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Abstract
An exciting, recent development in numerical linear algebra is the use of randomisa-
tion as a resource, often through a process known as sketching, where a large matrix
is replaced by smaller matrix that approximates it well. Much of the literature on
sketching is either deeply rooted in theoretical computer science, with little attention
on practical performance, or concentrated on narrow areas of applications, obscuring
the simplicity of the underlying principles. This thesis aims to bridge the gap between
theory and practice, and create a framework for sketching applications that makes it
easy to identify and apply sketching in a large range of algorithms.

We describe the fundamental theory behind sketching, focusing on the mathemat-
ical concept of subspace embeddings. Four different sketching methods are presented
and compared in terms of theoretical guarantees and complexities. The practical
performance of the above methods is then tested in various linear algebra problems.

Through our review of literature and the performed experiments, we identify three
basic operations. These form the cornerstones of most uses of sketching, allowing for a
modular approach to constructing algorithms. We find that simple implementations
can yield significant computational advantages, often using sketch dimensions well
below the theoretical bounds. Usually, the gains come at the price of approximation
errors, the measurement and consideration of which is essential for the success of the
methods in practice.

Sketching has the potential to be a valuable tool in many areas of scientific com-
puting. It is at its most useful when coupled with domain-specific knowledge used
to provide reasonable assumptions, tighter analysis and suitable error measures. Our
hope is that this report can serve as a practical guide to understanding the basic
theory and computational aspects of sketching, while making the underlying ideas
and methods accessible to a larger audience.
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Resumé
Brugen af tilfældighed som en beregningsmæssig resource er en ny og spændnde ud-
vikling indenfor feltet numerisk lineær algebra. Ofte sker det gennem en proces kaldet
sketching, hvor en stor matrix erstattes af en mindre matrix med lignende egenskaber.
Meget af literaturen på området er enten dybt forankret i teoretisk datalogi uden
nævneværdige beskrivelser af praktiske aspekter, eller koncentreret om specifikke an-
vendelsesmuligheder, hvorfor enkeltheden af de underliggende idéer let overskygges.
Formålet med denne afhandling er at mindske kløften mellem teori og praksis, og
skabe en strukturel ramme for brugen af sketching, der gør det let at identificere og
anvende sketching i et bredt udvalg af algoritmer.

Vi beskriver først den grundlæggende teori med fokus på det matematiske begreb
“subspace embeddings”. Der præsenteres fire forskelige sketching metoder, hvis teo-
retiske egenskaber og kompleksiteter sammenlignes, hvorefter metodernes praktiske
formåen efterprøves i forskellige matematiske problemer.

På baggrund af den gennemgåede literatur og de udførte ekseperimenter, identifi-
cerer vi tre basale operationer. Disse fungerer som grundsten i de fleste anvendelser af
sketching, og gør det muligt at konstruere modulopbyggede algoritmer. Vi ser, at selv
simple implementeringer med parametre langt fra de teoretiske krav kan give bety-
delige beregningsmæssige fordele. Dette er ofte på bekostning af approksimationsfejl,
og det er dermed essentielt at kunne vurdere fejlens betydning, før sketchingmetoder
kan anvendes i praksis.

Sketching har potentiale som et værdifuldt redskab i mange områder af den an-
vendte matematik. Metoderne fungerer bedst, når de kan kobles med domænespecifik
viden, der kan bruges til at opstille rimelige antagelser, bedre teoretiske garantier og
passende fejlmål. Vi håber, at denne afhandling kan fungere som en praktisk intro-
duktion til sketching, der tydeliggør den underliggende teori og de beregningsmæssige
aspekter, og dermed gør metoderne lettere tilgængelige.
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[
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(
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σ Standard deviation
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CHAPTER 1
Introduction

Big data has long since gone from a concept in the scientific community to a buz-
zword in mainstream media. Information is gathered from almost everywhere and at
all times and the sheer volumes of data present both interesting opportunities and
considerable challenges for those seeking to make use of it. Numerical linear algebra
is one of the scientific fields that is instrumental in trying to develop and update
traditional data processing techniques to handle the vast amounts of information.

In linear algebra, data is often represented as a matrix with the rows correspond-
ing to for example observations, users or items and columns to properties, ratings or
similar descriptive features. One could for example describe the ratings of movies by
users of the streaming service Netflix in a matrix, which would then contain around
125 million rows corresponding to the number of subscribers in the first quarter of
2018, and several thousand columns for all the available films. Performing standard
linear algebra operations using such data sets is computationally demanding, imprac-
tical and in some cases outright impossible.

A novel approach to developing efficient alternative algorithms has emerged within
the last two decades and distinguishes itself by exploiting randomisation as a com-
putational resource. Previously this was thought of as a desperate and last resort
but recent results have revealed powerful algorithmic and statistical properties. To
illustrate the merits of this line of thought, consider the ubiquitous overdetermined
least squares problem, where given an m × n coefficient matrix A with m > n and a
response vector b of length m, the aim is to find the vector x minimising the residual
error ∥Ax − b∥2. The following Matlab code sets up such a problem by constructing
a large random coefficient matrix and response vector:

>> m = 2^19; n = 2^10;
>> rng(0); A = randn(m,n); b = A*rand(n,1) + rand(m,1);

Solving the least squares problem can be done using Matlab’s \ or mldivide operator,
which, when A is large, can be rather cumbersome:
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>> tic; x = A\b; toc;
Elapsed time is 277.843295 seconds.

As the problem is heavily overdetermined, it seems reasonable to assume that the
rows of A contain a considerable amount of redundancy. An alternative approach
would therefore be only to use a subset of the rows when solving the problem. This
can be easily implemented by uniformly sampling k < m rows from A and solving
the smaller problem:

>> tic; k = 2^15;
>> row_id = randsample(m,k); SA = A(row_id,:); Sb = b(row_id);
>> x_uniform = SA\Sb; toc;
Elapsed time is 17.207724 seconds.
>> norm(A*x_uniform - b)/norm(A*x - b)
ans = 1.0143

In the above, we sample k = 215 rows and obtain an approximate solution with a
residual norm less than 1.02 times larger than without sampling rows, and the solution
is computed about 16 times faster. However, this naïve method of uniform sampling
is not very robust, as the following example shows:

>> A(1:end-1,end) = 1e-6*randn(m-1,1);
>> x = A\b;
>> SA = A(row_id,:); Sb = b(row_id);
>> x_uniform = SA\Sb;
>> norm(A*x_uniform - b)/norm(A*x - b)
ans = 1571.0422

In the above, the last row of A carries a huge amount of information and if this row
is not sampled, the residual norm is far from impressive. A consistent method must
therefore either use all the information of A or depend on the input matrix in some
way. Let S be a k × m matrix where each column has a single nonzero entry, either
+1 or −1, placed randomly. Multiplying a matrix with S corresponds to splitting the
rows into k sets and randomly adding or subtracting the rows within each set to yield
k new rows. This matrix has some very interesting properties and applying it to the
least squares problem, again using k = 215, we see the following:

>> tic;
>> randomsigns = 2*randi(2,m,1) - 3;
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>> S = sparse(randi(k,m,1),1:m,randomsigns,k,m);
>> SA = S*A; Sb = S*b;
>> x_sketch = SA\Sb;
>> toc;
Elapsed time is 21.687518 seconds.
>> norm(A*x_sketch - b)/norm(A*x - b)
ans = 1.0167

This method might be slightly slower than uniform sampling but it is still significantly
faster than solving the original least squares problem and yields a relative residual
norm of less than 1.7%.

A reduction of a linear algebra problem as in the considered example of the least
squares problem is one of the central concepts in randomised numerical linear algebra
and is known as sketching. In accordance with the conventional meaning of the word,
the computed sketch of the input matrix should be obtained quickly and represent
essential information of the original problem. The sketching procedure is expressed
as a matrix multiplication with a sketching matrix which, as apparent from the mo-
tivating example presented above, should have certain properties. This requires a
definition of the “essential information” that should be captured in the sketch.

A matrix can be viewed as an operator on vectors and emulating the action it has
on these is therefore an intuitive requirement for the sketch. A subspace embedding
for a given matrix is a linear operator that preserves distances in the range space
of the matrix and it turns out that sketching matrices that are chosen as subspace
embeddings have very nice properties when it comes to applications in linear alge-
bra problems. There are many different ways of constructing subspace embedding
matrices, one is to follow the steps taken when forming S in the previous example.
This type of sketching matrix is an example of a random projection while the uniform
sampling approach could be viewed as a sampling matrix. As mentioned however, in
order to feasibly obtain a subspace embedding based on sampling, we need to adjust
the sampling probabilities to the input matrix so as to avoid missing indispensable
rows.

The theory of sketching matrices focuses heavily on the number of rows required
for them to be subspace embeddings. Often the theoretical bounds presented require
an exorbitant number of rows but in practice it is often possible to achieve decent
results using a very reasonable number of rows as was evident in the example above.

Returning to the overdetermined least squares problem, we have now identified
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both the uniform sampling and the matrix S as sketching matrices, albeit with very
different properties. Observe that actually solving the linear system

(SA)⊤(SA)x = (SA)⊤(Sb)

has the same computational complexity as solving A⊤Ax = A⊤b, since (SA)⊤(SA)
and A⊤A are of the same size. The advantage of sketching is therefore entirely in the
matrix-matrix and matrix-vector products on the left and right hand side, respectively.
This shows that the application of sketching in solving the normal equation essentially
boils down to approximating matrix multiplication. It turns out that a large number
of sketching applications can be traced back to a few central linear algebra operations
which suggests that a modular set up could be used to describe most uses of sketching.

The aim of this thesis is to give a practical introduction to sketching in scientific
computing and establish a framework for analysing the use of sketching in algorithms.
Much of the existing literature focuses on sketching in specific applications or on the-
oretical error guarantees and complexity analyses of the methods. We present a more
general approach, highlighting the intuition behind and interplay between different
sketching applications. Our hope is to give the reader an understanding of both
the advantages and pitfalls of sketching and to provide a toolbox for implementing
sketching in a wide range of applications.

Roadmap. We commence our investigation of sketching as a computational re-
source by presenting the fundamental theory in Chapter 2. We formally define the
notion of a subspace embedding and present four ways of constructing sketching ma-
trices with a focus on their theoretical properties.

In Chapter 3, we take a more practical approach and consider nine different ap-
plications of sketching divided into three separate stages. The first stage consists
of the basic building blocks to which most sketching applications can be traced, the
second stage of generic linear algebra problems such as overdetermined least squares,
while the third stage is dedicated to concrete applications demonstrating the compu-
tational advantages of sketching in more realistic settings. Throughout the chapter,
we illustrate the methods with instructive algorithms and experimental results.

Additional analysis of results across the various sketching methods and applica-
tions is carried out and discussed in Chapter 4, and the introduced building block
framework is assessed. We also present topics and applications for further research.
Chapter 5 wraps up the report with a conclusion.



CHAPTER 2
Mathematical

foundations
As the interest in, availability of and access to huge data sets continue to grow, so does
the need for fast and efficient data processing algorithms, and randomised numerical
linear algebra has a central role to play. The randomness lies in the creation of the
sketch which must capture essential information of a given input matrix in order to
be used as a surrogate in algorithms. The probabilistic nature of the approach gives
rise to statistical results where important properties are proven to hold with a certain
probability.

What is the nature of the essential information that must be captured by the
sketch? How can appropriate sketching matrices be constructed? Which statistical
guarantees can be obtained for sketching methods? These are some of the key issues
that will be addressed in this chapter.

The chapter is structured as follows. We introduce the notion of subspace embed-
dings which will provide the main theoretical framework for the sketching methods
that are subsequently described. Four different methods spanning four different ap-
proaches will be covered: leverage score sampling, Gaussian projection, the subsam-
pled randomised Hadamard transform and sparse projection. Finally, we compare the
characteristics and expected performance of these methods with a focus on the sketch
size and computation time. With the aim of providing an intuitive understanding of
the mathematics behind sketching, larger proofs are referred to the appendix or to
the relevant literature.
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2.1 The sketching matrix
The goal of sketching is to create a substitute for a given input matrix A that encap-
sulates the most important characteristics. This is done by computing a sketch SA,
where S is a sketching matrix. Looking at matrices as linear operators between vector
spaces, it seems intuitive to require that the sketch acts similarly on sets of vectors as
the matrix A. One way of enforcing this is to demand that S approximately preserves
distances in the column space of A, i.e. that

(1 − ε)∥y∥ ≤ ∥Sy∥ ≤ (1 + ε)∥y∥,

for all y ∈ R(A) and some ε > 0, where R(A) ⊆ Rm is the range or column space of
A ∈ Rm×n. This leads to the definition of a subspace embedding.

Definition 1 (Subspace embedding). For p ∈ N, a matrix S ∈ Rk×m is called an
(1 ± ε) ℓp-subspace embedding for some fixed matrix A ∈ Rm×n if, for all x ∈ Rn, it
holds that

(1 − ε) ∥Ax∥p ≤ ∥SAx∥p ≤ (1 + ε) ∥Ax∥p .

Our primary focus will be on ℓ2-subspace embeddings for which the following
characterisations will prove useful.

Theorem 1 ([NN13, p. 5]). For any matrix A ∈ Rm×n with m ≥ n and rank r ≤ n,
let UA ∈ Rm×r be a corresponding orthonormal basis. For S ∈ Rk×m, the following
three properties are equivalent:

(SE 1) S is an (1 ± ε) ℓ2-subspace embedding for A.

(SE 2)
∥∥(SUA)⊤(SUA) − I

∥∥
2 ≤ ε.

(SE 3) max
i

∣∣1 − σ2
i (SUA)

∣∣ ≤ ε, where σi (A) is the i-th singular value of A.

These characterisations further motivate the use of subspace embeddings in the
context of sketching. An ℓ2-subspace embedding for A resembles the input matrix in
the sense that distances in the column space of A (SE 1), the orthogonal property of
UA (SE 2) and the magnitude of the singular values (SE 3) are all approximately pre-
served. Thus by constructing sketching matrices satisfying the subspace embedding
property, we can hope to use our sketch as a substitute for the original matrix.

In the literature (see for example [Woo14; Mah+11; Mat08]), various methods of
constructing subspace embeddings have been proposed. In this report, we will focus
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on four specific kinds of subspace embeddings based on leverage score sampling, Gaus-
sian projection, subsampled randomised Hadamard transforms and sparse projection.
These are examples of both sampling and dense, structured and sparse transforma-
tions, and thereby cover the most important properties and ideas of sketching.

2.1.1 Leverage score sampling
Sampling is the selection of elements from a given set based on a probability distribu-
tion. In particular, the procedure of sampling rows from a matrix can be represented
as a multiplication from the left by a row-sampling matrix. We can construct a k ×m

row-sampling matrix, based on a discrete probability distribution {pj}m
j=1 over its

columns, in the following way: initialise an all-zero matrix, and for each row i pick
column j with probability pj , setting the (i, j)-th entry to 1.

A naïve and simple way to sample rows would be to sample from a fixed proba-
bility distribution such as the uniform distribution. This is a fast method but it has
potential pitfalls when used on arbitrary input matrices as seen in the introductory
example of Chapter 1. The problem with the naïve approach is that when sampling
whole rows of the input matrix we need to make sure that the selected rows carry
over most of the essential information. This cannot be ensured when choosing a
fixed probability distribution independent of the input matrix. The sampling proce-
dure can be improved by using an importance distribution that reflects the potential
non-uniformity of the input matrix. Doing this, our sampling procedure adapts to
whatever input is given and we avoid the problem from Chapter 1.

Motivated by the discussion in [Mah+11], we focus on leverage scores as such
an importance distribution. Leverage scores have a long history in statistics where
they are often used to identify potential outliers, since high leverage scores indicate
observations that have a high influence on a fitted regression model. In the context
of sketching, they form a weighting of the rows, enabling us to use the leverage scores
to sample highly influential rows with high probability.

Definition 2 (Leverage scores). Given A ∈ Rm×n of rank r, let UA ∈ Rm×r be an
orthonormal basis for A. The i-th leverage score, ℓi, corresponding to the i-th row
of A is defined as ℓi =

∥∥(UA)(i)
∥∥2

2.

As the definition states, the leverage scores are computed from an orthonormal
basis of the input matrix. An orthonormal basis always exists, and all orthonormal
bases for a given matrix give rise to the same leverage scores due to the unitary
invariance of the spectral norm. We can establish a probability distribution on the
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rows of A by assigning to each row a probability equal to the normalised leverage
score, such that pi = ℓi/r for any row i = 1, . . . , m. These values are clearly all
positive and sum to one since

∑
i ℓi = ∥UA∥2

F = r.
Leverage scores are often computed using a singular value decomposition or QR

factorisation. It is worth noticing that these methods have complexities of O
(
mn2)

and are computationally expensive for massive data sets [GV12]. To avoid this, we
will base our importance distribution on an approximation of the leverage scores.
We will demand from our approximation that for a rank r matrix A ∈ Rm×n, the
approximate leverage scores {qi}m

i=1 should constitute a probability distribution and
satisfy qi ≥ β

r ℓi, where ℓi are the exact leverage scores for A and β is a positive
constant. The following theorem states that the approximate probabilities can be
found and the complexity required to calculate them.

Theorem 2 ([Woo14, Theorem 2.13]). Fix any constant β ∈ (0, 1). Let ℓi be the
leverage score distribution of an orthonormal basis UA ∈ Rm×r. Then it is possible
to compute a distribution q = {qi}m

i=1 for which, with probability 9
10 , it holds simul-

taneously for all i = 1, . . . , m that qi ≥ β
r ℓi. The time complexity is of the order

O (nnz (A) ln m) + poly (r ln m).

The proof of this theorem reveals a possible way of approximating the leverage
scores with a complexity lower than O

(
mn2). It turns out that this is done by

sketching the problem! Approximating leverage scores is thus in itself an area for
which sketching can be used. We are still to cover the applied sketching methods
and will therefore for now refer to [Woo14] for the proof of this theorem, but we will
revisit this application of sketching in Section 3.2.1.

The time complexity expression given in Theorem 2 includes a poly(r ln m) term,
the exact structure of which becomes important for large r. Following the proof in
[Woo14, Theorem 2.13], this term represents a complexity of O

(
r4 + r2 ln m

)
. Clark-

son and Woodruff [CW13, Section 6] improve slightly on this expression and state
that approximate leverage scores can be found in O

(
nnz (A) ln m + r3 ln2 r + r2 ln m

)
time.

So far we have allowed the matrix A to be rank-deficient as the definition of lever-
age scores is based on an orthonormal basis for A. In order to simplify notation and
to make it easier to compare with the methods introduced later, we will now assume
that A has full column rank. This implies that the dimension of any orthonormal ba-
sis is the same as the dimension of A. We note that this is quite a strong assumption
in general, however, given a rank-deficient matrix A, one can simply apply the fol-
lowing theorem to an orthonormal basis of A, which is necessarily of full rank. Using
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the approximate leverage score probabilities, we can construct a subspace embedding
for a given matrix using a specific type of row-sampling matrix.

Theorem 3 (Leverage score sketching matrix). Let A ∈ Rm×n be a full rank matrix,
β ∈ (0, 1) and q the corresponding approximate leverage scores of A from Theorem
2. Let Πq

LEV be the distribution on k × m scaled row-sampling matrices, such that
for S ∼ Πq

LEV, Sij = 1√
kqj

with probability qj for all rows i and columns j. For
0 < δ < 1, if

k ≥ 8
3

nβ−1ε−2 ln
(

2n

δ

)
,

then, with probability at least 1 − δ, a matrix drawn from Πq
LEV is a (1 ± ε) subspace

embedding for A.

Proof. See Appendix A.1.

The theorem shows that a sampling matrix based on approximated leverage scores
is an appropriate choice of sketching matrix. Computationally, using such sketching
matrices has the advantage that SA can be computed in negligible time as this
operation only involves sampling rows of A. However, we are still left to show how
to approximate leverage scores which is in fact the expensive part of this sketching
method. This problem will be considered in Section 3.2.1.

2.1.2 Gaussian projection
As seen above, subspace embeddings can be generated with high probability by con-
sidering the properties of the input matrix. Ideally, we would like a class of projec-
tions that can provide subspace embeddings regardless of the input. This desire is
summarised in the following definition.

Definition 3 (Oblivious subspace embedding). Let Π be a distribution over k × m

matrices. We call Π an (ε, δ, n) oblivious subspace embedding if, with probability
1 − δ, a matrix drawn from Π is a (1 ± ε) subspace embedding for any A ∈ Rm×n.

In the definition of an oblivious subspace embedding, we allow the drawn ma-
trix to fail with a certain probability. This is a necessary consequence of choosing
a random mapping that does not depend on the given matrix A. The hope that
oblivious subspace embeddings for low-dimensional target spaces exist, stems largely
from the following theorem which was originally presented as a lemma by Johnson
and Lindenstrauss in 1984.
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Theorem 4 ([JL84, Lemma 1]). Let 0 < ε < 1 and p ∈ N. For any p-element subset
V ⊂ Rm, there is a map f : Rm → Rk for some k = O

(
ε−2 ln p

)
, such that

(1 − ε) ∥u − v∥2 ≤ ∥f(u) − f(v)∥2 ≤ (1 + ε) ∥u − v∥2 for all u, v ∈ V.

We will return to the proof of the theorem after showing its significance in es-
tablishing oblivious subspace embeddings. [LN16] prove that the lower bound for k

matches the upper bound for almost the full range of ε. Although the asymptotic
expression for the dimension of the target space gives a good indication of the depen-
dence on ε and p, it might be necessary to know more about the suppressed constants
of the expression in applications. [DG03] give one of the best bounds for the required
target space, stating that k ≥ 4

(
ε2/2 + ε3/3

)−1 ln p. This gives a randomised map
satisfying the theorem, with probability at least 1/p. If we wish to guarantee a specific
failure probability δ, following the same approach as in [DG03] results in

k ≥ 2
(
ε2/2 + ε3/3

)−1 ln
((

p2 − p
)

/δ
)

. (2.1)

From the proofs in for example [DG03; Sar06; Mat08], it turns out that the map
f in Theorem 4 can in fact be assumed linear, in which case it corresponds to a linear
projection of V onto a subspace of Rk such that all distances are approximately pre-
served. With the aim of utilising the result to obtain oblivious subspace embeddings,
we relax the property of the theorem to be satisfied with a certain probability and
present a natural definition.

Definition 4 (Johnson–Lindenstrauss transform). A distribution Π over k × m ma-
trices forms an (ε, δ, p) Johnson–Lindenstrauss transform if the following holds: for
any p-element subset V ⊂ Rm, with probability at least 1− δ, a matrix S drawn from
Π satisfies

(1 − ε)∥u − v∥2 ≤ ∥S(u − v)∥2 ≤ (1 + ε)∥u − v∥2 for all u, v ∈ V.

