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Summary

The goal of the thesis is to develop and implement a full-scale multi-agent system
targeting a realistic and nondeterministic environment. The environment is
provided by the organizers of the annual Multi-Agent Programming Contest
(MAPC), having created a scenario which takes place in several of Europe’s
famous cities, namely Agents in the City. The scenario is related to each team
being a contractor, having a set of vehicles at their disposal to solve jobs that
involve acquiring, assembling and delivering items at specific locations.

The system is developed using Jason integrated with CArtAgO, often referred
to as JaCa, while the agents are implemented using the agent-oriented program-
ming language AgentSpeak.

The purpose of this project is to familiarize the reader with the development of
multi-agent systems, solving non-trivial coordination tasks and learning about
the challenges that arise in complex nondeterministic environments. The second
purpose is to successfully implement one or more solutions to the MAPC, and
find good metrics for testing and evaluating these on their own and against each
other.
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Preface

The thesis was prepared at DTU Compute in fulfillment of the requirements for
acquiring an BSc in Engineering (Software Technology).

The project was conducted in 2017 from February 25th to the 1st of July for 15
ECTS points, with Jørgen Villadsen and John Bruntse Larsen as supervisors.

The thesis concerns the development and evaluation of a multi-agent system
using Jason in combination with the CArtAgO framework. The multi-agent
system targets the 2017 Multi-Agent Programming Contest scenario, Agents in
the City.

Familiarity with logic programming, such as Prolog, is an advantage when read-
ing the report. Knowledge about artificial intelligence is also helpful, although
the necessary concepts are introduced in the thesis.
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Chapter 1

Introduction

A multi-agent system is comprised of several interacting agents, observing and
acting upon an environment. By coordinating and synchronizing intelligent
agents, it is possible to find solutions to problems that an individual agent or a
monolithic architecture cannot. Intelligent agents are often characterized by the
properties of autonomy, proactiveness, reactivity and social ability [BHW07]. As
a result, the individual agents are capable of goal-based reasoning, while being
able to coordinate their efforts toward a common solution and react to sudden
changes.

Implementing efficient reasoning and coordination is however often considered
the most challenging task concerning multi-agent systems, hence many tools,
architectures and other technologies have been introduced to facilitate the de-
velopment of such systems. These include the Belief-Desire-Intention (BDI)
architecture, the AgentSpeak programming language which builds upon it, the
implementation of AgentSpeak called Jason, and the JaCa extension, which is
an integration of the CArtAgO (Common ARTifact infrastructure for AGents
Open environments) framework into Jason. By exploiting these tools and the
concepts that follow, an attempt will be made to develop a highly sophisticated
multi-agent system capable of solving non-trivial tasks which rely on a high level
of coordination.

The multi-agent system described in the following chapters targets a predefined
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nondeterministic environment, provided by the organizers of the annual Multi-
Agent Programming Contest (MAPC). The scenario, Agents in the City, is
related to each team being a contractor, having a fleet of vehicles at their disposal
to move around a city and solve jobs that involve acquiring, assembling and
delivering items at specific locations. All of these jobs requires several agents to
work together.

1.1 Aim and Scope

The overall aim of the project is to gain extensive knowledge in terms of develop-
ing and implementing multi-agent systems capable of competing in the MAPC.
The market for artificial intelligence, and as an extension multi-agent systems,
is growing rapidly, with many predictions about what the future of these fields
will bring. Everything from expert systems able to diagnose patients [FLB+13],
to multi-agent systems controlling airport baggage transportation [HD06] are
already affecting peoples everyday lives. No matter what, artificial intelligence
have and will continue to have a huge influence on the world, being the reason
for this choice of project.

One of the initial project goals was to use the Jason implementation of AgentS-
peak, which called for further research on technologies and frameworks building
on this. As JaCaMo was the platform used by the last year’s winners of the
Multi-Agent Programming Contest this was one of the chosen areas of focus.
JaCaMo is a combination of Jason, CArtAgO and Moise, where Moise is used
for programming multi-agent organizations. While organizations are not first
priority, CArtAgO on the other hand, is used for programming environment
artifacts. Artifacts are entities shared among the agents in an environment, and
can be highly relevant for e.g. coordination purposes. As a result, CArtAgO
became a part of the project, making the development easier by exploiting tools
that already exist.

1.2 The History of AI

The field of AI, or artificial intelligence, research was founded as an academic
discipline at the Dartmouth Conference in 1956. The proposal for the conference
built on the basis of the conjecture that: every aspect of learning or any other
feature of intelligence can be so precisely described that a machine can be made
to simulate it [MMRS06]. The conference is widely renowned for giving birth
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to AI, giving it a name, a purpose and its first success.

