o out std_logic_vector (addr_width-1 downto 0);
-- OCP master address
ocp_MData_o out std_logic_vector(data_width-1 downto O0);
-- OCP master data
ocp_MByteEn_o : out std_logic_vector(S downto 0); —-- OCP master
byte enabdble
ocp_SCmdAccept_i : in std_logic; -- OCP slave command accept
ocp_SResp_i : in SRespEncoding; -- OCP slave Tesponse
ocp_SData_i in std_logic_vector(data_width-1 downto 0)

)

end component;

component noc_mesh is

port (
reset : in

-- router0
--input
rO_rh_in
rO_ri_in
rO_re_in
rO_ack_in
rO_data_in
--output
rO_rh_out
rO_ri_out
rO_re_out
rO_ack_out
rO_data_out

-- routerl
--input
ri_rh_in
ri_ri_in
rli_re_in
ri_ack_in
ri1_data_in
--output
ri_rh_out
ri_ri_out

std_logic;

ports

in std_logic;
in std_logic;
in std_logic;
out std_logic;

in flit_

data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

ports

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

out std_logic;
out std_logic;



VHDL Code

211

rl_re_out : out
rl_ack_out : in
rl_data_out : out

-- router2 ports

--input

r2_rh_in : in
r2_ri_in : in
r2_re_in : in
r2_ack_in : out
r2_data_in : in
--output

r2_rh_out : out
r2_ri_out : out
r2_re_out : out
r2_ack_out : in
r2_data_out : out

-- router3 ports

--input

r3_rh_in : in
r3_ri_in : in
r3_re_in : in
r3_ack_in : out
r3_data_in : in
--output

r3_rh_out : out
r3_ri_out : out
r3_re_out : out
r3_ack_out : in
r3_data_out : out

-- router4 ports

--input

r4_rh_in : in
r4_ri_in : in
r4_re_in : in
rd4_ack_in : out
r4_data_in : in
--output

r4_rh_out : out
r4_ri_out : out
rd4d_re_out : out
r4_ack_out : in
r4_data_out : out

-- routerd ports

--input

r5_rh_in : in
r5_ri_in : in
r5_re_in : in
r5_ack_in : out
r5_data_in : in
--output

r5_rh_out : out
r5_ri_out : out
r5_re_out : out
r5_ack_out : in
r5_data_out : out
--input

r5_east_rh_in
r5_east_ri_in
r5_east_re_in
r5_east_ack_in

std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

in
in
in
out

std_logic;
std_logic;
std_logic;
std_logic;
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r5_east_data_in
--output
r5_east_rh_out
r5_east_ri_out
r5_east_re_out
r5_east_ack_out
r5_east_data_out

-- router6 ports

--input

r6_rh_in : in
r6_ri_in : in
r6_re_in : in
r6_ack_in : out
r6_data_in : in
--output
r6_rh_out : out
r6_ri_out : out
r6_re_out : out
r6_ack_out : in
r6_data_out : out

-- router7 ports

--input

r7_rh_in : in
r7_ri_in : in
r7_re_in : in
r7_ack_in : out
r7_data_in : in
--output
r7_rh_out : out
r7_ri_out : out
r7_re_out : out
r7_ack_out : in
r7_data_out : out

-- router8 ports

--input

r8_rh_in : in
r8_ri_in : in
r8_re_in : in
r8_ack_in : out
r8_data_in : in
--output
r8_rh_out : out
r8_ri_out : out
r8_re_out : out
r8_ack_out : in
r8_data_out : out

);

end component;

component master_na is
generic (

routing_table : rout
)
port (
clk_i : in std_log
reset_i : in std_log

-- OCP interface
ocp_MCmd_i
ocp_Maddr_i
ocp_MData_i
ocp_MByteEn_i

in flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data

e_lookup_table_type

ic;
ic;

in MCmdEncoding;

in std_logic_vector (addr_width-1 downto 0);
in std_logic_vector (addr_width-1 downto 0);
in std_logic_vector (3 downto 0);
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ocp_SCmdAccept_o : out std_logic;
ocp_SResp_o : out SRespEncoding;
ocp_SData_o : out std_logic_vector (addr_width-1 downto 0);

-- transmit hs channel

rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

-- receive hs channel

rh_in : in std_logic;
ri_in : in std_logic;
re_in : in std_logic;
ack_in : out std_logic;

data_in : in flit_data

)

end component;

component slave_na is

port (
clk_i : in std_logic;
reset_i : in std_logic;

-- OCP interface

ocp_MCmd_o : out MCmdEncoding;

ocp_Maddr_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MData_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_o : out std_logic_vector (3 downto 0);
ocp_SCmdAccept_i : in  std_logic;

ocp_SResp_i : in SRespEncoding;

ocp_SData_i : in  std_logic_vector (addr_width-1 downto 0);

-- transmit hs channel

rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

-- receive hs channel

rh_in : in std_logic;
ri_in : in std_logic;
re_in : in std_logic;
ack_in : out std_logic;

data_in : in flit_data

)

end component;

component uart16550_ocp is

port (
clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset

-- OCP slave tinterface

ocp_MCmd_i : in MCmdEncoding; —-- OCP master command
ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);
-- OCP master address
ocp_MData_i : in  std_logic_vector (data_width-1 downto 0);
-- OCP master data
ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- OCP master

byteenable
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ocp_SCmdAccept_o : out std_logic; -- OCP slave command accept
ocp_SResp_o : out SRespEncoding; -- OCP slave rTesponse
ocp_SData_o : out std_logic_vector(data_width-1 downto 0);

-- Interrupt
int_o : out std_logic; -- Interrupt signal
-- RS232 interface
tx : out std_logic; -- TX pad
rx : in std_logic; -- RX pad
rts : out std_logic; -- RTS pad
cts : in std_logic; -- CTS pad
dtr : out std_logic; -- DTR pad
dsr : in  std_logic; -- DSR pad
ri : in  std_logic; -- RI pad
dcd : in  std_logic); -- DCD pad
end component; -- wuart16550_ocp;
component core_mem_ocp is
port (
clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset
ocp_MCmd_i : in MCmdEncoding; -- OCP master command
ocp_MAddr_i : in std_logic_vector (addr_width-1 downto 0);
-- OCP master address
ocp_MData_i : in std_logic_vector(data_width—l downto 0); -- OCP master
data
ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- OCP Master byte
enable
ocp_SCmdAccept_o : out std_logic; -- OCP slave command accept
ocp_SResp_o : out SRespEncoding; -- OCP slave response
ocp_SData_o : out std_logic_vector(data_width-1 downto 0) -- OCP slave
data
)
end component; -- core_mem_ocp;
component semaphore_ocp is
generic (
semaphores : integer := 5); -- log2(Number of semaphores)
port (
clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset
-- OCP Slave interface
ocp_MCmd_i : in MCmdEncoding; -- OCP master command
ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);
-- OCP master address
ocp_MData_i : in  std_logic_vector (data_width-1 downto 0);
-- OCP master data
ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- OCP master
byteenable
ocp_SCmdAccept_o : out std_logic; -- OCP slave command accept
ocp_SResp_o : out SRespEncoding; -- OCP slave response
ocp_SData_o : out std_logic_vector(data_width-1 downto 0) -- OCP
slave data
)
end component;
component dcm_comp
port (
clkin_in : in std_logic;
rst_in : in std_logic;
clkdv_out : out std_logic;
clkin_ibufg_out : out std_logic;
clkO_out : out std_logic;
locked_out : out std_logic
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end component;
component dcm_comp2
port (
clkin_in in std_logic;
rst_in in std_logic;
clkdv_out out std_logic;
clkin_ibufg_out out std_logic;
clkO_out out std_logic;
locked_out out std_logic
N
end component;
component bufg
port (
o : out std_ulogic;
i : in std_ulogic
)
end component;
-- Clock signal
signal clk, clk2, dcm_locked2, reset, reset_inv, reset_dcm, dcm_locked, rst
std_logic;
signal clkcount unsigned (23 downto 0) := "000000000000000000000000";
-- OCP SIGNALS
-- cpu0 --
signal cpuO_MCmd_o MCmdEncoding;
signal cpuO_Maddr_o std_logic_vector (addr_width-1 downto 0);
signal cpuO_MData_o std_logic_vector (data_width-1 downto 0);
signal cpuO_MByteEn_o std_logic_vector (3 downto 0);
signal cpuO_SCmdAccept_i std_logic;
signal cpuO_SResp_i SRespEncoding;
signal cpuO_SData_i std_logic_vector (data_width-1 downto 0);
-- cpul --
signal cpul_MCmd_o MCmdEncoding;
signal cpul_Maddr_o std_logic_vector (addr_width-1 downto 0);
signal cpul_MData_o std_logic_vector (data_width-1 downto 0);
signal cpul_MByteEn_o std_logic_vector (3 downto 0);
signal cpul_SCmdAccept_i std_logic;
signal cpul_SResp_i SRespEncoding;
signal cpul_SData_i std_logic_vector (data_width-1 downto 0);
-- cpu2 --
signal cpu2_MCmd_o MCmdEncoding;
signal cpu2_Maddr_o std_logic_vector (addr_width-1 downto 0);
signal cpu2_MData_o std_logic_vector (data_width-1 downto 0);
signal cpu2_MByteEn_o std_logic_vector(s downto 0);
signal cpu2_SCmdAccept_i std_logic;
signal cpu2_SResp_i SRespEncoding;
signal cpu2_SData_i std_logic_vector (data_width-1 downto 0);
-- cpuld --
signal cpu3_MCmd_o MCmdEncoding;
signal cpu3_Maddr_o std_logic_vector (addr_width-1 downto 0);
signal cpu3_MData_o std_logic_vector (data_width-1 downto 0);
signal cpu3_MByteEn_o std_logic_vector (3 downto 0);
signal cpu3_SCmdAccept_i std_logic;
signal cpu3_SResp_i SRespEncoding;
signal cpu3_SData_i std_logic_vector (data_width-1 downto 0);

-- cpu4 --
signal cpu4_MCmd_o

MCmdEncoding;
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signal cpu4_Maddr_o std_logic_vector (addr_width-1 downto 0);
signal cpu4_MData_o std_logic_vector (data_width-1 downto 0);
signal cpu4_MByteEn_o std_logic_vector (3 downto 0);
signal cpu4_SCmdAccept_i std_logic;
signal cpu4_SResp_i SRespEncoding;
signal cpu4_SData_i std_logic_vector (data_width-1 downto 0);

-- semaphore --

signal semaphore_MCmd_i MCmdEncoding;

signal semaphore_Maddr_i std_logic_vector (addr_width-1 downto 0);
signal semaphore_MData_i std_logic_vector(data_width—l downto 0);
signal semaphore_MByteEn_i std_logic_vector (3 downto 0);

signal semaphore_SCmdAccept_o std_logic;

signal semaphore_SResp_o SRespEncoding;

signal semaphore_SData_o std_logic_vector (data_width-1 downto 0);
-- mem0 --

signal memO_MCmd_i MCmdEncoding;

signal memO_Maddr_i std_logic_vector (addr_width-1 downto 0);
signal memO_MData_i std_logic_vector (data_width-1 downto 0);
signal memO_MByteEn_i std_logic_vector (3 downto 0);

signal memO_SCmdAccept_o std_logic;

signal memO_SResp_o SRespEncoding;

signal memO_SData_o std_logic_vector (data_width-1 downto 0);

-- wart --

signal uart_MCmd_i MCmdEncoding;

signal uart_Maddr_i std_logic_vector (addr_width-1 downto 0);
signal uart_MData_i std_logic_vector (data_width-1 downto 0);
signal uart_MByteEn_i std_logic_vector (3 downto 0);

signal uart_SCmdAccept_o std_logic;

signal uart_SResp_o SRespEncoding;

signal uart_SData_o std_logic_vector(data_width—l downto 0);

-- HS CHANNELS --

signal

signal

begin

dcmO
port

cpuO_rh_in,
cpuO_rh_out,
cpul_rh_in,
cpul_rh_out,
cpu2_rh_in,
cpu2_rh_out,
cpud_rh_in,
cpud_rh_out,
cpu4_rh_in,
cpu4_rh_out,
semaphore_rh

_in,

cpuO_ri_in,
cpulO_ri_out,
cpul_ri_in,
cpul_ri_out,
cpu2_ri_in,
cpu2_ri_out,
cpud_ri_in,
cpu3d_ri_out,
cpu4_ri_in,
cpué4_ri_out,

semaphore_ri_in,

semaphore_ack_in,

semaphore_rh_out,

semaphore_ri_out,

semaphore_ack_out,

memO_rh_in,
memO_rh_out,
uvart_rh_in,
uvart_rh_out,

memO_ri_in,
memO_ri_out,
uvart_ri_in,
uart_ri_out,

std_logic;

cpuO_data_in
cpu2_data_in
cpué4_data_in
uart_data_in

dcm_comp

map (

, cpuO_data_out,
, cpu2_data_out,
, cpué4_data_out,
, uart_data_out,
flit_data;

cpul_data_in,
cpu3_data_in,
memO_data_in,
semaphore_data_in,

cpulO_re_in,
cpu0_re_out,
cpul_re_in,
cpul_re_out,
cpu2_re_in,
cpu2_re_out,
cpud_re_in,
cpu3_re_out,
cpu4_re_in,
cpué4_re_out,
semaphore_re_in,

semaphore_re_out,

memO_re_in,
memO_re_out,
uvart_re_in,
uart_re_out,

cpuO_ack_in,
cpul_ack_out
cpul_ack_in,
cpul_ack_out
cpu2_ack_in,
cpu2_ack_out
cpu3_ack_in,
cpu3d_ack_out
cpué4_ack_in,
cpué4_ack_out

memO_ack_in,
memO_ack_out
uart_ack_in,
uart_ack_out

cpul_data_out,
cpu3_data_out,
memO_data_out,
semaphore_data_out
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clkin_in =>
rst_in =>
clkdv_out =>
clkin_ibufg_out =>
clkO_out =>
locked_out =>
)
dcml : dcm_comp2
port map (
clkin_in =>
rst_in =>
clkdv_out =>
clkin_ibufg_out =>
clkO_out =>
locked_out =>
)

reset_dcm <= not reset_i;

clkO_i,
reset_dcm,

clk,

open,
open,
dcm_locked

clkl_i,
reset_dcm,
clk2,

open,

open,
dcm_locked?2

reset <= reset_i and dcm_locked and dcm_locked2;
reset_inv <= not reset;

process (clk2)
begin

if rising_edge(clk2) then
clkcount <= clkcount + 1;

end if;
end process;

running <= conv_std_logic_vector (clkcount,

cpu0 : or1200_ocp
port map (
clk_i
rst_i

=>
=>

clk2,
reset,

-- OCP Master interface signals

ocp_MCmd_o
ocp_Maddr_o
ocp_MData_o
ocp_MByteEn_o
ocp_SCmdAccept_i
ocp_SResp_i
ocp_SData_i

N

cpul : or1200_ocp
port map (
clk_i
rst_i

=>
=>
=>
=>
=>
=>
=>

cpu0_MCmd_o,
cpu0O_Maddr_o,
cpuO_MData_o,
cpuO_MByteEn_o,
cpu0_SCmdAccept_i,
cpuO_SResp_i,
cpuO_SData_i

clk2,
reset,

-- OCP Master interface signals

ocp_MCmd_o
ocp_Maddr_o
ocp_MData_o
ocp_MByteEn_o
ocp_SCmdAccept_i
ocp_SResp_i
ocp_SData_i