The following theorem now states that a Johnson–Lindenstrauss transform indeed
gives rise to an oblivious subspace embedding.

Theorem 5. If Π is an
(

ε
4 , δ, 5n

)
Johnson–Lindenstrauss transform, then Π is an

(ε, δ, n) oblivious subspace embedding.

Proof. See Appendix A.2.

The key strength of the above result is extending the Johnson–Lindenstrauss prop-
erty for a finite subset of elements to an entire subspace. Theorem 5 motivates the



2.1 The sketching matrix 11

interest in the Johnson–Lindenstrauss lemma for sketching purposes, however, taking
this approach just shifts the problem of finding an oblivious subspace embedding to
finding a Johnson–Lindenstrauss transform.

Since the publication of [JL84], many different proofs of Theorem 4 have been
presented, aiming to simplify existing proofs, provide lower bounds on the dimensions
of the target space or to improve the computational aspects of the linear mapping.
As remarked by Matoušek in [Mat08], most of these, if not all, proceed in the same
manner; given p and m as in Theorem 4, one seeks to find a distribution Π on all
linear maps Rm → Rk for suitable k, such that for every x ∈ Rm

Pr
S∼Π

[
(1 − ε)∥x∥2 ≤ ∥Sx∥2 ≤ (1 + ε)∥x∥2

]
≥ 1 − 1

p2 . (2.2)

This property is known as the Random Projection Lemma, and Theorem 4 follows
directly from this by considering the pairwise distances of points in the given p-element
subset V . The probability that each pairwise distance is distorted more than ε is at
most 1

p2 , and hence the probability that any of the
(

p
2
)

pairwise distances are distorted
more than (1±ε) is less than

(
p
2
)
/p2 = 1

2
(
1− 1

p

)
. Thus the chosen projection succeeds

with probability at least 1
2 .

In [IN07] and [DG03], it is shown that matrices whose entries are independent
random variables drawn from the standard normal distribution N (0, 1) satisfy the
Random Projection Lemma. Utilising Theorem 4 and Theorem 5, this gives us our
first oblivious subspace embedding.

Theorem 6 (Gaussian sketching matrix). Let 0 < ε, δ < 1 and let ΠG be a distribu-
tion on k × m matrices S = 1√

k
G where the entries of G are independent standard

normally distributed variables. If

k ≥ 64
(
ε2 − ε3/6

)−1 (ln (52n − 5n
)

+ ln (1/δ)
)

,

then ΠG is an (ε, δ, n) oblivious subspace embedding.

The dependence on ε in the above bound for the number of rows can be clarified by
noting that it is sufficient to take k ≥ c1ε−2 (c2n + ln (1/δ)), for constants c1 ≥ 64·6/5
and c2 ≥ 2 ln 5. The exact expression in the theorem comes from setting p = 5n and
replacing ε by ε/4 in Equation (2.1).

The Gaussian sketching matrix provides, with probability 1 − δ, a subspace em-
bedding that is very easy to implement with efficient random number generators
available on most platforms. However, the projection matrix is dense and comput-
ing the projection of a vector of length m takes O (km) time. In order to reduce
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computation time, one could hope to find subspace embedding matrices with a lower
number of rows. It turns out, however, that the number of rows as given in Theorem
6 is practically tight [Alo03]. Faced with this, a natural alternative is attempting
to construct sparse projection matrices that would lead to faster projection through
faster matrix multiplication.

Achlioptas [Ach03] showed that the standard normal distribution can be replaced
by two simpler distributions, where the entries of the matrix attain values from the
set {−1, 0, +1}. The first of these is the Rademacher distribution, where the values
attained are +1 and −1, each with probability 1

2 . This distribution allows for faster
matrix multiplication than the normal distribution method above since the projection
involves only addition and subtraction of entries and not multiplication. The second
distribution gives a further speedup in computation, since the values +1, −1 and 0
are assigned probabilities 1

6 , 1
6 and 2

3 , respectively, resulting in a sparse sketching
matrix.

Unfortunately, it is not possible to improve significantly on this sparsity level
for Johnson–Lindenstrauss transforms since sparse matrices will often distort sparse
vectors [AC06]. This has led to focus on structured matrices that can be applied
quickly to arbitrary vectors, an example of which is the centre of attention in the
following section.

2.1.3 Subsampled randomised Hadamard
transform

In 2006, Ailon and Chazelle [AC06] introduced the Fast Johnson–Lindenstrauss Trans-
form, a random projection matrix that could be applied efficiently to any input vector.
Their idea was to exploit the Uncertainty Principles known from quantum mechanics
and later applied to signal processing, stating that a signal cannot be sharply localised
in both the time and frequency domain (see for example [Kre78, Theorem 11.2-2], or
more explicitly [Ste13, Chapter 2]). In the context of this report, this translates to
the property that if some vector x is sparse, then the Fourier transform of x cannot
be too sparse [Woo14, p. 16]. To ensure that a dense vector is not sparsified by this
procedure, the Fourier transform is randomised by a diagonal matrix with diagonal
entries drawn uniformly from the Rademacher distribution. The randomised Fourier
transform thereby acts as a preconditioner of the input vector allowing us to apply
a sparse projection without distorting the distances in the low-dimensional target
space.
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The Walsh-Hadamard transform is a class of generalised Fourier transforms and is
often preferred due to its computational simplicity [AC06]. The preconditioning step
is therefore often referred to as a randomised Hadamard transform. The Hadamard
transform of an m-length vector can be viewed as multiplication with the m × m

Hadamard matrix, which is defined recursively as

Hm =

Hm/2 Hm/2

Hm/2 −Hm/2

 where H1 = 1.

In this definition, it is clear that m must be a power of 2, however various con-
structions exist for other values of m (in fact, an open mathematical problem is the
Hadamard conjecture, also known as Paley’s conjecture, that Hadamard matrices of
order 4k exist for all positive integers k. See [H+78] for a discussion of this). In prac-
tice, the considered vector is padded with zeros to a suitable size before the Hadamard
transform is applied. This is for example the case in Matlab’s fwht implementation.
One of the major advantages of a Fourier-type preconditioner is that it need not be
implemented as a matrix multiplication which for an m-length vector would have a
computational cost of O(m2). Instead, it can be applied in O(m ln m) time by a Fast
Fourier Transform algorithm.

Since its introduction, several different versions of the Fast Johnson–Lindenstrauss
transform have been considered. They are all based on the product of three matrices,
such that the transform Φ : Rm → Rk can be written as Φ = PHD where

P is a scaled k × m projection matrix,

H is the m × m normalised Hadamard matrix, such that H = 1√
m

Hm,

D is an m × m diagonal matrix with diagonal entries drawn independently from
the Rademacher distribution.

The differences lie entirely in the projection step. Ailon and Chazelle [AC06] consider
projection matrices where the entries are zero, with probability 1 − q, and otherwise
drawn from the normal distribution N

(
0, q−1), with probability q, where 0 < q ≤ 1

is a sparsity parameter. Just like Achlioptas showed that the Gaussian subspace em-
bedding could be replaced by a random sign matrix as mentioned in Section 2.1.2,
Matousek showed in [Mat08] that the nonzero entries of Ailon and Chazelle’s projec-
tion matrix could be drawn from the Rademacher distribution.

The next simplification was that the projection matrix P could in fact be a row-
sampling matrix, however, it must be based on sampling without replacement. This
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corresponds to the restriction that each column can only contain a single nonzero entry.
The embedding is then basically a random selection of rows from the preconditioned
input HDx. This approach was used in both [Dri+11] and [NDT09], and has since
been dubbed the subsampled randomised Hadamard transform or SRHT.

Definition 5 (SRHT). A k×m subsampled randomised Hadamard transform matrix
is a matrix S = PHD, where P ∈ Rk×m is a matrix representing uniform sampling
without replacement, and H and D are as defined above.

An intuitive understanding of why preconditioning the input with a Hadamard
transform actually works can be attained through consideration of the leverage scores.
As described in Section 2.1.1 and formally defined in Definition 2, the leverage scores
of a matrix are a measurement of the importance of each row. Applying the Hadamard
transform uniformises these leverage scores and therefore allows us to sample uni-
formly. The following lemma gives a precise bound for the leverage scores of precon-
ditioned orthonormal matrices.

Lemma 7 ([Tro11, Lemma 3.3]). Let U ∈ Rm×n be an orthonormal matrix, and let
the matrices H and D be as described above. Define

ℓmax (δ) = 1
m

(√
n +

√
8 ln (m/δ)

)2
.

Then HDU is orthonormal and, with probability at least 1 − δ, max
i=1,...,m

ℓi ≤ ℓmax(δ).

Proof. See [Tro11, Section 3.2].

Remark. We remark that this is just one of many bounds on the leverage scores
for orthonormal matrices. [Dri+11, Lemma 3] show the bound 1

m (2n ln (2mn/δ))
which is subsequently also used in [Dri+12]. The bound given in Lemma 7 is the best
bound that we have come across and is also the bound used implicitly in [Woo14,
Theorem 2.4].

The bound on the leverage scores and the fact that HDU is orthonormal, allows
us to use Theorem 3 with uniform probabilities qi = 1

m . To obtain the desired result,
with probability at least 1 − δ, we take ℓmax (δ1) from Lemma 7 with δ1 = 1

3 δ, and
set δ2 = 2

3 δ and β = n/ (mℓmax (δ1)) in Theorem 3. The result then follows from the
union bound.
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Theorem 8 (SRHT sketching matrix). Let 0 < ε, δ < 1 and let ΠSRHT be the
distribution on subsampled randomised Hadamard transform matrices of size k × m.
If

k ≥ 8
3

mε−2 ln
(

3n

δ

)
ℓmax

(
δ

3

)
,

where ℓmax (δ) is as in Lemma 7, then ΠSRHT is an (ε, δ, n) oblivious subspace em-
bedding.

Up to scaling, this result is the same as in [Tro11; BG13; Woo14]. The proofs in
these articles, as well as in [Dri+11, Lemma 4], all utilise a matrix Chernoff bound (see
for example Lemma 16 in Appendix A.1) and proceed as in the proof of Theorem 3.
Clearly, the dependency of k on the failure probability δ is slightly worse for the
SRHT than for sampling with leverage scores, however, as hinted at earlier, this is
because the uniform probabilities are only guaranteed to satisfy the requirements of
Theorem 3 with a certain probability.

We note that the preconditioning of the input vectors using the Hadamard trans-
formation allow us to bypass the approach from Section 2.1.2, where we show that a
sketching matrix satisfies the Random Projection Lemma as in Equation (2.2), which
is a sufficient condition for providing a subspace embedding. However, the distribu-
tion on SRHT matrices does provide a Johnson–Lindenstrauss transform as shown in
for example [AC06; Sar06; Tro11].

As mentioned previously, the subsampled randomised Hadamard transform can be
applied to an m×n matrix in O(mn ln m) time (and possibly even in O(mn ln k) time,
if we only consider the rows that are sampled [Mah+11, p. 15]). This is substantially
lower than for a dense, non-structured matrix such as the Gaussian sketching matrix,
but if the input matrix is sparse, we could hope to do even better. Ideally, we would
like a dependency on the number of nonzeros in the matrix. This is the motivation
behind the sparse projection matrix as introduced in the next section.

2.1.4 Sparse projection
The basis of the two previous sections has been to use Johnson–Lindenstrauss trans-
forms and the Random Projection Lemma to ensure that the norms of all vectors in
Rm are preserved. Compared to the definition of a subspace embedding, this is actu-
ally stronger than what is necessary, as we are only interested in preserving distances
in the column space of A which is a subspace of dimension n [Woo14, p. 19]. This
is a weaker restriction and opens op for new ways to construct oblivious subspace
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embeddings. Instead of seeking Johnson–Lindenstrauss transforms, we will instead
require that the Johnson–Lindenstrauss moment property is satisfied. We will explain
the significance of this after a formal definition.

Definition 6 (JL moment property). A distribution Π of k × m matrices has the
(ε, δ, l) Johnson–Lindenstrauss (JL) moment property if for all x ∈ Rm with ∥x∥2 = 1,
it holds that

E
S∼Π

[∣∣∥Sx∥2
2 − 1

∣∣l] ≤ εlδ.

To see how the JL moment property relates to the definition of a subspace embed-
ding, take for simplicity l = 2 and think of ∥Sx∥2

2 as a random variable with mean
∥x∥2 = 1. Then E

[(
∥Sx∥2

2 − 1
)2
]

is by definition the variance of ∥Sx∥2
2, which by

the JL moment property is bounded above by a small constant. If this constant is
small enough, we know that with high probability ∥Sx∥2

2 will be close to its mean
∥x∥2 = 1. This is directly related to the requirement of having

(1 − ε) ∥x∥2 ≤ ∥Sx∥2 ≤ (1 + ε) ∥x∥2

with high probability and hence the two definitions are closely linked.
The following theorem states that a distribution satisfying the JL moment prop-

erty also provides an oblivious subspace embedding.

Theorem 9. Let Π be a distribution of k × m matrices satisfying the
(

ε
3n , δ, 2

)
JL

moment property. Then Π is an (ε, δ, n) oblivious subspace embedding.

There are multiple ways of proving this theorem. In [CW13], the proof is based on
controlling vectors with heavy coordinates and treating vectors with small and large
entries separately. [Woo14, p. 21] presents an alternative proof which uses a lemma
of approximate matrix multiplication as presented below.

Lemma 10 ([Woo14, Theorem 2.8]). Let Π be a distribution on matrices S with
m columns that satisfy the (ε, δ, l) JL moment property for some l ≥ 2. Then for
matrices A and B, both with m rows,

Pr
S∼Π

[∥∥(SA)⊤(SB) − A⊤B
∥∥

F
> 3ε ∥A∥F ∥B∥F

]
≤ δ.

Proof. The proof can be found in Appendix A.3.

We note that the result of Lemma 10 is very close to the equivalent definition of
a subspace embedding presented in Theorem 1 (SE 2). What is left in the proof of
Theorem 9 is to choose A and B appropriately.
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Proof of Theorem 9. Setting A = B = UA in Lemma 10, we immediately get

Pr
S∼Π

[∥∥(SUA)⊤ (SUA) − I
∥∥

F
> 3nε

]
≤ δ.

Since ∥C∥2 ≤ ∥C∥F for any matrix C, then, with probability at least 1 − δ,∥∥(SUA)⊤(SUA) − I
∥∥

2 < ε

for S ∼ Π. Hence, Π is an (ε, δ, n) oblivious subspace embedding by Theorem 1
(SE 2).

Our interest is therefore now in finding distributions satisfying the JL moment
property. It turns out that the CountSketch matrix, known from the streaming
literature [CCF02], satisfies this property with certain restrictions on the number of
rows. The CountSketch matrix has a single nonzero entry per column, the value
of which is a random variable drawn from the Rademacher distribution. For each
column, the position of the nonzero value is chosen uniformly at random. In the
context of sketching, [Woo14] calls this matrix a sparse embedding matrix, however,
we will use the terminology sparse projection matrix. Its relevance in this context is
summarised in the following theorem.

Theorem 11 ([Woo14, Theorem 2.9]). Let ΠSPM be a distribution on k × m sparse
projection matrices with at least k = 2

δε2 rows. Then ΠSPM satisfies the (ε, δ, 2) JL
moment property.

Together, Theorem 9 and Theorem 11 yield a way of constructing an oblivious
subspace embedding using sparse projection matrices.

Theorem 12 (Sparse projection sketching matrix). Let 0 < ε, δ < 1 and let ΠSPM

be the distribution on k × m sparse projection matrices. If

k ≥ 18n2ε−2δ−1,

then ΠSPM is an (ε, δ, n) oblivious subspace embedding.

Proof. The proof is a natural consequence of applying Theorem 9 and 11. What is left
to show is that k ≥ 18 n2

δε2 rows in the sparse projection matrix is necessary. Observe
that we need at least 2

δε2 rows for ΠSPM to satisfy the (ε, δ, n) JL moment property.
But for ΠSPM to also be an (ε, δ, n) oblivious subspace embedding, we need enough
rows for ΠSPM to satisfy the

(
ε

3n , δ, 2
)

JL moment property. Thus the number of
rows must at least be 2δ−1 ( ε

3n

)−2 = 18 n2

δε2 .
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The matrices drawn from the oblivious subspace embedding constructed in this
section present themselves as sparse alternatives to the projection methods previously
mentioned. The benefit of using sparse sketching matrices is that they can be multi-
plied with an input matrix in time proportional to the sparsity of the input. However,
it should also be noted that the dimensionality reduction of sparse projection matrices
is often weaker than that of other alternatives.

This is in part due to the linear dependence on δ−1. As shown in [Lia+14]
and remarked in [Woo14], a logarithmic dependence in δ−1 can be achieved for
the sparse projection matrix if one is willing to increase the computation time to
O (nnz (A) ln (1/δ)). This is done by constructing O (ln (1/δ)) constant probability
sparse embeddings for the input matrix, and selecting an embedding that succeeds,
with probability at least 1 − δ, in a cross-validation style procedure (see [Lia+14,
Algorithm 5 and Theorem 13]). It is important to note, however, that the method is
then no longer oblivious.

Sketching matrices similar to the sparse projection matrix, but with more than
one nonzero entry per column as presented in [NN13], have been shown to need
significantly fewer rows, most importantly avoiding the dependence on n2. A rep-
resentative result from this paper, which also appears as in [Woo14, Theorem 2.7],
states that there exists a sparse (1 ± ε) subspace embedding for any fixed A ∈ Rm×n

with nε−2poly (ln (n/(δε))) rows and error probability δ. These methods are called
Oblivious Sparse Norm-Approximating Projections or OSNAP for short. We refer to
the literature for a deeper investigation of these.

2.2 Comparison of sketching matrices
The above sections introduce four different sketching matrices based on leverage score
sampling, Gaussian projection, SRHT and sparse projection. To give a better under-
standing of the differences between these methods and the advantages each hold, we
will in this section compare the number of rows required to obtain (1 ± ε) subspace
embeddings, with probability 1 − δ, and the time taken to construct each sketch.

In the previous sections, we have already obtained explicit lower bounds for the
dimension of the sketch matrix for it to provide a desired subspace embedding. The
time taken to construct each sketch is comprised of several method-dependent factors
such as generating random numbers, approximating leverage scores, sampling rows,
constructing matrices and computing the matrix product SA. We will refer to the
combination of all relevant time factors as the sketch time. For the oblivious subspace
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embedding methods, the sketch time will be dominated by the matrix multiplication,
whether performed explicitly or by use of the Hadamard transform. For the approx-
imate leverage score sampling method, the primary time factor is in approximating
the leverage scores, as the actual sampling of the input matrix is not costly.

As a summary of the above, Table 2.1 shows the main properties of the four
sketching methods. The rows required are stated in the listed theorems and the
sketch time is as explained in the preceding sections.

The asymptotic expressions for the number of rows needed give a better under-
standing of the dependence on the relevant factors. Of particular interest is the
dependence on the size of the input matrix. From Table 2.1 we see that only for the
SRHT method does k depend on m, however, for all the methods, there is a signif-
icant dependence on n. Fixing all other parameters (ε, δ, β and m) to constants,
the growth of k as a function of n for each of the sketching methods is visualised in
Figure 2.1.

Since k controls the size of the sketching matrix, it is the main underlying factor

Table 2.1: A comparison of the four sketching methods discussed previously. The
table shows the theorems stating that the matrices are subspace embed-
dings, the number of rows required for this to hold and the total sketch
time, for S ∈ Rk×m and A ∈ Rm×n with full column rank.

Type Main result Rows required (exact and asymptotic) Sketch time

Leverage
score
sampling

Theorem 3
k ≥ 8n ln (2n/δ)

3βε2 O (nnz (A) ln m)
+ poly(n)

k = O
(
ε−2n ln (n/δ)

)
Gaussian
projection Theorem 6

k ≥
64
(
ln
(
52n − 5n

)
+ ln (1/δ)

)
ε2 − ε3/6 O (kmn)

k = O
(
ε−2 (n + ln (1/δ))

)
Subsampled
randomised
Hadamard
transform

Theorem 8
k ≥

8 ln (3n/δ)
(√

n +
√

8 ln (3m/δ)
)2

3ε2
O (nm ln m)
or potentially
O (nm ln k))k = O

(
ε−2 ln (n/δ)

(√
n +

√
ln (m/δ)

)2
)

Sparse
projection Theorem 12

k ≥ 18n2

δε2
O (nnz (A))

k = O
(
ε−2δ−1n2)
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of the computation time and storage connected with computing the sketched matrix.
From Table 2.1, it is seen that for all four methods, k practically scales with ε2

and thus setting ε constant has no significant influence on the relationship between
methods. Sparse projection is the only method that scales linearly rather than loga-
rithmically in δ−1. However, the contribution of this is largely overshadowed by the
factor of n2. This justifies fixing the other parameters and considering the dependence
of k on n.

Figure 2.1 shows that the number of rows needed for the sparse projection ma-
trix grows much faster than for the other three methods, which is due to the linear
dependence on n2 rather than n or n ln n. If the input matrix has 100 columns, the
sparse projection matrix will require 1.8 · 108 rows to provide a subspace embedding
with the specified values for δ and ε. Even if the failure probability and approxima-
tion parameter are relaxed to δ = ε = 1

2 , the required number of rows still exceeds
1.44 · 106.

10
0

10
1

10
2

10
3

10
4

n

10
4

10
6

10
8

10
10

10
12

k

Growth in required rows as a function of n

Lev. scores

Gaussian

SRHT

SEM

Figure 2.1: Comparison of the asymptotic growth of the number of rows for each
sketching method as functions of n. All other parameters are constant
with δ = 0.1, ε = 0.1, β = 0.5 and m = 106.

In practice, there are numerous ways to improve the bound on the number of
rows for the sparse projection matrix. One approach from [Woo14] is to compose
the sparse projection matrix S with another sketching matrix Ŝ and computing ŜSA.
The matrix Ŝ can for example be chosen as a Gaussian or SRHT sketching matrix.
Ideas from Section 2.1.4 to improve the linear dependence on δ−1 using the success
probability boosting or to use other sparse sketching matrices with more than one
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nonzero per column could also be considered.
Figure 2.1 also shows how the SRHT sketching matrix initially requires a larger

number of rows than the other methods as it is dominated at the offset by the term
containing the large constant value of m. However, the growth then aligns with
that of the leverage score sketching matrix, as is also evident from the expressions
in Table 2.1. The growth of the number of rows for the Gaussian sketching matrix
is slightly slower than that for the leverage score sketching matrix which is also to
be expected. The difference between the two is due to the large constant factors
appearing in the row bound for the Gaussian sketching matrix.