The following years were an era of discovery and most people were simply as-
tonished by the capabilities of AI. This included computers that could solve
algebra word problems, prove theorems in geometry and learn to speak English.
The optimism flourished and million dollar grants were received. There were
however limitations, and in the mid 70s AI research were subject to financial
setbacks, due to among other issues, limited computational power, intractabil-
ity of problems and Moravec’s paradox. The latter entails how computers are
efficient at solving tasks which humans consider to be complicated or difficult
(e.g. proving theorems), while failing at tasks humans consider to be intuitively
simple (e.g. recognizing a face) [Agr10].

After some ups (1980-1987) and downs (1987-1993) the field of AI has become
half a century old and has finally achieved some of its oldest goals, being suc-
cessfully applied throughout the technological industry. While this has not
necessarily been a result of higher intelligence, it has been a combination of
more computational power, better algorithms and deductive reasoning. Today,
even faster computers are accessible, advanced machine learning techniques, not
to mention the vast amounts of data, i.e. big data. By 2016, the market for AI
related products, including hardware and software, reached more than 8 billion
dollars [Cor16], being yet another success for the field of AI, and according to
the predictions, certainly not the last.

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 2 gives an introduction to multi-agent systems and provides rel-
evant background knowledge.

• Chapter 3 introduces the CArtAgO framework from both a theoretical
and practical viewpoint.

• Chapter 4 describes and analyzes the Multi-Agent Programming Contest
scenario, identifying key problems.

• Chapter 5 explains the development and the implementation of the project.

• Chapter 6 displays the results from the test simulations, and compares the
different solutions against each other.
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• Chapter 7 discusses the experiences developing and implementing the so-
lution.

• Finally, Chapter 8 concludes the project.



Chapter 2

Multi-Agent Systems

2.1 Introduction

In general, multi-agent systems are used to model and control environments,
often simulating the real world, where more than one agent plays a role. While
the only difference from single-agent problems is the fact that there are multiple
agents, it calls for new interesting and complex problems, such as coordination
and task sharing. While many single-agent problems (games, pathfinding, and
more) have been solved at a better-than-human level, multi-agent scenarios still
provide big challenges, e.g. agent coordination.

2.2 Definitions

Before going in detail about multi-agent systems, it is important to define what
an agent really is, and why it is considered intelligent. There is no universally
agreed upon definition of an agent, since different problems require domain-
specific elements to be accurately modelled. However, the most abstract concept
of an agent, can be seen in Figure 2.1. The agent is able to perform actions on
the environment using its actuators, while the changes in the environment are
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perceived through its sensors. The internals of the agent define how the agent
reacts to different percepts, and thereby which actions it should perform next
[Wei13].

Agent

ActionsPercepts

Environment

Figure 2.1: A model of an agent and its environment. An agent acts upon
the environment through actions, and perceives the state of the
environment through percepts.

2.2.1 Environment

The environment in this figure is also rather abstract. In the field of AI, environ-
ments can model entirely different domains, having several different properties.
The properties a problem can have are divided into the following categories:

• Single-Agent vs Multi-Agent : When modelling environments, they can
either be regarded as single-agent or multi-agent. This distinction might
seem simple enough, but there are some things to consider. What should
be viewed as an agent? In a self-driving car, should the car consider other
cars as agents, or simply as objects in the world that move around? It
might be enough to model other cars as object, and simply design the self-
driving car to avoid them, but one could also argue that all cars are agents.
By defining them as agent, cars could communicate and coordinate their
driving, improving traffic overall.
Agents in a multi-agent environment can either be competitive or cooper-
ative. In games like chess, each player (agent) is trying to win the game,
therefore they are competitive. In a situation with multiple self-driving
cars, they should try to work together to minimize the risk of collision,
making them cooperative.

• Partially Observable vs Fully Observable: An environment is fully observ-
able if an agent at any time can see the entire state of the world. It is often
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more convenient to work with a fully observable environment, as there is
no need for the agent to keep an internal state of the world. Partial ob-
servable environments are missing some of this information, either because
of noise or missing percepts. An environment can also be unobservable,
meaning that the agent knows nothing about the environment.

• Static vs Dynamic: If an environment stays the same unless an agent acts
upon it, the environment is considered static. If the world can change
without the influence of an agent, it is considered dynamic. A static
environment is easier for an agent to work with, as it does not have to
continuously observe the environment to know which state it is in.

In multi-agent environments, the environment can be static, but look dy-
namic from each agent’s point of view. While an agent is considering what
to do, other agents might act on the environment and change it.

• Episodic vs Sequential : In an episodic environment each state does not
depend on the previous one. In other words, agents’ actions does not have
any permanent effect on the environment, and they can essentially restart
themselves in each step. In sequential environments on the other hand,
each step depends on the previous one, entailing that agents’ actions affect
future states of the environment. As a result, agents might have to make
plans for the future to reach their goals.