N

cpu2 : or1200_ocp
port map (
clk_i
rst_i

=>
=>
=>
=>
=>
=>
=>

cpul_MCmd_o,
cpul_Maddr_o,
cpul_MData_o,
cpul_MByteEn_o,
cpul_SCmdAccept_i,
cpul_SResp_i,
cpul_SData_i

clk,
reset,

24) (23) and reset;
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ocp_SResp_i => cpu2_SResp_i,
ocp_SData_i => cpu2_SData_i
)
--  cpuld 0or1200_ocp
-- port map (
-= clk_1 => clk,
-= rst_1 => reset,
-- -—- OCP Master interface signals
-= ocp_MCmd_o => cpu3_MCmd_o,
-- ocp_Maddr_o => cpu3_Maddr_o,
-- ocp_MData_o => cpu3_MData_o,
-= ocp_MByteEn_o => cpu3_MByteEn_o,
- ocp_SCmdAccept_1i => cpu3_SCmdAccept_1,
-- ocp_SResp_1 => cpu3_SResp_1,
- ocp_SData_1 => cpu3_SData_1
-_ );
--  cpu4 or1200_ocp
- port map (
-= clk_1 => clk,
-- rst_1 => reset,
- -- OCP Master interface signals
-- ocp_MCmd_o => cpu4_MCmd_o,
-- ocp_Maddr_o => cpu4_Maddr_o,
-- ocp_MData_o => cpu4_MData_o,
-= ocp_MByteEn_o => cpu4_MByteEn_o,
- ocp_SCmdAccept_i => cpu4_SCmdAccept_1i,
- ocp_SResp_1 => cpu4_SResp_1,
- ocp_SData_1 => cpu4_SData_1
-_ );
memO core_mem_ocp
port map (
clk_i => clk,
rst_i => reset,
ocp_MCmd_i => memO_MCmd_i,
ocp_MAddr_i => memO_MAddr_i,
ocp_MData_i => memO_MData_i,
ocp_MByteEn_i => memO_MByteEn_i,
ocp_SCmdAccept_o => mem0_SCmdAccept_o,
ocp_SResp_o => memO_SResp_o,
ocp_SData_o => memO_SData_o
)
uart uart16550_ocp
port map(
clk_i => clk,
rst_i => reset,
-- OCP slave interface
ocp_MCmd_i => uart_MCmd_i,
ocp_Maddr_i => uart_Maddr_i,
ocp_MData_i => uart_MData_i,
ocp_MByteEn_i => uart_MByteEn_i,
ocp_SCmdAccept_o => uart_SCmdAccept_o,
ocp_SResp_o => uart_SResp_o,

-— OCP Master interface signals

ocp_MCmd_o
ocp_Maddr_o
ocp_MData_o
ocp_MByteEn_o
ocp_SCmdAccept_i

=>
=>
=>
=>
=>

cpu2_MCmd_o,
cpu2_Maddr_o,
cpu2_MData_o,
cpu2_MByteEn_o,
cpu2_SCmdAccept_i,

Appendices
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ocp_SData_o => uart_SData_o,
-- uart --
int_o => open,
-- RS232 interface
tx => tx,
rx => rx,
rts => open,
cts => 217,
dtr => open,
dsr => 17,
ri => 1,
dcd => 1’
)
semaphore : semaphore_ocp
generic map (
semaphores => 5
)
port map (
clk_i => clk,
rst_i => reset,
-- OCP Slave interface
ocp_MCmd_i => semaphore_MCmd_i,
ocp_Maddr_i => semaphore_Maddr_i,
ocp_MData_i => semaphore_MData_i,
ocp_MByteEn_i => semaphore_MByteEn_i,
ocp_SCmdAccept_o => semaphore_SCmdAccept_o,
ocp_SResp_o => semaphore_SResp_o,
ocp_SData_o => semaphore_SData_o
)

cpu0_master_na: master
generic map (

routing_table =>

)

port map (
clk_i =>
reset_1i =>
ocp_MCmd_i =>
ocp_Maddr_i =>
ocp_MData_i =>
ocp_MByteEn_i =>
ocp_SCmdAccept_o =>
ocp_SResp_o =>
ocp_SData_o =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>

N

cpul_master_na: master

generic map(
routing_table =>

)

port map (

_na

cpuO_routing_table

clk2,

reset,
cpu0_MCmd_o,
cpuO_Maddr_o,
cpuO_MData_o,
cpuO_MByteEn_o,
cpu0_SCmdAccept_i,
cpuO_SResp_i,
cpuO_SData_i,
cpuO_rh_in,
cpuO_ri_in,
cpuO_re_in,
cpuO_ack_in,
cpuO_data_in,
cpuO_rh_out,
cpul_ri_out,
cpul_re_out,
cpulO_ack_out,
cpuO_data_out

_na

cpul_routing_table
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)

clk_1i =>
reset_i =>
ocp_MCmd_i =>
ocp_Maddr_i =>
ocp_MData_i =>
ocp_MByteEn_i =>
ocp_SCmdAccept_o =>
ocp_SResp_o =>
ocp_SData_o =>
rh_out =>

ri_out =>
re_out =>
ack_out =>
data_out =>

rh_in =>
ri_in =>
re_in =>
ack_in =>

data_in =>

cpu2_master_na: master
generic map (

routing_table =>

)

port map(
clk_i =>
reset_i =>
ocp_MCmd_i =>
ocp_Maddr_i =>
ocp_MData_i =>
ocp_MByteEn_i =>
ocp_SCmdAccept_o =>
ocp_SResp_o =>
ocp_SData_o =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>

)

cpu3_master_mna: mast

generic map (
routing_table

)

port map (
clk_<
reset_1
ocp_MCmd_1
ocp_Maddr_1
ocp_MData_1
ocp_MByteEn_1
ocp_SCmdAccept_o
ocp_SResp_o
ocp_SData_o
Th_out
ri_out
re_out
ack_out

clk2,

reset,
cpul_MCmd_o,
cpul_Maddr_o,
cpul_MData_o,
cpul_MByteEn_o,
cpul_SCmdAccept_i,
cpul_SResp_i,
cpul_SData_i,
cpul_rh_in,
cpul_ri_in,
cpul_re_in,
cpul_ack_in,
cpul_data_in,
cpul_rh_out,
cpul_ri_out,
cpul_re_out,
cpul_ack_out,
cpul_data_out

_na

cpu2_routing_table

clk,

reset,
cpu2_MCmd_o,
cpu2_Maddr_o,
cpu2_MData_o,
cpu2_MByteEn_o,
cpu2_SCmdAccept_i,
cpu2_SResp_i,
cpu2_SData_i,
cpu2_rh_in,
cpu2_ri_in,
cpu2_re_in,
cpu2_ack_in,
cpu2_data_in,
cpu2_rh_out,
cpu2_ri_out,
cpu2_re_out,
cpu2_ack_out,
cpu2_data_out

er_na

=> cpu3_routing_tabdble

=> clk,

=> reset,

=> cpu3_MCmd_o,

=> cpu3_Maddr_o,
=> cpu3_MData_o,
=> cpu3_MByteEn_o,
=> cpu3_SCmdAccept_z,
=> cpu3_SResp_1,
=> cpul3_SData_1,
=> cpu3_rh_an,

=> cpu3_ri_in,

=> cpu3_re_in,

=> cpul3_ack_in,
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data_out =>

rh_in =>

Ti_%n =>

Te_in =>

ack_1in =>

data_1in =>
)

cpu4_master_mna: master_
generic map (

-- routing_table =>
-
-- port map(
-- clk_1 =>
-= reset_1 =>
-= ocp_MCmd_< =>
-= ocp_Maddr_1 =>
-- ocp_MData_1 =>
-- ocp_MByteEn_1 =>
-= ocp_SCmdAccept_o =>
- ocp_SResp_o =>
-= ocp_SData_o =>
-= Th_out =>
-- ri_out =>
-= re_out =>
- ack_out =>
-- data_out =>
-= Th_in =>
-= Ti_1n =>
-= re_1in =>
-= ack_1in =>
== data_in =>
- )
memO_slave_na :slave_na
port map (
clk_i =>
reset_1i =>
ocp_MCmd_o =>
ocp_Maddr_o =>
ocp_MData_o =>
ocp_MByteEn_o =>
ocp_SCmdAccept_i =>
ocp_SResp_i =>
ocp_SData_i =>
rh_out =>
ri_out =>
re_out =>
ack_out =>
data_out =>
rh_in =>
ri_in =>
re_in =>
ack_in =>
data_in =>
N
uart_slave_na :slave_na
port map(
clk_i =>
reset_i =>
ocp_MCmd_o =>
ocp_Maddr_o =>
ocp_MData_o =>

ocp_MByteEn_o =>

cpu3_data_in,
cpu3_rh_out,
cpu3_ri_out,
cpu3_re_out,
cpu3_ack_out,
cpu3_data_out

na

cpu4_routing_table

clk,

reset,
cpu4g_MCmd_o ,
cpu4_Maddr_o,
cpu4_MData_o,
cpu4_MByteEn_o,
cpu4g_SCmdAccept_<,
cpu4_SResp_1,
cpu4_SData_<,
cpu4_rh_in,
cpu4_Ti_1in,
cpu4_re_in,
cpu4_ack_in,
cpu4_data_in,
cpug_rh_out,
cpu4_ri_out,
cpu4_re_out,
cpu4_ack_out,
cpu4_data_out

clk,

reset,
memO_MCmd_1i,
memO_Maddr_i,
memO_MData_i,
memO_MByteEn_i,
memO_SCmdAccept_o,
memO_SResp_o,
memO_SData_o,
memO_rh_in,
memO_ri_in,
memO_re_in,
memO_ack_in,
memO_data_in,
memO_rh_out,
memO_ri_out,
memO_re_out ,
memO_ack_out,
memO_data_out

clk,

reset,
uart_MCmd_1i,
uart_Maddr_i,
uart_MData_i,
uart_MByteEn_i,
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);

ocp_SCmdAccept_i
ocp_SResp_i
ocp_SData_i
rh_out
ri_out
re_out
ack_out
data_out
rh_in

ri_in

re_in
ack_in
data_in

semaphore_slave_na
port map(

clk_i

reset_i
ocp_MCmd_o
ocp_Maddr_o
ocp_MData_o
ocp_MByteEn_o
ocp_SCmdAccept_i
ocp_SResp_i
ocp_SData_i

rh_out

ri_out

re_out

ack_out

data_out

rh_in

ri_in

re_in

ack_in

data_in

)
mesh : noc_mesh

port map(
reset =>
rO_rh_in =>
rO_ri_in =>
rO_re_in =>
rO_ack_in =>
r0_data_in =>
rO_rh_out =>
rO_ri_out =>
rO_re_out =>
rO_ack_out =>

r0_data_out =>

rli_rh_in =>
ri_ri_in =>
rl_re_in =>
ril_ack_in =>
r1l_data_in =>
ri_rh_out =>
ri_ri_out =>
rli_re_out =>
ril_ack_out =>

rl_data_out =>

ri_rh_1in

uart_SCmdAccept_o,

uart_SResp_o,
uart_SData_o,
uvart_rh_in,
uvart_ri_in,
uvart_re_in,
uvart_ack_in,
uart_data_in,
uart_rh_out,
uvart_ri_out,
uart_re_out,
uart_ack_out ,
uart_data_out

:slave_na

clk,
reset,
semaphore_MCmd_i,

semaphore_Maddr_i,
semaphore_MData_i,
semaphore_MByteEn_i,
semaphore_SCmdAccept_o,
semaphore_SResp_o,
semaphore_SData_o,

semaphore_rh_in,
semaphore_ri_in,
semaphore_re_in,
semaphore_ack_in,

semaphore_data_in,

semaphore_rh_out,
semaphore_ri_out,
semaphore_re_out,

semaphore_ack_out,

=> semaphore_data_out

reset,

cpuO_rh_in,
cpuO_ri_in,
cpulO_re_in,
cpulO_ack_in,
cpuO_data_in,
cpuO_rh_out,
cpulO_ri_out,
cpuO_re_out,
cpulO_ack_out,
cpuO_data_out,

cpul_rh_in,
cpul_ri_in,
cpul_re_in,
cpul_ack_in,
cpul_data_in,
cpul_rh_out,
cpul_ri_out,
cpul_re_out,
cpul_ack_out,
cpul_data_out,

=> 07,
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ri_ri_in => ’0"’,
rl_re_in => ’0"’,
rl1_ack_1in => open,
ri1_data_in => FLIT_ZERO,
ri_rh_out => open,
ri_ri_out => open,
ri_re_out => open,
rl_ack_out => ‘07,
rl_data_out => open,
r2_rh_in => memO_rh_in,
r2_ri_in => memO_ri_in,
r2_re_in => memO_re_in,
r2_ack_in => memO_ack_in,
r2_data_in => memO_data_in,
r2_rh_out => memO_rh_out,
r2_ri_out => memO_ri_out,
r2_re_out => memO_re_out,
r2_ack_out => memO_ack_out,

r2_data_out =>

r3_rh_in =>
r3_ri_in =>
r3_re_in =>
r3_ack_in =>
r3_data_in =>
r3_rh_out =>
r3_ri_out =>
r3_re_out =>
r3_ack_out =>

r3_data_out =>

memO_data_out,

cpu2_rh_in,
cpu2_ri_in,
cpu2_re_in,
cpu2_ack_in,
cpu2_data_in,
cpu2_rh_out,
cpu2_ri_out,
cpu2_re_out,
cpu2_ack_out,

cpu2_data_out,

r3_rh_in => ’0’,
r3_ri_in => ’0"’,
r3_re_1in => ’07,
r3_ack_in => open,
r3_data_tn => FLIT_ZERO,
r3_rh_out => open,
r3_ri_out => open,
r3_re_out => open,
r3_ack_out => ’0’,
r3_data_out => open,

r4_rh_1in
rT4_Ti_n
T4_Te_1in

=> cpu3_rh_in,
=> cpu3_ri_in,
=> cpu3_re_in,

r4_ack_in => cpu3_ack_in,
r4_data_1in => cpu3_data_in,
r4_rh_out => cpu3_rh_out,
T4_Ti_out => cpul3_ri_out,
r4_Te_out => cpu3_re_out,
r4_ack_out => cpu3_ack_out,

r4_data_out =>

cpu3_data_out,

r4_rh_in => 07,
r4_ri_in => 07,
r4_re_in => ’0’,
r4_ack_in => open,
r4_data_in => FLIT_ZERO,
r4_rh_out => open,
r4_ri_out => open,
rd4_re_out => open,
r4_ack_out => 1’07,
r4_data_out => open,
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r5_rh_in => uart_rh_in,
r5_ri_in => uart_ri_in,
r5_re_in => uart_re_in,
r5_ack_in => uart_ack_in,
r5_data_in => uart_data_in,
r5_rh_out => uart_rh_out,
r5_ri_out => uart_ri_out,
r5_re_out => uart_re_out,
r5_ack_out => uart_ack_out,

r5_data_out => uart_data_out,

r5_east_rh_in => semaphore_rh_in,
r5_east_ri_in => semaphore_ri_in,
r5_east_re_in => semaphore_re_in,
r5_east_ack_in => semaphore_ack_in,
r5_east_data_in => semaphore_data_in,
r5_east_rh_out => semaphore_rh_out,
r5_east_ri_out => semaphore_ri_out,
r5_east_re_out => semaphore_re_out,
r5_east_ack_out => semaphore_ack_out,
r5_east_data_out => semaphore_data_out,
r6_rh_in => 7’07,
r6_ri_in => 07,
r6_re_in => 07,
r6_ack_in => open,
r6_data_in => FLIT_ZERO,
r6_rh_out => open,
r6_ri_out => open,
r6_re_out => open,
r6_ack_out => 7’07,
r6_data_out => open,

r7_rh_1in => cpu4_rh_in,

r7_ri_in
r7_re_1in
r7_ack_in
r7_data_1in
r7_rh_out
r7_ri_out
r7_re_out

T7_ack_out
r7_data_out
r7_rh_in =>
r7_ri_in =>
r7_re_in =>
r7_ack_in =>
r7_data_in =>
r7_rh_out =>
r7_ri_out =>
r7_re_out =>
r7_ack_out =>
r7_data_out =>
r8_rh_in =>
r8_ri_in =>
r8_re_in =>
r8_ack_in =>
r8_data_in =>
r8_rh_out =>
r8_ri_out =>
r8_re_out =>
r8_ack_out =>

r8_data_out =>

cpu4_ri_in,
cpu4_re_in,
cpu4_ack_in,
cpu4_data_zn,
cpu4_rh_out,
cpugd_ri_out,
cpu4d_re_out,
cpu4_ack_out,
cpu4_data_out,

07,
101’

}0),

open,
FLIT_ZERO,
open,
open,
open,

07,

open,

10)’

07,

07,

open,
FLIT_ZERO,
open,
open,
open,

07,

open



971
972
973

O W00~ U kW -

VHDL Code

225

)

end struct;

A.5.5.2

noc_mesh.vhd

library IEEE;

use IEEE.
use IEEE.
use IEEE.
use work.