Despite Figure 2.1 serving as a useful visualisation of the growth in size of the
different sketching matrices, it is important not to read too much into the exact values.
Firstly, the fixed parameters are chosen as arbitrary, albeit reasonable, constants.
Secondly, the expressions for the number of rows are all sufficient conditions for the
sketching matrices to provide the desired subspace embeddings but better bounds
may still exist. This is especially the case as soon as one has some knowledge of the
input data and the bounds can be tailored to these cases. This might be information
on the uniformity, sparsity or variations in the input. Lastly, these are all theoretical
results and the behaviour of the sketching matrices in practice might be better in
most cases. This will be explored in much further detail in the rest of this report.

Crucially, it is not only the size of the sketch matrix that is of importance. The
structure and composition of each sketching method lead to vastly different compu-
tation times for sketching matrices as is also evident from Table 2.1. The sparse
projection matrix may require a large number of rows but the sketch can be com-
puted in input sparsity time whereas the Gaussian projection is a multiplication with
a dense matrix and hence requires a lot more operations. The trade-off between size
and time will play a key role in the practical investigation of the sketching methods.
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CHAPTER 3
Sketching in practice

As presented in the previous chapter, a lot of theory concerning the approximation
errors, performance guarantees and complexity results of sketching has been devel-
oped within the last 20 years. However, most of the analysis remains at a theoretical
level and the actual performance and applicability of sketching in standard working
environments can be difficult to understand and assess. In Section 2.2, we saw how
the number of rows required for a sketching matrix to provide a (1 ± ε) subspace
embedding for an m × n matrix grew as a function of n, but also noted that these are
theoretical conditions and we could hope to achieve much better results in practice.
The goal of this chapter is to clarify when and how sketching can be used in problems
and algorithms and thus bridge the gap between theory and practice.

We do this by considering three stages of application. Firstly, we introduce basic
building blocks that provide the foundations for most sketching applications. We then
present three generic linear algebra problems where sketching can be used to gain
a computational advantage. Finally, we consider three concrete applications from
real-world problems that demonstrate how the described methods can be used to
reduce computation time, lower storage costs and enhance interpretability of results,
respectively.

In total, we consider nine different applications of sketching. In order to quantify
the advantages gained in each application, every section includes a part called “ex-
perimental results”. Within these, we describe the experimental setup and present
results based on the corresponding algorithms. The included theorems are presented
without proofs for simplicity but the relevant literature is always referenced. Divid-
ing the applications in the three aforementioned stages serves to break up the use of
sketching and provide a clear structure for when and how sketching can be used. A
visualisation of the structure is shown in Figure 3.1.

The basic building blocks introduced in Section 3.1 consist of approximate matrix
multiplication, computation of an orthonormalising transformation matrix and the
construction of a low-dimensional approximate orthonormal basis. These are chosen
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Figure 3.1: Overview of stages and applications of Chapter 3. Arrows represent
connections between problems.

for their simplicity and because most more complicated uses of sketching essentially
boil down to exactly these three building blocks. Thus the problems are general, the
use of sketching simple and the application areas vast.

Section 3.2 uses the basic building blocks in the presentation of three common
linear algebra problems: leverage score estimation, overdetermined least squares and
the singular value decomposition. Applications for solving these problems are useful
on their own or as part of other more complicated algorithms, and also serve as
examples and inspiration for how sketching can be implemented in standard linear
algebra settings.

In Section 3.3, we show three concrete applications of sketching allowing for better
intuition and interpretation of the obtained results and the overall merits of sketching.
Matrix completion in recommender systems is an example where storage costs can
be reduced significantly. The CUR decomposition is an alternative to other more
standard matrix factorisations allowing for much greater interpretability of the data.
Generalised Tikhonov regularisation is a setting in which sketching can be used to
simplify a computationally demanding optimisation problem and thereby decrease
the time costs of the solution.
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Experimental setup. To test our sketching algorithms for various problems, we
use a number of different test matrices. An important property of a matrix is its
condition number given by κ = σmax

σmin
. The following list presents the three main test

matrices used in our experiments.

srand is a structured random matrix where a matrix of uniform random values is
initialised after which each row is randomly scaled. In Matlab this is done by

>> A = rand(m,n).*rand(m,1);

cond10 is a matrix with condition number κ = 1010, constructed in Matlab by

>> A = rand(m,n); [U,~,V] = svd(A,'econ');

>> S = diag(logspace(0,-10,min(m,n))); A = U*S*V';

polydecay is a matrix with an exponentially decaying spectrum and with condition
number κ = min(m, n). We initialise A and perform the SVD as for the cond10
test matrix, and then do the following:

>> S = diag((1:min(m,n)).^(-1)); A = U*S*V';

For each application, we use problem dependent error measures in order to test approx-
imation quality. Furthermore, we measure the relative speed of the approximation
method in comparison to the computation of the exact or best possible deterministic
solution method and state this as the gain factor. We use a common experimental
setup across all applications: randomly generate a problem with specific structure,
draw a sketching matrix of a certain kind, perform the problem dependent calcula-
tions and report the results. As described in Chapter 2, the sketching procedure can
often be implemented efficiently without direct matrix multiplication. The drawing of
the explicit sketching matrix and the notation of a matrix product is used throughout
this chapter to highlight the underlying idea.

To compensate for the failure probability of the sketching matrix, we draw nS

instances of S after which the median of the results is saved. We compensate for the
randomness in the problem type by running the experiment for nA instances of A
and reporting the mean of the results. In each considered application, the different
sketching methods are tested on the same nA instances of the input matrix. Unless
otherwise specified, we set nS = 5 and nA = 3.

All experiments are run in Matlab R2017a and limited to a single computational
thread by use of the command maxNumCompThreads(1) before each experiment. This
restricts the implicit parallelisation performed by Matlab, easing the comparison of
algorithms.
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3.1 Basic building blocks
The problems considered in this section are matrix multiplication, finding an or-
thonormalising transformation matrix and computing a low-dimensional basis. For
large problems, even these basic operations can act as computational bottlenecks.
We show how sketching can be used to bypass the complexity of these operations
and generate approximate solutions. Our focus is on portraying the simplicity of the
sketching methods and explicitly stating corresponding algorithms that can be used
in downstream applications.

3.1.1 Matrix multiplication
For large matrices, even the basic operation of matrix multiplication can be a compu-
tational challenge. This has led to the problem of approximate matrix multiplication
where, given two large matrices A ∈ Rm×n1 and B ∈ Rm×n2 , we seek to find a matrix
C ∈ Rn1×n2 such that the quantity

∥∥C−A⊤B
∥∥ is small for some chosen matrix norm.

Our primary focus here is on cases where we wish to trade accuracy for speed but
sketching also plays a role in memory and band-limited problems, where the matrices
to be multiplied are too large to store locally or transfer from external storage.

We have already seen how sketching matrices satisfying the JL moment property
can be used for approximate matrix multiplication in Lemma 10. The following
theorem generalises the use of subspace embedding matrices in approximate matrix
multiplication.

Theorem 13 ([CNW15, Lemma 1]). Given 0 < ε < 1, A ∈ Rm×n1 and B ∈ Rm×n2 ,
let S ∈ Rk×m be a (1 ± ε) subspace embedding for the space spanned by the columns
of A and B. Then ∥∥(SA)⊤(SB) − A⊤B

∥∥
2 ≤ ε ∥A∥2 ∥B∥2 .

Theorem 13 gives a guarantee of an ε approximation in spectral norm when the
number of rows k is chosen such that S is a (1 ± ε) subspace embedding. Clearly,
if k < m, the product (SA)⊤(SB) is faster to compute than its exact counterpart
A⊤B. The theorem admits a straight-forward algorithm for approximate matrix
multiplication using randomisation as presented in Algorithm 1.

The full matrix product A⊤B can be computed in O (mn1n2) time. The overall
complexity for the matrix multiplication algorithm consists of two factors, namely
the sketch time and the multiplication of the two sketches, which takes O (kn1n2)
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Algorithm 1 Approximate matrix multiplication

Input: A ∈ Rm×n1 , B ∈ Rm×n2 and sketch parameter k

Output: Approximate matrix product C ∈ Rn1×n2

1: Construct sketching matrix S ∈ Rk×m

2: Sketch input matrices Asketch = S · A and Bsketch = S · B
3: Calculate C = (Asketch)⊤ (Bsketch)

time. The sketch time depends heavily on the choice of sketching matrix and is
O (km (n1 + n2)) for the Gaussian projection, O (m ln m (n1 + n2)) for leverage score
sampling and SRHT, and O (m (n1 + n2)) for the sparse projection as shown in Ta-
ble 2.1. For the sketching method to be faster than the direct calculation, we therefore
need the savings in multiplication time, O ((m − k)n1n2), to be larger than the sketch
time. This will be the case when k is sufficiently smaller than m.

Experimental results. We aim to investigate the quality of the approximation
C ≈ A⊤B with C being the output from Algorithm 1. We define the following
residual matrix

C(ξ)
res = C − A⊤B

∥A∥ξ ∥B∥ξ

= (SA)⊤(SB) − A⊤B
∥A∥ξ ∥B∥ξ

for ξ ∈ {2, F}. (3.1)

Taking the spectral norm of the residual matrix,
∥∥C(2)

res
∥∥

2, we obtain an error mea-
sure similar to that of Theorem 13 and we will therefore be able to test the relation of
the theorem even when the sketching matrix does not necessarily satisfy the property
of a (1 ± ε) subspace embedding. On the other hand, setting ξ = F and considering
the Frobenius norm error,

∥∥C(F )
res
∥∥

F
, gives a somewhat better understanding of the

entry-wise differences between C and A⊤B. Table 3.1 presents results for which A
and B are chosen to have the same size and type.

Regarding approximation quality, the table shows that the methods perform on
par for both problem types, with the exception of leverage score sampling performing
significantly better for the srand test matrix. An explanation of this might be the
construction of the srand matrices where the rows are randomly scaled and thus
creating variation in the leverage scores. It might also be due to the observation
from Section 2.2 that leverage score sampling in many cases is the sketching method
requiring the smallest amount of rows in order to provide a subspace embedding.
We note that the spectral norm error

∥∥C(2)
res
∥∥

2 is generally quite large for the ill-
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Table 3.1: Approximate matrix multiplication using different sketching matrices for
two test matrix types. The matrices A and B have m = 215 rows and
n = 210 columns and the sketch size parameter is k = 2n. The error
terms are based on the residual matrix C(ξ)

res of Equation (3.1).

srand cond10
Gain
factorSketching method

∥∥C(2)
res
∥∥

2

∥∥C(F )
res
∥∥

F

∥∥C(2)
res
∥∥

2

∥∥C(F )
res
∥∥

F

Leverage score sampling 0.0136 0.0125 0.1584 0.0221 0.27
Gaussian projection 0.0288 0.0228 0.1593 0.0223 0.19
SRHT 0.0245 0.0197 0.1530 0.0213 2.4
Sparse projection 0.0245 0.0199 0.1568 0.0220 7.8

conditioned problem, which is due to the high condition number of the input matrices
A and B, making the product very sensitive to errors.

Interestingly, k = 2n is sufficient for the sketching methods to achieve approxi-
mate solutions with a relative error close to 2% as measured by the Frobenius norm
error. For the srand test matrix, we achieve spectral norm errors below 3%. This is
significantly lower than the theoretical expressions of Table 2.1 coupled with Theorem
13, according to which we need 2 billion rows to ensure an approximation error of
at most 3%, with probability 0.9, using a sparse projection matrix for the considered
problem. The relative spectral norm error is much higher for the cond10 test matrix,
with all the sketching methods yielding errors around 15%. Figure 3.2 shows

∥∥C(2)
res
∥∥

2
as a function of k on the cond10 problem with both A and B of size m = 215 and
n = 210. It is seen that the spectral norm error decreases to around 5%, still us-
ing a reasonably sized proportionality constant. In general, we find that choosing k

proportional to n often works well.

The potential time advantages of Algorithm 1 are also shown in Table 3.1. Using
the sparse projection method, an approximation is almost 8 times faster to compute
than the exact matrix product. However, the leverage score sampling and Gaussian
projection methods are significantly slower and are therefore not very useful for this
problem. For the Gaussian projection, this is due to the large matrix-matrix products
involved in the sketching of the input matrices. The leverage scores have to reflect
the properties of matrices A and B simultaneously and it is therefore necessary to
compute the leverage scores based on the matrix

[
A B

]
. Not only does this affect

the inner sketching parameters of the leverage score estimation algorithm, the actual
concatenation of the matrices in Matlab also takes time. For the approximate matrix
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Figure 3.2: Convergence of
∥∥C(2)

res
∥∥

2 as a function of the sketch size parameter k for
the cond10 matrix type of size m = 215 and n = 210.

multiplication problem, it is common to use importance sampling probabilities based
on the Euclidean norms of the rows of each matrix [DKM06; CNW15]. These are much
faster to compute than the leverage scores, leading to a considerably faster sketching
method for this problem, and could be considered as an alternative method.

Clearly the applicability of Algorithm 1 depends on the error tolerance in the given
problem. The errors in Table 3.1 might be tolerable in some settings but unreasonable
in others. To get a better understanding of the error magnitudes, we consider the
estimation of a sample covariance matrix, which is calculated as the normalised matrix
product 1

m−1
(
X − X̄

)(
X − X̄

)⊤, where each column of X ∈ Rn×m represents an n-
dimensional data point and X̄ consists of the sample means.

We firstly generate an n × n target covariance matrix Σ using a locally periodic
kernel function defined as the product of the squared exponential and periodic kernel
functions1. We choose the parameters of the kernel functions as α = 1 and Tperiod = 1

5 ,
and draw m = 215 samples from the normal distribution N (0, Σ) to form X. Using
the sketch parameter k = 2n with the sparse projection method, we obtain the results
shown in Figure 3.3. The gain factor was approximately 8, as was also the case for
the corresponding result in Table 3.1.

Figure 3.3 shows that with spectral norm error of 0.03, the approximate matrix
product captures the essential parts of the sample covariance matrix even though
the residual matrix includes non-random artefacts. In applications where the exact

1The squared exponential or Gaussian kernel, kSE, and the periodic kernel, kPE, are defined as

kSE (xi, xj) = exp
(

−
(xi − xj)2

2α2

)
and kPE (xi, xj) = exp

(
−

2
α2 sin2

(
π |xi − xj |

Tperiod

))
.
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Figure 3.3: Visual representation of the approximation of a sample covariance ma-
trix using Algorithm 1. The sketch size parameter was k = 2n, and
the data matrix X was of size m = 215 and n = 210, with each column
drawn from a normal distribution with a covariance matrix based on a
locally periodic kernel function.

product is not necessary, such an approximation could be very useful. We will see an
example of this in Section 3.3.3.

3.1.2 Orthonormalising transformation matrix
Orthonormal matrices are of great interest in numerical linear algebra, particularly
for their numerical stability properties: since all eigenvalues of an orthonormal matrix
are of magnitude 1, so is the condition number. Given an m × n matrix A, we can
compute a QR decomposition A = QR, where Q ∈ Rm×n is an orthonormal matrix
and R ∈ Rn×n is an upper triangular matrix. This can be done in O

(
mn2) time

[GV12], which for large matrices can be prohibitively slow.
As the columns of Q span the column space of A, Q can be viewed as an orthonor-

mal basis for the range of A. Correspondingly, R can be viewed as a matrix whose
inverse encodes a change of basis for A to the orthonormal basis given by Q. Such
bases have already played a role in both the properties of ℓ2-subspace embeddings
in Theorem 1 and in the definition of leverage scores, a connection which we will
return to later. Indeed, since subspace embeddings approximately preserve distances
and orthogonality in the column space of A, we might hope that for an ℓ2-subspace
embedding S, the sketch SA can be used to calculate an approximate orthonormal
basis for the original matrix A.

Simply finding an orthonormal basis for SA will not work, as the columns of
A are situated in a very different, higher dimensional space to that spanned by the
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columns of SA. One idea is to view the orthonormal basis as the product Q = AR−1.
Calculating the QR decomposition SA = QSRS, we use the change of basis matrix
RS as a substitute for R. This will enable us to approximate an orthonormal basis
by Q ≈ AR−1

S .
To give some insight into why AR−1

S can provide an adequate approximation of
an orthonormal basis, we consider the corresponding singular values. For arbitrary
x ∈ Rn, the property of a (1 ± ε) subspace embedding S implies that

(1 − ε)
∥∥SAR−1

S x
∥∥

2 ≤
∥∥AR−1

S x
∥∥

2 ≤ (1 + ε)
∥∥SAR−1

S x
∥∥

2 ,

and, using the QR decomposition of SA and orthonormality of QS, we get∥∥SAR−1
S x

∥∥
2 = ∥QSx∥2 = ∥x∥2 .

Combining these results and considering the special case where x is a left singular
vector of AR−1

S , we see that the singular values of AR−1
S must lie in the interval

[1 − ε, 1 + ε].
In summary, our aim is to approximate an orthonormalising transformation matrix

using sketching, since an approximation of Q will then follow by standard matrix
calculations. An algorithm for obtaining RS is shown in Algorithm 2.

Algorithm 2 Approximation of orthonormal transformation matrix

Input: A ∈ Rm×n and sketch parameter k

Output: RS ∈ Rn×n

1: Construct sketching matrix S ∈ Rk×m

2: Sketch input matrix Asketch = S · A
3: Calculate QR decomposition Asketch = QSRS

Computationally, we first pay the cost of creating the sketch SA which depends
on the chosen sketching matrix S ∈ Rk×m as shown in Table 2.1. We then perform a
QR decomposition of SA in O

(
kn2) time.

If the explicit orthonormal basis matrix is desired, calculating the inverse of RS

can be done in O
(
n3) operations and the actual matrix product AR−1

S takes O
(
mn2)

time. However, this is on par with the computational cost of QR decomposing the
entire matrix A. One could use sketching to reduce the number of columns in R−1

S ,
which is the approach used in [Woo14, Theorem 2.13] and [CW13, Theorem 29] in
connection with approximating leverage scores as will be discussed later. In many
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cases, however, we will not need to perform the actual matrix product, e.g. when
only the product of AR−1

S with a vector is required. We will see such an application
when we turn our attention to the solution of the least squares problem and the use
of preconditioners.

Experimental results. The experiments of this section aim to test the quality of
approximation for an orthonormalising transformation matrix. The orthonormalising
property of the transformation matrix R is of particular interest and thus our tests
will focus on the orthonormality of AR−1

S . For an orthonormal matrix U, it holds by
definition that U⊤U = I and all singular values are 1, which suggests the following
error measure ∥∥∥(AR−1

S
)⊤AR−1

S − I
∥∥∥

F

∥I∥F

=

∥∥∥(AR−1
S
)⊤AR−1

S − I
∥∥∥

F√
n

,

along with the pair of minimum- and maximum singular values of AR−1
S . In return for

acquiring an approximation, Algorithm 2 should be faster than the exact calculation,
which in this case is a thin QR decomposition. In Matlab, this is done by first
computing X = qr(A) and then R = triu(X(1:n,:)).

We have performed multiple experiments on different problem types of varying
sizes. Table 3.2 presents a subset of the experiments. The table includes results for
srand and cond10 matrices both with dimensions m = 215 and n = 210. As sketching
parameter, we used k = 4n for all the different sketching methods.

Using k = 4n, the relative Frobenius norm error is at most 0.860 across the four
different sketching methods and two problem types. This can be improved further

Table 3.2: Approximation of an orthonormalising transformation matrix for a prob-
lem of size m = 215 and n = 210. All sketching methods used a sketching
matrix with k = 4n rows. The error terms are based on the residual ma-
trix Qres = 1√

n

((
AR−1

S
)⊤AR−1

S − I
)

and the smallest and largest singu-
lar values of AR−1

S , σmin and σmax.

srand cond10 Gain
factorSketching method ∥Qres∥F [σmin; σmax] ∥Qres∥F [σmin; σmax]

Leverage score sampling 0.860 [0.655; 2.026] 0.849 [0.663; 2.016] 2.0
Gaussian projection 0.840 [0.668; 1.991] 0.840 [0.668; 1.990] 0.31
SRHT 0.767 [0.691; 1.926] 0.767 [0.690; 1.927] 4.4
Sparse projection 0.842 [0.665; 1.994] 0.841 [0.668; 1.993] 7.7
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by increasing the sketching parameter k, but this would also lower its advantage in
speed. In order to visualise a Frobenius norm error of up to 0.841 from unity obtained
for the cond10 matrix with the sparse projection method, the diagonal entries of(
AR−1

S
)⊤AR−1

S are shown in Figure 3.4. We note that the diagonal entries are
generally increasing. Intuitively, this can be understood by noting that both RS and
R−1

S are upper triangular matrices and hence the errors of nonzero entries of R−1
S

accumulate along the diagonal part of the product
(
AR−1

S
)⊤AR−1

S .
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Figure 3.4: Diagonal entries of
(
AR−1

S
)⊤AR−1

S where A is a cond10 matrix of size
m = 215 and n = 210. RS was constructed using sparse projection with
sketch size parameter k = 4n.

It is seen that the approximate transformation matrix has somewhat stabilised the
singular values. This is especially clear for the cond10 matrix where the condition
number of A is κ (A) = 1010, whereas in Table 3.2, it is at most κ

(
AR−1

S
)

= 3.63.
This motivates the use of RS or R−1

S as preconditioners, an application we will in-
vestigate later as part of the overdetermined least squares problem. Taking other
experiments with other problem types, problem sizes and choices of sketching pa-
rameter into account, we found that reasonable results were again obtained with k

proportional to n.
Considering the applicability of Algorithm 2, we need k to be less than m in order

for the approximation method to be faster. Furthermore, k must be larger than n in
order to get a transformation matrix of the right size. Thus the algorithm is best used
in situations where a tall and skinny data matrix is considered. This also explains
the poor gain factor of the Gaussian projection method, since the matrix product
involved in constructing the sketch is of complexity O(kmn), which is greater than
O
(
mn2).
As will be seen in Section 3.2.1, the use of our leverage score sampling algorithm
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for approximating an orthonormalising transformation matrix is somewhat circular.
When estimating the leverage scores used to construct the sketch, we use an orthonor-
malising transformation matrix and therefore apply Algorithm 2. However, as seen
from Table 3.2, it is still possible to obtain a gain factor of 2. There might also be
scenarios where the leverage scores are known beforehand or have to be estimated for
other uses, making leverage score sampling a viable option.

To further show the potential of the algorithm, consider a cond10 matrix of size
m = 217 and n = 210. In this type of problem, the concern is often the condition-
ing of the data matrix and therefore we seek to make a transformation stabilising
the singular values. Using the sparse projection method with k = 2n, we are ca-
pable of constructing a transformation matrix almost 46 times faster than it would
be possible to acquire its exact version. The condition number of the approxima-
tion is κ

(
AR−1

S
)

= 5.87 and though not perfect, it leaves us with a relatively well-
conditioned problem.