• Deterministic vs Stochastic: In a deterministic environment each action
will only have one effect on the environment, which might be known before
executing the action. If an action has multiple possible outcomes, the
environment is said to be stochastic. This brings uncertainty into the
problem. Actions will often have a probability assigned to each possible
outcome to model this. When the environment is stochastic, agents will
have to be able to adapt and reconsider their plans depending on the
actual outcomes of their actions.

• Discrete vs Continuous: A discrete environment is limited to a fixed set of
actions, percepts, and states. Continuous environments on the other hand
can have any number of these. Many games can be modelled as discrete
problems, while real world problems are often continuous.

2.2.2 Intelligent Agent

The abstract concept of an agent does not describe how to handle all the different
properties of an environment. An intelligent agent is defined having the following
properties:
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• Autonomy : An intelligent agent should have a notion of autonomy, e.g.
being able to autonomously choose which actions to perform to reach a
specific goal.

• Proactiveness: The agent has to be proactive, meaning that it must con-
sider the future and make plans for how to achieve its goals. By making
compositions of plans, the agent is able to solve more complex problems
and reach high-level goals, not necessarily achievable by a single action.

• Reactivity : The agent also has to be reactive, being able to perceive the
environment and respond accordingly. Often, this must be done fast, as
changes in the environment could potentially be harmful to the agent. For
example with self-driving cars, regardless of its initially planned trajectory,
if a person steps in the way, it should do something to avoid him. However,
if agents only react to changes, they will not be able to achieve long term
goals, so this must work in balance with being proactiveness.

• Social ability : Lastly, intelligent agents should have a social ability, i.e. the
ability to communicate with other agents or objects. By understanding
what other agents’ goals are, the agents can cooperate to efficiently solve
all their desired goals. However, the agents should be able to distinguish
cooperative agents from competitive ones, realizing if they want to help
or cause damage.

2.3 Agent-Oriented Programming

So far, agents have simply been considered as a function, receiving input from
the environment (percepts) and returning output (actions). There are four
classic ways to model the internals of agents: logic based, reactive, belief-desire-
intention (BDI), and layered architectures. The main focus will be on the BDI
model, as this is the leading approach to agent programming and also the model
used in this project. However, as the BDI model builds on top of the previous
approaches, these will also be mentioned to give the full picture of agent-oriented
programming. Given that the layered architecture is not used in the project, it
will not be explained in-depth, other than it can be thought of as a combination
of the three other techniques, arranged in a layered structure.

2.3.1 Logic Based Agents

The traditional approach to agent-oriented programming was to use logic in de-
cision making. This can be done by representing the world through a symbolic
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representation of the environment and the agent’s goals. Then the representa-
tion can be manipulated until the goal state is achieved. Each predicate would
be some belief about the world, e.g. the agent’s location or the temperature
of the room. This manipulation is done using logic deduction, which finds the
applicable actions that proves the correct solution.

To illustrate how this representation works, consider a grid world in which an
agent moves around and can vacuum the cells. Each of the cells in the world
is represented symbolically in logic by a Cell(x,y) predicate, where x and y is
the coordinates of the cell. The location of the agent is represented similarly
by In(x, y), and dirty cells is represented by Dirt(x, y). The set of actions
which the agent can perform would be A ∈ {Move(D),Suck}, where D ∈
{North,South,East,West}.

Each action will have a set of preconditions which has to be satisfied before the
action is valid and can be executed, along with a set of postconditions, i.e. the
effects on the world. The Move(D) action would have the preconditions that
the agent believe it has a location, and there exist a cell in the direction D from
this location. The postconditions would be the change of the agent’s beliefs
such that the old In(x, y) predicate is removed, and a new one is added with
the updated location. The agent can only have one In belief at any time, as it
can only be at one place at any time. The action scheme for Move(North)
can be seen in Figure 2.2 as an example.

Action : Move(North)
Precondition : In(x, y) ∧ Cell(x, y + 1)
Postcondition : ¬In(x, y) ∧ In(x, y + 1)

Figure 2.2: An example of the Move action with the direction North. Sim-
ilar actions can be defined for all the other directions.

If the agent is currently standing in a cell containing Dirty, the Suck action can
be used to remove this. The action scheme for this can be seen below. From
this scheme, if the agent is not currently standing on a dirty cell, this action is
not applicable. However, one could argue that the cell does not need to be dirty,
for the agent to be able to perform the Suck action. The Dirty predicate from
the precondition could be removed, allowing the agent to do a Suck action in
any cell. As the only effect of the suck action is to remove the Dirty predicate
from the current cell, doing Suck on an already clean cell does not change the
state of the environment, and can therefore be considered equivalent with doing
nothing.

