
Multi-Agent Systems

Eirik Oterholm Nielsen and Martin Nielsen

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring a BEng in IT.

The thesis deals with Multi-Agent Systems programming with AgentSpeak:
Jason and the Multi-Agent Programming Contest of 2017.

The thesis has been developed over 12 weeks, from 08/04-2017 to 01/07-2017.

Kongens Lyngby, 01/07-2017

Eirik Oterholm Nielsen and Martin Nielsen

ii

Acknowledgements

We would like to thank Jørgen Villadsen for mentoring us.

Helge Hatteland and Oliver Fleckenstein for good advice.

Rafael H. Bordini and Jomi F. Hübner for clarifications about the Jason
language, and for temporary workarounds regarding errors in the Multi-Agent
Programming Contest.

iv

Contents

Preface i

Acknowledgements iii

1 Introduction 1

2 Multi-Agent Systems 3
2.1 Agents in a Multi-Agent System 3

2.1.1 Belief . 5
2.1.2 Desire . 5
2.1.3 Intention . 5

2.2 The Social Ability of Agents . 5

3 The Multi-Agent Programming Contest 7
3.1 Scenario . 7
3.2 Roles . 8
3.3 Facilities . 9
3.4 Jobs . 10
3.5 Actions . 10
3.6 Percepts . 12

4 Analysis 13
4.1 Strategy . 13
4.2 Advanced Strategy . 14

5 The Jason Programming Language 17
5.1 Eclipse AgentSpeak Plugin . 17
5.2 Project File . 19
5.3 Agent .asl Files . 19

vi CONTENTS

5.4 Concepts of a Jason Agent . 19
5.4.1 Actions . 19
5.4.2 Beliefs and Rules . 20
5.4.3 Plans and Events . 20
5.4.4 The Reasoning Cycle . 21

6 Setting Up the Project 25
6.1 Setting Up the Project from Scratch 25
6.2 Guide: Importing and Running the Project 26

7 Implementation 29
7.1 Implemented Minimum Viable Product 29

7.1.1 Cooperation . 29
7.1.2 Find Job . 30
7.1.3 Core Loop . 30
7.1.4 Recharge . 32

7.2 Improved Version . 35
7.2.1 Improved Cooperation . 35
7.2.2 Improved Choose Job . 35
7.2.3 Improved Core Loop . 36
7.2.4 Improved Recharge . 37

7.3 Internal Action . 40
7.4 Environment Interface . 40

8 Discussion and Reflection 41
8.1 Results . 41
8.2 Further Work . 42

8.2.1 Route Planing . 42
8.2.2 Charging Station . 43
8.2.3 Missions and Auctions . 43
8.2.4 Cooperation Between Agents 43
8.2.5 Prediction and Counter Play 43
8.2.6 Error Handling . 44

8.3 Reflections . 44

A Code 45
A.1 Project file (.mas2j) . 45
A.2 connectionA (Improved Multi-Agent System.asl) 46
A.3 connectionB (Minimum Viable Mullti-Agent System 57
A.4 Internal Action Code(Java) . 65
A.5 Server (Java) . 66
A.6 EISAdapter(Java) . 66

Bibliography 73

Chapter 1

Introduction

In this chapter we will give a short summary of what the goal of this project is
and a short summary of each of the chapters of the thesis.

A multi-agent system is as the name suggests a system using multiple agents.
Such a system uses independent agents that work together to fulfill tasks. Agents
are often assigned roles, such as organizers, workers and so on.

While a multi-agent system might need at least one agent for each role, the
systems are often scalable, functioning with many agents for each role.

Each agent in a multi-agent system is capable of sharing information and inten-
tions, but each agent makes its own decisions. They might even have their own
agendas. They are able to communicate, perceive the environment and affect
it. This is how they work together or against each other.

We have in this project implemented a multi-agent system for the Multi-Agent
Programming Contest [4], constructing and delivering goods while keeping their
agents operational.

In chapter 2 we introduce common concepts of multi-agent systems and explain
the basics of such a system. We finish by giving an example of two agents
communicating together.

2 Introduction

In chapter 3 we give an overview of the Multi-Agent Programming Contest
simulation.

In chapter 4 we analyze the strategy aspect of the Multi-Agent Programming
Contest and identify some key components of a solid strategy.

In chapter 5 we go through some of the concepts of the Jason programming
language, which is our language of choice for the Multi-Agent Programming
Contest.

In chapter 6 we explain how to set up and run our program and how to edit it
in eclipse.

In chapter 7 we go through the finer points of our implementation of a multi-
agent system.

In chapter 8 we will discuss the result of our project, give some ideas for further
improvement of our multi-agent system and self reflection of the process.

Chapter 2

Multi-Agent Systems

In this chapter we will introduce the basic ideas behind multi-agent systems.
We discuss what properties an agent should have and how we model their basic
decision making logic. For further theory on agents we refer to [9].

2.1 Agents in a Multi-Agent System

An agent perceives its environment and takes logical actions based upon what
it has perceived. An agent might use sensors of some kind to perceive its envi-
ronment. This includes optics, thermometers, GPS and so on. As the contest
is entirely simulated on a server, we will be getting our percepts directly from
said server.

Other than being in an environment, an agent should be the following: au-
tonomous, proactive, reactive, and social.

Autonomy means that given a set of goals, an agent should be able to indepen-
dently fulfill said goals, either through delegation or through action.

Being proactive means that an agent acts in accordance with its goals. It means

4 Multi-Agent Systems

environment

obse
rvatio

n

effectors/
actuators

sensors

?
percepts

pe
rc
ep
tio
n

de
ci
si
on

ac
tio
n

actions

Figure 2.1: Illustration of how an agent perceives and interacts with the envi-
ronment, figure courtesy of [6]

that once it has a goal, its actions will be to further said goal.

Being reactive means that an agent reacts to changes in its environment. If
an agents path is blocked, the agent either figures a way around the blockage,
clears the blockage, or it might even decide to drop the current plan of action,
choosing a different goal to fulfill. It means that an agent should not be locked
into a bad plan and that it adapts to changes in its environment.

Social ability means that an agent is able to communicate with the other agents
and we go more into detail on this subject in section 2.2.

An agent also has its own goals and will act upon them based upon what it
believes to be true about the world around it. In Figure 2.1 we can see a simple
model of how an agent works. It observes the environment using sensors, the
observations becomes percepts and then beliefs. Based upon the internal logic
of the agent it comes to a decision of what to do and decides on an action. It
then uses actuators/effectors to affect its environment and the cycle continues.

One of the ways to describe this is with the BDI model. BDI stands for Belief,
Desire, and Intention. It is a way to model multi-agent systems.

2.2 The Social Ability of Agents 5

2.1.1 Belief

A belief is anything the agent believes is true about its environment. It is usually
something gotten through an agent senses as seen in figure 2.1, or some logical
conclusion of said percepts. It can also be the the result of communication with
other agents, which is discussed further in section 2.2.

2.1.2 Desire

A desire is something an agent would like to if the opportunity arises. An agent
might want to finish a delivery and recharge their batteries, but if it is stuck
in a ditch somewhere its unlikely to ever be able to. A desire is sometimes
called an option, it is something an agent would like to do, but it still requires
opportunity and reason to act on its desire.

2.1.3 Intention

An intention is the product of belief and desire. It is what the program intends
to do to its environment, based upon what it believes to be true about its
environment and what it desires to happen.

2.2 The Social Ability of Agents

The key difference between multi-agent system and a regular system is that the
agents are able to communicate and cooperate. This could be done through
percepts, or some other language specific protocols. By doing this, the agents
complete their goals [9].

Common ways of communication includes sending info, perhaps about a spotted
resource node, giving an order, e.g. to go deliver an item, or asking for assistance
to assemble or fetch items.

One of the more fascinating parts of this is that an agent might be wrong about
something, or even lie if it suits its own goals. Depending on the multi-agent
system, this might need to be taken into account, in order to have a plan if some
piece of information turns out to be bad.

6 Multi-Agent Systems

Figure 2.2: The biologist agent (left) tells a lie to the exterminator agent
(right)

Lets say that we there are two agents, agent Ed and agent Bob. Agent Ed is
an exterminator bot sent to a village to get rid of all bugs inside houses and
is paid for each room he cleans. Bob is a biologist bot sent to examine and
research houses and is paid for each room he examines. Both have only one day
to complete the job. Ed the exterminator sees Bob the biologist coming out of
a house. Ed asks Bob if there are any bugs in the house. Since it is on a tight
schedule he needs to get through all the houses as quickly as possible and will
skip the house if it believes it to be clean. Agent Bob found bugs in the house,
but will get paid for inspecting the bugs, but if agent Ed clears the house, Bob
will not get paid. Bob tells Ed that the house is clear of bugs. Agent Ed does
not know what agent Bob wants, and because of the lie Ed now thinks that the
subgoal of clearing the house it completed.

If however agent Ed ever enters this house, it finds out that the house had bugs.
Agent Bob has thus been proven unreliable. Agent Ed could give it a 40-60
percentage chance split between agent Bob having broken sensors and being a
liar, working with some unknown agenda. Either way, agent Ed now has reason
to believe and should have a corresponding belief that agent Bob is unreliable
and should verify any communication sent by agent Bob.

Chapter 3

The Multi-Agent
Programming Contest

In this chapter we will discuss the details of the Multi-Agent Programming
Contest. This includes the scenario, what kind of agents we have access to,
percepts and actions [2].

3.1 Scenario

This years scenario of the Multi-Agent Programming Contest takes place on a
terraformed Mars. The atmosphere is not breathable yet, so unmanned vehicles
called All Terrain Planetary Vehicles or ATPV ’s are sent out by entrepreneurs
to carry out tasks and make money completing jobs outside. Each team starts
with a seed money amount of 50,000.

There are two kinds of jobs. Regular jobs, which pay the first team which
completes the job, and auction jobs, which can be completed by the team that
offers to do the job for the least amount of money. Jobs may require acquisition,
assembly, and transportation of goods.

Two teams compete at a time, with each team having a number of vehicles

8 The Multi-Agent Programming Contest

Figure 3.1: The four roles of agents and their stats

Figure 3.2: The tools which each role can use it marked which an ’x’

controlled by the teams multi-agent systems. The goal of the game is to make
more money than the other team in the given amount of rounds. The map
where the agents compete is from Open Street Map.