3.1.3 Low-dimensional orthonormal basis
Assume an m × n matrix A has some redundancy in its columns such that the
column space of A is well-described by the span of k < n vectors. Instead of finding
an approximate orthonormal basis with n columns as described in Section 3.1.2, it
might be preferable to directly find an approximation of a k-dimensional basis.

The sketch of a matrix is a projection onto a lower dimensional space, hence if
we sketch the transposed matrix A⊤, we obtain a new matrix with a lower number
of rows while approximately preserving distances in the row space of A⊤. More for-
mally, if S is a k × n sketching matrix, the k columns of the transposed product(
SA⊤)⊤= AS⊤ should capture most of the column space of A. An approximate

k-dimensional orthonormal basis can then be obtained by computing the QR decom-
position of AS⊤, which is both less time and space consuming than calculating the
exact orthonormal basis of A. The following theorem will help us assess the quality
of the approximation.

Theorem 14 ([HMT11, Theorem 9.1]). Fix r ∈ N and let A be an m × n matrix
with singular value decomposition

A = UΣV⊤ = U

Σ1

Σ2

V⊤
1

V⊤
2

 ,
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where Σ1 and Σ2 are diagonal matrices containing the first r and remaining n − r

singular values of A, respectively, and V1 and V2 contain the corresponding right
singular vectors of A. Let S be a k×n sketching matrix and let QS be an orthonormal
basis for the sketch AS⊤. Define S1 = (SV1)⊤ and S2 = (SV2)⊤. Assuming S1 has
full rank, the approximation error satisfies∥∥A − QSQ⊤

S A
∥∥2

ξ
≤ ∥Σ2∥2

ξ +
∥∥Σ2S2S†

1
∥∥2

ξ
for ξ = 2, F,

where S†
1 is the Moore-Penrose pseudoinverse of S1, i.e. S†

1 =
(
S⊤

1 S1
)−1 S⊤

1 .

We now investigate the implications of this result for sketching matrices that are
chosen specifically to be subspace embeddings. If S is a (1 ± ε) subspace embedding
for V1, then all singular values of S1 = V⊤

1 S⊤ are within 1 ± ε, and hence S1 has full
rank as long as ε < 1.

The inequality of Theorem 14 is rewritten by use of submultiplicativity and the
relationship between the Frobenius and spectral norms2, such that∥∥A − QSQ⊤

S A
∥∥2

ξ
≤ ∥Σ2∥2

ξ

(
1 + ∥S2∥2

2
∥∥S†

1
∥∥2

2

)
, for ξ = 2, F.

The terms ∥Σ2∥2
ξ represent the smallest obtainable approximation error, and since

Σ2 is a diagonal matrix containing the smallest n − r singular values of A, and can
be expressed simply as

∥Σ2∥2
2 = σ2

r+1(A) and ∥Σ2∥2
F = trace

(
Σ⊤

2 Σ2

)
=
∑
j>r

σ2
j (A).

The factor
(

1 + ∥S2∥2
2
∥∥S†

1
∥∥2

2

)
therefore represents the loss in accuracy due to the

approximation method. Letting S1 = U1D1W⊤
1 denote the singular value decompo-

sition of S1, the spectral norm of S†
1 can be bounded by∥∥S†

1
∥∥

2 =
∥∥W1D†

1U⊤
1
∥∥

2 =
∥∥D†

1
∥∥

2 = 1
σmin (S1)

≤ 1
1 − ε

.

We can rewrite the norm of S2 in terms of the spectral norm of the sketching matrix
S by

∥S2∥2 =
∥∥V⊤

2 S⊤∥∥
2 ≤

∥∥V⊤
2
∥∥

2 ∥S⊤∥2 = ∥S∥2 ,

2In particular, we use that, for conforming matrices A and B, ∥AB∥F ≤ ∥A∥2 ∥B∥F . Assuming
B has n columns, this relation holds since

∥AB∥2
F =

n∑
j=1

∥AB(j)∥2
F =

n∑
j=1

∥AB(j)∥2
2 ≤ ∥A∥2

2

n∑
j=1

∥B(j)∥2
2 = ∥A∥2

2 ∥B∥2
F .
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where we exploit the orthonormality of V⊤
2 . For some choices of sketching matrix,

the spectral norm of S is simple to bound or even express directly. For example,
if S represents the subsampled randomised Hadamard transform, the sketching ma-
trix is orthonormal by construction and hence ∥S∥2 = 1. Using the above, we get
the following expressions for the approximation in the spectral and Frobenius norm,
respectively, when S is a (1 ± ε) subspace embedding for V1:

∥∥A − QSQ⊤
S A
∥∥2

2 ≤

(
1 +

∥S∥2
2

(1 − ε)2

)
σ2

r+1 (A) , (3.2)

∥∥A − QSQ⊤
S A
∥∥2

F
≤

(
1 +

∥S∥2
2

(1 − ε)2

)(∑
j>r

σ2
j (A)

)
. (3.3)

Note that the quality of the approximation depends explicitly on the decay of the
singular values. In particular, the approximation is exact if A is of rank r or less.

The sketching algorithm for computing an approximate basis for the range of the
input matrix is given in Algorithm 3.

The computational cost of computing the approximation QS consists of the time
to sketch the original problem and then perform a QR decomposition of the sketch.
Hence the computational cost is of order O

(
mk2), whereas a standard QR decompo-

sition of A takes O
(
mn2) time, and Algorithm 3 can therefore provide a significant

saving if n is large. In comparison, the complexity of the method presented in Sec-
tion 3.1.2 to find an orthonormalising transformation matrix was O

(
kn2) .

Algorithm 3 Approximation of k-dimensional orthonormal basis

Input: A ∈ Rm×n and sketch parameter k

Output: QS ∈ Rm×k

1: Construct a sketching matrix S ∈ Rk×n

2: Sketch the input matrix Asketch =
(
S · A⊤)⊤

3: Compute a QR decomposition Asketch = QSRS

Experimental results. We investigate the properties and advantages of using
sketching to approximate a k-dimensional orthonormal basis by considering a number
of test cases. We will focus on two types of input matrices, namely the polydecay
and cond10 types. Common for both test matrices is that the spectral decay is rel-
atively fast and we can therefore hope for a k-dimensional basis that approximates
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the column space of the input matrix well. By construction, the i-th singular value
of the polydecay and cond10 matrices depend only on i and not on the specific
instantiation of the test matrix.

We test the quality of the approximate k-dimensional orthonormal basis QS by
computing the low-rank approximation QSQ⊤

S A and considering the residual matrix
Ares = A−QSQ⊤

S A, using both the spectral and Frobenius norm. Thus ∥Ares∥2 and
∥Ares∥F provide error terms for the quality of approximation as is also expressed in
Equation (3.2) and (3.3).

The best k-dimensional basis is the matrix consisting of the left singular vectors
of the input matrix corresponding to the k largest singular values. In Matlab,
this is computed using the built-in function svd and then extracting the first k left
singular vectors, which is faster than using Matlab’s svds for moderately sized k.
The approximations are computed using our implementation of Algorithm 3 with the
results reported in Table 3.3.

The gain factors presented in Table 3.3 show that the approximation of a k-
dimensional basis for a given input matrix is relatively fast compared to finding the
best k-dimensional basis. Using the sparse projection, our approximation method is
36 times faster than performing the exact calculation and the residual errors are com-
parable to those of the best k-dimensional basis. Again we see that the leverage score
sampling was relatively slow with only a small gain in speed. Observe that for both
test matrices, the residual errors of the approximations are small but also relatively
far from the optimal error. This difference is greatly reduced when comparing with
the best k/2-dimensional basis, indicating that using Algorithm 3 with a few more

Table 3.3: Experimental results for the approximate k-dimensional basis for an in-
put matrix of size m = 210, n = 212 and using k = m/2 rows in the
sketching matrix. The error terms are based on the normalised residual
matrix A(ξ)

res =
(
A − QSQ⊤

S A
)

/ ∥A∥ξ.

polydecay cond10 Gain
factorSketching method

∥∥A(2)
res
∥∥

2

∥∥A(F )
res
∥∥

F

∥∥A(2)
res
∥∥

2

∥∥A(F )
res
∥∥

F

Leverage score sampling 0.0056 0.041 1.3 · 10−4 8.9 · 10−5 1.8
Gaussian projection 0.0053 0.040 7.3 · 10−5 4.8 · 10−5 9.3
SRHT 0.0053 0.040 7.5 · 10−5 4.8 · 10−5 15
Sparse projection 0.0053 0.040 7.2 · 10−5 4.8 · 10−5 36
Optimal k-dimensional basis 0.0019 0.024 9.9 · 10−6 9.9 · 10−6 1
Optimal k/2-dimensional basis 0.0039 0.042 3.1 · 10−3 3.1 · 10−3 1
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columns improves the approximation greatly and is therefore worth considering.
To better understand the quality of approximation offered by Algorithm 3, we

consider an image reconstruction problem. We use Matlab’s MRI sample image
mri.tif of size 128 × 128 pixels as our test image. Figure 3.5 shows the original
image along with the reconstructions generated using the approximated and best k-
dimensional orthonormal bases, with k = 91. As the plot of the singular values in
Figure 3.5 shows, the image is practically of rank 91, with the 37 smallest singular
values all below 10−10, and the normalised root mean square error (nrmse) of the
best approximation is also negligible. The normalised root mean square error of the
sketched approximation, however, is around 5%.

Figure 3.6 shows the evolution of both the spectral and Frobenius norm errors

Original image Sketched approximation

nrmse = 0.045

Best approximation

nrmse = 7.38e-15

0 20 40 60 80 91 100 120

i-th singular value

10
-10

10
0

Spectrum of original image

Figure 3.5: Reconstruction of Matlab’s sample mri.tif image using k = 91 ba-
sis vectors and the sketched approximation A ≈ QSQ⊤

S A, with QS
computed as by Algorithm 3, and the best rank k approximation
A ≈ UkU⊤

k A, where Uk is the matrix of the singular vectors of A
corresponding to the k largest singular values.
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Figure 3.6: The reconstruction error for Matlab’s sample mri.tif image as a func-
tion of k using Algorithm 3 to approximate a k-dimensional basis and
Matlab’s svd to calculate the best k-dimensional basis. The rightmost
plot shows the achieved gain factor in computation time.

as a function of the sketch parameter k. This shows that the approximation error
achieved by Algorithm 3 roughly follows the error expressions from Equations (3.2)
and (3.3), since it appears to decay at the same rate as the error of the best rank k

approximation. The gain factor shown in the last plot of Figure 3.6 illustrates the
potential advantages with respect to computation time.

3.2 Generic linear algebra problems
We will now examine the use of sketching in three generic linear algebra problems,
namely leverage score estimation, overdetermined least squares and the singular value
decomposition. Our aim is to show how approaches based on the building blocks from
the previous section can be used to achieve computational advantages. We present
concrete algorithms that are applicable in the most general settings and attempt
to give an intuitive understanding of the role of randomisation as a resource with
experimental results supporting the analysis.

3.2.1 Leverage score estimation
Leverage score sampling was introduced as a sketching method in Section 2.1.1. The
two main results of the section, Theorem 2 and Theorem 3, are already based on
leverage score estimation, which we will cover now.
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As mentioned previously, computing the exact leverage scores of an m × n matrix
A requires the computation of an exact orthonormal basis either via QR or singular
value decompositions, both of which are of complexity O

(
mn2) [GV12]. To obtain

an approximation of the leverage scores, we can instead utilise the orthonormal basis
approximation of Section 3.1.2, an approach similar to those of [Woo14] and [CW13].
Algorithm 4 shows in detail how the leverage scores can be approximated.

Algorithm 4 Leverage score approximation

Input: A ∈ Rm×n and sketch parameters k1 and k2 (optional)
Output: Approximate leverage scores {qi}m

i=1

1: Use Algorithm 2 with sketch parameter k1 to obtain RS

2: Compute the inverse change of basis matrix R−1
S

3: if second sketch desired then
4: Construct sketching matrix S ∈ Rk2×n

5: Sketch the inverse change of basis matrix R−1
S = R−1

S S⊤

6: end if
7: Compute approximate orthonormal basis Qapprox = AR−1

S

8: Calculate leverage scores q̂i = ∥ (Qapprox)(i) ∥2
2 for i = 1, . . . , m

9: Normalise the leverage scores by qi = q̂i/
∑

j q̂j for all i

The algorithm includes an optional second sketch of the inverted change of basis
matrix. This is to avoid computing the full matrix product AR−1

S , which takes
O
(
mn2) time. However, if A is very tall, the algorithm can still yield a speed up in

computation time without a second sketch. Naturally, using a second sketch must be
expected to reduce the accuracy of the leverage score estimation.

Since A is generally large, the sketching matrix used to obtain RS should be chosen
such that the sketch can be computed relatively fast. A sparse projection matrix is
used in [Woo14, Theorem 2.13], while [CW13, Theorem 29] opts for a composition of
a sparse projection matrix and an SRHT matrix. The main purpose of the sketching
matrix S2 is to reduce the number of rows of the transposed matrix and the sketch
time is therefore not as important as keeping the number of rows to a minimum. This
makes the Gaussian sketching matrix a viable option, as chosen in both [Woo14] and
[CW13].

The computational expense of the above procedure consists of contributions from
computing the sketches, the QR decomposition, O

(
k1n2), inverting the change of
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basis matrix, O
(
n3), and the final matrix product, O (k2mn) or O

(
mn2). Computing

the row norms is negligible. The actual computation time depends on the choice of
sketching matrices as this impacts both the sketch time and the number of rows
required but it is O

(
(k1 + n) n2 + k2mn

)
.

Experimental results. In order to test the quality of the leverage score estimation,
we consider three different error measurements:

• The relative error between the vector of true leverage scores ℓ = (ℓ1, ℓ2, . . . , ℓm)
and estimated leverage scores q = (q1, q2, . . . , qm) given by ∥q − ℓ∥2 / ∥ℓ∥2. This
measures the accuracy of the approximation relative to the true scores.

• The β-value from Theorem 2 calculated as β = min
i=1,...,m

qi/ℓi, which shows the
maximal underestimation of the approximated leverage scores.

• The significance rate which is the fraction of “significant” true leverage scores
that are also estimated to be “significant”. We will define significant leverage
scores as those scores above 2/m as is chosen in for example [HW78].

A low relative error is not necessarily indicative of a good estimation as the high
leverage scores might not be captured. Similarly, a low β-value can be due to large
relative differences between small leverage scores, which are perhaps not as important
as the larger leverage scores.

Table 3.4 shows the results of the leverage score estimation algorithm on the
srand test matrix. As mentioned above, the first sketching method should be fast,
and hence the sparse projection sketching matrix (SPM) is chosen. For the optional
second sketch, the emphasis is on accuracy using a low number of rows, and we there-
fore consider both the Gaussian projection and subsampled randomised Hadamard

Table 3.4: Approximate leverage scores for a 215 × 210 srand matrix.

k1 sketch 1 k2 sketch 2 ∥q − ℓ∥2 / ∥ℓ∥2 mini qi/ℓi Sig. rate Gain factor
2n SPM n − 0.0457 0.8381 0.9532 4.6
2n SPM n/2 Gauss 0.0776 0.7281 0.9181 7.1
2n SPM n/2 SRHT 0.0637 0.7685 0.9330 6.7
2n SPM n/5 Gauss 0.1088 0.6336 0.8816 13
2n SPM n/5 SRHT 0.0993 0.6415 0.8918 12
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transform (SRHT). Note that leverage score sampling is clearly unsuitable for this
application.

As expected, using only a single sketch gives the most accurate results whereas
a second sketch gives rise to faster computation times. Interestingly, using SRHT
instead of a Gaussian projection for the second sketch yields more precise estima-
tions at the same computational cost. In general, however, the SRHT and Gaussian
projections yield very similar accuracy results. We see that using our leverage score
estimation algorithm, we can compute approximate scores that capture almost 90%
of the significant leverage scores in only a twelfth of the time.

To get an idea of the performance of the algorithm for a real-world data set,
we estimate the leverage scores for the real-life spambase data set [DK17]. The
data set is based on the analysis of 4601 emails for the frequency of certain words
and length of sequences of consecutive capital letters. In total there are 57 features
that can be used to classify each item as either spam or not spam. The first 48
features are the frequencies of specific words in the email, the next six features are
the frequencies of specific punctuation marks, and the final three features describe
lengths and occurrences of consecutive capital letters. We discard the final nine
features and consider only the word frequencies. We then remove observations that
are all zeros leaving us with 4437 observations.

Algorithm 4 is applied using sparse projection with k1 = 4n and SRHT with
k2 = n/2 as the sketching matrices. Estimating the leverage scores corresponding to
each item, we find that 389 emails are above the significance level of 2/m. The sorted
significant leverage scores along with their estimates are shown in Figure 3.7.

0 50 100 150 200 250 300 350 400 450

Largest leverage scores

10 -4

10 -3

10 -2

Estimation of significant leverage scores for Spambase data

True

Estimated

Sig. level 2/m

Figure 3.7: Estimation of significant leverage scores for the spambase data set, with
m = 4437 and n = 48, using a sparse projection matrix with k1 =
4n and SRHT with k2 = n/2. The estimation captures 90% of the
significant scores.
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The relative error for the approximated leverages scores is 0.16, while the β-value
is 0.31. Importantly, the significance rate for the estimations is 90%, meaning that
very few of the truly significant leverage scores are underestimated to a degree where
they are no longer considered significant. If the β-value is calculated only for the
significant leverage scores, it increases to 0.51. The approximations are computed
about three times as fast as the exact scores.

3.2.2 Overdetermined least squares
Linear systems of equations are ever-present in linear algebra and are at the heart of
a large number of problems and algorithms in scientific computing. In matrix form,
each row of A ∈ Rm×n and corresponding entry of b ∈ Rm constitute a constraint
and we seek a vector x ∈ Rn of variables such that Ax = b. We will concentrate on
the overdetermined version of this problem where the number of constraints is larger
than the number of variables, that is m > n. We cannot in general hope to obtain
equality in Ax = b, so instead the problem is relaxed to the least squares problem

min
x

∥Ax − b∥2 . (3.4)

Two solution methods are the primary subject of this section: solution via the normal
equation and iterative solvers such as the Matlab function lsqr.

The maximum likelihood solution to (3.4) is given by the solution to the normal
equation

A⊤Ax = A⊤b.

Solving the equation in practice can be done in numerous ways, and in Matlab one
would most often use the backslash operator \ or mldivide, which relies on different
numerical methods depending on the problem but always a QR solver for a rectangular
matrix A. In computational considerations, one should pay attention to the necessary
matrix-matrix multiplication performed in this method. Computing A⊤A can be
costly for large A and avoiding this could lead to major savings in time, for example
by using the approximation matrix multiplication method of Section 3.1.1. To see how
sketching can be used in the context of overdetermined least squares approximation,
let S ∈ Rk×m be a sketching matrix satisfying the property of a (1 ± ε) subspace
embedding and with k < m. It follows directly from the definition of a subspace
embedding that

(1 − ε) ∥S (Ax − b)∥2 ≤ ∥Ax − b∥2 ≤ (1 + ε) ∥S (Ax − b)∥2 .
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This implies that by solving the smaller problem minx ∥SAx − Sb∥2, we get an (1±ε)
approximation of the solution to (3.4). Algorithm 5 implements the solution method
based on the sketched normal equation. We do not explicitly use the approximate
matrix multiplication of Algorithm 1, since the sketching matrix S used to compute
SA is also needed to construct the sketch Sb, but the idea is the same.

Algorithm 5 Overdetermined least squares (normal equation)

Input: A ∈ Rm×n, b ∈ Rm and sketch parameter k

Output: x ∈ Rn

1: Construct sketching matrix S ∈ Rk×m

2: Sketch the input arrays Asketch = S · A and bsketch = S · b
3: Solve the normal equation A⊤

sketchAsketchx = A⊤
sketchbsketch

Note that the time to compute the matrix product (SA)⊤(SA) is O
(
kn2), which is

substantially lower than the previous complexity of O
(
mn2) when k ≪ m. Algorithm

5 is a way of using sketching to obtain (1±ε) approximations to overdetermined least
squares approximation problems, however, as the number of rows k in a (1 ± ε)
subspace embedding matrix depends on ε−2, this method can only be expected to
achieve low-precision solutions in practice.

We have not yet commented on the conditioning of the matrix A and the impact
this has on the solution quality of Algorithm 5. If A is ill-conditioned, the solution
obtained through the normal equation is very sensitive to errors in the vector b. One
approach is to perform a QR decomposition of the input matrix such that A = QR
and solving the corresponding least squares problem

min
x

∥∥Rx − Q⊤b
∥∥

2 .

This is numerical better than working directly with the problem of Equation (3.4)
[GV12; Bjo96].

Alternatively, iterative methods present themselves as robust options for solving
(3.4) when A is ill-conditioned or simply when A is too large to perform matrix-
matrix multiplication. The complexities of the iterative methods are dominated by
the number of iterations needed to converge. In general, the iterative solvers obtain
an ε approximation to (3.4) in O (κ (A) ln (1/ε)) iterations [Mah+11]. This illustrates
that when A is ill-conditioned, problem (3.4) is harder to solve and in fact the com-
plexity of the algorithm is dominated by the condition number of the input matrix
and not the chosen accuracy parameter ε as seen previously.
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To boost the performance of the iterative solvers, one can supply a preconditioning
matrix R such that the matrix AR−1 is well-conditioned. The solver then solves the
related problem

min
y

∥∥AR−1y − b
∥∥

2 , (3.5)

where y = Rx and the solution to (3.4) is found as x̃ = R−1ỹ, with ỹ the minimiser
of Equation (3.5). In practice, the preconditioning matrix is given as input to the
iterative solver which avoids computing AR−1 explicitly by only computing matrix-
vector multiplications. The optimal choice of preconditioner is the upper triangular
matrix R obtained from the QR decomposition of A. As the singular values of the
orthonormal matrix Q are all 1, we have κ

(
AR−1) = κ (Q) = 1, resulting in a lower

number of required iterations. However, computing the QR decomposition takes
O
(
mn2) time and is therefore not very efficient when m and n are large.
Recall that this was the very problem of Section 3.1.2, where we used sketching

to compute an approximate orthonormalising transformation matrix. In this context,
we construct the sketch SA and compute the QR decomposition SA = QSRS. The
matrix RS is then given as a preconditioning matrix to the iterative solver. This
avoids severe ill-conditioning since AR−1

S has eigenvalues in the range 1 ± ε and
therefore κ

(
AR−1

S
)

≤ 1+ε
1−ε . In Algorithm 6, problem (3.4) is solved using Matlab’s

lsqr with a preconditioner obtained through sketching.