The goal for this vacuum agent is to remove all the Dirt predicates from the
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Action : Suck
Precondition : In(x, y) ∧Dirty(x, y)
Postcondition : ¬Dirty(x, y)

Figure 2.3: The Suck action, which will clean the cell which the agent is
currently standing on.

world. For the agent to find a solution, it needs a set of rules to guide it towards
its goal. For example a rule like: if I am standing in a cell and that cell is dirty,
do Suck, written as: In(x, y)∧Dirty(x, y)→ Suck. If this is not the case, the
agent should do a Move in any direction in order to move itself onto a dirty
cell. How the agent will move around can be implemented in many different
ways, using different strategies. For example, one approach be to check if there
is a dirty cell north of the agent, and move north if this is the case. This could
be expressed as:

∃x0, y0, x1, y1(In(x0, y0) ∧Dirty(x1, y1) ∧ y1 > y0)→Move(North)

Similar rules for other direction can be made as well. Another strategy is to
visit all cells systematically, or even just do a random walk until all cells are
clean. When the agent has reached a world state where it believes all cells are
clean, the agent has achieved its goal.

One of the issues with the logical approach, is that the problems quickly become
intractable when complexity increases. Because it relies on simple rules, it
requires many iterations to find solutions to more complex problems. This
limitation led to new approaches to agent programming, which did not rely as
heavily on logic and deduction.

2.3.2 Reactive Agents

One of the properties of the intelligent agent defined earlier, is that the agent
should be able to react to the environment. Developing such agents is facilitated
by integrating a reactive architecture. The approach is built upon the idea, that
intelligence is linked to the environment in which agents live and act, and that
intelligence emerges from various simpler rules about how an agent should react.

There are two characteristics that distinguish this agent architecture from the
others. The first is its decision making process, which is defined through be-
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havioral rules. Instead of taking all the information perceived about the envi-
ronment into consideration, the agent has rules to handle every single percept.
It has a See function to perceive the environment, a set of rules, and an Act
function to perform actions on it. The rules will map every output from the
See function to an action, which will be given as a input to the Act function.
This avoids any complex symbolic representation of the world, and avoids all
complex reasoning and deliberation. Thereby, agents can be easily developed
creating rules like percept→ action.

The second characteristic is the way this architecture handles multiple percepts
at the same time. Doing so can cause multiple rules to be applicable in a given
situation. To avoid this, rules are organized into a hierarchy, meaning some
rules should always be prioritized over others, and therefore its action should
be executed first. For instance, if the agent is in some catastrophic situation, it
should try to solve this first, before trying to achieve its goals.

However, even though this approach does handle some problems well and can
be useful for many agent systems, especially in episodic environments, it has
trouble with solving complex tasks which requires long-term planning. By only
reacting to the environment as it is, it does not consider how the future will
look, and does therefore not create plans for how to achieve its goals.

2.3.3 Belief-Desire-Intention

The belief-desire-intention (BDI) architecture is an attempt at modelling prac-
tical reasoning. It builds upon the logical and reactive approaches, which by
themselves both had some faults. It tries to balance the proactive (goal directed)
and reactive (event driven) elements of reasoning, using the best parts of the
two previous approaches. This is done by taking the simplicity of representing
the world using logic, and combining this with rules from the reactive approach.
This allows for a simple way of modeling the environment, while being able to
react quickly to sudden changes. Figure 2.4 illustrates how the BDI architecture
is linked together.

Beliefs
The BDI architecture uses beliefs to model the state of the environment, similar
to how the logical agent architecture does. The agent perceives the environment,
receiving percepts and revise these using a belief revision function (BRF). The
BRF maps the percepts into new beliefs, merging them with the old ones and
removing incorrect or outdated beliefs as a result. For instance, if the agent
perceives its location, previous beliefs about its location should be discarded.
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Percepts

BRF Beliefs Options Desires

FilterIntentionsActionOutput

Figure 2.4: Overview of the BDI model and its functions. Illustrates the con-
nections between the individual elements in the architecture.

Desires
By evaluating the agent’s current beliefs, together with its current intentions,
an option generating function is used to determine which options are available
to the agent. These options represent the desires the agent wants to accomplish.
While desires cannot be acted on by themselves, an agent can commit to fulfill
one or more of its desires, thus becoming intentions.

Intentions
An intention is an actual goal, which the agent can attempt to achieve. This is
done by finding relevant plans, being the recipes on how to solve goals. Each
plan comprise a sequence of actions (or other plans) and a specific goal being
achieved by following the plan. As a result, complex goals can be solved by
creating compositions of several plans.

Deliberation
By utilizing a filter function, the agent is able to decide which desires to commit
to. The function takes all the agent’s current beliefs, desires and intentions
into account, evaluating which of the intentions to proceed with. It should be
able to continuously act towards an intention, but at the same time, be able to
dynamically change which intention to pursuit. If the intention is accomplished,
becomes impossible to achieve, or if the intention is no longer a desire, it should
be dropped. This is the biggest challenge with the BDI architecture - finding
the perfect balance between continuing with and reevaluating intentions.