Each game runs for a given number of steps. Each step is the minimum unit of
time in the game, so a vehicle with speed 10 can move 10 distance units in one
step.

Each type of vehicle has a battery charge, which determines how long the vehicle
can move without recharging, a capacity, which determines how much the vehicle
can carry, and speed, which determines how far a vehicle can move in one step.
Each simulation features a set of items, which are used to craft goods for jobs.

3.2 Roles

There are four kinds of autonomous vehicles 3.1. The drone is the most distinct
from the others since it is airborne. This means that it does not have to follow
the roads like the other vehicles, but can instead go in a direct line to any given

3.3 Facilities 9

point within its range. Among the ground vehicles, the motorbike is a fast short
range vehicle with a low capacity, the car is middling in all aspects and the
truck is a slow long range vehicle with a large capacity. Each role is also able
to use a different set of tools, used for the assembling of items. An overview of
the tools that each role can use is seen in figure 3.2.

3.3 Facilities

There are four kinds of facilities. A number of facilities are randomly places on
the map at the start of the simulation, each with a unique name and location.
Facilities can be affected by blackouts and these facilities will appear as not
working to the agents. The four different kinds of facilities are:

Shops: In shops the agent can buy items. Each shop has a limited quantity of
each item, but shops are restocked once in a while. Items bought in shops are
used to craft other items out of that might be required for a job.

Charging Stations: Are essential for the agents, since the agents only have a
limited battery range. If the battery of an agent should die out while not at a
charging station, they can recharge their battery slowly using solar power.

Workshops: In workshops items can be assembled from other items. Most
items need certain tools for assembling. Tools can only be used by certain roles,
so sometimes the agents need to cooperate in the workshop for assembling an
item.

Dumps: Offer a place to destroy items in order to free up capacity of an agent.

Storage Facilities: Allow storage of items up to a set volume. Storage facilities
are also where jobs are completed.

Resource Nodes: These nodes are places where items can be found. They
take a certain number of gather actions to be found. If one team digs up the
item first, the other team will not be able to get an item from the same node.
The location of the resource nodes are not common knowledge, but must be
found by the teams agents.

10 The Multi-Agent Programming Contest

3.4 Jobs

In order to earn money, and thereby points, the teams need to complete jobs.
There are three kinds of jobs:

Standard Jobs: Reward the first team to complete the job.

Action Jobs: Are assigned to the lowest bidding team for completion of the
job.

Missions: Are jobs that both teams can complete without interfering with one
another.

Jobs have a start time and an end time. They require a set of items to be
delivered to a warehouse, and none of the items can be bought from a shop.
They need to be assembled from other items. Jobs also have a reward for the
team that fulfills them. A team is fined if they fail to complete missions or an
auction jobs which they have won.

3.5 Actions

A full description of the actions can be found on the GitHub page of the Multi-
Agent Programming Contest [2].

goto: The command to make an agent go to a desired location. It can be to
a location given by coordinates or to a specific facility given by name. If the
action is successful it consumes 10 energy charges.

give: Takes three parameters. The first one specifies the recipient, the second
argument names the item, and the third argument specifies the amount of items
to give.

receive: Puts the agent in a receiving state. If another agent gives something
to it, it will be received.

store: If an agent is located at a storage facility, it calling the ’store’ command
stores items with the name and quantity given in the arguments of the call.

assemble: Assembles a specific item out of other items using tools. The items
used for the assembly are consumed and cannot be reused. This must be done

3.5 Actions 11

at a workshop.

assist_assemble: Marks the agent as assisting another agent who is using the
assemble action in the assembly.

buy: Buys a specified amount of an item. This must be done at a shop.

deliver_job: Delivers all items needed for completion of the specified job. The
agent must be at the storage facility associated with the specified job.

bid_for_job: Places a bid on a specified action job.

post_job: Posts a job that other teams may complete.

dump: Used to dump a number of a specified item. This can only be done at
a dump.

charge: Charges the agent’s battery given it is at a charging station.

recharge: Uses solar panels on the agent to recharge its battery. This is slower
than recharging at a charging station.

continue: Follows the agents route to the end and does nothing if the agent
does not have a route.

skip: Same as continue.

abort: Aborts the agent’s route.

unknownAction: Is sent if the agent uses an unknown action.

randomFail: Actions have a chance of randomly failing. If this occurs, this
action is sent instead of the action that the agent was trying to perform.

noAction: Is sent if the agent did not send an action in time.

gather: Used to gather a resource node that the agent is located at.

12 The Multi-Agent Programming Contest

3.6 Percepts

A number of percepts are available at simulation start such as the existence and
locations of facilities, jobs, items, charge, and the roles of the agents. These
are essential for the agents in order to be able to make plans to achieve their
goals. A full list of the percepts can be found in the Eismassim description on
the GitHub page of the Multi-Agent Programming Contest[1].

Chapter 4

Analysis

This chapter gives an overview of the thoughts we have made about the strategy
of the Multi-Agent Programming Contest and also which pursuits we found
feasible to pursue in the limited time we have for implementing the system.

4.1 Strategy

We have thought about the strategy on two levels. Strategy in a perfect world,
where we could achieve anything we wanted i.e. there was no barrier in terms
of our knowledge of Jason and multi-agent systems, and then strategy in terms
of what we find achievable in a shorter time frame, a minimum viable strategy.
The minimum viable strategy is a simple strategy which is enough to complete
jobs and make some money, but will not be advanced in terms of cooperation
between agents, path finding and auction strategy.

What we want to do is to only use one agent for choosing and completing jobs.
This reduces the complexity of the project as we do not need to figure out how
to get the agents to cooperate, but makes us a lot less efficient, as the agent
needs to do more work in order to complete a job.

14 Analysis

We want to reduce the complexity of the jobs chosen, so we only choose jobs
that do not require tools in the assembly of items. This makes the jobs easier
to complete, as the items required for jobs that do not require tools in their
assembly, also only require one or two layers of subitems to assemble. Narrowing
down the possible jobs to complete in this way severely reduces the amount of
jobs possible to choose, but since we are only using one agent to complete jobs,
it is not going to complete that many jobs anyway.

We will completely ignore missions and auctions to reduce the scope of the
project. Ignoring auctions will lead to our competitors getting a huge competi-
tive advantage in the competition as they can effectively name their price, but
for now it is out of scope. Ignoring missions will mean that we get fined for
not completing them, but most missions require tools in the assembly of the
required items, so we will just have to eat the cost.

For the minimum implementation, we are going to use one vehicle, the truck,
as it has the most space and battery power. The biggest factor is space, since
we are only using one agent. It is necessary to assemble and carry all the
items required for the mission before the agent delivers them. This serves two
purposes, it means that the agent does not spend time going to deliver multiple
times for one job and it means that the agent still carries the items if the job
ends before it can deliver them. Carrying the items when the job ends means
that they can be used for a later job, which saves time on the later job. This
only works because we only do jobs that require items which do not require
tools to assemble, as it severely restricts the amount of items the agent might
buy for any given job.

One easy addition that could make a difference, is an algorithm for finding
the closest charging station, since some agents would have very short time on
the street, if they would have to recharge in a very remote charging station
afterwards. In order to make the implementation simple we would calculate the
distances for the vehicles in Manhattan distance and not actual distance of the
route, and for drones just the Euclidean distance, which is optimal because they
are airborne.

4.2 Advanced Strategy

If we pretend that we could implement anything and had to think of a strat-
egy that could have a good chance of winning the Multi-Agent Programming
Contest, then we would have to lay out first a solid base strategy and then also
think about small ways to gain an edge over our opponents. Here are a few

4.2 Advanced Strategy 15

points that could show improvements right away.

Path Finding and Measurement of Distances: As the maps are actual
street maps from the Earth, using an actual navigation system is possible. This
could give more accurate assessments of distances, and help improve path finding
and routing in general. Implementing an algorithm to find out which destina-
tions to go to in succession would reduce time spent on travel. This is known
as the Traveling Salesman Problem. Unfortunately this is an NP-hard problem,
and computation time increases drastically for each destination node. It is fea-
sible to use a traveling salesman algorithm up to around 14 nodes, so for more
than that we would have to split facilities into groups based on their location.

Cooperation: We want to split jobs up so that each agent completes different
parts of jobs. What matters here is completing jobs quickly, so that the other
team does not complete the jobs our agents are working to complete. We want
to split the jobs up so that each agent can finish its own part as quickly as
possible. The trucks take a long time to travel around, but can carry a heavy
load, while drones and bikes are very quick but can carry less. It should be
noted that drones are only able to carry the smaller items, and they are not
even able to carry all of the tools they can use. This means that drones and
also the bikes should be used mostly to help the other agents assemble items, or
to buy parts for them. The car and truck could just do their thing only going
to the most important way points and then order the bikes and drones to fetch
things for them, or to assist in assembly.

Auction Betting: Optimizing auction betting to make our opponents lives as
difficult as possible, while maximizing our own benefit would both make us more
money and make the opponent less money, as they are going to either have to
take jobs at a worse price or get less jobs to complete.

Buying Strategically: Buying items that the opponent team needs, so that
they go out of stock, could be a way to freeze the opponent team and secure
important items for ourselves. Buying more than we need of certain items can
be an advantage, if we know which items are likely to be useful in the future.
The drones can transfer items between other agents that need them in order to
complete a job.

Selecting Jobs Strategically: It is possible for one team to post a job that the
other team can take. As we discussed in section 2.1.3 agents can be deceptive.
Thus given a smart opponent, it would be smart to check whether the job was
posted by the opposing team. If it is, it might suggest that the job is somehow
not a good one to take, since the job could either help the opponent in some
way, or be difficult or unprofitable to carry out.

16 Analysis

Chapter 5

The Jason Programming
Language

In this chapter we discuss the Jason programming language and how to use
it. This chapter is largely based on the Jason book ’Programming Multi-Agent
Systems in AgentSpeak Using Jason’ [9]. For further information about the
Jason language we refer to the aforementioned book.

5.1 Eclipse AgentSpeak Plugin

In order to use Jason we need an IDE. We have chosen to use the Jason plugin
for Eclipse, As seen figure 5.1. The plugin enables us use our preferred IDE
Eclipse for developing, running, and debugging our code [10].

With the debugging tool called Mind Inspector, which is shown in figure 5.2,
we are able to see the inner workings of our agents. We can see what it currently
believes, what events its responding to and so on. We can also run the agent
through steps in our simulation.