STD_LOGIC_1164.ALL;
STD_LOGIC_ARITH.ALL;
STD_LOGIC_UNSIGNED.ALL;
types.all;

entity noc_mesh is

port (

reset : in std_logic;

r0_
r0_
r0_
r0_
r0_

r0_
r0_
r0_
r0_

router0 ports

5

-—input
rh_in : in  std_logic;
ri_in : in std_logic;
re_in : in std_logic;
ack_in : out std_logic;
data_in : in flit_data;
--output
rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

r0_

ri_
ri_
ri_
ri_
ri_

ri_
ri_
ri_
ri_

routerl ports

H

5

i

-—input
rh_in : in  std_logic;
ri_in : in std_logic;
re_in : in std_logic;
ack_in : out std_logic;
data_in : in flit_data;
--output
rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

ri_

r2_
r2_
r2._
r2._
r2_

r2_
r2._
r2_
r2_

router2 ports

B

H

-—input
rh_in : in std_logic;
ri_in : in  std_logic;
re_in : in std_logic;
ack_in : out std_logic;
data_in : in flit_data;
--output
rh_out : out std_logic;
ri_out : out std_logic;
re_out : out std_logic;
ack_out : in std_logic;
data_out : out flit_data;

r2_

r3_

router3 ports

B

-—input
rh_in : in std_logic;
ri_in : in  std_logic;

r3_
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r3_re_in : in
r3_ack_in : out
r3_data_in : in
--output

r3_rh_out : out
r3_ri_out : out
r3_re_out : out
r3_ack_out : in
r3_data_out : out

-- router4 ports

--input

r4_rh_in : in
r4d_ri_in : in
r4_re_in : in
r4_ack_in : out
r4_data_in : in
--output
r4_rh_out : out
r4_ri_out : out
r4_re_out : out
r4_ack_out : in
r4_data_out : out

-- routerb5 ports

--input

r5_rh_in : in
r5_ri_in : in
r5_re_in : in
r5_ack_in : out
r5_data_in : in
--output
r5_rh_out : out
r5_ri_out : out
r5_re_out : out
r5_ack_out : in
r5_data_out : out
--input

r5_east_rh_in
r5_east_ri_in
r5_east_re_in
r5_east_ack_in
r5_east_data_in
--output
r5_east_rh_out
r5_east_ri_out
r5_east_re_out
r5_east_ack_out
r5_east_data_out

-- router6 ports

--input

r6_rh_in : in
r6_ri_in : in
r6_re_in : in
r6_ack_in : out
r6_data_in : in
--output
r6_rh_out : out
ré_ri_out : out
r6_re_out : out
r6_ack_out : in
r6_data_out : out

std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;

std_logic;
std_logic;
std_logic;
std_logic;
flit_data;
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)

-- router?7 ports

-—input
r7_rh_in
r7_ri_in
r7_re_in
r7_ack_in
r7_data_in
--output
r7_rh_out
r7_ri_out
r7_re_out
r7_ack_out
r7_data_out

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;

-- router8 ports

-—input
r8_rh_in
r8_ri_in
r8_re_in
r8_ack_in
r8_data_in
--output
r8_rh_out
r8_ri_out
r8_re_out
r8_ack_out
r8_data_out

end noc_mesh;

architecture struct

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data

of noc_mesh is

component be_router is
port (
reset : in std_logic;

-- Input ports
north_rh_in
north_ri_in
north_re_in
north_ack_in
north_data_in

west_rh_in
west_ri_in
west_re_in
west_ack_in
west_data_in

south_rh_in
south_ri_in
south_re_in
south_ack_in
south_data_in

east_rh_in
east_ri_in
east_re_in
east_ack_in
east_data_in

local_rh_in
local_ri_in
local_re_in
local_ack_in

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic
in flit_data;

in std_logic;
in std_logic;
in std_logic;
out std_logic;

i

B

B

5

B

3

B

i

5
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);

local_data_in

-- Output ports
north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out

west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out
local_data_out

end component;

-- hs signals

signal

rO_east_rh,
rl_east_rh,
r3_east_rh,
r4_east_rh,
r6_east_rh,
r7_east_rh,

rO_south_rh,
ri_south_rh,
r2_south_rh,
r3_south_rh,
r4_south_rh,
r5_south_rh,

rl_west_rh,
r2_west_rh,
r4_west_rh,
r5_west_rh,
r7_west_rh,
r8_west_rh,

H

r3_north_rh,
r4_north_rh,
r5_north_rh,
r6_north_rh,
r7_north_rh,
r8_north_rh,

flit_data;

out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;
out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;
out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;
out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data;
out std_logic;
out std_logic;
out std_logic;
in std_logic;
out flit_data

r3_north_ri,
r4_north_ri,
r5_north_ri,
r6_north_ri,
r7_north_ri,
r8_north_ri,

rO_east_ri,
rl_east_ri,
r3_east_ri,
r4_east_ri,
r6_east_ri,
r7_east_ri,

rO_south_ri,
rl_south_ri,
r2_south_ri,
r3_south_ri,
r4_south_ri,
r5_south_ri,

rli_west_ri,
r2_west_ri,
r4_west_ri,
rb5_west_ri,
r7_west_ri,
r8_west_ri,

r3_north_re
r4_north_re
r5_north_re
r6_north_re
r7_north_re
r8_north_re

rO_east_re,
rl_east_re,
r3_east_re,
r4_east_re,
r6_east_re,
r7_east_re,

rO_south_re
rl_south_re
r2_south_re
r3_south_re
r4_south_re
r5_south_re

rl_west_re,
r2_west_re,
r4_west_re,
r5_west_re,
r7_west_re,
r8_west_re,

r3_north_ack,
r4_north_ack,
r5_north_ack,
r6_north_ack,
r7_north_ack,
r8_north_ack,

rO_east_ack,
rl_east_ack,
r3_east_ack,
r4_east_ack,
r6_east_ack,
r7_east_ack,

rO_south_ack,
ri1_south_ack,
r2_south_ack,
r3_south_ack,
r4_south_ack,
r5_south_ack,

ri_west_ack,
r2_west_ack,
r4_west_ack,
rb5_west_ack,
r7_west_ack,
r8_west_ack

std_logic
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-- data signals

signal

r3_north_data,
r7_north_data,
r3_east_data,
rO_south_data,
r4_south_data,
r4_west_data,
flit_data;

Mesh layout

r4_north_data
r8_north_data
r4_east_data,
rl_south_data
r5_south_data
r5_west_data,

-- r0 ---- rl ---- 12

- / /

- / /

-- r3 ----r4 ----1rb

- / /

- / /

-- r6 ---- r7 ---- r8

r0 be_router

port map (

reset => reset,
north_rh_in => 07,
north_ri_in => 07,
north_re_in => 07,
north_ack_in => open,
north_data_in => (others => ’0’),
west_rh_in => 07,
west_ri_in => 07,
west_re_in => 07,
west_ack_in => open,
west_data_in => (others => ’0’),
south_rh_in => r3_north_rh,
south_ri_in => r3_north_ri,
south_re_in => r3_north_re,
south_ack_in => r3_north_ack,

south_data_in =>

east_rh_in =>
east_ri_in =>
east_re_in =>
east_ack_in =>
east_data_in =>
local_rh_in =>
local_ri_in =>
local_re_in =>
local_ack_in =>

local_data_in =>

-- Output ports --

north_rh_out =>
north_ri_out =>
north_re_out =>
north_ack_out =>
north_data_out =>
west_rh_out =>

r3_north_data,

rl_west_rh,
rl_west_ri,
rl_west_re,
ri_west_ack,
rl_west_data,

rO_rh_in,
rO_ri_in,
rO_re_in,
rO_ack_in,
rO_data_in,

open,
open,
open,
07,

open,

open,

B

B

>

r5_north_data,
rO_east_data,
r6_east_data,
r2_south_data,
rl_west_data,
r7_west_data,

r6_north_data,
rl_east_data,
r7_east_data,
r3_south_data,
r2_west_data,
r8_west_data
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west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out
local_data_out

)

rl : be_router

port map(
reset =>
north_rh_in =>
north_ri_in =>
north_re_in =>
north_ack_in =>

north_data_in =>

west_rh_in =>
west_ri_in =>
west_re_in =>
west_ack_in =>
west_data_in =>
south_rh_in =>
south_ri_in =>
south_re_in =>
south_ack_in =>

south_data_in =>

east_rh_in =>
east_ri_in =
east_re_in =>
east_ack_in =>
east_data_in =>
local_rh_in =>
local_ri_in =>
local_re_in =>
local_ack_in =>

local_data_in =>

-- Output ports
north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out

=> open,
=> open,
=> ’0’,
=> open,

=> rO_south_rh,
=> rO_south_ri,
=> rO_south_re,
=> rO_south_ack,
=> rO_south_data,

=> rO_east_rh,
=> rO_east_ri,
=> rO_east_re,
=> rO_east_ack,
=> rO_east_data,

=> rO_rh_out,
= rO_ri_out,
=> rO_re_out,
=> rO_ack_out,
=> rO_data_out

reset,

07,
07,
)0)’
open,
(others => ’0’),

rO_east_rh,
rO_east_ri,
r0_east_re,
rO_east_ack,
rO_east_data,

r4_north_rh,
r4_north_ri,
r4_north_re,
r4_north_ack,
r4_north_data,

r2_west_rh,
r2_west_ri,
r2_west_re,
r2_west_ack,
r2_west_data,

rl_rh_in,
rl_ri_in,
rl_re_in,
rl_ack_in,
rl_data_in,

=> open,
=> open,
=> open,
=> 107,
=> open,
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west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out

south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out

local_data_out

)

r2 : be_router
port map (
reset

north_rh_in
north_ri_in
north_re_in
north_ack_in
north_data_in

west_rh_in
west_ri_in
west_re_in
west_ack_in
west_data_in

south_rh_in
south_ri_in
south_re_in
south_ack_in
south_data_in

east_rh_in
east_ri_in
east_re_in
east_ack_in
east_data_in

local_rh_in
local_ri_in
local_re_in
local_ack_in
local_data_in

=>
=>
=>
=>
=>

=>
=>
=>
=>
=>

=>
=>

-- Output ports

north_rh_out
north_ri_out
north_re_out
north_ack_out

north_data_out

=> rl_west_rh,
=> rl_west_ri,
=> rl_west_re,
=> rl_west_ack,
=> rl_west_data,

=> rl1_south_rh,
=> ril_south_ri,
=> rl_south_re,
=> rl_south_ack,
=> rl_south_data,

=> rl_east_rh,
=> rl_east_ri,
=> rl_east_re,
=> rl_east_ack,
=> rl_east_data,

=> ril_rh_out,
=> rl_ri_out,
=> rl_re_out,
=> rl_ack_out,
=> rl_data_out

reset,

00,
)O!’
101’
open,
(others => ’07),

rl_east_rh,
rl_east_ri,
rl_east_re,
ril_east_ack,
rl_east_data,

r5_north_rh,
r5_north_ri,
r5_north_re,
r5_north_ack,
r5_north_data,

07,
07,
)O’,
open,
(others => ’0°),

r2_rh_in,
r2_ri_in,
r2_re_in,
r2_ack_in,
r2_data_in,

=> open,
=> open,
=> open,
=> 07,

=> open,
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west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

south_rh_out
south_ri_out
south_re_out
south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out
local_data_out

)
r3 be_router
port map(
reset =>
north_rh_in =>

north_ri_in
north_re_in
north_ack_in

north_data_in =>
west_rh_in =>
west_ri_in =>
west_re_in =>
west_ack_in =>
west_data_in =>
south_rh_in
south_ri_1in
south_re_1in
south_ack_in
south_data_zn
south_rh_in =>
south_ri_in =>
south_re_in =>
south_ack_in =>
south_data_in =>

east_rh_in =>
east_ri_in =>
east_re_in =>

east_ack_in =>
east_data_in =>
local_rh_in =>
local_ri_in =>
local_re_in =>
local_ack_in =>

r2_west_rh,
r2_west_ri,
r2_west_re,
=> r2_west_ack,
=> r2_west_data,

r2_south_rh,
r2_south_ri,
r2_south_re,
r2_south_ack,
=> r2_south_data,

=> open,
open,
=> open,
)0)’
open,

r2_rh_out,
r2_ri_out,
r2_re_out,
r2_ack_out,
=> r2_data_out

reset,

rO_south_rh,
rO_south_ri,
rO_south_re,
rO_south_ack,
rO_south_data,

}0)’
07,
07,
open,
(others => ’0’),
ré6_mnorth_rh,
ré6_north_r<,
r6_mnorth_re,
ré_north_ack,
ré_north_data,

07,
’O)’
)0)’
open,
(others

=> 10’),

r4_west_rh,
r4_west_ri,
r4_west_re,
r4_west_ack,
r4_west_data,

r3_rh_in,
r3_ri_in,
r3_re_in,
r3_ack_in,

Appendices
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local_

data_in => r3_data_in,

-- Output ports --

north_rh_out
north_ri_out
north_re_out

north_ack_out =>
north_data_out =>
west_rh_out =>
west_ri_out =>
west_re_out =>
west_ack_out =>
west_data_out =>
south_rh_out =>

south_ri_out
south_re_out
south_ack_out

south_data_out =>

east_rh_out
east_ri_out
east_re_out
east_ack_out
east_data_out

local_rh_out
local_ri_out
local_re_out
local_ack_out

local_data_out =>

)

r3_north_rh <=
r3_north_ri <=
r3_north_re <=

r3_north_data <=

r3_south_rh <=
r3_south_ri <=
r3_south_re <=

r3_south_data <=

207 ;
207 ;
207 ;