If the agent reevaluates its intentions too often, it wastes resources that could
otherwise have been spent on figuring out how to fulfill the intentions. On
the other hand, if the agent never reevaluates them, it may end up pursuing
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intentions, which given the current state of the environment, are no longer
relevant or can be achieved in a more efficient manner. How often an agent
should reevaluate its intentions depends on the dynamics of the environment,
and on how reactive the agent has to be.

The last step in the BDI architecture is the action function, determining which
action to perform in order to fulfill its current intention. The action is selected
according to the available plans, while plans are selected according to their
specified preconditions. Finally, the agent uses its actuators to perform the
given action on the environment.

Once the new state of the environment is perceived, the entire deliberation
process restarts with the agent’s revised beliefs, desires, and intentions. This
procedure will continue until no new desires are generated.

2.4 AgentSpeak and Jason

The AgentSpeak programming language is designed to develop multi-agent sys-
tems using the BDI model. It was originally designed as an abstract agent-
oriented programming language, used to understand and describe agents with a
BDI architecture formally.

Jason is an implementation of the abstract AgentSpeak language in Java. The
language allows for an easy way to represent beliefs in logic, and to describe
plans for how to achieve intentions. The agent’s BDI architecture is hidden
behind the scenes, implicitly adding the behavior of perceiving, updating the
belief base and automatically evaluating desires and intentions. This allows for
an easy and fast way of setting up a multi-agent system.

While the Jason language does provide the BDI behavior out of the box, many
of the components can be changed or extended using Java to fit the developers
need. The Agent class is exposed for developers to extend and overwrite func-
tions as needed. For instance, the intention selection function, selectIntention,
defaults to polling intentions from a queue, where the first element will always
be the current intention. If the developer wants to prioritize specific intentions,
this could be done by changing how it polls intentions from the queue. The
other functions, such as the option function or belief revision function, can also
be extended on demand.

Jason is also very powerful in the way it allows agents to communicate with each
other. By using the internal send action, agents can easily share their beliefs, ask
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for information or plans for how to achieve intentions, or even ask other agents
to achieve one of their desires by sending a message. These functionalities are
distinguished by a keyword, specifying one of the following: tell, askOne1,
askHow or achieve. The sender must also specify the receivers of the message
with a name, a list of names, or simply use the internal broadcast action to send
the message to every agent in the system.

2.4.1 Jason Programming

Jason’s syntax is based on logic, and share a lot of characteristics with the logic
programming language Prolog. Like Prolog, Jason has literals that are known
to be true or false, and has rules to evaluate more complex queries.

Beliefs
In Jason beliefs are described through the use of literals. Continuing from the
example introduced in subsection 2.3.1 with the vacuum agent, the environment
is described as follows.

cell (0,0).
cell (0,1).
cell (1,0).
cell (1,1).

in(0,0).
dirty (1,1).

In this example, the agent believes that there are four cells, and that it is located
in cell (0, 0). In addition it also has the information that cell (1, 1) is dirty. Jason
will always start from the top of the source file when it searches for a belief, and
will stop searching when the first match is found (the same is the case when
searching for plans and rules). Jason also supports negation of literals, which
can make agents believe that something is explicitly false. This is done with the
∼ operator.

For example, if the agent cleans a cell, it could either just remove the dirty
literal, as it no longer believes the cell to be dirty, or it could explicitly express
that it believes the cell not to be dirty. This could be written as ∼dirty(1,1),
when cell (1, 1) has been cleaned. It is not always necessary to use this negation
operator, but there might be a difference from believing that a cell is not dirty,
and not knowing anything about the state of the cell. For example, in partially

1This will return the first answer to the question. Jason also support an askAll, which
returns all the possible answers to a query.
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observable environments, agents might have to explore the cell before knowing
if the cell is dirty or not.

Jason also has negation as failure. By using the not operator, agents can check
if something is not in its belief base. For example, not in(1,1) means the
agent does not believe it is in (1, 1). Note that this is different from explicitly
believing that the agent is not in (1, 1), as the ∼ operator expresses.

Annotations
Beliefs can also have annotations, e.g. used to describe where the information
came from. By default, beliefs have a source annotation. This tells the agent if
the belief was perceived, sent from another agent, or added by itself (referred to
as a mental note). Any information can be added as annotations. An example of
this is a timestamp for when the belief was added. Annotations can be written
after the belief using [], e.g. in(0,0)[source(percept)].

Belief annotations are not necessarily just information-holders, and the agents’
architecture can be extended to provide the semantics. As an example, an
expires annotation can be introduced to remove beliefs upon adding others,
resolving contradictions in the belief base. For instance, consider two beliefs
summer and fall. While it does not make sense for the agent to believe both to
hold at the same time, the first belief can be set to expire in case of the second
belief. Using the new annotation, this can be achieved by replacing summer with
summer[expires(fall)].