18 The Jason Programming Language

Figure 5.1: Eclipse with Jason plugin, in Jason perspective

Figure 5.2: Jason Mind Inspector, used for debugging Jason agents

5.2 Project File 19

Figure 5.3: .mas2j project file

5.2 Project File

At the core of a Jason project is the .mas2j file. It specifies infrastructure,
agents, environment and optionally GUI.

The environment specified in the project file is the implementation of an Envi-
ronment Interface Standard (EIS), through which all communication between
agents and environment or server in our project, takes place. Our .mas2j file
can be seen in figure 5.3.

5.3 Agent .asl Files

While the .mas2j file is the core of the project, the programming of the agents
happens in the agent .asl files. Here we define initial plans, rules, and beliefs.
There can be many .asl files in one project defining different agents and .asl files
can also be imported into other .asl files using the ’include’ keyword.

5.4 Concepts of a Jason Agent

A Jason agent has a lot of stuff on its mind, such as beliefs, rules, plans, and
goals. It can also perform actions. In this section we will explain some of the
core concepts of a Jason agent.

5.4.1 Actions

Actions can generally be explained as something done by an agent. On the
other hand agents are described as "active, purposeful producers of actions" [9].

20 The Jason Programming Language

There are two kinds of actions; external actions, which are just called actions
and internal actions. Actions are made by an agent and they influence the
environment they are in, in some way. In terms of the Multi-Agent Programming
Contest, this could be a buy action. It transfers money from the agent and an
item from the shop to the agent, thus the effect of the action can be measured.
Internal actions on the other hand, do not directly affect the environment they
are in. Instead they are more of an intellectual nature. They are used by agents
to find, sort, measure, calculate and so on. There is a number of standard library
internal actions available in Jason and these can be recognized because they start
with a punctuation mark. The developer can also implement their own internal
action by creating a Java class, which extends the DefaultInternalAction[7] from
the Jason library. Internal actions are written in Java and may facilitate the
user with helpful methods of processing data, which could be hard to do in
Jason. When a user-implemented internal action is called, the package name of
the internal action is written before the name of the action. An internal action
can take any number of arguments, which are then found in an array of Terms
which is a parameter of the execute method of the action.

5.4.2 Beliefs and Rules

If say the agent believes that Oslo is a city in Sweden, it might have a belief
that says City(Oslo, Sweden). Beliefs can be defined in the agent file, but can
also be given to the agent by percepts, logical reasoning within the agent, or
communication with other agents. Rules are logical shorthands. If an agent
wants to attend a concert, it might have the following beliefs:

HasMoney(30) TicketPrice(15)

It likely also has the following rule, which returns true if the agent believes that
it can afford the ticket:

CanAffordTicket(Price, Money):-Price<Money.

5.4.3 Plans and Events

In order to be reactive, autonomous, and proactive, as described in chapter 2,
an agent needs to be able to have plans. An agent’s plan uses the following
format:

event:condition<-body.

5.4 Concepts of a Jason Agent 21

Figure 5.4: Full list of events, figure courtesy of [6]

A full list of possible events is shown in figure 5.4.

The beliefs are covered in section 5.4.2. Achievement goals are states an agent
wants to achieve and are denoted with a ’ !’.

One example of an achievement goal is !enter(car), where an agent wants to
enter a car. A test goal is denoted by a ’?’ and is usually only used to check
the belief base if a value is there. A Condition is a logical expression, usually a
check on what the agent currently believes. Body is a list of actions, subgoals,
for loops, and if statements.

5.4.4 The Reasoning Cycle

A Jason agent runs by means of a reasoning cycle. This cycle is the decision
making and update cycle of the agents mind. It can be broken down into 10
steps. Steps 1-4 deal with updating the agents beliefs about the environment and
about other agents. Steps 5-10 deal with executing and updating an intention.
These are the 10 steps:

1. Perceiving the Environment: The agent senses its environment and
updates its beliefs about the state of the environment.

2. Updating the Belief Base: The agent updates its belief base based
on the new perception about the environment. This means it discards old
beliefs that were not perceived in this cycle and adds new beliefs that were
not present in the belief base prior to this cycle. This is done using the

22 The Jason Programming Language

Belief Update Function and the Belief Revision Function. These can be
customized in order to better handle updates of beliefs.

3. Receiving Communication from Other Agents: During this step the
interpreter checks for messages, that other agents may have sent to the
agent. This is done by the checkMail method, which can be customized.
This method makes the received messages available at the level of the
AgentSpeak interpreter. Only one message is processed by the AgentSpeak
interpreter per cycle. Unless the selection function is overridden by the
developer, Jason will just choose the first message received.

4. Selecting ’Socially Acceptable’ Messages: The method ’SocAcc’,
which typically needs to be customized, determines what messages can
be accepted. Because agents can send know-how and delegate goals, it is
important that the source is a trusted one by the agent.

5. Selecting an Event: Events such as addition or removal of beliefs or new
goals, can queue up if many events have happened in the span of too few
reasoning cycles. In this case a selection function, which can be customized
selects the event to be dealt with. The standard implementation will take
the first event in the queue. If the set of events is empty the reasoning
cycle will proceed directly to step 9.

6. Retrieving all Relevant plans: The next step is to retrieve all plans
which are relevant to this event. It will look at the arguments and the
source or the event to see if they match at and retrieve all the relevant
plans.

7. Determining the Applicable Plans: The agent now determines all the
applicable plans for the event that have a chance of succeeding. This is
done on the basis of the know-how of the agent and its current beliefs.

8. Selecting One Applicable Plan: The standard implementation of the
selection function for the applicable plan called an ’option selection func-
tion’. The standard implementation will select the first application plan
in the plan library, which in turn is determined by the order of the plans
in the source code. So the first applicable plan in the source code will be
executed given the standard selection function. This results in an addition
to an existing intention for the agent. Added to the intention is that the
agent wants to achieve the current goal by means of the selected plan.
This is called the intended means for the goal.

9. Selecting an Intention for Further Execution: Selecting the right
intention can be very important and thus it is advisable to customize the
selection function for selecting intentions to act on, in order to do the
most important things first. The standard selection function for intention

5.4 Concepts of a Jason Agent 23

will use ’round-robin’ scheduling for this and carry out one action on each
intention on the intention list and then start from the top again and go
down the list again. This makes it so each intention gets the same amount
of attention. Technically this is implemented by removing the first item
on the list and adding it to the end of the list each cycle.

10. Executing One Step of an Intention: The agent now performs one
step of an intention. Intentions can be suspended if they are waiting
for feedback on an execution of an action or they are waiting for mes-
sage replies from other agents. Before the next reasoning cycle starts,
the agent checks for any such feedback and the relevant intentions are up-
dates according to the feedback. The intentions that received their needed
feedback are put back in the active list of intentions.

24 The Jason Programming Language

Chapter 6

Setting Up the Project

In this chapter we will explain how to set up the project for use and development.
The guides are made for the Eclipse IDE which the user will need to have
installed as well as a Java Development Kit (JDK) of version 1.7 or newer. The
Eclipse version needs to be of version 3.7.0 or newer in order to install the Jason
Plugin.

6.1 Setting Up the Project from Scratch

This is a guide to setting up the environment from scratch.

1. Download Jason 2.1 from the Jason web site [8].

2. Install the Jason plugin for eclipse following the guide found on the Jason
website [10].

3. Download the compiled version of the Multi-Agent Programming Contest
software called "massim-2017-1.2-bin.tar.gz" at the time of writing, found
at their official GitHub page [5].

4. Create your own Jason project.

26 Setting Up the Project

5. Add the following three .jar files to the lib folder of the project: Jason 2.1
jar from your Jason installation, the EISMASSim, and server-2017 jars
from the compiled Multi-Agent Programming Contest project.

6. Now add these as local jars to the build path of your project.

The project is now ready for testing and development. In order to make it easier
to run the server, it is a good idea to make a class in your project that takes
care of this. See A.4 for an example of how to do this.

6.2 Guide: Importing and Running the Project

Now we will explain how to swiftly get the project up and running.

1. Install the Jason plugin for eclipse following the guide found on the Jason
website [10].

2. Add the project to Eclipse.

3. Now run the RunServer.java in the src/java folder as a java application.
Now your console should look like in figure 6.1.

4. Start the Jason application by selecting the Jason perspective and hitting
the top left run button as seen in figure 6.2.

When the multi-agent system console has popped up, select the Eclipse console
and press enter. Now the simulation has started. To watch the agents in action
open a web browser and access localhost:8000. Here you will find an interactive
graphical representation of the simulation.

6.2 Guide: Importing and Running the Project 27

Figure 6.1: The Eclipse console after starting the server

Figure 6.2: The Eclipse console after starting the server

28 Setting Up the Project

Chapter 7

Implementation

In this chapter we discuss how we have implemented our multi-agent system.
We have implemented a minimum viable product and an improved version of
said minimum viable product. We will go into detail on them both.

7.1 Implemented Minimum Viable Product

In this section we discuss our initial implementation of a multi-agent system,
our minimum viable product.

7.1.1 Cooperation

In our first implementation we only let our truck take actions. This is because
we have, in this minimum viable strategy, not implemented a way for the agents
to divide work between them, so all the agents try to complete the same jobs in
the same order. Our truck is the agent most suited for completing jobs on its
own and so we have disabled the other agents.

30 Implementation

7.1.2 Find Job

When the agent is not currently doing a job, it looks for jobs for it to complete.
We have implemented a selector, which chooses a job that requires items the
agent is able to construct on its own. The logic checks if any of the items, the
job requires, needs tools that the agent does not carry in any way. If it does, we
reject the job and find another one. Since we are currently only using the truck,
we do not need to check if the agent is able to carry any more items. It needs
to be noted that for the purposes of our project build, construct, and assemble
are the same things.

7.1.3 Core Loop

Once a job has been selected, we enter the core loop for the agent, illustrated in
figure 7.1. The agent checks if it needs to recharge, if it does, it starts a charging
plan.

If it cannot, it checks if it can complete the current job, if it does, it starts a
delivery job plan.

If it cannot, it checks if it can construct one of the items needed for the job, if
it can, it starts a construct item plan.

If it cannot it checks if it can construct a part of a required item, if it can it
starts a construct part plan.