207 ;
207 ;
207 ;

r3_east_rh <= ’07;
r3_east_ri <= ’0’;
r3_east_re <= ’07’;

r3_east_data<=

r3_rh_out <= ’07;
r3_ri_out <= ’07’;
r3_re_out <= ’07;

r3_data_out <=

r4 : be_router
generic map(

enable_north_port

enable_east_port
enable_south_port
enable_west_port
enable_local_port

)
port map (
reset

=>r

r3_north_rh,
r3_north_ri,
r3_north_re,
r3_north_ack,
r3_north_data,

open,
open,
open,
)O}’

open,

r3_south_rh,
r3_south_ri,
r3_south_re,
r3_south_ack,
r3_south_data,

r3_east_rh,
r3_east_ri,
r3_east_re,
r3_east_ack,
r3_east_data,

r3_rh_out,
r3_ri_out,
r3_re_out,
r3_ack_out,
r3_data_out

(others => ’0°);

(others => ’07);

(others => ’07);

(others => ’07);

=> true,

=> true,
=> true,
=> true,
=> true

eset,
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north_rh_in => rl
north_ri_in => ril
north_re_in => r1
north_ack_in => r1

north_data_in => ri1

west_rh_in => r3
west_ri_in => r3
west_re_in => r3
west_ack_in => r3
west_data_in => r3
south_rh_in =>
south_ri_1in =>
south_re_1in =>
south_ack_1n =>

south_data_in =>

_south_rh,
_south_ri,
_south_re,
_south_ack,
_south_data,

_east_rh,
_east_ri,
_east_re,
_east_ack,
_east_data,

r7_north_rh,
r7_mnorth_r<,
r7_north_re,
r7_north_ack,
r7_north_data,

south_rh_in => 07,
south_ri_in => 07,
south_re_in => 7’07,
south_ack_in => open,

south_data_in => (o

east_rh_in => rb
east_ri_in => rb
east_re_in => rb
east_ack_in => rb
east_data_in => rb
local_rh_in => r4
local_ri_in => r4
local_re_in => r4
local_ack_in => r4

local_data_in => r4

-- Output ports

north_rh_out =>
north_ri_out =>
north_re_out =>
north_ack_out =>
north_data_out =>
west_rh_out =>
west_ri_out =>
west_re_out =>
west_ack_out =>
west_data_out =>
south_rh_out =>
south_ri_out =>
south_re_out =>

south_ack_out =>
south_data_out =>

east_rh_out =>
east_ri_out =>
east_re_out =>
east_ack_out =>

east_data_out

local_rh_out =>
local_ri_out =>
local_re_out =>

thers => ’0’),

_west_rh,
_west_ri,
_west_re,
_west_ack,
_west_data,

_rh_in,
_ri_in,
_re_in,
_ack_in,
_data_in,

r4_north_rh,
r4_north_ri,
r4_north_re,
r4_north_ack,
r4_north_data,

r4_west_rh,
r4_west_ri,
r4_west_re,
r4_west_ack,
r4_west_data,

r4_south_rh,
r4_south_ri,
r4_south_re,
r4_south_ack,
r4_south_data,

r4_east_rh,
r4_east_ri,
r4_east_re,
r4_east_ack,
r4_east_data,

r4_rh_out,
r4_ri_out,
r4_re_out,



VHDL Code

235

local_ack_out
local_data_out

)

r5 : be_router
generic map(

=> ré4_ack_out,
=> r4_data_out

enable_north_port => true,

enable_east_port

=> false,

enable_south_port => true,

enable_west_port

=> true,

enable_local_port => true

)

port map (
reset => reset,
north_rh_in => r2_south_rh,
north_ri_in => r2_south_ri,
north_re_in => r2_south_re,
north_ack_in => r2_south_ack,

north_data_in => r2_south_data,

west_rh_in => r4_east_rh,
west_ri_in => r4_east_ri,
west_re_in => r4_east_re,
west_ack_in => r4_east_ack,
west_data_in => r4_east_data,
south_rh_1in => r8_mnorth_rh,
south_ri_1in => r8_mnorth_ri,
south_re_1in => r8_north_re,
south_ack_1in => r8_mnorth_ack,

south_data_in =>

r8_north_data,

south_rh_in => 07,
south_ri_in => 07,
south_re_in => 07,
south_ack_in => open,

south_data_in => (others => ’0’),

east_rh_in => r5_east_rh_in,
east_ri_in => r5_east_ri_in,
east_re_in => rb5_east_re_in,
east_ack_in => r5_east_ack_in,
east_data_in => rb5_east_data_in,
local_rh_in => r5_rh_in,
local_ri_in => rb5_ri_in,
local_re_in => r5_re_in,
local_ack_in => r5_ack_in,

local_data_in => r5_data_in,

-- Output ports --

north_rh_out =>
north_ri_out =>
north_re_out =>
north_ack_out =>
north_data_out =>
west_rh_out =>
west_ri_out =>
west_re_out =>
west_ack_out =>

west_data_out =>

south_rh_out =>

r5_north_rh,
r5_north_ri,
r5_north_re,
r5_north_ack,
r5_north_data,

r5_west_rh,
r5_west_ri,
r5_west_re,
r5_west_ack,
r5_west_data,

r5_south_rh,



236

Appendices

)

T6

south_ri_out

south_re_out =>
south_ack_out =>

south_data_out

east_rh_out =>
east_ri_out =>
east_re_out =>

east_ack_out =>

east_data_out

local_rh_out

local_ri_out =>
local_re_out =>
local_ack_out =>

local_data_out =>

be_router
port map(
reset =>
north_rh_in =>
north_ri_in =>
north_re_1in =>
north_ack_1n =>

north_data_in =>

west_rh_1in

west_ri_1in =>
west_re_1in =>
west_ack_in =>
west_data_in =>
south_rh_1in =>
south_ri_1in =>
south_re_in =>
south_ack_in =>

south_data_in =>

east_rh_1in =>
east_ri_an =>
east_re_1in =>
east_ack_1in =>
east_data_in =>
local_rh_in =>
local_ri_1in =>

local_re_1in =>
local_ack_1in =>
local_data_in =>

-- Output ports
north_rh_out
north_ri_out
north_re_out
north_ack_out
north_data_out

west_rh_out
west_ri_out
west_re_out
west_ack_out
west_data_out

r5_south_ri,
r5_south_re,
r5_south_ack,
r5_south_data,

r5_east_rh_out,
r5_east_ri_out,
r5_east_re_out,
r5_east_ack_out,
r5_east_data_out,

r5_rh_out,
r5_ri_out,
r5_re_out,
r5_ack_out,
r5_data_out

reset,

r3_south_rh,
r3_south_r<,
r3_south_re,
r3_south_ack,
r3_south_data,

07,
07,

07,

open,
FLIT_ZERO,

07,
07,

)0)’

open,
FLIT_ZERO,

r7_west_rh,
r7_west_ri,
r7_west_re,
r7_west_ack,
r7_west_data,

r6_rh_in,
ré_ri_in,
ré6_re_1in,
ré6_ack_1in,
ré6_data_in,

=> ré_north_rh,
=> ré_north_rt,
=> ré6_north_re,
=> ré_north_ack,
=> ré_north_data,

=> open,
=> open,
=> open,
=> 07,
=> open,
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south_rh_out
south_ri_out
south_re_out

south_ack_out
south_data_out

east_rh_out
east_ri_out
east_re_out
east_ack_out

east_data_out

local_rh_out
local_ri_out
local_re_out

local_ack_out
local_data_out

);

ré6_north_rh <=
ré6_north_ri <=
ré6_north_re <=

r6_north_data <=

r6_east_rh <=
r6_east_ri <=
r6_east_re <=
r6_east_data <=

=> open,
=> open,
=> open,
=> )0)’

=> open,

=> ré_east_rh,
=> ré6_east_ri,
=> r6_east_re,
=> ré_east_ack,

=> r6_rh_out,
=> r6_ri_out,
=> ré_re_out,
=> ré_ack_out,

507
507
707
(others => ’07’);

507 ;
207 ;
)0 );
(others => ’0’);

r6_rh_out <= ’07;
ré6_ri_out <= ’07;
r6_re_out <= ’07;

r6_data_out <=

r7 : be_router
port map (
reset

north_rh_1in
north_ri_in
north_re_1in
north_ack_in

north_data_1in

west_rh_1in
west_ri_in
west_re_in
west_ack_1in
west_data_1in

south_rh_in
south_ri_an
south_re_1in
south_ack_1in

south_data_1in

east_rh_1in
east_ri_1in
east_re_1in
east_ack_in
east_data_1in

local_rh_1in
local_ri_1in
local_re_1in

=> ré_data_out

(others => ’0’);

reset,

r4_south_rh,
r4_south_ri,
T4_south_re,
T4_south_ack,
T4_south_data,

r6_east_rh,
ré6_east_ri,
ré6_east_re,
r6_east_ack,
r6_east_data,

07,
)0)’
07,
open,
FLIT_ZERO,

r8_west_rh,
r8_west_ri,
r8_west_re,
r8_west_ack,
r8_west_data,

r7_rh_in,
r7_ri_in,
r7_re_in,

r6_east_data,
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local_ack_1in
local_data_1in

-- Output ports --

=> r7_ack_1in,
=> r7_data_in,

north_rh_out => r7_north_rh,
north_ri_out => r7_north_rt,
north_re_out => r7_north_re,
north_ack_out => r7_mnorth_ack,
north_data_out => r7_north_data,
west_rh_out => r7_west_rh,
west_ri_out => r7_west_ri,
west_re_out => r7_west_re,
west_ack_out => r7_west_ack,
west_data_out => r7_west_data,
south_rh_out => open,
south_ri_out => open,
south_re_out => open,
south_ack_out => ’0’,
south_data_out => open,
east_rh_out => r7_east_rh,
east_ri_out => r7_east_ri,
east_re_out => r7_east_re,
east_ack_out => r7_east_ack,
east_data_out => r7_east_data,
local_rh_out => r7_rh_out,
local_ri_out => r7_ri_out,
local_re_out => r7_re_out,
local_ack_out => r7_ack_out,
local_data_out => r7_data_out

);

r8 be_router

port map (
reset => reset,
north_rh_1in => r5_south_rh,
north_ri_1in => r5_south_rt,
north_re_1in => r5_south_re,
north_ack_in => r5_south_ack,
north_data_in => r5_south_data,
west_rh_in => r7_east_rh,
west_ri_in => r7_east_ri,
west_re_1in => r7_east_re,
west_ack_1in => r7_east_ack,
west_data_1n => r7_east_data,
south_rh_in => 7’07,
south_ri_1in => ’0"’,
south_re_1in => ’07,
south_ack_1n => open,
south_data_in => FLIT_ZERO,
east_rh_1in => ’0"’,
east_ri_1in => ’07’,
east_re_1in => ’0"’,
east_ack_1in => open,
east_data_in => FLIT_ZERO,
local_rh_1in => r8_rh_in,
local_ri_1in => r8_ri_in,

Appendices
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-= local_re_in
- local_ack_1in
-- local_data_in

-- -- Output port
-= north_rh_out
- north_ri_out
-- north_re_out
-- north_ack_out
-= north_data_out

- west_rh_out
-= west_ri_out
-- west_re_out
-= west_ack_out
-= west_data_out

-- south_rh_out
-- south_ri_out
-= south_re_out
- south_ack_out
-= south_data_out

-- east_rh_out
-= east_ri_out
- east_re_out
-= east_ack_out
-- east_data_out

-= local_rh_out
- local_ri_out
-- local_re_out
-- local_ack_out
-= local_data_out

end architecture;

=> r8_re_1in,
=> r8_ack_in,
=> r8_data_1in,

s --
=> r8_mnorth_rh,
=> r8_mnorth_ri,
=> r8_mnorth_re,
=> r8_mnorth_ack,
=> r8_north_data,

=> r8_west_rh,
=> r8_west_ri,
=> r8_west_re,
=> r8_west_ack,
=> r8_west_data,

=> open,
=> open,
=> open,
=> ’0’,

=> open,

=> open,
=> open,
=> open,
=> ’07,

=> open,

=> r8_rh_out,
=> r8_ri_out,
=> r8_re_out,
=> r8_ack_out,
=> r8_data_out

A.5.5.3 or1200_ocp.vhd

--From:

-- Morten Sleth Rasmussen,
-- A noc-based soc ezecuting a Tay tracer,

-- 2005. IMM, DTU. Polyteknisk Midtvejs Projekt.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

use work.types.all;

entity or1200_ocp is

port (

data_i out std_logic_vector (76 downto 0);

data_d out std_logic_vector (76 downto 0);

clk_i in std_logic; -- Clock

rst_i in std_logic; -- Reset

-- OCP Master interface signals

ocp_MCmd_o out MCmdEncoding; -- OCP master

ocp_Maddr_o out std_logic_vector(addr_width—l
-- OCP master

ocp_MData_o

out std_logic_vector (data_width-1

Christian Place Pedersen,

-- Debdbug
-- Debug

and Matthias Bo Stuart.
using synchronous multiprocessing

output
output

command
downto 0);
address
downto 0);
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ocp_MByteEn_o

-- OCP master data

out std_logic_vector (3 downto 0);

-—- OCP master byte

enable
ocp_SCmdAccept_i in std_logic; -- OCP slave command accept
ocp_SResp_i in SRespEncoding; -- OCP slave response

ocp_SData_i
end or1200_ocp;

in std_logic_vector(data_width-1 downto 0));

architecture arch of or1200_ocp is

component or1200_top

generic(

dw integer := 32;

aw integer := 32;

ppic_ints integer := 20

)

port (

clk_i in std_logic;

rst_i in std_logic;

pic_ints_i in std_logic_vector(ppic_ints—1 downto

clmode_i in std_logic_vector (1 downto 0);
-- Instruction WISHBONE interface

iwb_clk_i in std_logic;

iwb_rst_i in std_logic;

iwb_ack_i in std_logic;

iwb_err_i in std_logic;

iwb_rty_i in std_logic;

iwb_dat_i in std_logic_vector (31 downto 0);

iwb_cyc_o out std_logic;

iwb_adr_o out std_logic_vector (31 downto 0);

iwb_stb_o out std_logic;

iwb_we_o out std_logic;

iwb_sel_o out std_logic_vector(B downto 0);

iwb_dat_o out std_logic_vector (31 downto 0);

iwb_cab_o out std_logic;

-- Data WISHBONE interface

dwb_clk_i in std_logic;
dwb_rst_i in std_logic;
dwb_ack_i in std_logic;
dwb_err_i in std_logic;
dwb_rty_i in std_logic;
dwb_dat_i in std_logic_vector (31 downto 0);
dwb_cyc_o out std_logic;
dwb_adr_o out std_logic_vector (31 downto 0);
dwb_stb_o out std_logic;
dwb_we_o out std_logic;
dwb_sel_o out std_logic_vector (3 downto 0);
dwb_dat_o out std_logic_vector (31 downto 0);
dwb_cab_o out std_logic;