Other than the beliefs’ annotations, there are a couple of annotations used
for plans, including atomic and priority. The atomic annotation ensures
that once the plan is selected for execution, it will be executed in subsequent
reasoning cycles until it is finished. The priority annotation on the other
hand, allows the developer to specify a priority among other plans, prioritizing
the execution of the one with the highest priority.

Rules
Rules are used to infer information based on the agents’ beliefs, and to introduce
more complex preconditions in the plans’ context. Rules in Jason are written
using the :- operator. Consider the following example.

man(david).
woman(suzie).
parent(david , suzie).

father(X, Y) :- parent(X, Y) & man(X).

The agent believes that david is a man, suzie is a woman, and that david
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is a parent to suzie. By using the father(david, suzie) rule, the agent
is able to conclude that david is the father of suzie. This example also in-
troduces variables to Jason. Anything starting with an uppercase character
will be considered a variable in Jason, just like in Prolog. The use of vari-
ables allows for more general and reusable rules to be created. When testing
father(david, suzie), Jason will unify X with david and Y with suzie, con-
tinuing to evaluate whether max(david is also the case. If all clauses evaluate
to true, the result of the test itself evaluates to true. If the arguments are
switched around, testing father(suzie, david), the rule evaluates to false,
since neither parent(suzie, david) nor man(suzie) is found in the agent’s
beliefs.

Goals
What have been presented so far has all been standard to logical programming
languages. But Jason also includes a notation for goals and plans, which as
mentioned earlier is essential for agent programming. There are two types of
goals in Jason: achievement goals and test goals. Achievement goals describe
something the agent wants to achieve, and is written using the ! operator. This
could for example be !own(house) or in the vacuum world !clean(1,1). These
are regarded as desires by the BDI model, being something the agent wants to
achieve.

Test goals on the other hand, are used to retrieve information from the agent’s
belief base. This is done with the ? operator. Considering the previous ex-
ample, it might be interesting about whom david is a father of, thus testing
?father(david, Child). Similarly, it could test ?woman(Person) where in
both cases, the variables Child and Person will unify with suzie. Test goals
are more or less the application of rules and beliefs, where the unification of
variables is more interesting than the evaluation to true or false.

Plans
Plans are very essentials to Jason, being used to achieve goals. A plan is com-
prised of the following components:

• a goal - the postcondition of the plan;

• a context - the precondition of the plan; and

• a body - the sequence of actions to carry out.

In Jason this is represented using the following syntax:

+!goal : context <- body.
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Continuing in the vacuum agent world, the following code shows a plan for
solving the goal clean, which includes solving another goal go(1,1) followed
by performing a suck action.

+!clean <- !go(1,1); suck.

The previously mentioned plan does not specify a context, thus it is always
applicable. Since it is not relevant to go to a cell the agent is already in, the
plan can be extended to the following:

+!clean : in(1,1) <- suck.
+!clean <- !go(1,1); suck.

If the agent is not already located in (1, 1), it will skip the first plan and use the
other. Note that the order of which the plans are written matters, since Jason
always chooses the first applicable plan from the top of the source file.

Events
When a new belief is added to an agent’s belief base, it will fire a triggering
event. These events can be handled by prefixing the + operator to the literal.
The following is an example of such an event:

+hello <- .print("Hi").

Jason also include the - operator, which can be used to handle failures. If it
is impossible to find any applicable plans for a goal, or if the plan fails during
execution, this failure event will be triggered. Failure events are used for error
handling, or to continue on an alternative path.

+hello : false <- .print("Hi").
-hello <- .print("Bye").

In this example, triggering hello will not find a valid event due to the inclusion
of false in the event’s context, thus failing and printing Bye.

Lists
The last thing to mention is lists. Lists in Jason are similar to those in Prolog,
and consist of a head and a tail. The head is the first element in the list, and
the tail is the remaining elements. An empty list is written as [], and the first
element can be accessed by using the | to split the head element from the tail.
The best way to explain this is to show the member rule, checking if an element
is in the list. This rule succeeds if the first element is equal to the element being
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checked, and otherwise recursively call the rule on the rest of the list. The rule
will fail when this list is empty, and it can no longer match any of the cases.

member(Head , [Head | Tail]).
member(X, [_ | Tail]) :- member(X, Tail).

This illustrates how a list can be iterated and how to access each element.
Lists are an essential data structure, used extensively in general logic and Jason
programming.



Chapter 3

CArtAgO

3.1 Introduction

CArtAgO (Common ARTifact infrastructure for AGents Open environments)
is a general purpose framework facilitating the programming of environments
for multi-agent systems. The framework is based on the Agents & Artifacts
(A&A) meta-model for modelling and designing multi-agent systems, introduc-
ing agents, artifacts and workspaces as a first-class abstraction.