If it cannot, it checks if it can buy subparts for constructing a part for a required
item, if it can, it starts a plan for that.

If it cannot, it checks if it can buy a part for construction of a required item. If
it can, it starts a buys plan.

If it cannot, the job is likely expired, and we check for that before running the
core loop again.

The reason for the core loop running the way it does is that it saves space in
the truck and the agent does not deliver items if it cannot complete a job. It
saves space, since thee sum of the space used by the parts is greater than the
assembled items. This means that we have a greater chance of having space for
the items the agent is constructing.

7.1 Implemented Minimum Viable Product 31

Figure 7.1: Core loop of our agents

32 Implementation

Figure 7.2: Agent recharge logic

7.1.4 Recharge

When an agent checks recharge and finds that its battery level reaches a value
based upon its current battery level vs. its maxbattery
(charge=<(150+0,15*maxbattery)), it checks which charging station is closest,
goes to that one and recharges until its battery level is full, then it restarts the
core loop, this is illustrated in figure 7.2

Should an agent, in spite of our above check on battery, run completely out of
power, it will use the recharge command, which charges the agent on the spot
using solar panels. This is quite inefficient, so when the agent reaches the level
where it would normally start to look for a charging station it does so, and goes
there in order to recharge faster.

7.1.4.1 Deliver

When an agent checks deliver job, it checks whether or not it carries all the
items required to finish the active job. If it does, it goes to the facility to deliver
the items and delivers them.

7.1 Implemented Minimum Viable Product 33

Figure 7.3: Solar charging is used if the battery of the agent is completely
depleted

Figure 7.4: Agent delivery logic

This is illustrated in figure 7.4.

7.1.4.2 Construct Item

When an agent checks if it can construct a required item, it checks if it has all
the parts needed for any required item it does not currently have enough of to
complete the job. If it does, it goes to a workshop and constructs the item. This
is illustrated in figure 7.5.

34 Implementation

Figure 7.5: Agent assembly logic

7.1.4.3 Construct Part

When an agent checks if it can construct a part for a required item, it checks if
there is a required item not yet made that there is a part that requires assembly
that it has enough subparts to assemble. If it does, it goes to a workshop and
assembles the part. This is illustrated in figure 7.5, and shares logic with
Construct item.

7.1.4.4 Buy Subpart

When an agent checks buy subparts for parts, it checks if there is a part we need
more of that requires subparts we also need more of. If it does, it goes to buy
the subparts. This is illustrated in figure 7.5. For the purposes of buying, parts,
items, and subparts are the same, though you cannot buy the items required
for missions straight out of a shop.

7.1.4.5 Buy Part

When an agent checks buy parts for required item, it checks if there is a required
item we need more of which requires a part we do not have and can buy. If it
does, it goes and buys the part. This is illustrated in figure 7.6. Buy part and
buy subpart use same logic.

7.2 Improved Version 35

Figure 7.6: Agent buy logic

7.2 Improved Version

This version of our multi-agent system is improved in two ways. There is a
dedicated agent which checks what jobs are viable, splits the job into parts and
delegates tasks to other agents. We have also made some improvements on the
core loop, so that it runs more effectively.

7.2.1 Improved Cooperation

In the improved version of our multi-agent system, we have implemented func-
tionality that lets agents cooperate in the completion of jobs, where each agent
constructs and delivers a set of items on its own. We use all of the agents except
for the drones, as the drones are not able to carry all of the parts required to
construct any of the items that are required to finish jobs.

7.2.2 Improved Choose Job

The new choose job logic lets one drone check what jobs are viable. It checks
that none of the items required for the job uses tools and that it at most requires
four different kinds of items. It then checks how much space each set of items
take. It then tells the other agents to assemble and deliver the items, specifying
a set of items each, and making sure that each agent gets a set they have space

36 Implementation

Figure 7.7: Improved Choose Job logic

for. It then waits until the job is either completed or failed, and starts choosing
a new job for the other agents to complete. If there is no job for the other agents
to complete, that is, there is no jobs that at most require four different items,
where none of the items require tools, it simply waits until there is one. This is
illustrated in figure 7.7

7.2.3 Improved Core Loop

This is now the only loop most agents use, they no longer check for jobs them-
selves, instead they wait until they have been told to construct an item for a
job.

The agent checks if it needs to recharge, if it can, it starts a charging plan.

If it cannot not, it checks if it can deliver the item(s) its been asked to deliver,
if it can, it starts a delivery job plan.

If it cannot not, it checks if it can construct all of the items it has been ordered
to construct for the job, if it can, it starts a construct item plan.

If it cannot not it checks if it can construct all the parts, of a single type of part,
of the items it has been ordered to construct for the job, if it can it, starts a
construct part plan.

If it cannot not, it checks if it can buy all the subparts it needs for constructing
all the parts, for a required item, if it can, it starts a plan for that.

7.2 Improved Version 37

If it cannot not, it checks if it can buy a part for construction of a required item.
If it can, it starts a buys plan.

If it cannot not, the job is likely expired, and the agent checks for that. If it is,
the agent awaits new orders. other wise the agent runs the core loop again.

This is illustrated in figure 7.8.

7.2.4 Improved Recharge

The logic for recharge is unchanged from the minimum viable product.

7.2.4.1 Improved Deliver

When an agent checks deliver job, it checks whether or not it carries all the
items it has been assigned to deliver for the active job. If it does, it goes to
the facility to deliver the items, and delivers them. This is illustrated in figure
7.4, as it is not different enough from the regular deliver logic to warrant a new
figure.

7.2.4.2 Improved Construct Item

When an agent checks if it can construct a required item, it checks if it has all
the parts needed to construct the whole set of items it has been assigned to
construct and deliver for the current job. If it does, it goes to a workshop and
assembles the item(s). This is illustrated in figure 7.9.

7.2.4.3 Improved Construct Part

When an agent checks if it can construct all parts of a type for the required
item(s), it checks if there is a required item not yet made that there is a part
that requires assembly that it has enough items to assemble. If it does, it goes
to a workshop and assembles the part.

This is illustrated in figure 7.9, and shares logic with Construct item.

38 Implementation

Figure 7.8: Improved Core Loop

7.2 Improved Version 39

Figure 7.9: Improved Assembly Loop

7.2.4.4 Improved Buy Subpart

When an agent checks buy subparts for parts it checks if there is a part we need
more of, which requires subparts we also need more of. If it does, it goes to
buy the subparts. The improvement here is that it now buys all the subparts
it needs for all the parts, where before it only bought so that it had enough
subparts to build a single part of each of the needed parts. This is illustrated
in figure 7.6, the flow is not different enough to warrant a new figure.

7.2.4.5 Improved Buy Part

When an agent checks buy parts for required item, it checks if there is a required
item we need more of that requires a part we do not have and can buy. If it
does, it goes and buys the part. The improvement here is the same as in section
7.2.4.4, it now buys all the subparts it needs for all the parts, where before it
only bought so that it had enough subparts to build a single part of each of the
needed parts. This is illustrated in figure 7.6, the flow is not different enough
to warrant a new figure.

40 Implementation

7.3 Internal Action

We have implemented an internal action that calculates the distance between
two points on the map. This internal action is used to choose the closest of
a given kind of facility. Right now, this is used to select the closest charging
station to the agent, so the agent quickly can resume their job, when charge is
needed. The measure used is Manhattan distance. This is the same for both
implementations.

7.4 Environment Interface

We have elected to save some time on the development of our environment
interface and we are using the Jason EISAdapter [3] supplied by the guys behind
the contest. This is the same for both implementations.

Chapter 8

Discussion and Reflection

In this chapter we discuss our results, possible further improvements upon our
program and reflect upon how we have managed this bachelor project.

8.1 Results

We have tested our system by running it on the standard simulation server
provided by the Multi-Agent Programming Contest.

In our minimum viable product, the agent complete one or two jobs in the
standard 1,000 step simulation, each job having a deadline of approx. 250
steps from start. The seed money given to each team is 50,000 and our agents
usually end the simulation with 47,000, most of the money lost is due to fines
on uncompleted missions, which we have not implemented a way to handle.

There are of course two reasons for the improvement of the system from the
minimum viable product to the improved version. One is that there is actual
cooperation between agents, putting the multi in multi-agent systems. We now
make sure that for every type of item required in a job, an agent assembles and
delivers the items of that type. The other reason is that the change to the core

42 Discussion and Reflection

loop means that since the an agent only assembles parts or when it has all the
parts or subparts needed, it spends far less time traveling before it assembles
and delivers its items.

Since we improved our multi-agent system, we have seen an improvement in how
quickly the agents assembles all item of a type by up to 200%. This combined
with the fact that every type of item required by a job is assembled by different
agents, means that the improved system should out-compete our minimum vi-
able product by a wide margin. There is however one bug which means that the
improved version is not yet viable over the old version. Occasionally an agent
enters a state, where it completes no actions, even though it says it intends to.
We have tried debugging the agent, but we are not yet sure why it enters this
state and stays there. This means that the agents cannot fulfill the jobs they
are helping to complete and this will cause other jobs, they are assigned to help
with, fail in a similar manner.

There are also two other non-critical bugs. One is that agents will buy a couple
too many parts for the items they are trying to build and the other is that some
agents occasionally fail to start, when we start running the simulation. The
first one is likely a logical error, but can be handled by making the agents dump
their inventory after they’ve delivered for a job. We are not sure what causes
the second bug, we just need to restart the agents. This can be done in the
simulation and needs to be done once per simulation in the first few steps, so it
is not that great of a concern.

8.2 Further Work

There are several things we could do to improve our program and make it
perform better, apart from fixing the bugs mentioned in the previous section.
In the following sections we will discuss some of the changes to the program we
believe could improve its performance.

8.2.1 Route Planing

We do not currently use any route planing other than planing the route between
the agent and the facility it is currently going to. If we started using route
planing for the trips required for entire jobs, we could be able to predict which
jobs we would not be able to complete based upon time limit. This would free
up resources for other tasks, thereby increasing performance of our program.

8.2 Further Work 43

8.2.2 Charging Station

In the vein of route planing, we currently use a very rough way of estimating
whether an agent needs to recharge its batteries. We simply check whether
the agent’s battery has less than 150 charge plus 7.5% of the maximum charge.
This could be improved greatly if we changed it to be incorporated in the route
planing discussed earlier, so that the agent takes as short detours as possible
and gets to spend more time completing jobs.