-- Debug interface
dbg_stall_i : in std_logic;

dbg_ewt_i : in std_logic;
dbg_lss_o out std_logic_vector(S downto 0);
dbg_is_o out std_logic_vector (1 downto 0);
dbg_wp_o out std_logic_vector (10 downto O0);
dbg_bp_o : out std_logic;
dbg_stb_i : in std_logic;
dbg_we_i : in std_logic;
dbg_adr_i : in  std_logic_vector (31 downto 0);
dbg_dat_i : in std_logic_vector(Bl downto 0);
dbg_dat_o : out std_logic_vector (31 downto 0);
dbg_ack_o : out std_logic;

0);
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119

120
121
122
123
124
125
126
127
128

129
130

135
136
137
138
139
140
141
142
143

144

ocp_MData_o out

ocp_MByteEn_o out
enable

ocp_SCmdAccept_i std_logic;

OCP master address
std_logic_vector (data_width-1 downto 0);
OCP master data

std_logic_vector (3 downto 0); --
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-— Power Management interface
pm_cpustall_i in std_logic;
pm_clksd_o out std_logic_vector (3 downto 0);
pm_dc_gate_o out std_logic;
pm_ic_gate_o out std_logic;
pm_dmmu_gate_o out std_logic;
pm_immu_gate_o out std_logic;
pm_tt_gate_o out std_logic;
pm_cpu_gate_o out std_logic;
pm_wakeup_o out std_logic;
pm_1lvolt_o out std_logic
N
end component;
component or1200_mem_if
port (
clk_i in std_logic; -- Clock input
rst_i in std_logic; -- Reset input
-- WISHBONE Master interface signals
iwb_clk_o out std_logic; -- WISHBONE clock
iwb_rst_o out std_logic; -- WISHBONE reset
iwb_ack_o out std_logic; -- WISHBONE Acknowledge
iwb_err_o out std_logic; -- WISHBONE error
iwb_rty_o out std_logic; -- WISHBONE retry
iwb_dat_o out std_logic_vector (data_width-1 downto 0); -- WISHBONE
data
iwb_cyc_i in std_logic; -- WISHBONE cycle
iwb_adr_i in std_logic_vector (addr_width-1 downto 0); -- WISHBONE
address
iwb_stb_i in std_logic; -- WISHBONE stb
iwb_we_i in std_logic; -- WISHBONE write-enable
iwb_sel_i in std_logic_vector (3 downto 0); -- WISHBONE select
iwb_dat_i in std_logic_vector(data_width-1 downto 0); -- WISHBONE
data in
iwb_cab_i in std_logic; -- WISHBONE cab
-- WISHBONE Master interface signals
dwb_clk_o out std_logic; -- WISHBONE clock
dwb_rst_o out std_logic; -- WISHBONE reset
dwb_ack_o out std_logic; -- WISHBONE Acknowledge
dwb_err_o out std_logic; -- WISHBONE error
dwb_rty_o out std_logic; -- WISHBONE retry
dwb_dat_o out std_logic_vector (data_width-1 downto 0); -- WISHBONE
data
dwb_cyc_i in std_logic; -- WISHBONE cycle
dwb_adr_i in std_logic_vector (addr_width-1 downto 0); -- WISHBONE
address
dwb_stb_i in std_logic; -- WISHBONE stb
dwb_we_1i in std_logic; -- WISHBONE write-enable
dwb_sel_i in std_logic_vector (3 downto 0); -- WISHBONE select
dwb_dat_i in std_logic_vector(data_width-1 downto 0); -- WISHBONE
data 1in
dwb_cab_i in std_logic; -- WISHBONE cab
-- OCP Master interface signals
ocp_MCmd_o out MCmdEncoding; -- OCP master command
ocp_Maddr_o out std_logic_vector (addr_width-1 downto 0);

OCP master byte

-- OCP slave command accept
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145 ocp_SResp_i : in SRespEncoding; -- OCP slave response
146 ocp_SData_i : in  std_logic_vector (data_width-1 downto 0)); -- ocpe
slave data

147

148 end component;

149

150

151 signal reset_inv : std_logic; -- Inverted clock

152 signal zero32 : std_logic_vector (31 downto 0);

153 signal pic_ints : std_logic_vector (19 downto 0);

154 signal clmode : std_logic_vector (1 downto 0);

155 signal iwb_clk, iwb_rst, iwb_ack, iwb_err, dwb_clk, dwb_rst, dwb_ack,
dwb_err, iwb_rty, dwb_rty, iwb_cyc, iwb_stb, iwb_we, iwb_cab, dwb_cyc,
dwb_stb, dwb_we, dwb_cab : std_logic;

156 signal iwb_sel, dwb_sel : std_logic_vector (3 downto 0);

157 signal iwb_dati, iwb_dato, dwb_dati, dwb_dato, dwb_adr, iwb_adr
std_logic_vector (31 downto 0);

158

159 Dbegin -- arch

160

161 data_i <= iwb_ack & iwb_dati & iwb_cyc & iwb_adr & iwb_we & iwb_sel & "000000

162 data_d <= dwb_ack & dwb_dato & dwb_cyc & dwb_adr & dwb_we & dwb_sel & "000000

"
H

163

164 reset_inv <= not rst_i;

165 zero32 <= X"00000000";
166 pic_ints <= "00000000000000000000";
167 clmode <= "00"; -- Same clock for WISHBONE and CPU
168

169 theCPU : or1200_top

170 port map(

171 clk_i => clk_i,

172 rst_i => reset_inv,
173 pic_ints_i => pic_ints,
174 clmode_i => clmode,
175 -- Instruction WISHBONE interface
176 iwb_clk_i => clk_i,

177 iwb_rst_i => reset_inv,
178 iwb_ack_i => iwb_ack,
179 iwb_err_i => iwb_err,
180 iwb_rty_i => iwb_rty,
181 iwb_dat_i => iwb_dati,
182 iwb_cyc_o => iwb_cyc,
183 iwb_adr_o => iwb_adr,
184 iwb_stb_o => iwb_stb,
185 iwb_we_o => iwb_we,
186 iwb_sel_o => iwb_sel,
187 iwb_dat_o => iwb_dato,
188 iwb_cab_o => iwb_cab,
189

190 -- Data WISHBONE interface

191 dwb_clk_i => clk_i,

192 dwb_rst_i => reset_inv,
193 dwb_ack_i => dwb_ack,
194 dwb_err_i => dwb_err,
195 dwb_rty_i => dwb_rty,
196 dwb_dat_i => dwb_dati,
197 dwb_cyc_o => dwb_cyc,
198 dwb_adr_o => dwb_adr,
199 dwb_stb_o => dwb_stb,
200 dwb_we_o => dwb_we,

201 dwb_sel_o => dwb_sel,
202 dwb_dat_o => dwb_dato,

203 dwb_cab_o => dwb_cab,



VHDL Code

243

ocpif

-- Debug interface

dbg_stall_i
dbg_ewt_i
dbg_lss_o
dbg_is_o
dbg_wp_o
dbg_bp_o
dbg_stb_i
dbg_we_i
dbg_adr_i
dbg_dat_i
dbg_dat_o
dbg_ack_o

pm_clksd_o

pm_dc_gate_o
pm_ic_gate_o

=> ’0’,
=> ’0’,
=> open,
=> open,
=> open,
=> open,
=> ;0)’

=> ’0’,

=> zero32,
=> zero32,
=> open,
=> open,

-- Power Management interface
pm_cpustall_

i => 07,
=> open,
=> open,
=> open,

pm_dmmu_gate_o => open,
pm_immu_gate_o => open,

pm_tt_gate_o
pm_cpu_gate_

pm_wakeup_o
pm_lvolt_o
)

port map (

=> open,
o => open,
=> open,
=> open

or1200_mem_if

clk_i => clk_i,
rst_i => rst_i,

-—- WISHBONE Master interface

iwb_clk_o =>

iwb_rst_o =>
iwb_ack_o =>
iwb_err_o =>

iwb_rty_o =>
iwb_dat_o =>

iwb_cyc_i =>
iwb_adr_i =>
iwb_stb_i =>
iwb_we_1i =>
iwb_sel_i =>
iwb_dat_i =>
iwb_cab_i =>

-- WISHBONE Master interface signals

dwb_clk_o =>
dwb_rst_o =>
dwb_ack_o =>
dwb_err_o =>
dwb_rty_o =>
dwb_dat_o =>
dwb_cyc_i =>

dwb_adr_i =>
dwb_stb_i =>
dwb_we_1i =>

dwb_sel_i =>
dwb_dat_i =>
dwb_cab_i =>

-- OCP Master

iwb_clk,
iwb_rst,
iwb_ack,
iwb_err,
iwb_rty,
iwb_dati,
iwb_cyc,
iwb_adr,
iwb_stb,
iwb_we,
iwb_sel,
iwb_dato,
iwb_cab,

dwb_clk,
dwb_rst,
dwb_ack,
dwb_err,
dwb_rty,
dwb_dati,
dwb_cyc,
dwb_adr,
dwb_stb,
dwb_we ,

dwb_sel,
dwb_dato,
dwb_cab,

signals

interface signals
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ocp_MCmd_o => ocp_MCmd_o,
ocp_Maddr_o => ocp_Maddr_o,
ocp_MData_o => ocp_MData_o,
ocp_MByteEn_o => ocp_MByteEn_o,
ocp_SCmdAccept_i => ocp_SCmdAccept_i,
ocp_SResp_i => ocp_SResp_i,
ocp_SData_i => ocp_SData_i);

end arch;

A.5.5.4 or1200_mem_if.vhd

--From:
-- Mortenm Sleth Rasmussen, Christian Place Pedersen, and Matthias Bo Stuart.
-- A noc-based soc ezecuting a Tay tracer, using synchronous multiprocessing

-- 2005. IMM, DTU. Polyteknisk Midtvejs Projekt.
library IEEE;
use IEEE.std_logic_1164.all;

use work.types.all;

entity or1200_mem_if is

port (
clk_i : in std_logic; -- Clock input
rst_i : in std_logic; -- Reset input

-- WISHBONE Master interface signals

iwb_clk_o : out std_logic; -- WISHBONE clock

iwb_rst_o : out std_logic; -- WISHBONE reset

iwb_ack_o : out std_logic; -- WISHBONE Acknowledge

iwb_err_o : out std_logic; -- WISHBONE error

iwb_rty_o : out std_logic; - WISHBONE retry

iwb_dat_o : out std_logic_ vector(data width-1 downto 0); -- WISHBONE
data

iwb_cyc_i : in std_logic; -- WISHBONE cycle

iwb_adr_i : in  std_logic_vector (addr_width-1 downto 0); -- WISHBONE
address

iwb_stb_1i : in std_logic; -- WISHBONE stb

iwb_we_1i : in std_logic; -- WISHBONE write-enable

iwb_sel_i : in std_logic_vector (3 downto 0); -- WISHBONE select

iwb_dat_i : in std_logic_vector(data_width-1 downto 0); -- WISHBONE
data in

iwb_cab_i : in std_logic; -- WISHBONE cab

-- WISHBONE Master interface szgnals

dwb_clk_o : out std_logic; WISHBONE clock

dwb_rst_o : out std_logic; -- WISHBONE reset

dwb_ack_o : out std_logic; -—- WISHBONE Acknowledge

dwb_err_o : out std_logic; -- WISHBONE error

dwb_rty_o : out std_logic; -- WISHBONE retry

dwb_dat_o : out std_logic_vector(data_width-1 downto 0); -- WISHBONE
data

dwb_cyc_i : in std_logic; -- WISHBONE cycle

dwb_adr_i : in  std_logic_vector (addr_width-1 downto 0); -- WISHBONE
address

dwb_stb_i : in  std_logic; -- WISHBONE stb

dwb_we_i : in std_logic; -- WISHBONE write-enable

dwb_sel_i : in std_logic_vector (3 downto 0); -- WISHBONE select

dwb_dat_i : in  std_logic_vector(data_width-1 downto 0); -- WISHBONE

data in
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dwb_cab_i in std_1

ogic; -- WISHBONE cab

-- OCP Master interface signals

out
out

ocp_MCmd_o
ocp_Maddr_o

ocp_MData_o out

ocp_MByteEn_o out
enable
ocp_SCmdAccept_i
ocp_SResp_i
ocp_SData_i
slave data

in
in
in

end or1200_mem_if;

architecture interface of

type state is (STATE_REQUEST,

STATE_WAIT_INST_RD,
signal current_state, next
begin -- interface
iwb_clk_o <=
dwb_clk_o <=
iwb_rst_o <=
dwb_rst_o <=
iwb_err_o <=
dwb_err_o <=
iwb_rty_o <=
dwb_rty_o <=
iwb_dat_o <=
dwb_dat_o <=

clk_i;
clk_i;

not rst_ij;
not rst_i;
00,

207

)0);

107
ocp_SData_i
ocp_SData_i

purpose:
type
inputs
outputs:
logic: process
iwb_dat_i, dwb_cyc_i,
ocp_SCmdAccept_i,
begin -- process logic
case current_state is
when STATE_REQUEST =>
if dwb_cyc_i = 1’ t
next_state <=
elsif iwb_cyc_i =
next_state <=
else
next_state <=
end if;
ocp_MCmd_o <= MCmd_I

FSM Logic
combinational
twb_cyc_1, iwb

1

(current_state,

ocp_SResp_i,

MCmdEncoding; OCP master command
std_logic_vector (addr_width-1 downto 0);
OCP master address
std_logic_vector (data_width-1 downto 0);
OCP master data
std_logic_vector (3 downto 0);

std_logic; -- OCP slave command accept
SRespEncoding; -- OCP slave response
std_logic_vector(data_width-l downto 0)); -

or1200_mem_if is

STATE_SETUP_INST,
STATE_WAIT_DATA_RD);
_state state;

STATE_SETUP_DATA,
-- States for FSM

H

H

_adr_%, twb_stb_t, <wb_we_i, twb_sel_1, twb_dat

iwb_cyc_i,
dwb_adr_i, dwb_we_i,
ocp_SData_i)

iwb_adr_i, iwb_we_i, iwb_sel_i,
dwb_sel_i, dwb_dat_i,

hen

STATE_SETUP_DATA;

’ then

STATE_SETUP_INST;

STATE_REQUEST;

DLE;

ocp_Maddr_o <= dwb_adr_i;

ocp_MByteEn_o <= dwb
ocp_MData_o <= dwb_d
iwb_ack_o <= ’07;
dwb_ack_o <= ’0’;
when STATE_SETUP_INST
if ocp_SCmdAccept_i
if iwb_we_i = ’1°
next_state <=
iwb_ack_o <=
ocp_MCmd_o <= MC

_sel_i;
at_i;

=>
= 11>
then

then

STATE_REQUEST;
310,

md_WR;