The A&A abstractions are taken from human cooperative working environments
where: the agents are the computational entities performing goal-oriented activ-
ities, artifacts are the resources and tools which can be dynamically constructed,
used, and manipulated by agents, and finally workspaces are used to structure
artifacts which agents from various platforms can join to access.

As a result, CArtAgO provides a simple programming model to design and
implement agent computational environments, which is not bound to any spe-
cific agent model or platform. However, the framework is especially effective
when integrated with agent programming languages based on a strong notion
of agency, and in particular those based on the BDI architecture, e.g. Jason.
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Figure 3.1: A&A meta-model (from [RPV11, p. 8]). Illustrates how an agent
can interact with artifacts.

3.2 Artifact-Based Environments

Figure 3.1 provides an overview of the main concepts characterizing artifact-
based environments. The environment is composed of a dynamic set of artifacts,
which agents in the environment can share and exploit. These artifacts can be
organized in one or more workspaces, representing resources with different func-
tionality. From an object-oriented viewpoint, artifacts in multi-agent systems
are analogous to classes, defining the structure and behavior of the concrete in-
stances. However, to make its functionality available and exploitable by agents,
the artifacts rely on operations and observable properties.

Operations represent computational processes executed inside artifacts which
can be triggered by either agents or other artifacts. These operations are used
to retrieve and manipulate data in the artifact, and generate observable events
the agents can react to. Observable properties represent state variables, whose
value is perceivable by agents observing the artifact. While observing an artifact,
the agent will be notified when the value of an observable property is updated,
and when the execution of an operation generates a signal. By doing so, agents
can respond to the specific changes in the environment they are interested in.
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Figure 3.2: Abstract representation of an artifact (from [RPV11, p. 9]).

While the overall set of artifact operations available to agents comprise the usage
interface, linked artifacts can trigger the execution of operations in one another
being exposed in the link interface. This allows for a separation of concerns
without affecting usability, where the only requirement is that an agent links
the artifacts beforehand. After doing so, link operations may be executed similar
to operations executed by agents, allowing the realization of distributed envi-
ronments where the linkability extends through different workspaces in different
network nodes.

For an agent to know what functionality an artifact provides and how to exploit
its usage interface, the artifact can be equipped with a manual. The manual is
a machine-readable document to be consulted by agents, which is particularly
useful in open systems where the agents dynamically decide which artifacts to
use according to their goals, and dynamically discover how to use them.

Artifact operations represent external actions provided to agents by the envi-
ronment. As a result, the repertoire of external actions available to an agent
is defined by the set of artifacts that populate the environment. Given that
the set of artifacts can be changed dynamically by agents themselves, instan-
tiating new artifacts or disposing existing ones, the actions repertoire can be
dynamic as well. By dynamically selecting which properties and events to ob-
serve, the artifact-based environment’s complexity is reduced opposed to e.g.
directly modelling percepts inside agents as beliefs.
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3.3 Standard Artifact Operations

This section gives a short introduction to the artifact primitives provided by
the CArtAgO framework. These primitives can be categorized into three main
groups: creating and discovering artifacts, using and observing artifacts, and
finally linking and unlinking artifacts.

3.3.1 Creating and Discovering Artifacts

Artifacts are meant to be a dynamic component in the artifact-based environ-
ment, thus it should be possible to create, discover, and dispose artifacts at run-
time. To do so, three primitives are provided: makeArtifact, lookupArtifact
and disposeArtifact. The makeArtifact(ArtifactName, ArtifactClass,
InitParams) method instantiates a new artifact with the given ArtifactName
of type ArtifactClass using the provided InitParams.

Agents in the appropriate workspace are then able to retrieve the artifact’s
id by using lookupArtifact(ArtifactName), being its unique identifier. Fur-
thermore, the artifact id can be used when executing operations (explained in
the following section) and when disposing artifacts. To dispose an artifact, the
disposeArtifact(ArtifactId) primitive is used, removing the artifact with
the specific ArtifactId from the workspace.

3.3.2 Using and Observing Artifacts

An artifact can be used in two ways, either by executing its provided operations
or by perceiving its observable properties and events. To use an artifact, an
agent can simply call an operation by its name together with its associated
signature, and then the target artifact can be inferred based on this. However,
in scenarios where multiple artifacts in the workspace define operations with
identical names, or the workspace simply contains multiple instances of the same
artifact, an artifact id has to be provided to specify the target. For instance, if
ArtifactId is a variable containing the target artifact’s id, and exampleOp is
the name of the operation to execute, in Jason this would be achieved using the
following annotation: exampleOp[artifact_id(ArtifactId)].