8.2.3 Missions and Auctions

We have not handled Missions or Auction jobs. The jobs themselves are not too
different from regular jobs, but we decided we did not have time to handle them
properly. The most interesting piece of work left here is estimating the bidding,
which ought to be done by checking the prices of every item needed to fulfill the
job. It would also be interesting to see how our agents are positioned compared
to the opponent’s agents and use this information to better adjust the bid.

8.2.4 Cooperation Between Agents

It would be preferable, to our current implementation, if the agents were able
to cooperatively assemble items.

8.2.5 Prediction and Counter Play

It would be very neat, if we were able to implement a way to predict how the
opponent is trying to complete jobs. This might be used to buy the items the
opponent needs in the shops they are trying to buy it in. Game-play wise it
would be a great move to disrupt an auction job or a mission in this manner,
though we do risk spending more money buying the resources than the opponent
loses in fines. As talked about in chapter 4 it would be a good idea, to check
whether a job was posted by the server or by the opponent. If it is posted by
the opponent there might be a malicious reason behind it, e.g. the jobs have
a very bad reward. This could of course also be done by us. If we know that
one item is lacking in the stores, or is only found in stores that are inconvenient
to go to, we could post a poorly paying job requiring these items, to make the
opponent team waste their work force.

44 Discussion and Reflection

8.2.6 Error Handling

We do not currently have much in the way of error handling. The current core
loop implementation is actually pretty robust and errors on actions usually mean
that the agents will see that the action, which failed earlier, still needs doing,
so it will just do it again. This might not hold true as we expand upon the
program, so it is something to look out for. We will also need to take blackouts
into consideration when they become relevant.

8.3 Reflections

When we started this project we had no experience working with multi-agent
systems. It surprised us how long it took for us to set up our programming
environments and we frequently got stuck on little things. Bugs, syntax, and a
lack of crowd sourced documentation such as StackOverflow all slowed us down.

We did however also get better at checking out source code, syntax documenta-
tion and so on. We were also surprised by the quick responses from the people
behind the Multi-Agent Programming Contest, when we found errors in the
server.

As we have worked with the system, we have come to appreciate working with
percepts and the logic involved. We hope to continue working on our project
over the summer holiday and participate in the contest come fall.

Appendix A

Code

Our source code is split up into a .mas2j file, two .asl files, and internal action
code explained in chapter 4. Furthermore the server file made to run the server,
as explained in chapter 5.

A.1 Project file (.mas2j)

MAS jasonting {

infrastructure: Centralised

environment: jason.eis.EISAdapter

agents:
connectionA #6;

aslSourcePath:
"src/asl";

}

46 Code

A.2 connectionA (Improved Multi-Agent System.asl)

// Agent sample_agent in project jasonting

/* Initial beliefs and rules */
canDoJob(JobID):-job(JobID,_,_,_,_,RequiredList)&.length(

↪→ RequiredList,
Length)& Length<5 & not (.member(required(Item,Qty),RequiredList)

↪→ &
item(Item,_,tools(ToolList),parts(Parts))& not((.empty(ToolList)

↪→))).
//|(.member(Tool,ToolList)&hasItem(Tool,_))
canBuildItem(Item):-item(Item,_,tools(ToolList1),parts(Parts))&
not(.member(required(Item,Qty),RequiredList) & (not .empty(

↪→ ToolList1))
& not canBuildItem(Item)).//(.member(X,ToolList1)&hasItem(X,_))|
//Not used/finnished because we only build items that dont

↪→ require tools,
//parts for these items can be bought not built.

needToCharge:-charge(Power)&role(Role,Speed,_,MaxBattery,_)&Power
↪→ <

(150+MaxBattery/15).

finnishedCharging:-role(Role,Speed,Load,MaxBattery,List)&
charge(Power)&Power==MaxBattery.
atChargingStation(ChargingStationID):- chargingStation(

↪→ ChargingStationID
,CLAT,CLON,_) & lat(LAT) & lon(LON) & CLAT == LAT & CLON == LON.
atStorage(StorageID):- storage(StorageID,SLAT,SLON,_,_,_) & lat(

↪→ LAT) &
lon(LON) & SLAT == LAT & SLON == LON.
atShop(ShopID):- shop(ShopID,SLAT,SLON,_,_) & lat(LAT) & lon(LON)

↪→ & SLAT
== LAT & SLON == LON.
atWorkShop(WorkshopID):- workshop(WorkshopID,SLAT,SLON) & lat(LAT

↪→) &
lon(LON) & SLAT == LAT & SLON == LON.

hasAllItems(JobID):-job(JobID,_,_,_,_,RequiredList)& not

A.2 connectionA (Improved Multi-Agent System.asl) 47

(.member(required(Item,Qty),RequiredList) & not hasItem(Item,Qty
↪→)).

//readyToBuildItem(JobID,Item):-job(JobID,_,_,_,_,RequiredList) &
.member(required(Item,Qty),RequiredList) & ((not hasItem(Item,_))

↪→ |(hasItem(Item,Qty1)&Qty>Qty1)) & item(Item,_,_,parts(
↪→ Parts))¬(.member([Part,Qty2],Parts)&(not(hasItem(Part,_
↪→))|hasItem(Part,Qty3)&Qty2>Qty3)).

readyToBuildItem(Item,Qty):- item(Item,_,_,parts(Parts))& ((not
↪→ hasItem(Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) &(not(.
↪→ member([Part,Qty2],Parts)&((not(hasItem(Part,_))|hasItem(
↪→ Part,Qty3)&Qty2>Qty3)))|(hasItem(Item,Qty1)&Qty>Qty1)).

//readyToBuildSubItem(JobID,Part):- job(JobID,_,_,_,_,
↪→ RequiredList) & .member(required(Item,Qty),RequiredList) &
↪→ ((not hasItem(Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) &
↪→ item(Item,_,_,parts(Parts))&.member([Part,Qty2],Parts)&(
↪→ not(hasItem(Part,_))|hasItem(Part,Qty3)&Qty2>Qty3)&item(
↪→ Part,_,_,parts(Parts2))¬(.empty(Parts2))¬(.member([
↪→ Part2,Qty4],Parts2)&(not(hasItem(Part2,_))|hasItem(Part2,
↪→ Qty5)&Qty4>Qty5)).

readyToBuildSubItem(Item,Part, Number,Number*Qty2):- item(Item,_,
↪→ _,parts(Parts)) & .member([Part,Qty2],Parts) & (not(
↪→ hasItem(Part,_))|hasItem(Part,Qty3)&((Number*Qty2)>Qty3))
↪→ & item(Part,_,_,parts(Parts2)) & not(.empty(Parts2)) & (
↪→ not(.member([Part2,Qty4],Parts2)&(not(hasItem(Part2,_))|
↪→ hasItem(Part2,Qty5)&((Number*Qty2*Qty4)>Qty5)))).

shopForItem(ItemID,Part,ShopID,QtyNeeded,Qty2):- item(ItemID,_,_,
↪→ parts(Parts))&(.member([Part,Qty2],Parts)&(not(hasItem(
↪→ Part,_))|hasItem(Part,Qty3)&((Qty2*QtyNeeded)>Qty3)))&shop
↪→ (ShopID,_,_,_,Inventory)& .member(item(Part,_,_),Inventory
↪→).

shopForSubItem(ItemID,Part2,ShopID,QtyNeeded,Qty4):- not(hasItem(
↪→ ItemID,QtyNeeded))&item(ItemID,_,_,parts(Parts))&(.member
↪→ ([Part,Qty2],Parts)&(not(hasItem(Part,_))|hasItem(Part,
↪→ Qty3)&((Qty2*QtyNeeded)>Qty3))) & item(Part,_,_,parts(
↪→ Parts2))¬(.empty(Parts2))&(.member([Part2,Qty4],Parts2)
↪→ &(not(hasItem(Part2,_))|hasItem(Part2,Qty5)&((Qty4*Qty2*
↪→ QtyNeeded)>Qty5)))&shop(ShopID,_,_,_,Inventory)& .member(
↪→ item(Part2,_,_),Inventory).

/* Initial goals */
!init.

/* Plans */

48 Code

+!init:true<-
if(false&role(truck,Speed,Load,MaxBattery,ToolList)&.

↪→ member(MissingTool,ToolList)& (not (hasItem(
↪→ MissingTool,_)))& shop(ShopID, _, _, _, Inventory)
↪→ & .member(item(MissingTool, _, _),Inventory)){

.term2string(MissingTool,X);
!!goBuy(ShopID,X,1,true);
goto(ShopID);

}
else{

if(charge(_)[entity(connectionA4),source(percept)])
↪→ {

+itemList([]);
+weightList([[item10,176],[item12,135],[

↪→ item14,195],[item17,460]]);
if(weightList(List)){

.print(List);
}
!!choseJob;

//go to plan for chosing jobs for agents
skip;

}
else{

if(not(role(drone,Speed,Load,MaxBattery,
↪→ ToolList))){

if(hasItem(_,_)){
//!!goDump;
//goto(dump0);
!!decide;
skip;

}
else{

!!decide;
skip;

}
}
else{

!!skip;
skip;

}
}

}

A.2 connectionA (Improved Multi-Agent System.asl) 49

.
+!skip:true<-
!!skip;
skip;
.

+!choseJob: not(activeJob(_))<-
if(canDoJob(JobID)&job(JobID,Start,End,Rewawrd,Storage,

↪→ RequiredList)){
.print("JobID ",JobID," Start ",Start," End ",End,"

↪→ Rewawrd ",Rewawrd," Storage ",Storage,"
↪→ RequiredList ",RequiredList);

+activeJob(JobID);
if(weightList(WeightList)){

for(.member(required(Item, Qty),RequiredList)&.
↪→ member([Item,Weight],WeightList)){

if(item(Item,_,_,_)&itemList(List)){
-+itemList([required(Weight*Qty,Item

↪→ ,Qty)|List]);
}

}
if(itemList(List)){

.sort(List,SortedList);

.print(SortedList);
-+itemList(SortedList);

}
if(itemList(SortedList)&.length(SortedList,Length)

↪→ &.nth(Length-1,SortedList,required(_,ItemID1
↪→ ,Qty1))){

.send(connectionA6,tell,dojob(JobID, ItemID1
↪→ ,Qty1));

if(Length>1 & .nth(Length-2,SortedList,
↪→ required(_,ItemID2,Qty2))){

.send(connectionA1,tell,dojob(JobID,
↪→ ItemID2,Qty2));

if(Length>2 & .nth(Length-3,
↪→ SortedList,required(_,ItemID3,
↪→ Qty3))){

.send(connectionA2,tell,dojob
↪→ (JobID, ItemID3,Qty3))
↪→ ;

if(Length>3 & .nth(Length-4,
↪→ SortedList,required(_,

50 Code

↪→ ItemID4,Qty4))){
.send(connectionA5,

↪→ tell,dojob(
↪→ JobID, ItemID4,
↪→ Qty4));

}
}

}

}
-+itemList([]);
!!choseJob;
skip;
}

}
else{

!!choseJob;
skip;

}
.