Algorithm 6 Overdetermined least squares (lsqr)

Input: A ∈ Rm×n, b ∈ Rm and sketch parameter k

Output: x ∈ Rn

1: Use Algorithm 2 with sketch parameter k to obtain RS

2: Using RS as a preconditioner, compute x = lsqr (A, b, [ ], [ ], RS)

In total, the complexity of the sketching method consists of constructing RS in
O
(
kn2) time and then the iterative solver stops in O

(
1+ε
1−ε ln (1/ε)

)
iterations. When

A is large and ill-conditioned, this is a significant speed-up compared to computing
the exact QR decomposition of A and then performing O (ln (1/ε)) iterations, or
compared to just running the O (κ (A) ln (1/ε)) iterations without any preconditioner.

It is worth noting that Algorithm 6 yields near optimal solutions since the iter-
ative algorithm can theoretically solve the problem to arbitrary precision. In the
applications of sketching described this far, sketching has implied a trade-off between
computational complexity and precision in the final solution. Here the loss of pre-
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cision is solely in the preconditioner, which is reflected in the number of iterations
required but not in the exactness of the final solution.

Experimental results. To test the quality of Algorithm 5 and 6, we create a
random matrix A and an independent uniform random vector b. The focus will be
on the minimisation of ∥Ax − b∥2 which can be compared across different solution
methods and we therefore measure the error as

∥Ax̃ − b∥2
∥b∥2

,

where x̃ is the solution to (3.4), either exact or approximately.
We split the experiments in two and consider both a well-conditioned and ill-

conditioned case. It does not make sense to use Algorithm 6 in a well-conditioned
problem since the transformation to a well-conditioned basis would be unnecessary.
At the same time, one would not solve an ill-conditioned least squares problem using
the normal equation as the result would be unreliable.

For the well-conditioned tests, we let A be an srand test matrix and solve the
given problem using Algorithm 5. These results are compared to the Matlab solution
(A'*A)\(A'*b), but we also state the solution obtained by solving A\b and and
using the Matlab function lsqr. This will enable us to compare different solution
strategies and especially to see the potential benefit from using an iterative method.
One instance of such a test is presented in Table 3.5.

Interestingly, Table 3.5 shows that leverage score sampling performs better with
respect to approximation error than the three other methods that all lead to similar

Table 3.5: Approximate solution to (3.4) using Algorithm 5 on an srand type prob-
lem of size m = 217 and n = 29 and with sketching parameter k = 4n.

Sketching method ∥Ax̃−b∥2
∥b∥2

Gain factor

Leverage score sampling 0.708 0.75
Gaussian projection 0.765 0.066
SRHT 0.756 1.5
Sparse projection 0.764 8.4
A\b 0.660 0.054
(A'*A)\(A'*b) 0.660 1
lsqr(A,b) in 4 iterations 0.660 1.8
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results. Regarding approximation time, sparse projection is by far the fastest method
and achieves an approximation with a relative error of around 15%, roughly 8 times
faster than the exact computation. Once again the Gaussian projection is extremely
slow owing to the large matrix-matrix multiplication involved in forming the sketch.
In general it holds, as for the previous experiments, that choosing k proportional to
n is enough to get relatively good results. Further evidence of this is obtained using
sparse projection with k = 16n, which results in a 3% approximation error still only
using one third of the time of the exact calculation. Finally, we note that the three
direct solution methods differ quite a lot when it comes to speed. A\b is much slower
than solving the normal equation due to the properties of A compared to A⊤A. In
contrast, lsqr beats the normal equation with a factor of almost two. This is due to
lsqr avoiding matrix-matrix multiplications and thus we expect even greater savings
for larger problems.

For the ill-conditioned tests, we let A be the cond10 test matrix and solve the
least squares problem using Algorithm 6. We compare the approximation with the
solution obtained by the Matlab computation lsqr(A,b,[ ],[ ],R), where R is the
exact transformation matrix obtained in Matlab by first computing X = qr(A) and
then extracting R = triu(X(1:n,:)). Furthermore, we state the solution obtained
without use of preconditioner to see the potential effect on the number of iterations
needed. The results are presented in Table 3.6.

As previously mentioned, Algorithm 6 does not produce an approximation of the
solution but rather approximates a preconditioning matrix which is then used to
solve the given problem to a desired precision. This is clearly reflected in Table 3.6,
where all solution methods achieve the same error. On the other hand, the number of

Table 3.6: Approximate solution to (3.4) using Algorithm 6 on a cond10 type prob-
lem of size m = 217 and n = 210 and with sketching parameter k = 4n.

Sketching method ∥Ax̃−b∥2
∥b∥2

Iterations Gain factor

Leverage score sampling 0.498 19 1.4
Gaussian projection 0.498 19 0.31
SRHT 0.498 18 2.1
Sparse projection 0.498 19 2.7
lsqr(A,b,[ ],[ ],R) 0.498 2 1
lsqr(A,b) 0.499 2400 0.03
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iterations needed to converge depends greatly on the chosen solution method. Using
the exact transformation matrix, we need only two iterations whereas at least 18
iterations are performed when we approximate the transformation matrix. However,
the computational bottleneck is the QR decomposition rather than the iterations of
the lsqr function and Algorithm 6 therefore ends up being faster for all but the
Gaussian projection. Note that if the matrix A can be applied quickly to a vector,
the gain factors would be larger as additional lsqr iterations come at a smaller cost.

3.2.3 Singular value decomposition
The singular value decomposition is of great significance within numerical linear al-
gebra with applications in for example low-rank approximation, computing inverses
and pseudoinverses, and solving inverse problems. As for the QR factorisation, the
conventional singular value decomposition takes O

(
mn2) time. If the matrix A is

well-approximated by a rank k matrix, or if we are only interested in obtaining k

singular vectors that account for most of the variance, we could hope to do this faster.
Methods for rank revealing decompositions such as the Lanczos algorithm already
exist, for example in Matlab’s svds [Lar98], but sketching provides a number of
other opportunities.

To gain some insight into why low-rank approximations can be useful, suppose A
consists of measurements such that A = B + E, where B contains the true model
values and E represents noise. Even if the underlying model described by B has low
rank, the matrix A might have high or even full rank. In such cases, the aim is to
find singular vectors and values describing B rather than A to minimise the influence
of the observed noise.

The main idea behind the randomised singular value decomposition is precisely
the assumption of rank-deficiency in the m×n input matrix A. If this is the case, we
can use Algorithm 3 to compute a low-dimensional approximation of an orthonormal
matrix QS such that A ≈ QSQ⊤

S A. An actual SVD is then calculated on the k × k

solution X to the generalised least squares problem QSX = A, yielding components
that can be used directly to obtain an approximate singular value decomposition of
A. The resulting factors can be truncated to achieve a certain target rank for the
decomposition. The explained procedure is implemented in Algorithm 7.

The generalised least squares problem in step 2 is easy to solve since Q†
S = Q⊤

S by
orthonormality of QS, and thus we can simply calculate X = Q⊤

S A. However, the cost
of this matrix multiplication is O (kmn), and it requires a further pass over the input
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Algorithm 7 Randomised SVD

Input: A ∈ Rm×n, sketch parameter k and target rank r

Output: Ur ∈ Rm×r, Σr ∈ Rr×r and Vr ∈ Rn×r

1: Use Algorithm 3 with sketch parameter k to obtain QS

2: Solve the generalised least squares problem A = QSX
3: Compute the SVD X = UXΣV⊤

4: Calculate U = QSUX

5: Extract the first r singular values and vectors to form Ur, Σr and Vr

matrix A. Tropp et al. [Tro+17] solve the least squares problem by sketching both A
and QS using a sketching matrix S2 such that X = (S2QS)† (S2A). This corresponds
to the application of Algorithm 5 to the generalised least squares problem QSX = A.
This can be faster, however, the primary gain is that it only requires access to the
sketches of A and QS which implies a significant saving in the space and memory
required.

In some cases, taking just a single or two power iterations when computing AS⊤

can lead to better accuracy [HMT11]. Calculating
(
AA⊤)qAS⊤ for a small inte-

ger q drives the lower singular values towards zero and reduces the weight of the
corresponding singular vectors relative to the dominant singular vectors. Note that(
AA⊤)qA has the same singular vectors as the input matrix A. The power iteration

is particularly useful if the focus is not on saving time but rather on space or storage.

Experimental results. There are several things to consider when assessing the
randomised SVD algorithm. The quality of approximation depends largely on the
further use of the decomposition. If the goal is a rank r approximation, we can cal-
culate spectral or Frobenius norm errors of the low-rank approximation relative to
the best rank r approximation as was done in the investigation of the underlying
k-dimensional basis approximation in Section 3.1.3. However, if the aim is approx-
imating the first r singular values of the input matrix, these error terms are not
particularly suitable. We choose to include the relative squared error between the
r estimated and true singular values but in some cases other error measures might
better reflect the approximation quality in respect to the desired goal.

Table 3.7 shows the relative low-rank approximation errors and relative error of
the singular values for instances of the polydecay and cond10 test matrices. The
target rank is set to r = 5 with a sketch size of k = 2r + 1 inspired by [Tro+17]
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Table 3.7: Experimental results for the randomised SVD for an input matrix of size
m = 210 and n = 212 with target rank r = 5 and using k = 2r + 1
rows in the sketching matrix. The gain factor is relative to Mat-
lab’s svds(A,r). The error terms are based on the residual matrix
A(ξ)

res = (A − UkΣkVk) / ∥A − Ar∥ξ and the relative error between the
r estimated and true singular values, σ̂ and σ.

polydecay cond10

Sketching method
∥∥A(2)

res
∥∥

2

∥∥A(F )
res
∥∥

F

∥σ̂−σ∥2
∥σ∥2

Gain
factor

∥∥A(2)
res
∥∥

2

∥∥A(F )
res
∥∥

F

∥σ̂−σ∥2
∥σ∥2

Gain
factor

Leverage score sampling 1.260 1.196 0.0500 0.20 1.073 1.042 0.188 0.64
Gaussian projection 1.238 1.182 0.0462 8.8 1.086 1.043 0.193 28
SRHT 1.266 1.193 0.0460 2.8 1.079 1.042 0.189 9.1
Sparse projection 1.283 1.187 0.0490 11 1.075 1.043 0.196 35

and the observations from Section 3.1.3. Due to the spectral properties of the test
types, we see that the obtained low-rank approximations are very good for the cond10
test matrix but quite inaccurate for the polydecay matrix type. On the other hand,
the singular values are more accurately approximated for this test type than for the
cond10 matrix. For the cond10 matrix, the largest singular value is estimated to be
around 0.87 with the true value being 1. The following estimated singular values are
also estimated well below the true values, leading to the large observed error.

The gain factor showed in Table 3.7 reveals the relative speed of the randomised
SVD method when compared to Matlab’s svds method for the mentioned test cases.
The svds function is significantly slower for the ill-conditioned test problem, leading
to the large differences in the gain factor achieved by the method across the two test
classes. An interesting observation is that the SRHT method is slower than Gaussian
projection, which is in contrast to previously observed results. The reason for this is
the implementation of the Hadamard transform, which transforms the entire input
matrix before the rows are sampled. In comparison, Gaussian projection involves only
a small matrix-matrix multiplication as only a very few rows are used.

As an example of singular value approximation, we return to Matlab’s MRI
sample image mri.tif from Section 3.1.3. Figure 3.8 shows the first r = 32 true
and estimated singular values, using sparse projection with k = 2r + 1 and k =
r + 5, respectively. This visually shows the effect of sampling additional columns in
the construction of the lower dimensional basis. Furthermore, the figure shows that
the estimated singular values follow the true ones very closely and exhibit the same
pattern.
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Figure 3.8: Estimation of the largest 32 singular values for Matlab’s mri.tif sam-
ple image using sparse projection. The relative norm error in the ap-
proximation is 0.72% using k = 2r + 1 and 2.7% using k = r + 5.

3.3 Real-world applications
The sketching algorithms developed for the basic building blocks and the generic
linear algebra problems were tested experimentally on mostly synthetic data sets
in constructed problems. We will now consider domain specific problems inspired
by real-world applications, where the error quantities can be assigned a physical
interpretation, allowing us to better assess how the loss of precision due to sketching
impacts the applicability of the methods.

We have chosen three applications that show three different advantages of sketch-
ing. In matrix completion, sketching can be used to lower the storage cost which in
some cases is the bottleneck of existing algorithms. A CUR matrix decomposition can
be obtained through use of sketching and can be used to increase the interpretability
of the individual decomposition factors. Finally, for the generalised Tikhonov regu-
larisation problem, sketching is used to speed up calculations which would otherwise
be very costly.

3.3.1 Matrix completion in recommender systems
In recommender systems, the aim is to predict the rating or preference a user would
assign an item based on other user-item ratings. Such systems are employed in many
different areas, a commonplace example being the movie recommendations offered by
companies like the online streaming service Netflix. Netflix attempts to recommend
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films to users based on their own rating history and the ratings of other users adjudged
to have a similar taste in movies. Each stored rating can be seen as an entry in a
user-movie data matrix D, such that Dij corresponds to the rating user i has given
movie j. This matrix is likely to be very sparse as most users have only rated a
fraction of all the available films. Predicting the values of the empty entries fills out
the matrix and is an example of matrix completion.

Naturally, recreating missing information relies on some underlying assumptions
about the correlation between the rating behaviour of different users. It is assumed
that a user’s preferences are based on a number of descriptive features or character-
istics and not on specific movies. These could for example be certain genres, actors
or languages. Mathematically, this can be viewed as an assumption that the full,
unknown user-movie matrix X has low rank [Yur+17].

Let E be the index set for the known entries of D and assume X has rank at most
r. The matrix completion problem can be stated as the constrained optimisation
problem

min
X

∑
(i,j)∈E

floss (Xij ; Dij) s.t. rank X ≤ r, (3.6)

where floss (Xij ; Dij) is an appropriate loss function measuring the cost of predicting
Xij when the true rating is Dij . The loss function could for example be the squared
loss or logistic function. Solving this problem is extremely expensive [Yur+17], and
we therefore consider the relaxed convex constrained optimisation problem

min
X

∑
(i,j)∈E

floss (Xij ; Dij) s.t. ∥X∥S1
≤ α, (3.7)

where α is a chosen parameter affecting the rank of the solution through the Schatten
1-norm ∥·∥S1

corresponding to the sum of the singular values.
We will use the matrix completion problem (3.7) as an example where sketching

can be used to gain a computational advantage. More specifically, we will focus on
lowering storage costs as recommender systems often deal with massive data sets
with large numbers of users and items. Sketching is imposed through a modification
of an existing matrix completion algorithm called the Conditional Gradient Method
(CGM). The resulting randomised CGM algorithm was introduced in [Yur+17] as
sketchyCGM. We will first explain the concepts of the standard CGM before formally
stating the sketchyCGM algorithm.

Let m be the number of users, n the number of items and d the number of ratings such
that d = |E|. We will use the notation of [Yur+17] and let A : Rm×n → Rd be the
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linear operator picking elements corresponding to the entries of the subset E such that,
AX is a vector with entries Xij for (i, j) ∈ E. Let A⋆ : Rd → Rm×n be its adjoint
operator where, for a vector z, A⋆z is the matrix obtained by replacing the known
values of D with the values in z. In particular, we have A⋆ (AX) =

∑
(i,j)∈E Xijeie⊤

j

where ei is the i-th unit vector. For simplicity we denote the objective function of
(3.7) by f (AX). The specific formulas used to compute the update direction, decision
variable update and stopping criterion of the CGM algorithm stem from [Jag13] and
are summarised in the following description of the CGM algorithm.

CGM algorithm. Initially create a feasible solution X0 = 0 ∈ Rm×n. For each
iteration t = 0, 1, 2, . . . , compute a direction for which the decision variable Xt

is to be updated. The update direction Ht is based on an approximation of
a singular value decomposition, for example the Matlab function svds, and
computed by

(ut, vt) = svds (A⋆ (∇f (AXt)) , 1) and Ht = −αutv⊤
t . (3.8)

The decision variable is updated such that Xt remains a feasible solution by

Xt+1 = (1 − ηt) Xt + ηtHt where ηt = 2
t + 2

. (3.9)

The previous steps are repeated until the following stopping criterion is satisfied

(AXt − AHt)⊤ ∇f (AXt) ≤ ε. (3.10)

The algorithm deserves some further explanation. The stated update minimises a
linearisation of the objective function by only performing a rank 1 update using Ht.
We refer to [Jag13] to see that Ht is in fact the minimiser of this linearisation. The
predefined step size parameter ηt is constructed such that we quickly move away from
the initial solution, and in later iterations, conservatively move towards an acceptable
solution. Alternatively, line-search methods can be used to determine an appropriate
step size in each iteration. The stopping criterion is a standard choice and can be used
for any convex optimisation problem [Jag13]. The intuition is that we should stop
when the update direction gives negligible improvements, that is when the minimiser
of the linearisation is not sufficiently different from previous iterations.

Our interest will be in the storage costs of this algorithm. Note that Xt ∈ Rm×n,
which is generally a dense matrix, is stored in every iteration. Thus the algorithm
has a storage cost of O(mn). In situations where m and n are large, this can be a
challenge.
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The idea of the SketchyCGM algorithm is to handle the values of X corresponding
to the known and unknown ratings separately. Equations (3.8) and (3.10) depend
only on AX and hence only on the entries of X given by the index set E, allowing us
to use a change of variables z = AX ∈ Rd. We perform the updates of z by applying
A to both sides of Equation (3.9), such that

zt+1 = AXt+1 = (1 − ηt) AXt + ηtAHt = (1 − ηt) zt + ηtAHt.

This expression also contains the vector AHt. Fortunately, we do not need to store
Ht as a matrix as we can simply store the defining vectors ut and vt. We can
compute A

(
−αutv⊤

t

)
efficiently by simple multiplication of the relevant entries in

ut and vt. The updates of Equation (3.9) also affect the estimation of the unknown
ratings. These are handled by initially computing two smaller randomised sketches
and performing the updates on these rather than the large matrix X.

To verify that we can use the sketches as a proxy for updating the matrix X,
consider the following: Given some matrix At in iteration t, let Yt = AtS⊤

1 and
Wt = S2At, where S1 and S2 are sketching matrices. Imagine now that At was
updated by a matrix H such that At+1 = θAt + ηH, where θ and η are scalars.
Recomputing the sketches of At+1 would result in

Yt+1 = At+1S⊤
1 = (θAt + ηH) S⊤

1 = θAtS⊤
1 + ηHS⊤

1 = θYt + ηHS⊤
1 ,

Wt+1 = S2At+1 = S2 (θAt + ηH) = θS2At + ηS2H = θWt + ηS2H,

which corresponds to updating the sketches directly with HS⊤
1 and HS2, respectively.

When the sketchyCGM stopping criterion is satisfied, the algorithm computes a low-
rank approximation to the full size matrix based on the updated sketches.

The sketchyCGM algorithm is shown in Algorithm 8. The vector of ratings d taken
as input corresponds to AD and is used to define the function f , while the index set E

defines the operations with functions A and A⋆. The algorithm uses scaled Gaussian
sketching matrices and parameters k = 2r + 1 and l = 4r + 3 since this is found to
provide a good trade-off between approximation quality and storage savings [Tro+17].
Note that the steps 13-16 closely resemble the procedure of Algorithm 7. A minor
difference is the calculation of the orthonormal matrix using Matlab’s orth function,
which is slower than the function qr but automatically truncates the basis to adjust
for low rank in the input matrix.

By inspection of the algorithm, we find that most calculations are kept on vector
form and the largest stored matrices are W ∈ Rl×n and Ψ ∈ Rl×m. Furthermore, we
also need to store a vector of length d, containing the known entries and as k and l
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Algorithm 8 sketchyCGM algorithm

Input: Ratings d ∈ Rd, index set E, number of users m and movies n, target rank r,
parameter α and optimality threshold ε

Output: U ∈ Rm×r, Σ ∈ Rr×r and V ∈ Rn×r

1: k = 2r + 1, l = 4r + 3 ▷ Initialise sketches
2: Ω = randn (n, k), Ψ = randn (l, m)
3: Y = 0 ∈ Rm×k, W = 0 ∈ Rl×n, z = 0 ∈ Rd

4: for t = 0, 1, 2, . . . do
5: (u, v) = svds (A⋆ (∇f (z)) , 1) ▷ Compute update direction
6: h = A

(
−αuv⊤)

7: if (z − h)⊤ ∇f (z) ≤ ε then break; end if ▷ Check convergence
8: η = 2

t+2

9: z = (1 − η) z + ηh ▷ Update sketches
10: Y = (1 − η) Y − η αu

(
v⊤Ω

)
11: W = (1 − η) W − η α (Ψu) v⊤

12: end for
13: Q = orth (Y) ▷ Reconstruct low-rank approximation
14: B = (ΨQ) \W
15: [UB, Σ, V] = svds (B, r)
16: U = QUB

depend linearly on r, we get total storage cost of O (d + r(m + n)). Observe that the
storage savings of the sketchyCGM algorithm depend heavily on the target rank of X
as this controls the sketching parameters k and l. When the true rank of X can be
assumed small, excellent approximations can be achieved sacrificing little storage.

Even though the sketchyCGM algorithm has been motivated by the matrix comple-
tion problem, it should be noted that the method has a much broader range of usage.
In fact, it can be used to solve any convex constrained optimisation problem as long
as the objective function is smooth and the constraint a Schatten 1-norm constraint
[Yur+17].

Experimental results. In order to test the performance of the sketchyCGM algo-
rithm, we consider the benchmark MovieLens 100K data set [HK16]. This data set
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contains 100,000 ratings of 9066 movies by 671 unique users on a scale of 1 to 5 with
increments of 0.5. This means that most users have lots of movies left to rate and it
is these ratings we will seek to predict. In order to measure the quality of the matrix
completion algorithm, the data set is split in two groups, one of which is used to train
the algorithm while the other is used for evaluation. The split is made such that we
train on 90% of the data and test on the remaining 10%.

To evaluate the algorithm we compute the test error using the squared loss func-
tion, resulting in the objective function∑

(i,j)∈T

floss (Xij) =
∑

(i,j)∈T

1
2 |T |

(Xij − Dij)2
,

where T is the index set for the entries in the test set.
Algorithm 8 takes as input the parameter α which makes sure that the minimiser

of problem (3.7) has low rank. Choosing an appropriate value for this parameter is
found to be quite important for both the sketchyCGM and regular CGM algorithm.
We therefore perform a 2-fold cross-validation in order to find the optimal α. In the
cross-validation, we evaluate the test error of the CGM algorithm after 1000 iterations
and choose the value of α giving the lowest test error. For the squared loss function,
we found α = 7500 to be optimal when sweeping values of α from 3000 to 10000 in
steps of 500.