-- OCP master byte

ocp

_1
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else
next_state <= STATE_WAIT_INST_RD;
iwb_ack_o <= ’0°’;
ocp_MCmd_o <= MCmd_RD;

end if;
else
next_state <= STATE_SETUP_INST;
iwb_ack_o <= ’0’;
if iwb_we_i = ’1’ then
ocp_MCmd_o <= MCmd_WR;
else
ocp_MCmd_o <= MCmd_RD;
end if;
end if;

ocp_Maddr_o <= iwb_adr_i;
ocp_MByteEn_o <= iwb_sel_i;
ocp_MData_o <= iwb_dat_i;
dwb_ack_o <= ’07;
when STATE_SETUP_DATA =>
if ocp_SCmdAccept_i = ’1’ then
if dwb_we_i = ’1’ then
next_state <= STATE_REQUEST;
dwb_ack_o <= ’17;
ocp_MCmd_o <= MCmd_WR;
else
next_state <= STATE_WAIT_DATA_RD;
dwb_ack_o <= ’07;
ocp_MCmd_o <= MCmd_RD;
end if;
else
next_state <= STATE_SETUP_DATA;
dwb_ack_o <= ’07;

if dwb_we_i = ’1’ then
ocp_MCmd_o <= MCmd_WR;
else
ocp_MCmd_o <= MCmd_RD;
end if;
end if;

ocp_Maddr_o <= dwb_adr_i;

ocp_MByteEn_o <= dwb_sel_i;

ocp_MData_o <= dwb_dat_i;

iwb_ack_o <= ’0’;

when STATE_WAIT_INST_RD =>

if ocp_SResp_i = SResp_NULL then
next_state <= STATE_WAIT_INST_RD;
ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= iwb_adr_i;
ocp_MByteEn_o <= iwb_sel_i;
ocp_MData_o <= iwb_dat_i;
iwb_ack_o <= ’07;

else
next_state <= STATE_REQUEST;
ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= iwb_adr_i;
ocp_MByteEn_o <= iwb_sel_ij;
ocp_MData_o <= iwb_dat_i;
iwb_ack_o <= ’17’;

end if;

dwb_ack_o <= ’07;

when STATE_WAIT_DATA_RD =>

if ocp_SResp_i = SResp_NULL then
next_state <= STATE_WAIT_DATA_RD;
ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= dwb_adr_i;
ocp_MByteEn_o <= dwb_sel_i;
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ocp_MData_o <= dwb_dat_i;
dwb_ack_o <= ’0’;

else
next_state <= STATE_REQUEST;
ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= dwb_adr_i;
ocp_MByteEn_o <= dwb_sel_ij;
ocp_MData_o <= dwb_dat_i;
dwb_ack_o <= ’1’;

end if;

iwb_ack_o <= ’0’;

when others =>

next_state <= STATE_REQUEST;
ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= dwb_adr_i;
ocp_MByteEn_o <= dwb_sel_ij;
ocp_MData_o <= dwb_dat_i;
dwb_ack_o <= ’07;

iwb_ack_o <= ’0’;

end case;
end process logic;

-- purpose: State Tegister
-- type : sequential
-- 4inputs : clk_t, rst_<
-- outputs:
State_register: process (clk_i, rst_i)
begin -- process State register
if rst_i = ’0’ then -- asynchronous reset (active
current_state <= STATE_REQUEST;
elsif clk_i’event and clk_i = ’1’ then -- rising clock edge
current_state <= next_state;
end if;
end process State_register;

end interface;

A.5.5.5 core_mem ocp.vhd

--From:

low)

-- Morten Sleth Rasmussen, Chrtistian Place Pedersen, and Matthias Bo Stuart.
-- A mnoc-based soc ezecuting a Tay tracer, using synchronous multiprocessing

-- 2005. IMM, DTU. Polyteknisk Midtvejs Projekt.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use STD.textio.all;

use WORK.types.all;

entity core_mem_ocp is

port (
clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset
ocp_MCmd_i : in MCmdEncoding; -- 0OCP master command

ocp_MAddr_i : in std_logic_vector (addr_width-1 downto 0);
-- OCP master address

ocp_MData_i : in std_logic_vector(data_width-1 downto 0); -- OCP master
data
ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- 0OCP Master byte

enable
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ocp_SCmdAccept

ocp_SResp_o

ocp_SData_o
data

)

end core_mem_ocp;

_o

out std_logic; -- OCP slave command accept
out SRespEncoding; -- OCP slave response

out std_logic_vector (data_width-1 downto 0) -- OCP slave

architecture arch of core_mem_ocp is

component onchip
port (
clka in
dina in
addra in
wea in
douta out
)

end component;

type state is (STATE_REQUEST,
signal current_state,
std_logic_vector (3 downto 0);

signal mem_wea

begin -- arch
mem onchip_mem
port map (
clka =>
dina =>
addra =>
the OCP
wea => mem
douta => ocp

)

clk
ocp
ocp

ocp_SCmdAccept_o

next_state_logic
begin

_mem

std_logic;

std_logic_VECTOR (31 downto 0);
std_logic_VECTOR (12 downto 0);
std_logic_VECTOR (3 downto 0);
std_logic_VECTOR (31 downto 0)

STATE_RESPONSE,
next_state state;

STATE_WAIT);

i,
_MData_i,
_MAddr_i (14 downto 2),

--The memory uses word-addressing,
byte addressing.,

_wea,
_SData_o

<= 17

: process(current_state, ocp_MCmd_i, ocp_MByteEn_i)

case current_state is

when STATE_REQUEST
ocp_SResp_o <=

if ocp_MCmd_i =

Write
mem_wea

next_state

elsif ocp_MCmd_i =

-- Read
mem_wea

next_state

else
mem_wea

next_state

end if;

when STATE_RESPONSE

mem_wea <=

ocp_SResp_o <=

next_state

when STATE_WAIT

mem_wea <=

--ocp_SResp_o

=>
SResp_NULL;

MCmd_WR then

<= ocp_MByteEn_i;

<= STATE_REQUEST;

MCmd_RD then

<= "0000";

<= STATE_RESPONSE;
<= "0000";

<= STATE_REQUEST;

=>

"0000";
SResp_DVA;
STATE_WAIT;

=>

"0000";

<= SResp_DVA;

<=
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ocp_SResp_o <= SResp_NULL;
if ocp_MCmd_i = MCmd_IDLE then
next_state <= STATE_REQUEST;
else
next_state <= STATE_WAIT;
end if;
end case;
end process;

state_register : process(clk_i, rst_i, next_state)
begin
if rst_i = ’0’ then

current_state <= STATE_REQUEST;
elsif rising_edge(clk_i) then
current_state <= next_state;
end if;
end process;

end arch;

A.5.5.6 semaphore.vhd

--From:
-- Morten Sleth Rasmussen, Christian Place Pedersen, and Matthias Bo Stuart.
-- A moc-based soc exzecuting a Tay tracer, using synchronous multiprocessing

-- 2005. IMM, DTU. Polyteknisk Midtvejs Projekt.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.types.all;

entity semaphore_ocp is
generic (

semaphores : integer := 5); -- log2(Number of semaphores)
port (

clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset
-- OCP Slave interface
ocp_MCmd_i : in MCmdEncoding; -- OCP master command
ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);

-- OCP master address
ocp_MData_i : in  std_logic_vector(data_width-1 downto 0);

-- OCP master data
ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- OCP master

byteenabdble

ocp_SCmdAccept_o : out std_logic; -- OCP slave command accept
ocp_SResp_o : out SRespEncoding; -- OCP slave rTesponse
ocp_SData_o : out std_logic_vector(data_width-1 downto 0) -- OCP

slave data
N
end semaphore_ocp;

architecture arch of semaphore_ocp is

type state is (STATE_IDLE, STATE_UPDATE); -- States for FSM
signal current_state, next_state : state;

signal sem_state, sem_state_update
std_logic_vector ((2 *x semaphores)-1 downto 0); -- Semaphore state

begin -- arch
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ocp_SCmdAccept_o <= ’17;

-- purpose: Semaphore
-- type : combinational
-- tnputs : ocp_MCmd_i, ocp_Maddr_i, ocp_MData_1
-- outputs: ocp_SResp_o, ocp_SData_o
Semaphore: process (ocp_MCmd_i, ocp_Maddr_i, ocp_MData_i)
begin -- process Semaphore
case ocp_MCmd_i is
when MCmd_RD => -- Test and set
ocp_SResp_o <= SResp_DVA;
ocp_SData_o <= X"0000000" & "000" & sem_state(conv_integer (
unsigned (ocp_Maddr_i (1+semaphores downto 2))));
sem_state_update <= sem_state;
sem_state_update (conv_integer (unsigned(
ocp_Maddr_i (1+semaphores downto 2)))) <= ’0’;
when MCmd_WR => -- Set to 1
ocp_SResp_o <= SResp_NULL;
ocp_SData_o <= X"00000000";
sem_state_update <= sem_state;
sem_state_update (conv_integer (unsigned(
ocp_Maddr_i (1+semaphores downto 2)))) <= ’17;
when others =>
ocp_SResp_o <= SResp_NULL;
ocp_SData_o <= X"00000000";
sem_state_update <= sem_state;
end case;
end process Semaphore;

-- purpose: Semaphore state register
-- type : sequential
-- dnputs : clk_i, rst_q
-- outputs:
State_register: process (clk_i, rst_i)
begin -- process State register
if rst_i = ’0’ then -- asynchronous reset (active
sem_state <= (others => ’17);
elsif clk_i’event and clk_i = ’1’ then -- rising clock edge
sem_state <= sem_state_update;
end if;
end process State_register;

end arch;

A.5.5.7 wuart1l6550_ocp.vhd

--From:

-- Morten Sleth Rasmussen, Christian Place Pedersen, and Matthias Bo Stuart.
-- A noc-based soc exzecuting a Tay tracer, using synchronous multiprocessing

-- 2005. IMM, DTU. Polyteknisk Midtvejs Projekt.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.types.all;

entity uart16550_ocp is

port (
clk_i : in std_logic; -- Clock
rst_i : in std_logic; -- Reset

-- OCP slave interface

low)
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ocp_MCmd_i : in MCmdEncoding; —-- 0OCP master command

ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0);
-- OCP master address

ocp_MData_i : in  std_logic_vector(data_width-1 downto 0);
-- OCP master data

ocp_MByteEn_i : in std_logic_vector (3 downto 0); -- OCP master

byteenabdble

ocp_SCmdAccept_o : out std_logic; -- OCP slave command accept

ocp_SResp_o : out SRespEncoding; -- OCP slave Tesponse

ocp_SData_o : out std_logic_vector(data_width-1 downto 0);

-- Interrupt

int_o : out std_logic; -- Interrupt signal

-- RS232 interface

tx : out std_logic; -- TX pad

rx : in  std_logic; -- RX pad

rts : out std_logic; -— RTS pad

cts : in  std_logic; -- CTS pad

dtr : out std_logic; -- DTR pad

dsr : in  std_logic; -- DSR pad

ri : in std_logic; -- RI pad

dcd : in  std_logic); -- DCD pad

end uart16550_ocp;

architecture struct of uart16550_ocp is
component uart_top

generic(

uart_data_width : integer := 32;
uart_addr_width : integer := 5
)
port (
wb_clk_i : in std_logic;
wb_rst_i : in std_logic;
wb_adr_i : in std_logic_vector (4 downto 0);
wb_dat_i : in std_logic_vector (data_width-1 downto 0);
wb_dat_o : out std_logic_vector (data_width-1 downto 0);
wb_we_1i : in std_logic;
wb_stb_i : in std_logic;
wb_cyc_i : in std_logic;
wb_ack_o : out std_logic;
wb_sel_i : in std_logic_vector (3 downto 0);
int_o : out std_logic;
stx_pad_o : out std_logic;
srx_pad_i : in std_logic;
rts_pad_o : out std_logic;
cts_pad_i : in std_logic;
dtr_pad_o : out std_logic;
dsr_pad_i : in std_logic;
ri_pad_i : in std_logic;
dcd_pad_i : in std_logic
)

end component;

component OCPm_to_WBm is

port (

clk_i : in std_logic;

rst_i : in std_logic;

-- OCP Master interface signals

ocp_MCmd_i : in MCmdEncoding; -- 0cCcP
master command

ocp_Maddr_i : in  std_logic_vector (addr_width-1 downto 0); -
OCP master address

ocp_MData_i : in  std_logic_vector (data_width-1 downto 0); --
OCP master data

ocp_MByteEn_i : in  std_logic_vector (3 downto 0); -- ocp

master byte enable
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ocp_SCmdAccept_o : out std_logic; -- 0CP
slave command accept
ocp_SResp_o : out SRespEncoding; -- ocp

slave response
ocp_SData_o : out std_logic_vector(data_width-1 downto 0); -
OCP slave data

-- WISHBONE Master interface signals

wb_ack_i : in std_logic; -- WISHBONE
Acknowledge

wb_err_i : in std_logic; -- WISHBONE
error

wb_rty_i : in  std_logic; -- WISHBONE
retry

wb_dat_i : in  std_logic_vector(data_width-1 downto 0); -- WISHBONE
data

wb_cyc_o : out std_logic; -- WISHBONE
cycle

wb_adr_o : out std_logic_vector(addr_width—l downto 0); -- WISHBONE
address

wb_stb_o : out std_logic; -- WISHBONE stb

wb_we_o : out std_logic; -- WISHBONE
write-enable

wb_sel_o : out std_logic_vector (3 downto 0); -- WISHBONE
select

wb_dat_o : out std_logic_vector(data_width-1 downto 0); -- WISHBONE
data in

wb_cab_o : out std_logic -- WISHBONE cab

);

H
end component;

signal s_wb_dat_i, s_wb_dat_o, s_wb_addr : std_logic_vector(data_width-l

downto 0);
-- Wishbone data in/output
signal s_rst, s_wb_we, s_wb_stb, s_wb_cyc, s_wb_ack : std_logic;
-- Wishbone handshake signals
-- signal s_wb_sel : std_logic_vector (3 downto 0); -- Wishbone select
begin -- struct

s_rst <= not rst_i;

uart : uart_top
port map (
wb_clk_1i => clk_i,
wb_rst_i => s_rst,
wb_adr_i => s_wb_addr (4 downto 0),
wb_dat_i => s_wb_dat_i,
wb_dat_o => s_wb_dat_o,

wb_we_1i => s_wb_we,
wb_stb_i => s_wb_stb,
wb_cyc_i => s_wb_cyc,
wb_ack_o => s_wb_ack,
wb_sel_i => ocp_MByteEn_i,
int_o => int_o,

stx_pad_o => tx,
srx_pad_i => rx,
rts_pad_o => rts,
cts_pad_i => cts,
dtr_pad_o => dtr,
dsr_pad_i => dsr,
ri_pad_i => ri,
dcd_pad_i => dcd);

ocp_wrapper : OCPm_to_WBm
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port map (
clk_i => clk_i,
rst_i => rst_i,
ocp_MCmd_i => ocp_MCmd_i,
ocp_Maddr_i => ocp_Maddr_i,
ocp_MData_i => ocp_MData_i,
ocp_MByteEn_i => ocp_MByteEn_i,
ocp_SCmdAccept_o => ocp_SCmdAccept_o,
ocp_SResp_o => ocp_SResp_o,
ocp_SData_o => ocp_SData_o,
wb_ack_1i => s_wb_ack,
wb_err_i => 07,
wb_rty_i => 07,
wb_dat_i => s_wb_dat_o,
wb_cyc_o => s_wb_cyc,
wb_adr_o => s_wb_addr,
wb_stb_o => s_wb_stb,
wb_we_o => s_wb_we,
wb_sel_o => open,
wb_dat_o => s_wb_dat_i,
wb_cab_o => open

)

--s_wb_dat_i <= ocp_MData_<;

---- purpose: OCP slave interface
---- type : combinational

---- 4inputs : ocp_MCmd_i, ocp_Maddr_i, ocp_MData_<

---- outputs: ocp_SResp_o, ocp_SData_o

--Semaphore: process (ocp_MCmd_i, ocp_Maddr_1i,
s_wb_ack)

--begin

-= case ocp_MCmd_1i s

- when MCmd_RD =>

- s_wb_stb <= ’17;