+!choseJob: activeJob(_)<-
!!choseJob;
skip;

.

+!decide:dojob(JobID, ItemID, QtyNeeded) &job(JobID,Start,End,
↪→ Reward,Storage,RequiredList) <-

if(needToCharge){
!!chooseChargingStation;
skip;

}
else{

if(hasItem(ItemID,QtyNeeded)){
!!standAndDeliver(JobID);
skip;

}
else{

if(readyToBuildItem(ItemID,QtyNeeded)){//}|
↪→ (not startedBuildingSubItem(_,_) &
↪→ startedBuildingItem(_,_))){//check if
↪→ we can construct an item thats
↪→ required

!!goBuild(ItemID,QtyNeeded);
goto(48.832,2.35192);

A.2 connectionA (Improved Multi-Agent System.asl) 51

}else{
if(readyToBuildSubItem(ItemID,

↪→ SubItem,QtyNeeded,
↪→ AmmountOfParts)){//}|
↪→ startedBuildingSubItem(_,_)){

!!goBuild(SubItem,
↪→ AmmountOfParts);

goto(48.832,2.35192);
}

else{//go buy items so that we can
↪→ construct item

if(shopForSubItem(ItemID,Part
↪→ ,Shop,QtyNeeded,Qty)){

!!goBuy(Shop, Part,
↪→ Qty, false);

goto(Shop);
}

else{
if(shopForItem(ItemID,

↪→ Part,Shop,
↪→ QtyNeeded,Qty))
↪→ {

!!goBuy(Shop,
↪→ Part,
↪→ Qty,
↪→ false);

goto(Shop);
}
else{

.print("Dont
↪→ shop?");

!!decide;
skip;

}
}

}
}

}
}
.

+!decide:not (dojob(JobID, itemID, QtyNeeded) &job(JobID,Start,
↪→ End,Rewawrd,Storage,RequiredList))<-

if(hasItem(_,_)){

52 Code

!!decide;
skip;
//!!goDump;
//goto(dump0);

}
else{

!!decide;
skip;

}
.

+charge(0):true<-
.drop_all_intentions;

.drop_all_desires;

.drop_all_events;
!!solarcharge;
recharge

.

+!solarcharge: needToCharge<-
!!solarcharge;
recharge

.

+!solarcharge: not needToCharge<-
!!chooseChargingStation;
recharge

.

-job(JobID,_,_,_,_,_):dojob(JobID,Item,Qty)<-
-dojob(JobID,Item,Qty)
.print("removed Dojob");
skip;
.

-job(JobID,_,_,_,_,_):activeJob(JobID)<-
-activeJob(JobID);
.print("removed Job id");
skip;
.

+!chooseChargingStation: lat(AgentLat) & lon(AgentLon) <- -+
↪→ minDistBel("", 1000);

for(chargingStation(Name,Lat,Lon,_)){

A.2 connectionA (Improved Multi-Agent System.asl) 53

actions.distance(Lat, Lon, AgentLat, AgentLon,
↪→ Distance);

?minDistBel(N, D);
if(Distance < D){

-+minDistBel(Name, Distance);
}

}
?minDistBel(N, D);
!!recharge(N);
if(chargingStation(N,LatC,LonC,_)){

goto(LatC,LonC);
}
else{

goto(N);
}
.

+!recharge(ChargingStation) : needToCharge & not
↪→ atChargingStation(ChargingStation) <-

!!recharge(ChargingStation);
if(chargingStation(ChargingStation,LatC,LonC,_)){

goto(LatC,LonC);
}
else{

goto(ChargingStation);
}
.

+!recharge(ChargingStation) : not needToCharge & (not
↪→ atChargingStation(ChargingStation) | finnishedCharging)<-

!!decide
skip.

+!recharge(ChargingStation) : atChargingStation(ChargingStation)
↪→ & not finnishedCharging <-

!!recharge(ChargingStation);
charge.

+!goBuild(Item,Qty): not facility(workshop0)<-
!!goBuild(Item,Qty);
goto(48.832,2.35192);

.
+!goBuild(Item,Qty): facility(workshop0)<-

54 Code

if(lastAction(assemble) & not lastActionResult(successful)
↪→){

!!goBuild(Item,Qty);
assemble(Item);

}
else{

if(Qty = 0){
!!decide;
skip;

}
else{

!!goBuild(Item,Qty-1);
assemble(Item);

}
}

.

+!standAndDeliver(JobID):true<-
if(job(JobID,StorageID,_,_,_,RequiredList)){ // & .member(

↪→ required(NameRequired,QtyRequired),RequiredList) &
↪→ hasItem(Name, Qty)& Name==NameRequired){

!!deliver(StorageID, JobID);
if(storage(StorageID,LatC,LonC,_,_,_)){

goto(LatC,LonC);
}
else{

goto(StorageID);
}

}
else{

!!decide;
skip;

}
.

+!deliver(StorageID, JobID): not atStorage(StorageID)<-
!!deliver(StorageID, JobID);
if(storage(StorageID,LatC,LonC,_,_,_)){

goto(LatC,LonC);
}
else{

goto(StorageID);
}

A.2 connectionA (Improved Multi-Agent System.asl) 55

.
+!deliver(StorageID, JobID): atStorage(StorageID)<-

deliver_job(JobID);
if(lastAction(randomFail)){

!!deliver(StorageID, JobID);
skip;

}
else{

!!decide;
if(dojob(JobID, ItemID, QtyNeeded)[source(

↪→ connectionA4)]){
-dojob(JobID, ItemID, QtyNeeded)[source(

↪→ connectionA4)];
.print("removing dojob, by way of dellivery");

}
!!decide;
skip;
}

.

+!goShop: true <-
if(job(_,_,_,_,_,RequiredList) & shop(ShopID, LatC, LonC,

↪→ _, Inventory) & .member(required(NameRequired,
↪→ QtyRequired),RequiredList) & .member(item(Name1,
↪→ Price1, Qty1),Inventory) & Name1 == NameRequired){

.print("We decided to buy something");
if(QtyRequired > Qty1){

!!goBuy(ShopID, NameRequired, Qty1,false);
goto(LatC,LonC);

}
else{

!!goBuy(ShopID, NameRequired, QtyRequired,
↪→ false);

goto(LatC,LonC);
}

}
else{

!!decide;
skip;

}
.

+!goBuy(ShopID, NameRequired, Qty1, Init): not facility(ShopID)<-

56 Code

!!goBuy(ShopID, NameRequired, Qty1, Init);
if(shop(ShopID, LatC, LonC, _, Inventory)){

goto(LatC,LonC);
}
else{
goto(ShopID)
}
.

+!goBuy(ShopID, NameRequired, Qty1, Init): facility(ShopID)<-
.term2string(Qty1,X);
buy(NameRequired,X);
if(lastActionResult(Result)&Result == successful){

if(Init){
!!init;
skip;

}
else
{

if(Qty1=1){
!!decide;
skip;

}
else{

!!goBuy(ShopID, NameRequired,
↪→ Qty1-1, Init);

skip;
}

}
}
else{

!!goBuy(ShopID, NameRequired, Qty1, Init);
skip;

}

.
+!closest: true<-

if(not(First == true)){
FirstRun = true;

}
.

+!choseJob: true<-
skip;

A.3 connectionB (Minimum Viable Mullti-Agent System 57

.
+!goDump: not facility(dump0)<-

!!goDump;
goto(dump0);

.

+!goDump:facility(dump0)<-
if(hasItem(Item,Qty)){

.term2string(Qty,X);
!!goDump;
dump(Item,X);

}
else{

!!decide;
skip;

}
.

A.3 connectionB (Minimum Viable Mullti-Agent
System

// Agent sample_agent in project jasonting

/* Initial beliefs and rules */

canDoJob(JobID):-job(JobID,_,_,_,_,RequiredList)& not (.member(
↪→ required(Item,Qty),RequiredList)&item(Item,_,tools(
↪→ ToolList),parts(Parts))& not((.empty(ToolList)))).

canBuildItem(Item):-item(Item,_,tools(ToolList1),parts(Parts))&
↪→ not(.member(required(Item,Qty),RequiredList) & (not .empty
↪→ (ToolList1)) & not canBuildItem(Item)).

needToCharge:-charge(Power)&role(Role,Speed,_,MaxBattery,_)&Power
↪→ <(100+MaxBattery/20).

finnishedCharging:-role(Role,Speed,Load,MaxBattery,List)&charge(
↪→ Power)&Power==MaxBattery.

atChargingStation(ChargingStationID):- chargingStation(
↪→ ChargingStationID,CLAT,CLON,_) & lat(LAT) & lon(LON) &
↪→ CLAT == LAT & CLON == LON.