Figure 3.9 shows the test error obtained from both algorithms using the optimal α
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Figure 3.9: sketchyCGM and CGM test error on the MovieLens 100K data set with
α = 7500 and for three different target ranks.
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parameter as a function of the number of CGM iterations. The sketchyCGM algorithm
was run with three different target ranks: r = 10, r = 25 and r = 50.

The figure clearly shows that increasing the target rank also increases the quality
of the approximation. With a target rank of r = 50, we find that the accuracy of
the sketchyCGM algorithm is similar to that of the regular CGM algorithm while it
only uses half the storage. It is worth noting that the largest matrix stored is three
times smaller than X. For r = 10 we use only an eighth of the total storage, and the
largest matrix is more than 15 times smaller than X.

3.3.2 CUR matrix decomposition
A natural way to encode information about m objects described by n features is us-
ing an m × n data matrix A. An initial step for further investigation is often to
construct a compressed representation of A that is easier to analyse, which is com-
monly achieved using a singular value decomposition [MD09]. In cases where the data
matrix A is expected to have low rank, the SVD can be truncated to contain only
the information pertaining to the r first singular values and provably provides the
best rank r approximation to A. This set of orthogonal basis vectors accounts for as
much of the variance in the data as possible which is a very useful property exploited
in for example explorative data analysis, feature extraction, classification and data
visualisation [Bis06]. A related and frequently applied method is the Principal Com-
ponent Analysis (PCA), where the first r principal directions are the eigenvectors
corresponding to the r largest eigenvalues of the data covariance matrix.

One of the disadvantages of using the SVD to generate a basis becomes appar-
ent when trying to analyse and understand the underlying physical factors of the
basis vectors. The singular vectors are linear combinations of up to all the objects
or features and thereby mathematical abstractions rather than explanatory variables
with domain specific interpretations [MD09]. This section introduces an alternative
matrix factorisation method called the CUR matrix decomposition. Here we decom-
pose A = CUR, where C and R are matrices consisting of a small number of actual
columns and rows of the data matrix, respectively. The matrices C and R can be
seen as collections of basis vectors and allow for direct interpretation in the context
of the data. The structure of the CUR matrix decomposition also entails other advan-
tages, such as the preservation of input sparsity in C and R, which can be a helpful
property when it comes to ease of interpretation but certainly also in terms of storage
costs. Note that the name CUR decomposition can be misleading, since the matrix
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product CUR in most cases will provide a low-rank approximation of A and not an
exact decomposition.

Focusing initially on the matrix C, the aim is to choose a small subset of columns
from the m × n matrix A that approximately span the entire column space of A. For
a suitable matrix norm, we can view this as the minimisation problem

min
C,X

∥A − CX∥ ,

which is known as the Column Subset Selection Problem (CSSP). The CSSP is prov-
ably NP-complete [Shi17], and a combinatorial approach where all possible subsets
of nc columns are generated takes O (nnc) time [BMD09].

The complexity of the problem has inspired randomised approaches where columns
are sampled with respect to some carefully chosen probability distribution, and this
is were sketching makes its entrance. In [DK03], Drineas and Kannan provided an
early algorithm for CUR decomposition where the probability distribution was based
on the Euclidean lengths of the matrix columns and rows leading to additive error
approximation guarantees. By using probabilities proportional to the leverage scores
of the input matrix, relative error guarantees were achieved in [DMM08]. As described
in Section 3.2.1, the leverage scores of A indicate to which part of the m-dimensional
column space the singular value information of A is being dispersed. Similarly, the
leverage scores of A⊤ describe the influence of the columns of A on the best low-rank
approximation. The main result of [DMM08] is the following.

Theorem 15 ([DMM08, Theorem 2]). Given a matrix A ∈ Rm×n and an inte-
ger r ≪ min {m, n}, there exists a randomised algorithm choosing in expectation
nc = O

(
r ln r ln (1/δ) ε−2) columns and nr = O

(
nc ln nc ln (1/δ) ε−2) rows of A to

construct C and R, respectively, such that

∥A − CUR∥F ≤ (1 + ε) ∥A − Ar∥F

for a suitable matrix U, with probability at least 1 − δ. Here, Ar is the best rank r

approximation to A.

Our implementation of a CUR decomposition algorithm is based on a slightly
weaker result discussed in a later article by Mahoney [MD09]. Here, an algorithm
is presented for which the guarantee of Theorem 15 holds with a factor of (2 + ε)
instead of the stated (1 + ε). We have chosen to implement this version of a CUR
decomposition algorithm as it is computationally simpler and because the matrices C
and R consist of actual columns and rows of A, unlike the algorithm corresponding
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to Theorem 15. This gives us an uncomplicated algorithm with results that are easy
to interpret and understand in the original context. Furthermore, it should be noted
that the speed and error guarantees of our implementation do not compare with
recent algorithms, such as the one presented in [BW17] where the dependence of the
number of rows and columns on the error parameter ε is optimal.

The implemented CUR matrix decomposition algorithm is seen in Algorithm 9.
Note that the number of rows and columns are chosen in expectation, and the dimen-
sion of output matrices are therefore not guaranteed to match the input choices nc

and nr. The outputs specified in the algorithm reflect the expected dimensions of the
decomposition factors

Algorithm 9 CUR matrix decomposition

Input: A ∈ Rm×n, rank parameter r and number of columns nc and rows nr to be
sampled in expectation

Output: C ∈ Rm×nc , U ∈ Rnc×nr and R ∈ Rnr×n

1: Compute a rank r SVD of A to obtain A = UΣV⊤

2: For j = 1, . . . , n and i = 1, . . . , m, compute the leverage scores

qc
j = 1

r

∥∥V(j)
∥∥2

2 and qr
i = 1

r

∥∥U(i)
∥∥2

2

3: Construct C and R by keeping the j-th column of A, with probability
min

(
1, ncqc

j

)
, and i-th row of A, with probability min (1, nrqr

i )
4: Calculate U = C†AR†

In Algorithm 9, sketching primarily appears in the sampling of the carefully cho-
sen columns and rows of the input matrix. This means that the sketching methods
based on projection are not applicable. The leverage score sampling method is not
used directly for two reasons. First of all, we assume that the input matrix is approx-
imately low-rank, and we can therefore approximate an orthonormal basis using only
few singular vectors. Secondly, a singular value decomposition is efficient when the
leverage scores for both A and A⊤ are required, since we obtain both the left and
right singular vectors of the matrix. In regards to the complexity of the algorithm,
the computational bottleneck is in the first step where a singular value decomposition
is performed. As a way of speeding up the CUR decomposition, one could approxi-
mate the leverage scores for example by direct application of the randomised SVD of
Algorithm 7.
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Experimental results. The main goal of this section is to test the advantage
gained in terms of interpretability when considering factors of a CUR decomposition
rather than a regular SVD or PCA. For the interpretation of the CUR decomposition
to be meaningful, the product of the factors should provide a good approximation
of the original matrix relative to the best rank r approximation of that matrix. We
therefore consider error measures based on the spectral and Frobenius norm of the
residual matrix

A(ξ)
res = A − CUR

∥A − Ar∥ξ

for ξ ∈ {2, F}.

As the time complexity of Algorithm 9 is not our primary focus, the computation
times are not included in the reported results.

We first analyse the performance of Algorithm 9 with respect to low rank approx-
imation for synthetic data sets where an assumption of low rank is reasonable. Table
3.8 displays some of our findings for different numbers of rows and columns included
in the decomposition.

Table 3.8 shows that it is possible to obtain approximations that are similar in
accuracy to the best rank r approximation using a decomposition consisting of a
relatively small number of actual columns and rows. Note that choosing the input
parameters nc and nr such that the rank of the decomposition is somewhat larger than
r, improves the approximation quality significantly. In fact, a CUR decomposition
with 4r + 1 columns and rows approximates the polydecay matrix better than the
best rank r approximation for the chosen problem size.

To investigate the interpretability of the CUR matrix decomposition compared to

Table 3.8: Experimental results for CUR matrix decomposition with an input ma-
trix of size m = n = 211, and target rank r = 5. The parameters nc

and nr are the expected number of sampled columns and rows used for
constructing C and R, respectively. The error terms are based on the
residual matrix A(ξ)

res = (A − CUR) / ∥A − Ak∥ξ.

polydecay cond10

nc nr

∥∥A(2)
res
∥∥

2

∥∥A(F )
res
∥∥

F

∥∥A(2)
res
∥∥

2

∥∥A(F )
res
∥∥

F

r + 1 r + 1 2.2825 1.6766 1.0584 1.0548
2r + 1 2r + 1 1.2617 1.2346 1.0568 1.0476
4r + 1 2r + 1 1.1891 1.1248 1.0518 1.0391
4r + 1 4r + 1 0.7579 0.9369 1.0378 1.0239



3.3 Real-world applications 61

a PCA, consider the spambase data set as introduced in Section 3.2.1. The rows of
the data matrix A represent the collection of emails, the columns a set of recorded
words and each matrix entry the frequency of the word in the given email. It is
tempting to seek explanations or causalities in terms of the domain from which the
data is drawn when computing a decomposition, such as relating certain words to
a specific structure or pattern in the set of emails. As will become apparent, the
CUR decomposition is a handy tool for exploring connections in the data set and
suggesting interesting relationships, something which is hard to extract from a PCA
as mentioned earlier.

We initially compute a PCA of the matrix A, obtaining a set of eigenvalues and
corresponding principal directions that constitute a transformation of A to a basis
maximising the variance of the data. The top plot in Figure 3.10 shows the first five
principal directions. Since these are made up by linear combinations of the features,
we cannot relate the maximisation of variance with specific word frequencies.

A CUR decomposition of A is now computed. As the columns contained in C
can be used as basis vectors to approximate the entire data matrix, they must also
describe a significant part of the variance in the data. The selection of columns is
based on the column leverage scores shown in the bottom plot of Figure 3.10. These
provide an overview of columns expected to make up the matrix C.

The shown leverage scores indicate that five features are far more influential than
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Figure 3.10: Top plot: First 5 principal directions of the spambase data set with
m = 4437 observations and n = 48 features. Bottom plot: Leverage
scores of the n = 48 features with the top five labelled explicitly.
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the others. These features correspond directly to the words “address”, “3d”, “you”,
“hp” and “george”. The first principal direction may also have a seemingly significant
spike for the word “george”, but the importance of all the smaller values that are
spread out across the rest of the words in defining the principal direction cannot be
immediately determined.

To understand why “george” explains some of the variance in the data, we must
consider the context of the data set and how it was collected. The spambase data set
is based on a donation of emails from George Forman, a former analyst at Hewlett-
Packard (HP) Labs, and the considered emails include both non-spam emails, such as
personal correspondence and filed work, and spam emails such as advertisements and
other junk mail [DK17]. Coupling this background information with the observed
leverage scores suggests that the words “george” and “hp” might be indicators of
personal, non-spam emails.

As we are in possession of the class labels for each data point, we can plot the
frequencies of the word “george” and “hp” based on the classes spam and non-spam
as displayed in Figure 3.11. In total, there are 1798 spam emails and 2639 non-spam
emails. We can also calculate the information gain statistic for each feature i as
|fs

i − fn
i |, where fs

i and fn
i are the mean frequencies of word i in emails of class

spam and non-spam, respectively. This supervised metric measures the discrepancy
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Figure 3.11: Top plots: the frequency of the words “george” and “hp” for each of
the 4437 emails separated into spam and non-spam classes. Bottom
plot: information gain for each of the 48 feature words with the top
four labelled explicitly.
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between the word frequencies of each class and is shown for the 48 words in Figure
3.11. The information gain is not normalised according to the number of emails in
which each word appears, and hence words that are rarely used in the emails are
unlikely to have a large information gain, even if they are used significantly more in
a certain class of emails.

The information gain for “george”, “hp” and “you” match the high leverage scores
of Figure 3.10, whereas “address” and “3d” have low information gains. “george” and
“hp” both appear significantly more in non-spam emails while “you” is found more
frequently in spam emails. The word “3d” only appears in 47 mails in total, with only
8 of these in non-spam emails, while “address” is found in 625 spam emails compared
to 273 non-spam emails. The low information gain of “3d” is largely due to the rarity
of the word, while the low information gain of “address” suggests that this term is
perhaps not indicative of spam or non-spam emails, but rather reflects some other
underlying properties of the data set.

3.3.3 Optimisation with generalised Tikhonov
regularisation

The Tikhonov regularised least squares problem appears in many fields of applied
mathematics under many different names: in statistics it is usually referred to as
ridge or prior regression while in machine learning it often features as weight decay
or parameter shrinkage. For an m × n model matrix A and response vector b, the
simplest form of the Tikhonov regularised problem is

min
x

∥Ax − b∥2
2 + λ2 ∥x∥2

2 . (3.11)

This is an ordinary least squares problem augmented with a simple regularisation
term to avoid overfitting the solution to the data observations by penalising solutions
with large norms. This is especially useful in ill-conditioned inverse problems where
the solution is very sensitive to errors in the data. If a priori assumptions about
the noise in the measurements b or about the solution x are available, these can
be incorporated in the least squares problem through the corresponding covariance
matrices. This leads to the generalised Tikhonov regularisation problem

min
x

∥Ax − b∥2
Σ−1

b
+ ∥x∥2

Σ−1
x

, (3.12)

where Σb and Σx are the covariance matrices of b and x, respectively. This cor-
responds to a priori assumptions that x ∼ N (0, Σx) and b ∼ N (Ax, Σb), with b
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conditioned on A and x. The optimal solution to the problem is given by the closed
formula [Han98, p. 101]

x̂ =
(
A⊤Σ−1

b A + Σ−1
x
)−1 A⊤Σ−1

b b. (3.13)

Calculating this solution involves computing the inverses of the m × m matrix Σb

and the n × n matrices Σx and
(
A⊤Σ−1

b A + Σ−1
x
)
, as well as performing the matrix-

matrix multiplications in A⊤Σ−1
b A. This makes the calculation very expensive when

m and n are large.
A clever way of avoiding the computation of Σ−1

x is to use the Woodbury matrix
inversion lemma3 to rewrite(

A⊤Σ−1
b A + Σ−1

x
)−1 = Σx − ΣxA⊤ (Σb + AΣxA⊤)−1 AΣx. (3.14)

However, bypassing the n × n inverse comes at the expense of a new m × m inverse.
The gain or loss of this is obviously dependent on the problem size.

Now assume the symmetric covariance matrix Σx is well-approximated by a matrix
of rank r ≪ n, i.e. that Σx ≈ UU⊤ for some U ∈ Rn×r. This implies that Σx is
close to rank-deficient, and hence the calculation of the inverse Σx is prone to large
numerical errors. If Σx is truly rank-deficient, then problem (3.12) is not well-defined.
Consider instead the change of variable x = Uy, where y ∈ Rr and y ∼ N (0, I).
First, we observe that the properties of x are indeed captured by this change of
variable since

E [x] = E [Uy] = UE [y] = 0

E
[
xx⊤] = E

[
Uyy⊤U⊤] = UE

[
yy⊤]U⊤ = UU⊤.

Using this, we can transform problem (3.12) to a problem in the variable y as

min
y

∥AUy − b∥2
Σ−1

b
+ ∥y∥2

, (3.15)

and then recover an approximate solution to (3.12) by x̂ = Uŷ, where ŷ is the
minimiser of (3.15). The main advantage of this approach is identified by looking at
the closed form solution formula

ŷ =
(
U⊤A⊤Σ−1

b AU + I
)−1 A⊤Σ−1

b b. (3.16)
3For conforming matrices X, Y, V and Z, the Woodbury matrix identity states that

(X + VYZ)−1 = X−1 − X−1V
(

Y−1 + ZX−1V
)−1

ZX−1.
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Besides the necessary inversion of Σb, the expression only contains an r × r inverse
and matrix multiplications between matrices, with at least one dimension of size r.
This represents a significant reduction in computational complexity.

Naturally, for this method to provide decent results, the covariance matrix Σx

should be well-approximated by a low-rank matrix. In addition, for the method to be
advantageous in practice, we need a fast way of computing a suitable decomposition
of Σx. Here, we can utilise the randomised singular value decomposition introduced
in Section 3.2.3 for a fast approximation of the singular values and vectors, which can
then be combined to form the matrix U used above.

Establishing exact expressions for the covariance matrices Σb and Σx requires
very intimate knowledge of the problem, variables and noise, and these matrices are
therefore often estimated in some way. Given a number of samples from the considered
distributions, the sample covariance matrix can be calculated as in the example of
Section 3.1.1. If X is a matrix with N columns each corresponding to a data point,
the unbiased sample covariance matrix is given by 1

N−1
(
X − X̄

) (
X − X̄

)⊤, where
X̄ contains the sample means. The sample covariance matrix is sensitive to outliers
and a lot of samples can be necessary to obtain a good approximation of the true
underlying covariance matrix. Information about the underlying distribution can be
used to ensure that the estimated covariance matrix reflects important properties of
this distribution. This could for example be sparsity, as considered in [VKO00], or a
low-rank assumption as discussed here.

Algorithm 10 shows how to approximate a solution to (3.12) using sketching as a
computational tool. If the true covariance matrix is not provided, the approximate
matrix multiplication of Algorithm 1 is applied to estimate the sample covariance
matrix. The matrix U is obtained through use of the randomised singular value
decomposition of Algorithm 7.

Experimental results. To investigate the computational advantages of the de-
scribed sketching method in a practical setting, we construct a synthetic example.

Initially, we form a random model matrix A ∈ Rm×n with each entry drawn from
the standard normal distribution. We then generate a covariance matrix Σx using
the locally periodic kernel function introduced in Section 3.1.1, again with parameters
α = 1 and Tperiod = 1

5 . Such a choice of Σx is often numerically rank-deficient, which
poses a problem for the formulation (3.12). To avoid large numerical errors when
computing the inverse of Σx, we adjust the covariance matrix by adding small values
of γ to the diagonal, and use the matrix Σx + γI as the underlying covariance matrix.



66 3 Sketching in practice

Algorithm 10 Generalised Tikhonov regularisation

Input: A ∈ Rm×n, b ∈ Rm, Σb ∈ Rm×m, covariance matrix Σx ∈ Rn×n or set of
samples X ∈ Rn×N , sketching parameters kmult and krsvd, and target rank r

Output: Approximate solution x̂ to problem (3.12)
1: if covariance matrix not provided then
2: Estimate the sample covariance Σx using Algorithm 1 with parameter kmult

3: end if
4: Use Algorithm 7 with krsvd to approximate Σx ≈ UrDrV⊤

r

5: Form U = UrD1/2
r , where

(
D1/2

r

)
ij

=
√

(Dr)ij

6: Calculate ŷ using Equation (3.16) and compute x̂ = Uŷ

This simply corresponds to added penalisation of large values in x.
The noise covariance matrix is chosen as a scaled unit matrix such that Σb = σ2

bI,
corresponding to an assumption of the noise being uncorrelated and sharing the stan-
dard deviation σb. A target solution vector xtarget is then drawn from the multivariate
normal distribution N (0, Σx) and a measurement vector b is drawn from N (Ax, Σb).
We will assume that the covariance matrix Σx is not known explicitly, but that we
are in possession of N samples from the distribution N (0, Σx). The samples are
collected in the matrix X = [x1, x2, . . . , xN ], which is used to calculate the sample
covariance matrix Σ̂x.

The problem is now to approximate xtarget given A, b, σb and X. We calculate
the following five approximate solutions:

xdirect is as in Equation (3.13) with the sample covariance matrix Σ̂x instead of the
true covariance matrix.

xwoodbury is obtained by inserting Equation (3.14) in Equation (3.13), again using
the sample covariance matrix.

xtikhonov is the solution to the simple Tikhonov regularised problem (3.11). Note that
this method uses a regularisation parameter λ instead of a covariance matrix.
For this problem, λ = 1 appears to be an appropriate choice.

xsvd is based on the assumption of Σx having low rank, with the solution calculated
as in Equation (3.16) but with the decomposition Σ̂x = UU⊤ found using
Matlab’s svd function.
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xsketch corresponds to the use of Algorithm 10 with approximate matrix multiplica-
tion using the sketch parameter kmult = n, and a randomised singular value
decomposition with parameter krsvd = 2r + 1. In both of these cases, a sparse
projection matrix is used to construct the sketches.

Table 3.9 shows the results obtained for the special case where the model problem is of
size m = 6000 and n = 2000. We assume that we are given N = 4n samples and that
the standard deviation of the measurements is σb = 0.1. As previously mentioned, Σx

is numerically rank-deficient with only the largest 104 singular values above 2 · 10−10,
causing Matlab’s rank function to claim that the rank is 104. Consequently, we set
our rank regularisation parameter γ = 10−10 in order to avoid singularity issues. This
also motivates setting the rank parameter used in both xsvd and xsketch to r = 100,
as this should be sufficient for a good low-rank approximation.

Two sample covariance matrices are constructed: Σ̂x is the actual sample covari-
ance matrix, while Σ̂S is a sketched version, used in the computation of xsketch. With
N = 4n, we find that the relative spectral norm error between Σ̂x and the underlying
true covariance matrix, Σx, is 0.0265. Similarly, the error between Σ̂S and Σx is
0.0548. The relative error between Σ̂S and Σ̂x is 0.0362. These errors are similar in
size to those obtained in Section 3.1.1, and the performance of the methods will help
put the magnitude of the approximation errors in perspective.

The results of Table 3.9 show that all but the simple Tikhonov regularised solution
yield low solution and relative errors, but the objective values and gain factors reflect
significant differences in the approaches.

The solution xwoodbury is theoretically the same solution as xdirect, however, we

Table 3.9: Generalised Tikhonov regularisation problem for a model of size m =
6000 and n = 2000, and with parameters σb = 0.1 and r = 100. The
objective value is given by the term minimised in (3.12) using the true
covariance matrix, while the solution error and relative error are with
respect to the target solution xtarget, used to generate b.

Solution type Objective value Solution error Relative error Gain factor
xdirect 5975.62 1.03 · 10−3 2.33 · 10−4 1
xwoodbury 5982.55 1.03 · 10−3 2.33 · 10−4 0.26
xtikhonov - 6.75 · 10−2 1.53 · 10−3 1.78
xsvd 5957.56 1.03 · 10−3 2.33 · 10−4 0.71
xsketch 6040.40 1.03 · 10−3 2.33 · 10−4 5.81
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see that this is not quite the case in practice, with the objective value slightly larger
for the xwoodbury solution. This difference is due to issues with numerical cancel-
lation and accuracy especially present when σb is small. To see this, consider the
term

(
Σb + AΣxA⊤)−1. When σb is small and A a tall matrix, this inversion will

be numerically rank-deficient and thus numerical precision problems arise. Further-
more, we note that xwoodbury is slower to compute, since the required m × m inverse
dominates the computation time, when m is significantly larger than n.