-- s_wb_cyc <= ’17;

-= s_wb_we <= ’07;

-= if s_wb_ack = ’1’ then

-- ocp_SResp_o <= SResp_DVA;

-- else

-- ocp_SResp_o <= SResp_NULL;

-- end if;

- ocp_SData_o <= s_wb_dat_o;

-- when MCmd_WR =>

-= s_wb_stb <= ’17;

-- s_wb_cyc <= ’17;

-= s_wb_we <= ’17;

- ocp_SResp_o <= SResp_NULL;

-- ocp_SData_o <= s_wb_dat_o;

-- when others =>

-= s_wb_stb <= 07,

-= s_wb_cyc <= ’0’;

-= s_wb_we <= ’07;

-- ocp_SResp_o <= SResp_NULL;

-- ocp_SData_o <= X"00000000";

-- end case;

--end process Semaphore;

--ocp_SCmdAccept_o <= s_wb_ack;

end struct;

ocp_MData_1,

s_wb_dat_o,
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A.5.5.8 types.vhd
-- Constant and types
library IEEE;
use IEEE.std_logic_1164.all;
package types is
--NoC
constant FLIT_SIZE integer 1= 323 -- flit size in bits
constant FLIT_UNDEF std_logic_vector (FLIT_SIZE-1 downto 0) := (others =>
’U’); -- undefined flit
constant FLIT_ZERO std_logic_vector (FLIT_SIZE-1 downto 0) := (others =>
’0°); -- zero flit

subtype flit_data is std_logic_vector (FLIT_SIZE-1 downto 0);

type source_hs_data is array (0 to 3) of flit_data;

--ROMs for traffic generators

constant SOURCE_ROM_SIZE : integer := 64;

type rom_type is array (SOURCE_ROM_SIZE-1 downto 0) of std_logic_vector (2+(
FLIT_SIZE-1) downto 0);

--route lookup

constant ROUTE_LOOKUP_SIZE : integer := 16;

type route_lookup_table_type is array (ROUTE_LOOKUP_SIZE-1 downto 0) of

std_logic_vector (2*FLIT_SIZE-1 downto 0); -- forward_path &

reverse_path

-- Encoding of the MCmd
subtype MCmdEncoding is std_logic_vector (2 downto 0);

constant MCmd_IDLE
constant MCmd_WR
constant MCmd_RD
constant MCmd_RDEX
constant MCmd_RDL
constant MCmd_WRNP
constant MCmd_WRC
constant MCmd_BCST

MCmdEncoding := "000"; -- Idle
MCmdEncoding := "001"; -- Write
MCmdEncoding := "010"; -- Read
MCmdEncoding := "011"; -- ReadEz
MCmdEncoding := "100"; -- ReadLinked
MCmdEncoding := "101"; -- WriteNonPost
MCmdEncoding := "110"; -- WriteConditional
MCmdEncoding := "111"; -- Broadcast

-- Encoding of the SResp
subtype SRespEncoding is std_logic_vector (1 downto 0);

constant SResp_NULL
constant SResp_DVA
constant SResp_FAIL
constant SResp_ERR

-- SoC constants
constant addr_width
constant data_width
constant WORD_ZERO
others => ’0°);
end types;
package body types is

end types;

SRespEncoding := "00"; -- No Response

SRespEncoding := "O01"; -- Data Valid / accept

SRespEncoding : H -- Request failed

SRespEncoding -- Response error
integer := 32; -- Width of address
integer := 32; -- Width of data

std_logic_vector (data_width-1 downto 0)
-- Zero word
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A.5.5.9 route_lookup_tables.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

package route_lookup_tables is

-- 9 router mesh

constant cpuO_routing_table : route_lookup_
4 => x"59000000" & x"£f2000000", --
8 => x"58000000" & x"£2000000", --
others => x"5c000000" & x"£4000000" --

)

constant cpul_routing_table : route_lookup_
4 => x"64000000" & x"c8000000", --
8 => x"60000000" & x"C8000000", --
others => x"70000000" & x"d0000000" --

N

constant cpu2_routing_table : route_lookup_
4 => x"54000000" & x"£f4000000", --
8 => x"5c000000" & x"£f4000000", --
others => x"52000000" & x"£8000000" --

)

constant cpu3_routing_table : route_lookup_
4 => x"50000000" & x"DO0OOOOOO", --
8 => x"70000000" & x"d00000OO", --
others => x"48000000" & x"E0000000" --

)

constant cpué4_routing_table : route_lookup_
4 => x"44000000" & x"e0000000", --
8 => x"48000000" & x"e0000000", --
others => x"42000000" & x"E8000000" --

)

end route_lookup_tables;

package body route_lookup_tables is

end route_lookup_tables;

A.5.5.10 MPSoC_noc.ucf

NET "clkO_i" TNM_NET = "clkO_i";

NET "clkO_i" LOC = AH15;

NET "clkO_i" IOSTANDARD = "LVCMOS33";
TIMESPEC "TS_clkO_i" = PERIOD "clkO_i" 10000
NET "clk1_i" TNM_NET = "clk1l_i";

NET "clk1_i" LOC = AH17;

NET "clki1_i" IOSTANDARD = "LVCMOS33";
TIMESPEC "TS_1clk_i" = PERIOD "clki1_i" 30303

NET "reset_i" LOC = E9;

NET "reset_i" IOSTANDARD = "LVCMOS33";
NET "reset_i" PULLUP;

NET "rx" LOC = AG1l5;

NET "rx" IOSTANDARD = "LVCMOS33";

table_type
(sem)
(uart)
(mem0)

table_type
(sem)
(uart)
(mem0)

table_type
(sem)
(uart)
(mem0)

table_type
(sem)
(uart)
(mem0)

table_type
(sem)
(uart)
(mem0)

ps;

ps;
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NET "tx" LOC = AG20;

NET "tx" IOSTANDARD = "LVCMOS33";

NET "running" LOC = H18;

NET "running" IOSTANDARD = "LVCM0OS25";
NET "running" SLEW = SLOW;

NET "running" PULLDOWN;

NET "*transmit_req" TIG;

NET "*receive_ack" TIG;

NET "mesh/*" TIG;

NET "reset" TIG;

A.5.6 Simulation Components

A.5.6.1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

source_handshake_iterative.vhd

entity source_handshake_iterative is

generic (

starttime time := 50 ns;
between_flits time := 50 ns;
h_data : source_hs_data
FLIT_ZERO) ;
i_data : source_hs_data
FLIT_ZERO);
e_data : source_hs_data
FLIT_ZERO)
)
port (
rh out std_logic;
ri out std_logic;
re out std_logic;
ack in std_logic;
data out flit_data
);

end source_handshake_iterative;

starttime in ns

:= (FLIT_ZERO,FLIT_ZERO,FLIT_ZERO,

(FLIT_ZERO ,FLIT_ZERO,FLIT_ZERO,

:= (FLIT_ZERO,FLIT_ZERO,FLIT_ZERO,

architecture Behavioral of source_handshake_iterative is

signal rh_int, ri_int, re_int

signal h_data_set, i_data_set,

signal ii natural := 0;
begin

rh <=
ri <=
re <=

rh_int;
ri_int;
re_int;

req_h: process

variable i
begin

rh_int <= ’0°’;

h_data_set <= ’0’;

wait for starttime;

--while 4 <= 3 loop

if i /= 0 then
wait for between_flits;

natural := 0;

e_data_set

std_logic;
std_logic;
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end if;

rh_int <= ’17;
h_data_set <= ’1°’;
wait until ack = ’1°7;
wait for 5 ns;

rh_int <= ’07;

wait until ack = ’0°’;
h_data_set <= ’0’;

wait until re_int = ’17; -- Wait wuntil the complete handshake

entire packet has finished.
wait until re_int = ’07;
wait until ack = ’07;
i = i+1;
ii <= i;

--end loop;
wait;
end process;

req_i: process

begin
ri_int <= ’07;
i_data_set <= ’0’;
loop

wait until rh_int = ’17;
wait until ack = ’1°’;
wait until ack = ’0’;
wait for 5 ns;

ri_int <= ’17;
i_data_set <= ’17;
wait until ack = ’1°’;
wait for 1 ns;

ri_int <= ’07;

wait until ack = ’0°’;
i_data_set <= ’07;

wait until re_int = ’17; -- Wait until the complete handshake

entire packet has finished.
wait until re_int = ’07;
wait until ack = ’0’;

end loop;
end process;

req_e: process
begin
re_int <= ’07’;
e_data_set <= ’07;
loop

wait until ri_int = ’1°’;
wait until ack = ’1°’;
wait until ack = ’0’;
wait for 1 ps;

re_int <= ’17;
e_data_set <= ’17;
wait until ack = ’1°’;
wait for 5 ns;

re_int <= ’07;

wait until ack = ’0°’;
e_data_set <= ’0’;

end loop;
end process;

data_proc : process(h_data_set,e_data_set,i_data_set,ii)
begin
if ii > 3 then --stop

data <= x"aaaaaaaa";--FLIT_ZERO;

elsif h_data_set = 21’ then

for the

for the
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data <= h_data(ii);

elsif i_data_set = ’1’ then
data <= i_data(ii);
elsif e_data_set = ’1’ then
data <= e_data(ii);
else
data <= x"aaaaaaaa";--FLIT_ZERO;
end if;

end process;

end Behavioral;

A.5.6.2 sink_handshake.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;

entity sink_handshake is

port (
rh : in std_logic;
ri : in std_logic;
re : in  std_logic;
ack : out std_logic;
data : in flit_data
);

end sink_handshake;

architecture Behavioral of sink_handshake is

signal req : std_logic;
begin
req <= rh or ri or re;

handshake: process

begin
ack <= ’07;
loop
wait until req = ’17;

wait for 5 ns;
ack <= ’1’;
wait until req = ’0’;
wait for 5 ns;
ack <= ’07;

end loop;

--wait;

end process;

end Behavioral;

A.5.6.3 ocp_master_source.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.types.all;
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entity ocp_master_source is

port (
clk_i : in std_logic;
reset_i : in std_logic;
ocp_MCmd_o : out MCmdEncoding;
ocp_Maddr_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MData_o : out std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_o : out std_logic_vector (3 downto 0);
ocp_SCmdAccept_i : in std_logic;
ocp_SResp_i : in SRespEncoding;
ocp_SData_i : in std_logic_vector (addr_width-1 downto 0)
)

end ocp_master_source;
architecture Behavioral of ocp_master_source is
begin

tb : process
begin

ocp_MCmd_o <= (others => ’07);
ocp_Maddr_o <= (others => ’0’);
ocp_MData_o <= (others => ’0’);
ocp_MByteEn_o <= (others => ’0’);

-- Wait 100 ns for global reset to finish
wait for 100 ns;
wait until clk_i = ’1°’;

-- Write request

ocp_MCmd_o <= MCmd_WR;
ocp_Maddr_o <= x"11111111";
ocp_MData_o <= x"22222222";
ocp_MByteEn_o <= "1111";

wait until ocp_SCmdAccept_i = ’1°;
wait until clk_i = ’1°’;

ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= (others => ’07);
ocp_MData_o <= (others => ’0°);
ocp_MByteEn_o <= (others => ’0’);

-- Read request

wait until clk_i = ’0°’;

wait until clk_i = ’1°’;

ocp_MCmd_o <= MCmd_RD;

ocp_Maddr_o <= x"44444444";
ocp_MByteEn_o <= "1111";

wait until ocp_SCmdAccept_i = ’17;
wait until clk_i = ’1°’;

ocp_MCmd_o <= MCmd_IDLE;
ocp_Maddr_o <= (others => ’0°);
ocp_MByteEn_o <= (others => ’0’);
wait until ocp_SResp_i = SResp_DVA;

wait; -- will wait forever
end process;

end Behavioral;
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A.5.6.4 ocp_master_sink.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.types.all;

entity ocp_master_sink is

port (

clk_i in std_logic;
reset_i in std_logic;
ocp_MCmd_i in MCmdEncoding;
ocp_Maddr_i in std_logic_vector (addr_width-1 downto 0);
ocp_MData_i in std_logic_vector (addr_width-1 downto 0);
ocp_MByteEn_i in std_logic_vector (3 downto 0);
ocp_SCmdAccept_o out std_logic;
ocp_SResp_o out SRespEncoding;
ocp_SData_o out std_logic_vector (addr_width-1 downto 0)

);

end

architecture Behavioral

ocp_master_sink;

begin

tb
be

process
gin
ocp_SCmdAccept_o
ocp_SResp_o
ocp_SData_o

-- Wait 100 ns for global reset

wait for 100 ns;

wait until ocp_MCmd_i =

ocp_SCmdAccept_o

wait until clk_i
wait until clk_i

ocp_SCmdAccept_o

wait until ocp_MCmd_i =

wait until clk_i
wait until clk_i

ocp_SCmdAccept_o

wait until clk_i
wait until clk_i

ocp_SCmdAccept_o

wait until clk_i
wait until clk_i

of ocp_master_sink is

<= 07,
<= (others => ’0’);
<= (others => ’0°);

to finish

MCmd_WR;

<= 117,

= 207;

= 217

<= 117,
MCmd_RD;

= 0,

= 10,

<= 117,

= 0,

= 10,

<= 10°’;

= 0,

= 10,

ocp_SResp_o <= SResp_DVA;
ocp_SData_o <= x"88888888";

wait until clk_i
wait until clk_i

- 500

073
= 990
= 917,
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ocp_

wait; -- will wait forever

SResp_o <= SResp_NULL;
ocp_SData_o <= x"00000000";

end process;

end Behavioral;

A.6 C-Code

This appendix contains the original C source code from [22].