58 Code

atStorage(StorageID):- storage(StorageID,SLAT,SLON,_,_,_) & lat(
↪→ LAT) & lon(LON) & SLAT == LAT & SLON == LON.

atShop(ShopID):- shop(ShopID,SLAT,SLON,_,_) & lat(LAT) & lon(LON)
↪→ & SLAT == LAT & SLON == LON.

atWorkShop(WorkshopID):- workshop(WorkshopID,SLAT,SLON) & lat(LAT
↪→) & lon(LON) & SLAT == LAT & SLON == LON.

hasAllItems(JobID):-job(JobID,_,_,_,_,RequiredList)& not (.
↪→ member(required(Item,Qty),RequiredList) & not hasItem(Item
↪→ ,Qty)).

readyToBuildItem(JobID,Item):-job(JobID,_,_,_,_,RequiredList) & .
↪→ member(required(Item,Qty),RequiredList) & ((not hasItem(
↪→ Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) & item(Item,_,_,
↪→ parts(Parts))¬(.member([Part,Qty2],Parts)&(not(hasItem(
↪→ Part,_))|hasItem(Part,Qty3)&Qty2>Qty3)).

readyToBuildSubItem(JobID,Part):- job(JobID,_,_,_,_,RequiredList)
↪→ & .member(required(Item,Qty),RequiredList) & ((not
↪→ hasItem(Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) & item(
↪→ Item,_,_,parts(Parts))&.member([Part,Qty2],Parts)&(not(
↪→ hasItem(Part,_))|hasItem(Part,Qty3)&Qty2>Qty3)&item(Part,_
↪→ ,_,parts(Parts2))¬(.empty(Parts2))¬(.member([Part2,
↪→ Qty4],Parts2)&(not(hasItem(Part2,_))|hasItem(Part2,Qty5)&
↪→ Qty4>Qty5)).

shopForItem(JobID,Part,ShopID,Qty2):-job(JobID,_,_,_,_,
↪→ RequiredList) & .member(required(Item,Qty),RequiredList) &
↪→ ((not hasItem(Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) &
↪→ item(Item,_,_,parts(Parts))&(.member([Part,Qty2],Parts)&(
↪→ not(hasItem(Part,_))|hasItem(Part,Qty3)&Qty2>Qty3))&shop(
↪→ ShopID,_,_,_,Inventory)& .member(item(Part,_,_),Inventory)
↪→ .

shopForSubItem(JobID,Part2,ShopID,Qty4):-job(JobID,_,_,_,_,
↪→ RequiredList) & .member(required(Item,Qty),RequiredList) &
↪→ ((not hasItem(Item,_))|(hasItem(Item,Qty1)&Qty>Qty1)) &
↪→ item(Item,_,_,parts(Parts))&(.member([Part,Qty2],Parts)&(
↪→ not(hasItem(Part,_))|hasItem(Part,Qty3)&Qty2>Qty3)) & item
↪→ (Part,_,_,parts(Parts2))¬(.empty(Parts2))&(.member([
↪→ Part2,Qty4],Parts2)&(not(hasItem(Part2,_))|hasItem(Part2,
↪→ Qty5)&Qty4>Qty5))&shop(ShopID,_,_,_,Inventory)& .member(
↪→ item(Part2,_,_),Inventory).

/* Initial goals */
!init.

A.3 connectionB (Minimum Viable Mullti-Agent System 59

/* Plans */
+!init:true<-

if(false&role(truck,Speed,Load,MaxBattery,ToolList)&.
↪→ member(MissingTool,ToolList)& (not (hasItem(
↪→ MissingTool,_)))& shop(ShopID, _, _, _, Inventory)
↪→ & .member(item(MissingTool, _, _),Inventory)){

.term2string(MissingTool,X);
!!goBuy(ShopID,X,1,true);
goto(ShopID);
}
else{

if(role(truck,Speed,Load,MaxBattery,ToolList)){
!!choseJob;
skip;
}
else{

!!skip;
skip;

}
}
.

+!skip:true<-
!!skip;
skip;
.

+!choseJob:true<-
if(canDoJob(JobID)&job(JobID,Start,End,Rewawrd,Storage,

↪→ RequiredList)){
.print("JobID ",JobID," Start ",Start," End ",End,"

↪→ Rewawrd ",Rewawrd," Storage ",Storage,"
↪→ RequiredList ",RequiredList);

+activeJob(JobID);
!!decide;
skip;

}
else{

!!choseJob;
skip

}
.

60 Code

+!decide:activeJob(JobID)<-
if(needToCharge){

!!chooseChargingStation;
skip;

}
else{

if(hasAllItems(JobID)){
!!standAndDeliver(JobID);// add logic for

↪→ delivering for JobID
skip;

}
else{

if(readyToBuildItem(JobID, Item)){//check if
↪→ we can construct an item thats
↪→ required

!!goBuild(Item);
skip;

}else{
if(readyToBuildSubItem(JobID,Item)){

.print("Going to build ",
↪→ Item)

!!goBuild(Item);
skip;

}
else{//go buy items so that we can

↪→ construct item
if(shopForSubItem(JobID,Part,

↪→ Shop,Qty)){
!!goBuy(Shop,

↪→ Part,
↪→ Qty,
↪→ false);

goto(Shop);
}
else{

if(shopForItem(JobID,
↪→ Part,Shop,Qty))
↪→ {

!!goBuy(Shop,
↪→ Part,
↪→ Qty,
↪→ false);

goto(Shop);
}

A.3 connectionB (Minimum Viable Mullti-Agent System 61

else{
.print("Dont

↪→ shop?");
!!decide;
skip;

}
}

}
}

}
}
.

+!decide:not activeJob(JobID)<-
!!choseJob;
skip
.

+charge(0):true<-
.drop_all_intentions;

.drop_all_desires;

.drop_all_events;
!!solarcharge;
recharge

.

+!solarcharge: needToCharge<-
!!solarcharge;
recharge

.

+!solarcharge: not needToCharge<-
!!chooseChargingStation;
recharge

.

-job(JobID,_,_,_,_,_):activeJob(JobID)<-
-activeJob(JobID)
skip;
.

+!chooseChargingStation: lat(AgentLat) & lon(AgentLon) <- -+
↪→ minDistBel("", 1000);

62 Code

for(chargingStation(Name,Lat,Lon,_)){
actions.distance(Lat, Lon, AgentLat, AgentLon,

↪→ Distance);
?minDistBel(N, D);
if(Distance < D){

-+minDistBel(Name, Distance);
}

}
?minDistBel(N, D);
!!recharge(N);
goto(N);
.

+!recharge(ChargingStation) : needToCharge & not
↪→ atChargingStation(ChargingStation) <-

!!recharge(ChargingStation);
goto(ChargingStation).

+!recharge(ChargingStation) : not needToCharge & (not
↪→ atChargingStation(ChargingStation) | finnishedCharging)<-

!!decide.

+!recharge(ChargingStation) : atChargingStation(ChargingStation)
↪→ & not finnishedCharging <-

!!recharge(ChargingStation);
charge.

+!goBuild(Item): not atWorkShop(workshop0)<-
!!goBuild(Item);
goto(workshop0)

.
+!goBuild(Item): atWorkShop(workshop0)<-

!!decide;
assemble(Item)

.

+!evalJob:true<-
for(job(JobID,StorageID,_,_,_,RequiredList)){

for(.member(required(NameRequired,QtyRequired),
↪→ RequiredList)){

}

A.3 connectionB (Minimum Viable Mullti-Agent System 63

}
skip.

+!standAndDeliver(JobID):true<-
if(job(JobID,StorageID,_,_,_,RequiredList)){

!!deliver(StorageID, JobID);
goto(StorageID);

}
else{

!!decide;
}
.

+!deliver(StorageID, JobID): not atStorage(StorageID)<-
!!deliver(StorageID, JobID);
goto(StorageID)
.

+!deliver(StorageID, JobID): atStorage(StorageID)<-
.print("Storing now");
!!decide;
deliver_job(JobID)
.

+!goShop: true <-
if(job(_,_,_,_,_,RequiredList) & shop(ShopID, _, _, _,

↪→ Inventory) & .member(required(NameRequired,
↪→ QtyRequired),RequiredList) & .member(item(Name1,
↪→ Price1, Qty1),Inventory) & Name1 == NameRequired){

.print("We decided to buy something");
if(QtyRequired > Qty1){
!!goBuy(ShopID, NameRequired, Qty1,false);
goto(ShopID);
}
else{
!!goBuy(ShopID, NameRequired, QtyRequired,false);
goto(ShopID);
}

}
else{

!!decide;
skip;

}
.

64 Code

+!goBuy(ShopID, NameRequired, Qty1, Init): not facility(ShopID)<-
!!goBuy(ShopID, NameRequired, Qty1, Init);
goto(ShopID).

+!goBuy(ShopID, NameRequired, Qty1, Init): facility(ShopID)<-
.term2string(Qty1,X);
buy(NameRequired,X);
if(lastActionResult(Result)&Result == successful){

if(Init){
!!init;
skip;

}
else
{

!!decide;
skip;

}
}
else{

!!goBuy(ShopID, NameRequired, Qty1, Init);
skip;

}
.

+!closest: true<-
if(not(First == true)){

FirstRun = true;
}
.

+!choseJob: true<-
skip;

.

+!evaluate(JobID):job(JobID,_,_,_,_,RequiredList)<-
CanDo=true;
TotalWeight;
for(.member(required(Item,Qty),RequiredList)){

if(item(Item,Weight,tools(ToolList1),Parts)){

}
for(.member(item(Item,Weight,tools(ToolList2),Parts

↪→),Parts)){

A.4 Internal Action Code(Java) 65

if(false==(.empty(ToolList2) | hasItem(
↪→ ToolList2))){

CanDo=false;
}

}
}
.