The relatively large error of xtikhonov shows that neglecting the information of
the underlying covariance matrix Σx leads to poorer performance. Since xtikhonov is
the solution to problem (3.11) and not (3.12), the objective value is not stated. The
method is faster than the direct method, since the inverse of Σx is not calculated
and hence for problems where the covariance of x is not as important, the simple
Tikhonov regularised solution might be a suitable alternative.

Interestingly, the low-rank approximation of the sample covariance matrix, as
used in the solution xsvd, leads to a lower objective value than the direct solution
method. This is in part due to the fact that the underlying covariance matrix is
approximately of rank r = 100, and hence in the calculation of xsvd, we have incor-
porated knowledge of the true covariance matrix instead of relying entirely on the
sample covariance. Despite the savings obtained in the matrix multiplications and
smaller inverses, the method is slightly slower than the direct method due to the
singular value decomposition of Σ̂x.

The solution xsketch is a faster alternative, as it uses sketching to speed up both
the calculation of the sample covariance matrix and the singular value decomposition.
In fact, Table 3.9 shows that it is almost 6 times faster than the direct method. The
solution error and relative error are on par with the methods that perform best, even
though the objective value is slightly higher. Since the sample covariance matrix is al-
ready an estimate of the true covariance matrix, approximating the sample covariance
is not expected to have much impact on the solution quality, which is also reflected
by obtained results.

If a covariance matrix is provided when using Algorithm 10, the gain factor in-
creases even further, since the gain factor of the randomised SVD of Algorithm 7
is much higher than the gain factor of the approximate matrix multiplication in Al-
gorithm 1. In the above example, a gain factor of around ten is obtained, with an
error almost identical to that of the solution xsvd based on the true singular value
decomposition of Σ̂x.



CHAPTER 4
Assessment of

applicability
The applications of Chapter 3 showed how sketching can be used in various situa-
tions from basic linear algebra operations to more advanced optimisation problems.
In the current chapter, we assess the use of sketching more generally by extracting
and analysing the key findings of the previous sections. First, we discuss the compu-
tational aspects involved in implementing sketching and relevant to the experiments
performed in this report. We then focus on the accessibility of sketching as a re-
source across different areas of applied mathematics and computer science. Finally,
we consider additional applications of sketching showing the potential advantages and
pitfalls of the method and suggest topics for further research.

4.1 Computational aspects
Chapter 3 showed that sketching can be a useful resource leading to notable advan-
tages like reduced complexity, lower storage costs and increased interpretability as
illustrated by the reported experiments. However, it is also clear that there are many
computational aspects to consider when implementing sketching and analysing the
benefits of its use. The quality of solutions, efficiency of algorithms and ease of im-
plementation all play a role in determining the performance of sketching in a given
problem setting.

The choice of the sketching parameter k controls both the quality of approxi-
mation and the amount of resources used in the computation. As the MRI image
reconstruction problem of Section 3.1.3 and approximation of leverage scores in Sec-
tion 3.2.1 illustrate, when k is large we obtain good approximations but save little
in terms of computation time, while when k is small, we achieve significant savings
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in time or storage at the price of poorer approximation quality. The sketching pa-
rameter therefore represents a trade-off between approximation quality and potential
computational advantages. For a problem involving a matrix of size m × n, we found
that setting k proportional to the lower dimension n with a small proportionality
constant often seemed to offer a reasonable balance between the two properties for
all of the sketching methods.

Comparing with the bounds summarised in Section 2.2, this is an important ob-
servation, as this choice of k rarely suffices to theoretically ensure any guarantees for
the quality of approximation. This also means that one needs to use sketching with
caution and possibly take measures to validate results such as repeated trials and
using knowledge and experience within the field of application.

Our experiments show that the performance of the various sketching methods depends
heavily on the problem at hand. Here, performance is referred to as the approximation
quality together with the respective gain factor. Often the quality of approximation
was comparable between sketching methods but the gain factor very different. Gen-
erally, Gaussian projection was slow since the construction of the sketch is based on
a large matrix-matrix multiplication. Similarly, the leverage score sampling method
rarely provided significant savings in time despite the approximation rather than
exact computation of the leverage scores. The subsampled randomised Hadamard
transform often achieved decent gain factors, whilst we found the sparse projection
method to be fastest in almost any application. Theoretically, this method needs
a larger k than its counterparts to guarantee a similar approximation error but in
practice this seemed negligible, and the fact that it can be applied in input sparsity
is also a significant advantage.

The leverage score sampling method differs from the other presented sketching
methods in that it is both a sampling method and input-dependent. Basing the
sampling probabilities on leverage scores leads to many nice theoretical properties
as described in Section 2.1.1, but approximating these in a fast manner is not easily
done for all input sizes. When the input matrix is almost square, using Algorithm 4 is
only slightly faster than calculating the exact leverage scores as reflected by the small
gain factor obtained in the experiments for approximating a k-dimensional basis of
a 210 × 212 matrix in Section 3.1.3. One might therefore consider other sampling
probabilities that do not require a complete or approximate QR factorisation of the
input matrix. Probabilities based on the Euclidean length of rows or columns have
been used previously, for example in [DKM06] for approximate matrix multiplica-
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tion, an application for which the leverage score sampling method did not provide a
computational advantage in Section 3.1.1.

The simplest sampling scheme is to select rows or columns according to a uniform
distribution. This is no longer an importance sampling as the method is now indepen-
dent of the input matrix and does not rely on any underlying assumptions. Naturally,
sampling uniformly is very fast and can in a number of cases yield decent results as
the motivating example in Chapter 1 demonstrates. In many of the synthetic experi-
ments considered throughout Chapter 3, a uniform sampling sketching method gave
similar accuracy results as the four tested sketching methods.

It is important to stress, however, that simply sampling uniformly can fail heav-
ily for certain inputs. In similar fashion to Chapter 1, [AMT10] demonstrated the
potential pitfalls for a matrix with one very large leverage score when an orthonor-
malising transformation matrix is created through uniform sampling and used as a
preconditioner in the lsqr function, as in Algorithm 6. The system involving the
sketched preconditioner becomes so ill-conditioned that lsqr fails to run. The lack of
theoretical guarantees attainable for uniform sampling as a sketching method is the
reason for not including the method explicitly in our experiments.

Throughout the analysis, we have used the number of flops to quantify the speed of
the numerical algorithms. This often serves as a good starting point for comparisons
with respect to computational complexity, however, it can also be misleading and
should in some cases be combined with other performance metrics. In the following,
we present two cases where the number of flops does not fully reflect the complexity
and advantages of the introduced algorithms.

First, some algorithms admit for better exploitation of computer architecture than
others. Consider for example algorithms based on the Gaussian projection method.
For an m×n matrix A and k×m matrix S, constructing the sketch SA is an operation
of complexity O(kmn). However, since the i-th column of the sketch depends only on
the i-th column of A, we can split the calculations across multiple processors. Each
processor is assigned a number of columns of A and executes the sketching operation
for these, after which the outputs from all the used processors are collected to form
SA. The processors do not necessarily need to access the fully formed sketching
matrix S, but can be passed a suitable seed for a random number generator so that
a copy of S can be created locally.

Though far from being a unique property of randomised algorithms, it is a general
feature of such. In [HMT11], the authors go so far as to call randomised algorithms
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“embarrassingly parallelisable”. Parallelisation is often performed implicitly in Mat-
lab, e.g. in the standard matrix multiplication operation which is based on lapack’s
level 3 Basic Linear Algebra Subprograms (BLAS). Our implementations are not op-
timised to take advantage of parallel computing in all aspects, making it hard to
compare the flops and computation time with that of built-in Matlab functions.

Secondly, in problems where the data does not fit in fast memory, the computa-
tional costs are often dominated by the passes over the data. Pass-efficiency, which
is a measure of the number of times data passes through memory, can therefore also
be an important metric when assessing performance of algorithms. As an example
where the randomised algorithms can be used to optimise pass-efficiency, consider the
randomised SVD in Algorithm 7. The classical SVD requires a number of passes over
the data matrix A corresponding to the rank of A [HMT11], whereas the randomised
SVD requires only two passes over the data. The algorithm can even be modified
to yield a single-pass algorithm as described in Section 3.2.3, which simply involves
a second sketch of the input matrix and approximately solving the generalised least
squares problem of step 2 in Algorithm 7. Further details can be found in [Tro+17].

The ideas of the pass-efficient algorithms can also be extended to situations where
the data is revealed column by column or in a stream of updates, as is the case in
the sketchyCGM algorithm of Section 3.3.1. Here the sketches are updated in each
iteration according to the calculated update direction. Sketching can therefore also
allow us to perform computations on data that would otherwise be unmanageable or
inconvenient to process.

The benefits and optimisation possibilities of sketching algorithms depend on the
given situation, and the experiments presented in this report provide only a basic
idea of the performance achievable in a general setting. However, even these simplistic
implementations show how sketching algorithms can beat existing methods in certain
computational aspects and the examples should serve as inspiration to what sketching
can further achieve and provide motivation to develop the algorithms further.

We wish to emphasise that our Matlab implementations of the sketching ma-
trices and sketching algorithms are in most cases very simple. As described in the
following section, the simplicity of the basic algorithms makes sketching accessible
as a computational resource and the algorithms can then be extended, modified or
improved to work optimally in a given setting. This also means that the gain factors
presented in this report are merely indicators of the results that can be achieved.

The following overview indicates how the algorithms from the three stages in
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Chapter 3 rely only on few standard Matlab functions:

Basic building block algorithms consist only of basic matrix operations such as
addition and multiplication with Algorithms 2 and 3 also using the built-in QR
decomposition function qr.

Generic linear algebra algorithms are made up of the basic building block algo-
rithms in combination with the built-in functions svd, lsqr and the \ operator.

Real-world algorithms are either small modifications of well-known algorithms or
a direct application of a generic linear algebra algorithm such as the randomised
SVD of Algorithm 7.

The only exception from a simple implementation is within the SRHT sketching
method. As described in Section 2.1.3, the multiplication of the Hadamard matrix
can be implemented very efficiently. In order to exploit this, we used an implemen-
tation, ffht, by Johnson and Püschel presented in [JP00]. A Fast Walsh-Hadamard
transform is available in Matlab’s Signal Processing Toolbox as the function fwht,
however, we found ffht to be much faster than fwht. For example, for a 215 ×210 ma-
trix, the application of ffht was 80 times faster than the corresponding computation
using fwht. Matlab’s fwht is therefore not suitable as an indicative implementation
of the subsampled randomised Hadamard transform.

4.2 Accessibility
Sketching is at its most useful when coupled with domain-specific knowledge to either
interpret the possibly approximate output or impose assumptions that can be used to
derive tighter bounds and better guarantees. Much of the literature therefore deals
with the use of sketching in narrow fields of application on the basis of which it can
be hard to extrapolate to more general settings. Another direction commonly found
is a theoretical computer science perspective where the focus is often on algorithmic
properties, error bounds and performance guarantees. For example, the introductory
survey [Woo14] highlights advances in algorithms for numerical linear algebra through
theoretical results, relevant historic context and some sample pseudocode but contains
very few concrete examples and practical results.

The article [Tro+17] has a declared goal of “developing simple, practical algo-
rithms that can serve as reliable modules in other applications” with a focus on
portraying the links between theoretical and practical aspects of sketching. However,
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the article explicitly concerns sketching for low-rank matrix approximation and the
presented algorithms are designed specifically for settings where access to the data is
very limited, such that only a single pass is possible or the data matrix is revealed
through a stream of linear updates. The applicability of sketching in more general
settings and for the purpose of reducing computation time is not discussed.

Mahoney’s monograph [Mah+11] also has a greater emphasis on the ideas un-
derlying sketching, particularly the connection with statistical leverage scores, and
on distinguishing between theoretical and practical performance. However, the con-
nections and interplay between the different applications of sketching can be hard to
grasp and the presented algorithms are based on specific choices of sketching matrices
rather than general subspace embeddings. Since the article was published in 2011,
the sparse projection method has become popular in the sketching community and,
as we saw in Section 2.1.4, a sparse embedding matrix does not satisfy the Johnson-
Lindenstrauss Lemma directly but can still provide a subspace embedding through
the Johnson-Lindenstrauss moment property. From the description of random pro-
jections and specific algorithms in [Mah+11], it is difficult to determine whether
alternative sketching methods such as as the sparse projection can be used to the
same effect as the presented sketching techniques.

As the above examples highlight, the underlying methods and the interdepen-
dence between applications are often obscured and overshadowed. In the worst case,
this hinders access to the methods for those unfamiliar with the field seeking an
understanding of sketching and its applicability to their scientific areas.

One of the main contributions of this report is the identification of three ele-
mentary building blocks and the structuring of applications in layers based on these
primitives. The basic building blocks of Section 3.1 are the fundamental components
in the generic linear algebra applications of Section 3.2, which in turn provide the
basis for the more specialised applications in Section 3.3. As soon as one recognises
one of the basic building blocks in a given setting, sketching can potentially be used to
gain an advantage. This allows for very easy identification of prospective usage across
a vast area of scientific and mathematical domains and makes sketching accessible to
a large audience.

Each application is accompanied by an algorithm, all of which are easily imple-
mented in most high-level programming languages. The pseudocode is presented
with the use of built-in Matlab functions but these are all widely available linear
algebra tools. The generality and simplicity of the algorithms is also aimed at eas-
ing the understanding of functionality and how the randomisation is incorporated
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as modifications or supplements to standard linear algebra routines. The algorithms
and applications can be used as springboards and tailored to more specialised us-
ages where domain knowledge can be leveraged to further improve performance and
guarantees.

Finally, we note that the mathematical foundations of Chapter 2 introduce the
crucial concept of subspace embeddings before presenting four specific methods of
constructing sketching matrices. These are by no means the only available sketch-
ing methods but represent the most common instances appearing in the sketching
literature by covering both sampling and various types of projections. Importantly,
the practical applications are not based on any one sketching method but stated for
general subspace embeddings. The numerical experiments conducted for each basic
application serves as a comparison of the four sketching methods, supporting the the-
oretical comparison of Section 2.2 and aiding the choice of an appropriate method for
a given problem.

4.3 Further applications
We will now highlight two applications of sketching that have received considerable
interest within the numerical linear algebra community. The blendenpik algorithm
is a fast least squares solver while Newton-Sketch is a modification of Newton’s
method used in optimisation problems. Both are based on the desire to reduce time
complexity, and the underlying sketching principles can be traced directly to the
building blocks of Section 3.1.

The section is rounded off by a discussion of topics for further investigation based
on the presented theory, observed results and assessment of applicability provided in
this report.

4.3.1 The blendenpik algorithm
In [AMT10], Avron, Maymounkov and Toledo introduce the blendenpik algorithm, a
least squares solver useful for dense, highly overdetermined systems of equations. The
authors find the blendenpik algorithm to perform extremely well compared to exist-
ing state-of-the-art algorithms, with the vanilla implementation consistently beating
lapack’s direct QR factorisation-based solvers. As is apparent from the following
short description, the blendenpik algorithm is simply an instance of Algorithm 6
from Section 3.2.2.
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blendenpik: Use Algorithm 2 with the SRHT sketching method (or similar) in order
to construct RS. Estimate the condition number of RS and compare with a
certain threshold. If acceptable, use the iterative method lsqr with RS as
preconditoner, otherwise use lapack.

The success of the blendenpik algorithm shows that a simple algorithm for solving
overdetermined least squares problems with the lsqr method is easily extended to
outperform state-of-the-art least squares algorithms with only small modifications. In
general, the experiments of [AMT10] showed that blendenpik achieves high-precision
solutions much faster than lapack in all their investigations which includes test
matrices of different sizes and properties, and both well- and ill-conditioned matrices.
The only test cases where lapack was found to be faster, involved tiny, nearly square
or sparse matrices and this was not consistently. The article also compared the
blendenpik algorithm to an unpreconditioned version of lsqr, with similar results
to those described in the experiments of Section 3.2.2.

[AMT10] concludes that randomised projection methods for solving overdeter-
mined least squares problems like blendenpik should be incorporated into future
version of lapack.

4.3.2 The Newton-Sketch algorithm
An algorithm named Newton-Sketch was introduced by Mert Pilanci and Martin
Wainwright in the paper [PW15]. The method is a modification of the ubiquitous
Newton’s method used for solving various optimisation problems. Newton-Sketch is
much like the original Newton’s method with the exception of taking approximate
Newton steps using an approximation of the Hessian. The classical Newton’s method
is very widely used and thus when Pilanci and Wainwright claimed that Newton’s
sketch has substantially lower complexity than Newton’s method, sketching was once
more the centre of attention.

The classical Newton’s method is used in optimisation to find the roots of a twice-
differentiable function f : Rn → R by solving the linear equation[

∇2f
(
xt

)]
pt = −∇f

(
xt

)
(4.1)

for the direction pt in each iteration and performing the update xt+1 = xt + pt. The
cost of an iteration can be split into the following three factors [BBN17]:

• Computing the gradient ∇f (x) ∈ Rn,
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• Forming the Hessian ∇2f (x) ∈ Rn×n,

• Solving the linear system (4.1).

The idea behind Newton-Sketch is to use sketching to approximate ∇2f (x). To do
this, it is initially assumed that the Hessian is decomposed as X⊤X = ∇2f (x) and
that the factor X is readily available. Note that this factor, which is referred to as a
Hessian matrix square root in [PW15], need not be square.

Consider a finite-sum problem where f is of the form f (x) =
∑m

i=1 gi

(
A(i)x

)
for some A ∈ Rm×n and functions gi : Rm → R, i = 1, . . . , m. Defining the di-
agonal matrix D ∈ Rm×m by Dii =

√
∇2gi

(
A(i)x

)
, the Hessian of f is given by

∇2f = A⊤DDA and X = DA ∈ Rm×n is a Hessian matrix square root. In this
setting, forming the Hessian exactly is a matrix product of complexity O

(
mn2). Util-

ising the decomposition of the Hessian, we construct a sketching matrix St ∈ Rk×m

in each iteration and approximate the Hessian by

∇2f
(
xt

)
≈
(
StXt

)⊤(StXt

)
, (4.2)

corresponding directly to the use of Algorithm 1. Assuming
(
StXt

)⊤(StXt

)
is invert-

ible, each step in Newton-Sketch is given by

xt = xt −
((

StXt

)⊤(StXt

))−1
∇f
(
xt

)
.

This method still requires the computation of the gradient, and the linear system
in Equation (4.2) is of the same size as the original linear system (4.1). The com-
putational gain of Newton-Sketch as presented in [PW15] is therefore entirely in
approximating the Hessian. This approximation often comes at the price of extra
iterations when compared to the classical Newton’s method.

The numerical results of [PW15] show Newton-Sketch to convincingly outperform
Newton’s method when it comes to wall-clock time. However, our own investigation
for the case of unconstrained logistic regression showed that the classical Newton
method was considerably faster than shown in [PW15], and the cost of the extra
iterations in Newton-Sketch therefore resulted in little or no gain in wall-clock time.
This suggests that the computation of the exact Hessian in [PW15] was implemented
in an inefficient manner.

A possible way of speeding up the method is to note that the factorisation of the
Hessian allows for the use of iterative solvers which avoid constructing the full approx-
imate Hessian. This is the approach taken in [BBN17], where Newton-Sketch is com-
pared to subsampled Newton methods. In their experiments, they use a matrix-free
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conjugate gradient method to solve the system (4.2) approximately. Since the linear
system is already based on an approximate Hessian, this second approximation is not
expected to have much impact on the number of iterations required. [BBN17] report
the “most optimistic computational results for Newton-Sketch” in that they ignore
the cost of forming the Hessian square root and sketching this matrix, which they note
can be time consuming operations. These extra operations were part of the reason
why the added iterations proved too expensive when we considered Newton-Sketch
in the logistic regression problem.

Alternatives to the classical Newton’s method that provide similar convergence
properties but at a smaller computational cost, are of great interest in optimisation.
Newton-Sketch is one such method and is proven to provide advantages in certain
settings. However, the need for a Hessian square root impedes the applicability of
the method in more general applications and often requires expensive operations.

4.3.3 Topics for further investigation
In Chapter 3, we describe and test nine different applications of sketching with four
different sketching methods. As the aim of the report is to convey the underlying
ideas and interdependencies between sketching applications, a considerable amount
of application-specific theory and testing has been omitted. A natural direction of
further investigation is therefore the consideration of each sketching application in
finer detail. The following is a review of relevant questions and suggested topics to
explore for each of the applications in the first two stages: basic building blocks and
generic linear algebra problems. This is followed by some topics that are more general
in nature.

Matrix multiplication: The experiments of Section 3.1.1 showed that leverage
score sampling produced significantly better approximation results for the srand
test matrix when compared to the other sketching methods. However, in the
same example the method was slower than the exact calculation of the matrix
product due to the approximation of leverage scores. It is therefore of interest to
analyse other importance sampling methods to see whether they can replicate
or even better the approximation quality of matrix multiplication at a lower
computational cost, something which is discussed in [DKM06].

Orthonormalising transformation matrix: Using Algorithm 2 to obtain RS for
an m × n input matrix requires that k ≥ n for RS to be square and k < m in
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order to yield a saving in computation time. Thus, the algorithm is subject to
certain input restrictions and an extension to handle other cases, for example
when the input matrix is almost square, would be useful.
Figure 3.4 showed that the diagonal entries of

(
AR−1

S
)⊤AR−1

S were increasing,
an effect for which we have no full explanation. A further investigation might
reveal that it is possible to correct for this within the solution method, that
it is caused directly by the used sketching methods, or that it is in fact an
unavoidable consequence of the applied procedure.
Finally, our approach was based on use of the QR decomposition to find RS.
One could also have used an SVD and constructed RS as the product ΣV⊤

as suggested in [Dri+12]. This factorisation makes the inverse R−1
S easy to

calculate, which is desirable for many downstream applications, for example
the approximation of leverage scores as presented in Algorithm 4.

k-dimensional orthonormal basis: Theorem 14 provides the theoretical basis for
the presented method and bounds the approximation error of projecting onto
the k-dimensional basis by a term including the spectral norm of the sketch-
ing matrix. It would be interesting to investigate the impact of this term in
practice as the experimental results shown in Table 3.3 do not suggest big dif-
ferences between the sketching matrices, apart from the leverage score sampling
performing considerably worse for the cond10 test matrix.
Furthermore, Table 3.3 compares the sketched k-dimensional basis with both the
optimal k- and k/2-dimensional bases and showed that much greater accuracy
is gained by including a few additional columns in the approximation. A more
complete analysis of this effect would be of value, particularly since this idea is
utilised in Section 3.2.3 where the sketch size is set larger than the target rank
as suggested by [Tro+17].
An intriguing direction of research within low-rank approximation based on
the approaches of Section 3.1.3, is the preservation of matrix structure such as
symmetry or positive-semidefiniteness. Algorithm 3 cannot be used directly in
this regard, however, [Tro+17] provides algorithms that handle each of these
cases separately, outputting low-rank approximations with the desired property.