A.6.1 wuart5cpu.c

#include <board.h>
#include <uart.h>
#include <NoC.h>

#define

#define

#define

#define

#define

BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)

WAIT_FOR_XMITR \

do { \
1sr =
} while ((lsr

WAIT_FOR_THRE
do { \

1sr =
} while ((lsr

REG8 (UAR
& BOTH_E

\

REG8 (UAR
& UART_L

T_BASE + UART_LSR); \
MPTY) != BOTH_EMPTY)

T_BASE + UART_LSR); \
SR_THRE) != UART_LSR_THRE)

CHECK_FOR_CHAR (REG8 (UART_BASE + UART_LSR) & UART_LSR_DR)

WAIT_FOR_CHAR \
do { \

1sr = REG8(UART_BASE + UART_LSR); \
} while ((1sr & UART_LSR_DR) !'= UART_LSR_DR)

void uart_init(void)

{

int divisor;

/* Reset receiver and transmiter */
REG8 (UART_BASE + UART_FCR) =
UART_FCR_CLEAR_XMIT | UART_FCR_TRIGGER_14;

/* Disable all

interrupts */

REG8 (UART_BASE + UART_IER) =

/* Set 8 bit char,
REG8 (UART_BASE + UART_LCR) =
UART_LCR_PARITY);

/* Set baud rate */

1 stop b3

UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR

0x00;

t, no parity */
UART_LCR_WLEN8 & ~(UART_LCR_STOP

divisor = IN_CLK/(16 * UART_BAUD_RATE);
REG8 (UART_BASE + UART_LCR) |

REG8 (UART_BASE + UART_DLL) =
REG8 (UART_BASE + UART_DLM) =

= UART_LCR_DLAB;
divisor & 0x000000ff;
(divisor >> 8) & 0x000000ff;
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}

REG8 (UART_BASE + UART_LCR) &=

void uart_putc(char c)

{

}

unsigned char 1lsr;

WAIT_FOR_THRE;
REG8 (UART_BASE + UART_TX) = c;
if(c == ’\n’) {

WAIT_FOR_THRE;

REG8 (UART_BASE + UART_TX) =
}
WAIT_FOR_XMITR;

volatile int *jobAlloc;
volatile int *uartAlloc;

volatile int nextJob = 0;

void print0();
void printl();
void print2(Q);
void print3();
void print4();

int main(int argc,
jobAlloc = SEMAPHORE_ADDRESS (1);
uartAlloc = SEMAPHORE_ADDRESS (2);

}

PASS_SEMAPHORE (jobAlloc) ;
switch(nextJob) {
case O0:
uart_init ();
++nextJob;
RELEASE_SEMAPHORE (jobAlloc);
print0 () ;
break;
case 1:
++nextJob;
RELEASE_SEMAPHORE (jobAlloc) ;
print1();
break;
case 2:
++nextJob;
RELEASE_SEMAPHORE (jobAlloc) ;
print2Q);
break;
case 3:
++nextJob;
RELEASE_SEMAPHORE (jobAlloc) ;
print3();
break;
case 4:
++nextJob;
RELEASE_SEMAPHORE (jobAlloc) ;
printd () ;
break;
default:
RELEASE_SEMAPHORE (jobAlloc);
while (1) {3}
break;

}

Appendices

“(UART_LCR_DLAB);

char* argv[]) {
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void print0() {
while (1) {

}

}

PASS_SEMAPHORE (uartAlloc);
uart_putc (’H’);
uart_putc(’e’);
uart_putc(’1l’);
uart_putc(’1’);
uart_putc(’0’);
uart_putc(’0’);
uart_putc(’\n’);
RELEASE_SEMAPHORE (uartAlloc);

void print1() {
while (1) {

}

}

PASS_SEMAPHORE (uartAlloc);
uart_putc(’H’);
uart_putc(’e’);
uart_putc(’1’);
uart_putc(’1’);
uart_putc(’0’);
uart_putc(’1’);
uvart_putc(’\n’);
RELEASE_SEMAPHORE (uartAlloc);

void print2() {
while (1) {

}

}

PASS_SEMAPHORE (uartAlloc);
uart_putc(’H’);
uart_putc(’e’);
uart_putc(’1’);
uart_putc(’1l’);
uart_putc(’0’);
uart_putc(’2’);
uart_putc(’\n’);
RELEASE_SEMAPHORE (uartAlloc);

void print3() {
while (1) {

}

}

PASS_SEMAPHORE (uartAlloc);
uart_putc (’H’);
uart_putc(’e’);
uart_putc(’1’);
uart_putc(’1l’);
uart_putc(’0’);
uart_putc(’3’);
uart_putc(’\n’);
RELEASE_SEMAPHORE (uartAlloc);

void print4 () {
while (1) {

PASS_SEMAPHORE (uartAlloc);
uart_putc (’H’);
uart_putc(’e’);
uart_putc(’1l’);
uart_putc(’1’);
uart_putc(’0’);
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172 uart_putc(’4’);

173 uart_putc(’\n’);

174 RELEASE_SEMAPHORE (uartAlloc);
175 }

176}

178 /*

179 or32-uclinuxz-gcc -g -c -o uartbcpu.o uartbcpu.c -I. -02

180 or32-uclinuz-1d -Tram.ld -o uartScpu.or32 reset.o uartbcpu.o

181 or32-uclinuz-nm uartb5cpu.or32 | grep -v ’\(compiled\)\/\(\.0$$\D\/\( [aUw] \)
VNV N\ ng8$\)\/\(LASH[RL]DI\)’ | sort > System.map

182 cp System.map System.map.uartdcpu

183 or32-uclinuzxz-objcopy -0 binary uartbcpu.or32 wuartbcpu.bin

184  hexzdump -v -e ’4/1 "Z02z" "\n"’ wartScpu.bin > uartScpu.hex

185  */

A.6.2 Dboard.h

1 #define IN_CLK 40000000 /* 10000000 */

2 #define STACK_SIZE 0x2000

3 #define UART_BAUD_RATE 115200 /* 9600 */

4 #define UART_BASE 0x80000000

5

6 /* Register access macros */

7 #define REG8(add) *((volatile unsigned char *) (add))

8 #define REG16(add) *((volatile unsigned short *) (add))

9 #define REG32(add) *((volatile unsigned long *) (add))
A.6.3 nuart.h

1 #ifndef _UART_H_

2 #define _UART_H_

3

4 #define UART_RX 0 /* In: Receive buffer (DLAB=0) */

5 #define UART_TX 0 /* Out: Transmit buffer (DLAB=0) */

6 #define UART_DLL O /* Out: Divisor Latch Low (DLAB=1) */

7 #define UART_DLM 1 /* QOut: Divisor Latch High (DLAB=1) */

8 #define UART_IER 1 /* Out: Interrupt Enable Register x/

9 #define UART_IIR 2 /* In: Interrupt ID Register x/

10 #define UART_FCR 2 /* QOut: FIFO Control Register */

11 #define UART_EFR 2 /* I/0: Extended Features Register */

12 /* (DLAB=1, 16C660 only) */

13 #define UART_LCR 3 /* Out: Line Control Register */
14 #define UART_MCR 4 /* Out: Modem Control Register */
15 #define UART_LSR 5 /* In: Line Status Register */
16 #define UART_MSR 6 /* In: Modem Status Register */
17 #define UART_SCR 7 /* I/0: Scratch Register */

18

19 /*

20 * These are the definitions for the FIFO Control Register

21 * (16650 only)

22 */

23 #define UART_FCR_ENABLE_FIFO 0x01 /* Enable the FIFO */

24 #define UART_FCR_CLEAR_RCVR 0x02 /* Clear the RCVR FIFO */

25 #define UART_FCR_CLEAR_XMIT 0x04 /* Clear the XMIT FIFO */

26 #define UART_FCR_DMA_SELECT 0x08 /* For DMA applications */

27 #define UART_FCR_TRIGGER_MASK 0xCO /* Mask for the FIFO trigger range */
28 #define UART_FCR_TRIGGER_1 0x00 /* Mask for trigger set at 1 */
29 #define UART_FCR_TRIGGER_4 0x40 /* Mask for trigger set at 4 */
30 #define UART_FCR_TRIGGER_8 0x80 /* Mask for trigger set at 8 */
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#define UART_FCR_TRIGGER_14 0xCO /* Mask for trigger set at 14 */
/* 16650 redefinitions */
UART_FCR6_R_TRIGGER_8 0x00 /* Mask for receive trigger set at 1 */
UART_FCR6_R_TRIGGER_16
UART_FCR6_R_TRIGGER_24
UART_FCR6_R_TRIGGER_28
UART_FCR6_T_TRIGGER_16

#define
#define
#define
#define
#define

*/
#define
#define

*/
#define

*/

/%

* These are the definitions for the Line Control Register

*
* Note:

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

0x40 /*
0x80 /*
0xCO /*
0x00 /*

Mask
Mask
Mask
Mask

for
for
for
for

recetve trigger set at 4
recetve trigger set at 8 */
recetve trigger set at 14

transmit trigger set at 16

UART_FCR6_T_TRIGGER_8 0x10 /* Mask for transmit trigger set at 8 */

UART_FCR6_T_TRIGGER_24

UART_FCR6_T_TRIGGER_30

if the word length is 5 bits (UART_LCR_WLEN5),
* UART_LCR_STOP wtll select 1.

UART_LCR_DLAB
UART_LCR_SBC

UART_LCR_SPAR
UART_LCR_EPAR

0x80
0x40
0x20
0x10

UART_LCR_PARITY 0x08

UART_LCR_STOP

UART_LCR_WLENS
UART_LCR_WLENG
UART_LCR_WLEN7
UART_LCR_WLENS8

0x04
0x00
0x01
0x02
0x03

* These are the definitions

*/
#define
#define
#define
#define
#define
#define
#define

/*

UART_LSR_TEMT 0x40

UART_LSR_THRE 0x20

UART_LSR_BI 0x10 /*
UART_LSR_FE 0x08 /x*
UART_LSR_PE 0x04 /*
UART_LSR_OE 0x02 /*
UART_LSR_DR 0x01 /*

* These are the definitions

*/
#define
#define

#define
#define
#define
#define
#define

/*

UART_IIR_NO_INT 0xO01

UART_IIR_ID 0x06

UART_IIR_MSI
UART_IIR_THRI
UART_IIR_TOI
UART_IIR_RDI
UART_IIR_RLSI

/*

0x00
0x02
0x0c
0x04
0x06

/%
/*
/*
/*

/%

0x20 /* Mask for transmit trigger set at 24

0x30 /* Mask for transmit trigger set at 30

5 stop bits,

Divisor latch access bit */

Set break control */

Stick parity

(2) x/

Even parity select */
/% Parity Enable */

Stop bits:
/*
/*
/*
/%

0=1 stop bit,
Wordlength :
Wordlength :
Wordlength :
Wordlength :

5 bits
6 bits
7 bits
8 bits

*/
*/
*/
*/

for the Line Status Register

/* Transmitter empty */
/* Transmit-hold-register empty */

Break interrupt

indicator */

Frame error indicator */
Parity error indicator */
Overrun error indicator */
Receiver data ready *x/

then setting
not 2 stop bits.

for the Interrupt Identification Register

/* No

interrupts pending */

Mask for the interrupt ID */

/*
/%
/*
/*
/*

Modem status

interrupt */

Transmitter holding register empty */

Receive time

out

Receiver data interrupt */

Receiver line status

interrupt */

interrupt */

* These are the definitions for the Interrupt Enable Register

*/
#define
#define
#define
#define

/%

* These are the definitions for the Modem Control Register

*/

UART_IER_MSI
UART_IER_RLSI
UART_IER_THRI
UART_IER_RDI

0x08
0x04
0x02
0x01

/%
/%
/*
/*

Enable
Enable
Enable
Enable

Modem status interrupt */
recetver line status
Transmitter holding register int.
receiver data interrupt */

interrupt */

1= 2 stop bits */

*/
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#define
#define
#define
#define
#define

/%

UART_MCR_LOOP
UART_MCR_OUT2
UART_MCR_OUT1
UART_MCR_RTS
UART_MCR_DTR

0x10
0x08
0x04
0x02
0x01

/*
/*
/*
/*
/*

Enable loopback test mode */
Out2 complement */

Outl complement */

RTS complement */

DTR complement */

* These are the definitions for the Modem Status Register

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

* These are the definitions for the Extended Features Register

UART_MSR_DCD
UART_MSR_RI Ox
UART_MSR_DSR
UART_MSR_CTS
UART_MSR_DDCD
UART_MSR_TERI
UART_MSR_DDSR
UART_MSR_DCTS

0x80
40

0x20
0x10
0x08
0x04
0x02
0x01

UART_MSR_ANY_DELTA

* (StarTech 16C660 only,

*/
#define
#define
#define
#define

#endif /*

UART_EFR_CTS
UART_EFR_RTS
UART_EFR_SCD
UART_EFR_ENI

_UART_H_ */

A.6.4 NoC.h

0x80
0x40
0x20
0x10

/*

Data Carrier Detect */

/* Ring Indicator */

/*
/*
/*
/*
/*
/*

Data Set Ready */

Clear to Send */

Delta DCD */

Tratling edge ring tindicator */
Delta DSR */

Delta CTS */

0xOF /* Any of the delta bits! */

when

/*
/*
/*
/*

DLAB=1)

CTS flow control */

RTS flow control */

Special character detect */
Enhanced Interrupt */

// Network/System specific values

#ifndef
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

NOC_H
NOC_H

POOL_SIZE 128
POOL_SIZE_BIT
POOL_INVALID_I

4
NDEX

-1

CTRL_RAY_TREES 10 // Should never exzceed POOL_SIZE / NUM_LIGHTS

COMMUNICATION_SIZE 10 // Min 2

CTRL_IS_SIZE 30 // Min CTRL_RAY_TREES % NUM_LIGHTS
CTRL_SRG_SIZE 10 // Min CTRL_RAY_TREES
CTRL_SHADE_SIZE 10 // No min

sem_t int*

SEMAPHORE_BASE 0x40000000 // Base address of semaphores

// Semaphore 0 reserved for reset-code

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SEM_PRG_COMM 1

4

SEM_IS_RAY_COMM 1
SEM_IS_HIT_COMM 2

SEM_SRG_GEN_CO
SEM_SRG_RAY_CO
SEM_SHADE_COMM
SEM_PRG_WAIT 6
SEM_IS_RAY_WAI
SEM_IS_HIT_WAI
SEM_SRG_GEN_WA

MM 3
MM 4
5

T 7
T 8
IT 9

SEM_SRG_RAY_WAIT 10

SEM_SHADE_WAIT

11



C-Code

#define
#define
#define
#define
#define

#define
#define
#define
#define

#endif

A.6.5

MEMORY

SEM_JOB_ALLOCATE 12
SEM_MEM_ALLOCATE 13

SEMAPHORE_ADDRESS (i) (int#*) (SEMAPHORE_BASE + 4 * i)
PASS_SEMAPHORE (x) while (! (*x)) {}

RELEASE_SEMAPHORE (x) (*x

= 1)

FRAME_BUFFER_BASE 0xC0000000

RESOLUTION_X 32
RESOLUTION_Y 24
FRAME_BUFFER_ADDRESS (x,
RESOLUTION_Y * y))

ram.ld

{

y) ((int*) (FRAME_BUFFER_BASE + x +

vectors : ORIGIN = 0x00000000, LENGTH = 0x00001000
ram : ORIGIN = 0x00001000, LENGTH = 0x0000£000

OO0 O Uk W

=

SECTIONS
{

A.6.6

#include
#include

}

.vectors

{
*(.vectors)
} > vectors

.text

{
*(.text)
} > ram

.data

{
*(.data)
} > ram

.rodata

{
*(.rodata)
} > ram

.bss

{
*(.bss)
} > ram

.stack

{

*(.stack)
_src_addr =
} > ram

reset.S

"board.h"
"mc.h"

.



268

Appendices

.sp
.da

_of

_st

.global
.global

.S
ace ST
ta
.align 4
type _o
size _o
fset:
long O
ack:

.5

.0

___main
_offset

ection .stack,
ACK_SIZE

ffset,Qobject
ffset ,4

ection .vectors, "ax"
rg 0x100

l.movhi r10,0x4000
.ori r10,r10,0x0000

1
.L1
1
1
1

_re

sfeqi r11,0x0001

bnf

set:

.L

.lwz r11,0(r10)

1

1l.movhi r12,hi(_offset)

1.
1.

-

o

1
1

.addi

1.

1.
1.
1.

ori r12,r12,lo0(_offset)
lwz r13,0(r12)

movhi r1l,hi(_stack-4)
ori ri,r1,lo(_stack-4)
addi r2,r0,-3

and rli,rl,r2
r13,r13,0x2000

.add r1,r1,r13

. 8w
. SW

.addi
.addi
.addi
.addi

main:
.jr
.nop

0(

0(

H

ri2),r13
ri0),ri1

r10,r0,0
r1i1,r0,0
r12,r0,0
r13,r0,0

.movhi r2,hi(_main)
.ori r2,r2,lo(_main)
.jr r2

.addi r2,r0,0

aw", @nobits
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