A.4 Internal Action Code(Java)

// Internal action code for project jasonting

package actions;

import jason.asSemantics.DefaultInternalAction;
import jason.asSemantics.TransitionSystem;
import jason.asSemantics.Unifier;
import jason.asSyntax.ASSyntax;
import jason.asSyntax.Term;

public class distance extends DefaultInternalAction {

/**
*
*/
private static final long serialVersionUID =

↪→ 3098238944781352745L;

@Override
public Object execute(TransitionSystem ts, Unifier un, Term

↪→ [] args) {
// execute the internal action
ts.getAg().getLogger().info("executing internal action ’

↪→ actions.distance’");

float distance = 999;

float x1 = Float.parseFloat(args[0].toString());
float y1 = Float.parseFloat(args[1].toString());
float x2 = Float.parseFloat(args[2].toString());
float y2 = Float.parseFloat(args[3].toString());

66 Code

distance = Math.abs(x2 - x1) + Math.abs(y2 - y1);

boolean returnValue = true;

returnValue = un.unifies(args[args.length - 1], ASSyntax
↪→ .parseNumber(String.valueOf(distance)));

return returnValue;
}

}

A.5 Server (Java)

package server;

import massim.Server;

public class RunServer {

public static void main(String[] args) {
new Thread(new Runnable() {

@Override
public void run() {

Server.main(new String[] { "-conf", "conf/
↪→ SampleConfig.json", "--monitor" });

}
}).start();

}

}

A.6 EISAdapter(Java)

package jason.eis;

import eis.AgentListener;
import eis.EnvironmentInterfaceStandard;
import eis.EnvironmentListener;

A.6 EISAdapter(Java) 67

import eis.exceptions.*;
import eis.iilang.*;
import jason.JasonException;
import jason.NoValueException;
import jason.asSyntax.*;
import jason.environment.Environment;
import massim.eismassim.EnvironmentInterface;

import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
* This class functions as a Jason environment, using EISMASSim

↪→ to connect to a MASSim server.
* (see http://cig.in.tu-clausthal.de/eis)
* (see also https://multiagentcontest.org)
*
* @author Jomi
* - adapted by ta10
*/
public class EISAdapter extends Environment implements

↪→ AgentListener {

private Logger logger = Logger.getLogger("EISAdapter." +
↪→ EISAdapter.class.getName());

private EnvironmentInterfaceStandard ei;

public EISAdapter() {
super(20);

}

@Override
public void init(String[] args) {

ei = new EnvironmentInterface("conf/eismassimconfig.json")
↪→ ;

try {
ei.start();

} catch (ManagementException e) {
e.printStackTrace();

68 Code

}

ei.attachEnvironmentListener(new EnvironmentListener() {
public void handleNewEntity(String entity) {}
public void handleStateChange(EnvironmentState s) {

logger.info("new state "+s);
}
public void handleDeletedEntity(String arg0,

↪→ Collection<String> arg1) {}
public void handleFreeEntity(String arg0,

↪→ Collection<String> arg1) {}
});

for(String e: ei.getEntities()) {
System.out.println("Register agent " + e);

try {
ei.registerAgent(e);

} catch (AgentException e1) {
e1.printStackTrace();

}

ei.attachAgentListener(e, this);

try {
ei.associateEntity(e, e);

} catch (RelationException e1) {
e1.printStackTrace();

}
}

}

@Override
public void handlePercept(String agent, Percept percept) {}

@Override
public List<Literal> getPercepts(String agName) {

Collection<Literal> ps = super.getPercepts(agName);
List<Literal> percepts = ps == null? new ArrayList<>() :

↪→ new ArrayList<>(ps);

clearPercepts(agName);

A.6 EISAdapter(Java) 69

if (ei != null) {
try {

Map<String,Collection<Percept>> perMap = ei.
↪→ getAllPercepts(agName);

for (String entity: perMap.keySet()) {
Structure strcEnt = ASSyntax.createStructure("

↪→ entity", ASSyntax.createAtom(entity));
for (Percept p: perMap.get(entity)) {

try {
percepts.add(perceptToLiteral(p).

↪→ addAnnots(strcEnt));
} catch (JasonException e) {

e.printStackTrace();
}

}
}

} catch (PerceiveException e) {
logger.log(Level.WARNING, "Could not perceive.");

}
}
return percepts;

}

@Override
public boolean executeAction(String agName, Structure action)

↪→ {
if (ei == null) {

logger.warning("There is no environment loaded!
↪→ Ignoring action " + action);

return false;
}

try {
ei.performAction(agName, literalToAction(action));
return true;

} catch (ActException e) {
e.printStackTrace();

}

return false;
}

/** Called before the end of MAS execution */
@Override

70 Code

public void stop() {
if (ei != null) {

try {
if (ei.isKillSupported()) ei.kill();

} catch (Exception e) {
e.printStackTrace();

}
}
super.stop();

}

private static Literal perceptToLiteral(Percept per) throws
↪→ JasonException {
Literal l = ASSyntax.createLiteral(per.getName());
for (Parameter par: per.getParameters())

l.addTerm(parameterToTerm(par));
return l;

}

private static Term parameterToTerm(Parameter par) throws
↪→ JasonException {
if (par instanceof Numeral) {

return ASSyntax.createNumber(((Numeral)par).getValue()
↪→ .doubleValue());

} else if (par instanceof Identifier) {
try {

Identifier i = (Identifier)par;
String a = i.getValue();
if (!Character.isUpperCase(a.charAt(0)))

return ASSyntax.parseTerm(a);
} catch (Exception ignored) {}
return ASSyntax.createString(((Identifier)par).

↪→ getValue());
} else if (par instanceof ParameterList) {

ListTerm list = new ListTermImpl();
ListTerm tail = list;
for (Parameter p: (ParameterList)par)

tail = tail.append(parameterToTerm(p));
return list;

} else if (par instanceof Function) {
Function f = (Function)par;
Structure l = ASSyntax.createStructure(f.getName());
for (Parameter p: f.getParameters())

l.addTerm(parameterToTerm(p));

A.6 EISAdapter(Java) 71

return l;
}
throw new JasonException("The type of parameter "+par+" is

↪→ unknown!");
}

private static Action literalToAction(Literal action) {
Parameter[] pars = new Parameter[action.getArity()];
for (int i = 0; i < action.getArity(); i++)

pars[i] = termToParameter(action.getTerm(i));
return new Action(action.getFunctor(), pars);

}

private static Parameter termToParameter(Term t) {
if (t.isNumeric()) {

try {
return new Numeral(((NumberTerm) t).solve());

} catch(NoValueException e){
e.printStackTrace();

}
return new Numeral(null);

} else if (t.isList()) {
Collection<Parameter> terms = new ArrayList<>();
for (Term listTerm: (ListTerm)t)

terms.add(termToParameter(listTerm));
return new ParameterList(terms);

} else if (t.isString()) {
return new Identifier(((StringTerm)t).getString());

} else if (t.isLiteral()) {
Literal l = (Literal)t;
if (!l.hasTerm()) {

return new Identifier(l.getFunctor());
} else {

Parameter[] terms = new Parameter[l.getArity()];
for (int i = 0; i < l.getArity(); i++)

terms[i] = termToParameter(l.getTerm(i));
return new Function(l.getFunctor(), terms);

}
}
return new Identifier(t.toString());

}
}

72 Code

Bibliography

[1] Tobias Ahlbrecht et al. Eismassim Documentation. https://github.com/
agentcontest/massim/blob/master/docs/eismassim.md. Accessed June
2017.

[2] Tobias Ahlbrecht et al. Massim Scenario Documentation. https:
//github.com/agentcontest/massim/blob/master/docs/scenario.md.
Accessed June 2017.

[3] Tobias Ahlbrecht et al. Massim starter kit for jason 2.1. https://github.
com/agentcontest/massim/tree/master/starterKits/jason. Accessed
June, 2017.

[4] Tobias Ahlbrecht et al. The Multi-Agent Programming Contest. https:
//multiagentcontest.org/. Accessed June 2017.

[5] Tobias Ahlbrecht et al. Multi-Agent Programming Contest releases. https:
//github.com/agentcontest/massim/releases. Accessed June 2017.

[6] Tobias Ahlbrecht et al. Programming Multi-Agent Systems in AgentSpeak
Using Jason. http://jason.sourceforge.net/jBook/SlidesJason.pdf.
Accessed June 2017.

[7] Rafael H. Bordini and Jomi F. Hübner. Defaultinternalac-
tion. http://jason.sourceforge.net/api/jason/asSemantics/
DefaultInternalAction.html. Accessed June 2017.

[8] Rafael H. Bordini and Jomi F. Hübner. Jason. http://jason.
sourceforge.net/. Accessed June 2017.

https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md
https://github.com/agentcontest/massim/tree/master/starterKits/jason
https://github.com/agentcontest/massim/tree/master/starterKits/jason
https://multiagentcontest.org/
https://multiagentcontest.org/
https://github.com/agentcontest/massim/releases
https://github.com/agentcontest/massim/releases
http://jason.sourceforge.net/jBook/SlidesJason.pdf
http://jason.sourceforge.net/api/jason/asSemantics/DefaultInternalAction.html
http://jason.sourceforge.net/api/jason/asSemantics/DefaultInternalAction.html
http://jason.sourceforge.net/
http://jason.sourceforge.net/

74 BIBLIOGRAPHY

[9] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-
ming Multi-Agent Systems in AgentSpeak Using Jason. Wiley, 2007.

[10] Maicon Rafael Zatelli. Jason Eclipse plugin. http://jason.sourceforge.
net/mini-tutorial/eclipse-plugin/. Accessed June 2017.

http://jason.sourceforge.net/mini-tutorial/eclipse-plugin/
http://jason.sourceforge.net/mini-tutorial/eclipse-plugin/

	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Multi-Agent Systems
	2.1 Agents in a Multi-Agent System
	2.1.1 Belief
	2.1.2 Desire
	2.1.3 Intention

	2.2 The Social Ability of Agents

	3 The Multi-Agent Programming Contest
	3.1 Scenario
	3.2 Roles
	3.3 Facilities
	3.4 Jobs
	3.5 Actions
	3.6 Percepts

	4 Analysis
	4.1 Strategy
	4.2 Advanced Strategy

	5 The Jason Programming Language
	5.1 Eclipse AgentSpeak Plugin
	5.2 Project File
	5.3 Agent .asl Files
	5.4 Concepts of a Jason Agent
	5.4.1 Actions
	5.4.2 Beliefs and Rules
	5.4.3 Plans and Events
	5.4.4 The Reasoning Cycle

	6 Setting Up the Project
	6.1 Setting Up the Project from Scratch
	6.2 Guide: Importing and Running the Project

	7 Implementation
	7.1 Implemented Minimum Viable Product
	7.1.1 Cooperation
	7.1.2 Find Job
	7.1.3 Core Loop
	7.1.4 Recharge

	7.2 Improved Version
	7.2.1 Improved Cooperation
	7.2.2 Improved Choose Job
	7.2.3 Improved Core Loop
	7.2.4 Improved Recharge

	7.3 Internal Action
	7.4 Environment Interface

	8 Discussion and Reflection
	8.1 Results
	8.2 Further Work
	8.2.1 Route Planing
	8.2.2 Charging Station
	8.2.3 Missions and Auctions
	8.2.4 Cooperation Between Agents
	8.2.5 Prediction and Counter Play
	8.2.6 Error Handling

	8.3 Reflections

	A Code
	A.1 Project file (.mas2j)
	A.2 connectionA (Improved Multi-Agent System.asl)
	A.3 connectionB (Minimum Viable Mullti-Agent System
	A.4 Internal Action Code(Java)
	A.5 Server (Java)
	A.6 EISAdapter(Java)

	Bibliography