Leverage score estimation: The obvious consideration regarding leverage score es-
timation is lowering the computational complexity. As seen throughout Chap-
ter 3, the leverage score sampling method rarely provided significant computa-
tional gains in terms of time. Faster methods of approximating the leverage
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scores is therefore not only attractive as a stand-alone application but also in
the context of improving the leverage score sampling method.

There are also interesting alternatives or extensions of leverage scores that pro-
vide similar functionality but improved properties in certain settings. One such
development is the ridge leverage scores presented in [CMM17], where a new
algorithm for finding a near optimal low-rank approximation of a matrix A in
O (nnz(A)) time is presented. The ridge leverage scores are adapted to low-rank
approximation through regularisation with a parameter based on the best rank
k approximation error.

Overdetermined least squares: When using the normal equation for the least
squares problem minx ∥Ax − b∥, one has a choice of whether to sketch both
sides of the equation or simply the matrix product A⊤A on the left hand side.
The significance of this choice is not quite clear and the literature contains ex-
amples of both approaches. For example, [Mah+11] considers the fully sketched
problem while [PW16] uses the second approach in sketching only the Hessian
of a problem in a similar fashion to that of the Newton-Sketch algorithm.

Algorithm 6 was found to give decent results for ill-conditioned problems, how-
ever, when the problem is well-conditioned, solving the normal equation is often
faster as shown in Table 3.5. To construct an algorithm that handles arbitrary
input and chooses a solution method accordingly, it would therefore be advanta-
geous to estimate the condition number of the input matrix. There are relatively
fast routines for this, for example lapack’s dtrcon as mentioned in [AMT10],
but it would be interesting to see whether sketching could be used in this type
of application. The performance of the randomised SVD of Algorithm 7 gives
hope that this could indeed be possible.

Singular value decomposition: The implemented randomised SVD gave good re-
sults in terms of gain in computation time, especially for the cond10 test matrix
as shown in Table 3.7. The accuracy of the output also seemed reasonable, how-
ever, the error measures were mostly based on low-rank approximation and
other metrics could also be relevant to consider. If the method is used to find a
number of singular vectors for example, it might be desirable that these closely
approximate the exact singular vectors rather than just provide a good low-rank
approximation.

Extending the functionality of Algorithm 7 to handle single-pass scenarios and
incorporating a power iteration, as mentioned below the algorithm, would sig-
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nificantly increase the applicability of the method in cases where access to the
input matrix is limited and storage rather than computation time is the main
concern. [HMT11] explains some of these considerations, however, testing the
impact of these and the increase in computational complexity as compared with
the basic Algorithm 7 would shed further light on the performance gains.

On the basis of our experiments, it often seems sufficient to choose the sketching
parameter k proportional to the lower dimension of the input matrix to obtain a
reasonable balance between approximation quality and gained advantages. However,
this observation is not substantially tested, and it would therefore be interesting to
investigate whether general guidelines for the choice of sketching parameters could
be established. Such guidelines would increase the practicality of sketching and help
provide empirically-based recommendations that would complement the theoretical
bounds.

This approach is taken in the paper [Tro+17] on practical sketching algorithms
for low-rank approximation, which includes a section on “Theoretical guidance on
sketching sizes”. However, the presented guidance is limited to the use of the Gaus-
sian sketching matrix in low-rank approximation problems and thus not very general.
As an alternative suggestion for creating a general guideline for the sketch size param-
eter, it might be useful to consider the basic building blocks of this report since these
provide the foundation for most other sketching algorithms. If it is possible to estab-
lish general rules for sketching method selection and size specification in these three
basic problems, we could hope to extrapolate this to other sketching applications and
thereby create a more general set of recommendations.
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CHAPTER 5
Conclusion

Sketching is a very general concept covering the reduction in size of a large range of
problems from basic operations such as matrix multiplication, over standard optimi-
sation methods like least squares, to low-rank approximation and matrix completion.
In much of the literature, the simplicity of the underlying idea is often overshadowed
by theoretical guarantees that do not seem compatible with practical uses, overly
specialised methods where sketching is hidden implicitly in algorithms, and issues
concerning implementation of particular sketching methods in certain environments.
The aim of this project has been to provide a practical introduction to sketching and
establish a framework for analysing the use of sketching in algorithms, paving the
way for incorporating sketching in the solution to a host of different problems.

Our main contribution is the identification of three basic building blocks repre-
senting the most elementary uses of sketching, the value of which is two-fold. Firstly,
they can be used to pinpoint the exact use of sketching in randomised methods, eas-
ing analysis of the contribution and merits of sketching in a given application, as
illustrated by the generic linear algebra problems of Section 3.2. Secondly, they can
be employed as components in modifications of existing algorithms or as a way of
constructing novel algorithms in a modular fashion, which the matrix completion in
recommender systems and the generalised Tikhonov regularised optimisation problem
of Section 3.3 both demonstrate.

In extension of the above, an objective has been to clarify the relationship between
theoretical and practical results. Chapter 2 presented the fundamental theory of
subspace embeddings and four different sketching methods, while Chapter 3 studied
the use of sketching in nine different applications. This allowed for the comparison
of theoretical properties and guarantees with the results obtainable in various simple
problem settings. A key observation is that in many cases significant advantages can
be achieved using sketching matrices with a number of rows far below that required to
theoretically ensure accurate approximations. It is notable that these computational
gains are from simple algorithms that are easily implemented, since it is naturally
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hard for novel approaches to compete with well-established computational methods.
The results obtained promise well for the future development of faster sketching

methods as the theoretical complexities are more closely reflected in implementations.
However, more efficient sketching methods is also a necessity for some applications,
especially if small approximation errors are required, as the results of this report also
indicate. For example, the Gaussian projection and leverage score sampling methods
rarely provided time reductions of note, and for very small errors, the number of rows
required in the sketching matrices would render most of the methods ineffective.

This also highlights an important facet of sketching in practice that users must
consider: how much accuracy can be sacrificed? The results clearly exemplify the
trade-off between computational gains and approximation precision that sketching
often implies. Furthermore, bypassing the theoretical number of rows required in
practice means that a form of supervision of the obtained results is required. In
many of the presented applications, an error tolerance cannot be guaranteed or built
into an algorithm without at least some knowledge of the true solution, unless an
excessive number of rows is used in the sketching process.

The above considerations further substantiate our claim that the best results are
obtained when sketching is used in algorithms purpose-built for specific applications
and incorporating domain knowledge. This enables a tighter analysis through real-
istic assumptions and algorithmic choices, and can facilitate the inclusion of error
supervision or other control measures. The building block structure presented in this
report accommodate the construction of specialised algorithms by providing simple
modules that can be leveraged directly. The introduced framework makes sketching
more accessible as an algorithmic tool and hopefully serves to further motivate the
use of randomisation as a computational resource.



APPENDIX A
Proofs from Chapter 2

A.1 Proof of Theorem 3
The proof follows the idea of [Woo14, Theorem 2.11], but uses [IW14, Theorem 3.8]
to reduce the minimum number of rows k needed.

In the proof of Theorem 3 we will need the following Chernoff bound for random
matrices.

Lemma 16 ([Mag10, Theorem 13]). Let X1, . . . , Xk be independent copies of a sym-
metric random n × n matrix X with E [X] = 0, ∥X∥2 ≤ γ and

∥∥E [X⊤X
]∥∥

2 ≤ σ2.
Letting W = 1

k

∑k
j=1 Xj, then

Pr
[
∥W∥2 > ε

]
≤ 2ne

− 3
2

kε2
3σ2+γε for any ε > 0.

We are now in a position to prove that a distribution of sampling matrices based
on approximate leverage score probabilities gives rise to a subspace embedding.

Proof of Theorem 3. For any 0 < δ < 1, let Πq
LEV be a distribution on k×m sampling

matrices based on approximate leverage score probabilities q = (q1, q2, . . . , qm) of
some input matrix A ∈ Rm×n with rank (A) = n and orthonormal basis U. Let
S ∼ Πq

LEV and define the series of symmetric matrices Xi ∈ Rn×n for i = 1, . . . , k,
given by

Xi = I −
(SU)⊤

(i)(SU)(i)

(Sq)i
.

These are in fact independent copies of a random matrix variable that we call X. We
note that both terms in the expression for Xi are symmetric and positive semi-definite.
For general such matrices, M1 and M2, the following inequality holds

∥M1 − M2∥2 = max
∥x∥=1

x⊤ (M1 − M2) x = max
∥x∥=1

(
x⊤M1x − x⊤M2x

)
≤ max {∥M1∥2 , ∥M2∥2} . (A.1)
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In order to use the matrix Chernoff bound presented above we need to investigate
the properties of this random variable. Taking the expectation of the i-th sampled
row we see that E

[
(SU)(i)

]
=
∑m

j=1 qjU(j). This is used to show that X has mean
zero as follows

E [Xi] = I − E

[
(SU)⊤

(i)(SU)(i)

(Sq)i

]
= I −

m∑
j=1

qj

(
U⊤

(j)U(j)

qj

)
= I − U⊤U = 0.

Next, it is shown that ∥X∥2 is bounded by using the inequality (A.1) and the relation
between the qi’s and the leverage scores, yielding

∥Xi∥2 ≤ max

{
∥I∥2 ,

∥∥∥∥∥ (SU)⊤
(i)(SU)(i)

(Sq)i

∥∥∥∥∥
2

}
≤ max

1, max
j

∥∥∥U⊤
(j)U(j)

∥∥∥
2

qj


≤ max

{
1, max

j

ℓj

qj

}
= n

β
.

Finally, the expected variance is also bounded which is shown using the same tricks
as earlier, as

E
[
X⊤

i Xi

]
= E [I] − 2E

[
(SU)⊤

(i)(SU)(i)

(Sq)i

]
+ E

[
(SU)⊤

(i)(SU)(i)(SU)⊤
(i)(SU)(i)

(Sq)2
i

]

= I − 2
m∑

j=1
qj

(
U⊤

(j)U(j)

qj

)
+

m∑
j=1

qj

(
U⊤

(j)U(j)U⊤
(j)U(j)

q2
j

)

= I − 2U⊤U +
m∑

j=1

∥∥U(j)
∥∥2

2
qj

U⊤
(j)U(j)

=
m∑

j=1

ℓj

qj
U⊤

(j)U(j) − I.

Using inequality (A.1) we then have

∥∥E [X⊤X
]∥∥

2 ≤ max


∥∥∥∥ m∑

j=1

ℓj

qj
U⊤

(j)U(j)

∥∥∥∥
2
, ∥I∥2

 ≤ max
{

n

β

∥∥U⊤U
∥∥

2 , 1
}

≤ n

β
.

Define W = 1
k

∑k
i=1 Xi and observe that W = I − U⊤S⊤SU. Hence, we are in a

position where the matrix Chernoff bound can be applied with σ2 = n/β and γ = n/β

to give

Pr
[∥∥I − U⊤

AS⊤SUA
∥∥

2 > ε
]

≤ 2ne
− 3

2
kε2

3σ2+γε ≤ 2ne− 3
2

kε2
3n/β+nε/β = 2ne− 3

2
kβε2

n(3+ε)
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This implies that S is a subspace embedding for A except, with probability at most
2ne− 3

2
kβε2

n(3+ε) . To match the theorem, we would like to be able to choose this probability
as a value δ that is independent of β, ε and n. This imposes a restriction on the
minimum number of rows k needed. We therefore seek k such that

δ ≥ 2ne− 3
2

kβε2
n(3+ε) .

Since 0 < ε < 1, this is satisfied when

k ≥
(

2 + 2
3

ε

)
nβ−1ε−2 ln

(
2n

δ

)
.

In the theorem the constant 2+ 2
3 ε is replaced with the larger value 8

3 for simplicity.

A.2 Proof of Theorem 5
This proof follows the approach in [Woo14, Theorem 2.1 and Lemma 2.2] but provides
a tighter analysis by using [Ver10, Lemma 5.2].

In the proof of the theorem, we will use an ε-net as a particular choice of finite subset
on which to exploit the Johnson–Lindenstrauss property. For a subset X of a metric
space M , a set N ⊂ M is an ε-net for X, if for every point x ∈ X, there is a point of
N at a distance from x less than ε. We firstly prove the existence of small finite nets
on the unit sphere Sn−1 = {x ∈ Rn | ∥x∥2 = 1}.

Lemma 17 ([Ver10, Lemma 5.2]). For any 0 < γ < 1 and n ∈ N, there exists a γ-net
N on Sn−1 for which |N | ≤

(
1 + 2

γ

)n

.

Proof. Take N as the maximal γ-separated subset of Sn−1, i.e. such that ∥x−y∥2 > γ

for all x, y ∈ N , x ̸= y. Then N is in fact a γ-net for Sn−1, since otherwise there
would exist z ∈ Sn−1 such that ∥z − x∥2 > γ for all x ∈ N . But then N ∪ {z} is a
γ-separated subset of Sn−1 for any such z, contradicting the maximality of N .

By the separation property, the balls of radii γ
2 centred at the points of N are

disjoint. Furthermore, these are all contained in the ball of radius 1 + γ
2 centred at

the origin. Denoting the volume of the ball of radius r by Vol (Br) and comparing
volumes, we have |N | · Vol

(
B γ

2

)
≤ Vol

(
B1+ γ

2

)
and hence

|N | ≤
Vol

(
B1+ γ

2

)
Vol

(
B γ

2

) =
(
1 + γ

2
)n(

γ
2
)n =

(
1 + 2

γ

)n

,
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giving the desired bound on the number of elements in N .

The following corollary gives a useful characterisation of the Johnson–Lindenstrauss
property in terms of inner products.

Corollary 18. Let k, m ∈ N, S ∈ Rk×m, u, v ∈ Rm and ε ∈ R. If S satisfies the
Johnson–Lindenstrauss property, i.e.

(1 − ε)∥u − v∥2 ≤ ∥S(u − v)∥2 ≤ (1 + ε)∥u − v∥2,

then S also satisfies
|⟨Su, Sv⟩ − ⟨u, v⟩| ≤ ε∥u∥2∥v∥2.

Proof. We first prove the result assuming u and v are unit vectors, by considering
the action of S on u + v and u − v. By the parallelogram law and property of S

4⟨Su, Sv⟩ = ∥Su + Sv∥2
2 − ∥Su − Sv∥2

2

≥ (1 − ε)∥u + v∥2
2 − (1 + ε)∥u − v∥2

2

=
(
∥u + v∥2

2 − ∥u − v∥2
2
)

− ε
(
∥u + v∥2

2 + ∥u − v∥2
2
)

= 4⟨u, v⟩ − 2ε
(
∥u∥2

2 + ∥v∥2
2
)

= 4⟨u, v⟩ − 4ε.

The opposite inequality is similar, thus yielding |⟨Sv, Sv⟩ − ⟨u, v⟩| ≤ ε for all unit
vectors u and v. The extension to vectors of arbitrary length follows trivially by
linearity of S.

Proof of Theorem 5. Let Π be a
(

ε
4 , δ, 5n

)
Johnson–Lindenstrauss transform on k×m

matrices, draw S from Π and let A ∈ Rm×n with normalised column space

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn and ∥y∥2 = 1} .

We will prove the theorem by taking a suitably sized finite net of R(A), and showing
that since S satisfies the Johnson–Lindenstrauss property for elements in the chosen
net, with probability 1 − δ, it actually satisfies the Johnson–Lindenstrauss property
for the entire subspace R(A), with probability 1 − δ.

Initially, we note that for r = rank(A) ≤ n, and by considering an orthonormal
matrix U with the same column space as A, we can express R(A) as

R(A) = {y ∈ Rm | y = Ux for some x ∈ Rr with ∥x∥2 = 1} .
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Using Lemma 17, we now choose N ′ to be a 1
2 -net of size |N ′| ≤ 5n for the sphere

Sr−1, and define

N = {y ∈ Rm | y = Ux for some x ∈ N ′} .

We now claim that N is a 1
2 -net for R(A). To see this, assume the contrary and take

Ux ∈ R(A) such that ∥y − Ux∥2 > 1
2 for all y ∈ N or equivalently ∥Uz − Ux∥2 > 1

2
for all z ∈ N ′. By orthogonality of U, this implies ∥z − x∥2 > 1

2 for all z ∈ N ′, which
contradicts N ′ being a 1

2 -net on Sr−1.
As Π is an

(
ε
4 , δ, 5n

)
Johnson–Lindenstrauss transform, then in particular the

Johnson–Lindenstrauss property of S holds for all elements in N , with probability
1 − δ. The key to expanding the Johnson–Lindenstrauss property to the entire sub-
space, is that any y ∈ R(A) can be written as

y = y0 + α1y1 + α2y2 + · · · ,

where for all i ∈ N we have yi ∈ N , and αi is defined recursively as

αi =
∥∥∥∥y −

i−1∑
j=0

αjyj

∥∥∥∥
2
.

We will show by induction that αi ≤ 1
2i and hence that the above linear combination

indeed converges to y. As induction basis we simply note that α0 = ∥y∥2 = 1. Now
assume αt ≤ 1

2t for some t ∈ N. Then

αt+1 =
∥∥∥∥y −

t∑
j=0

αjyj

∥∥∥∥
2

= αt

∥∥∥∥ 1
αt

(
y −

t−1∑
j=0

αjyj

)
− yt

∥∥∥∥
2

≤ αt · 1
2

≤ 1
2t+1 .

We can now examine the distortion of S on an arbitrary y ∈ R(A):

∥Sy∥2
2 =

∥∥∥∥∥S
( ∞∑

i=0
αiyi

)∥∥∥∥∥
2

2

=

⟨ ∞∑
i=0

αiSyi,

∞∑
j=0

αjSyj

⟩
=

∞∑
i=0

∞∑
j=0

αiαj

⟨
Syi, Syj

⟩
.

Using the Johnson–Lindenstrauss property of S on elements of N as given by Corol-
lary 18, we have that, with probability 1 − δ, this is bounded from above by

∥Sy∥2
2 ≤

∞∑
i=0

∞∑
j=0

αiαj

(
⟨yi, yj⟩ + ε

4

)
≤

∞∑
i=0

∞∑
j=0

⟨yi, yj⟩ + ε

4

∞∑
i=0

αi

∞∑
j=0

αj

≤ ∥y∥2
2 + ε = 1 + ε.

The bound from below is shown in the same way, and hence since A was chosen
arbitrarily, we have shown that Π is an (ε, δ, n) oblivious subspace embedding.
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A.3 Proof of Lemma 10
This proof is based on the proof in [KN14, Theorem 21].

Proof of Lemma 10. Let Π be a distribution as in Lemma 10 and let A and B be
matrices with m rows. We aim to prove

Pr
S∼Π

[∥∥∥(SA)⊤(SB) − A⊤B
∥∥∥

F
> 3ε ∥A∥F ∥B∥F

]
≤ δ,

which we will do in a three step procedure. Firstly, we define a norm on random
scalars X by

∥X∥p =
(
E
[
|X|p

])1/p
.

To see that this is indeed a norm, note that it is positive definite by the non-degeneracy
of the expectation E, it has uniform scaling by linearity of E, and Minkowski’s in-
equality ensures that it satisfies the triangle inequality.

We will show that for any x, y ∈ Rm and S ∼ Π, we have

∥⟨Sx, Sy⟩ − ⟨x, y⟩∥l ≤ 3εδ1/l ∥x∥2 ∥y∥2 . (A.2)

To show this, we initially note that

2 ⟨x, y⟩ = ∥x∥2
2 + ∥y∥2

2 − ∥x − y∥2
2 .

Using this and assuming ∥x∥2 = ∥y∥2, we get the following via the triangle inequality

2 ∥⟨Sx, Sy⟩ − ⟨x, y⟩∥l =
∥∥∥∥Sx∥2

2 + ∥Sy∥2
2 − ∥Sx − Sy∥2

2 − ∥x∥2
2 − ∥y∥2

2 − ∥x − y∥2
2

∥∥∥
l

≤
∥∥∥∥Sx∥2

2 − 1
∥∥∥

l
+
∥∥∥∥Sy∥2

2 − 1
∥∥∥

l
+
∥∥∥∥S (x − y)∥2

2 − ∥x − y∥2
2

∥∥∥
l
.

By the (ε, δ, l) Johnson–Lindenstrauss moment property of Π∥∥∥∥Sx∥2
2 − 1

∥∥∥l

l
= E

S∼Π

[∣∣∥Sx∥2
2 − 1

∣∣l] ≤ εlδ,

we get

2 ∥⟨Sx, Sy⟩ − ⟨x, y⟩∥l ≤
(
εlδ
)1/l +

(
εlδ
)1/l +

(
εlδ ∥x − y∥2l

2

)1/l

≤ εδ1/l + εδ1/l + εδ1/l (∥x∥2 + ∥y∥2)2

≤ 6εδ1/l.
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By linearity, the above inequality can be extended to arbitrary x, y ∈ Rm, whereby
the desired result is achieved.

We now use the result in (A.2) along with the triangle inequality and Minkowski’s
inequality to calculate∥∥∥∥∥∥∥(SA)⊤(SB) − A⊤B

∥∥∥2

F

∥∥∥∥
l/2

=
∥∥∥∥∑

i,j

(⟨
SA(i), SB(j)

⟩
−
⟨

A(i), B(j)
⟩)2

∥∥∥∥
l/2

≤
∑
i,j

∥∥∥∥(⟨SA(i), SB(j)
⟩

−
⟨

A(i), B(j)
⟩)2

∥∥∥∥
l/2

≤
∑
i,j

∥∥∥⟨SA(i), SB(j)
⟩

−
⟨

A(i), B(j)
⟩∥∥∥2

l

≤
∑
i,j

(
3εδ1/l

∥∥A(i)∥∥
2

∥∥B(j)∥∥
2

)2

=
(

3εδ1/l
)2

∥A∥2
F ∥B∥2

F .

The theorem follows by Markov’s inequality, as

Pr
S∼Π

[∥∥(SA)⊤(SB) − A⊤B
∥∥

F

∥A∥F ∥B∥F

> 3ε

]
≤

E
S∼Π

[∥∥∥(SA)⊤(SB) − A⊤B
∥∥∥

F

]
3ε ∥A∥F ∥B∥F

≤
E

S∼Π

[∥∥∥(SA)⊤(SB) − A⊤B
∥∥∥l

F

]
(3ε)l ∥A∥l

F ∥B∥l
F

=

∥∥∥∥∥∥∥(SA)⊤(SB) − A⊤B
∥∥∥2

F

∥∥∥∥ l
2

l
2

(3ε)l ∥A∥l
F ∥B∥l

F

≤

((
3εδ1/l

)2 ∥A∥2
F ∥B∥2

F

) l
2

(3ε)l ∥A∥l
F ∥B∥l

F

= δ.
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