To observe an artifact, CArtAgO provides a focus(ArtifactId) primitive,
which allows the agent to receive notifications when a signal is generated or an
observable property is updated. Opposite to focus, stopFocus(ArtifactId)
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is provided to stop observing an artifact. As a result, agents are able to dynam-
ically choose what to perceive based on the artifacts they observe, and they are
able to automatically update their beliefs about the environment. Signals on
the other hand, are not related to observable properties, and act like messages
which are processed asynchronously on the agent side.

An agent is also able to retrieve the value of an observable property without actu-
ally observing the artifact. This is done using observeProperty(PropertyName),
returning the value of the specific property as feedback. By using this primi-
tive, the agent does not have to be continuously aware of the state of an artifact,
while still being able to access its state when needed.

3.3.3 Linking and Unlinking Artifacts

Agents are able to link two artifacts together, where the first artifact is the
linking artifact and the second artifact is the linked one. By doing so, the
linking artifact is able to execute operations on the linked artifact. As a re-
sult, simple artifacts can dynamically be composed into more complex arti-
facts, creating whole networks of artifacts which can be distributed among
several workspaces. To support linking of artifacts, two primitives are pro-
vided: linkArtifacts(LinkingArtifactId, LinkedArtifactId) and its op-
posite unlinkArtifacts(LinkingArtifactId, LinkedArtifactId) which re-
spectively links and unlinks two artifacts.

3.4 Artifact Programming

CArtAgO provides a Java-based API for programming artifacts and artifact-
based environments. This API simply utilizes Java classes and basic data
types, for instance is an artifact created by defining a Java class extending
the cartago.Artifact library class. By doing so, the defined class inherits
the expected structure and behavior of an artifact. Artifacts are however not
constructed like ordinary java Objects, but uses an optionally definable init
method to initialize its fields and observable properties.

Observable properties are defined through defineObsProperty, taking a key-
value pair where the key specifies the name of the property, and the value its
initial value. An observable property can then be retrieved and modified using
getObsProperty and updateObsProperty respectively. The artifact’s fields can
be used to define internal non-observable variables.
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Operations are defined by methods annotated with @OPERATION and void re-
turn type, using its method parameters as both input and output operation
parameters. Output parameters are represented by the parameterized class
OpFeedbackParam, whose value should be set during execution of the operation.

Examples of these features can be seen in Listing 3.1, which is an example of a
simple counting artifact. The artifact defines an observable property count dur-
ing initialization and provides two operations, one for incrementing the count,
and one for retrieving it. When the incCount method is executed, all agents
observing the artifact will be notified of two events; that the value of the observ-
able property count has been updated, and the signal tick. In AgentSpeak,
this corresponds to the triggering events +count(X). and +tick. respectively.

public class Counter extends Artifact {

void init() {
defineObsProperty("count", 0);

}

@OPERATION void incCount () {
ObsProperty prop = getObsProperty("count");
prop.updateValue(prop.intValue () + 1);
signal("tick");

}

@OPERATION void getCount(OpFeedbackParam <Integer > count) {
count.set(getObsProperty("count").intValue ());

}
}

Listing 3.1: Artifact Example

Furthermore, operations can be composed of one or more atomic computational
steps, where the execution of atomic steps inside an artifact is mutually exclu-
sive. This allows for implementing long-term operations and can be used as an
efficient coordination mechanism. To break down the execution into multiple
steps, the API introduces await together with guards. Guards are defined by
methods annotated with @GUARD and boolean return type. A guard can then
be used as a condition in an await statement as shown in Listing 3.2.

public class Guarded extends Artifact {

private int internalCount;

@OPERATION void guardedOp(int waitCount) {
internalCount = 0;
signal("start");
await("countGuard", waitCount);
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signal("complete");
}

@GUARD boolean countGuard(int waitCount) {
return internalCount >= waitCount;

}

@OPERATION void helpOp () {
internalCount ++;

}
}

Listing 3.2: Guard Example

Operations with the @OPERATION annotation constitute an artifact’s usage inter-
face. Similarly, the operations annotated with @LINK constitute its link interface.
Operations are defined identically regardless of annotation, only difference being
the operation’s scope and how it is executed. There is however a third type of
operation, which can not be found in any of the artifact’s interfaces. These op-
erations are annotated with @INTERNAL_OPERATION and can only be executed by
the artifact itself, or from another operation. Internal operations are executed
asynchronous and are therefore very useful for background tasks or timers.

3.4.1 Integration of CArtAgO

CArtAgO has been developed with respects to orthogonality in terms of dif-
ferent multi-agent system technology, facilitating the integration of any agent
programming language and platform. As a result, agents implemented using dif-
ferent programming languages, different technologies and running on different
platforms can work together in the same multi-agent system by sharing common
artifact-based environments. In other words, CArtAgO allows for creating het-
erogeneous systems, by simply extending the various agents’ action repertoire
with those provided by the artifacts.

Given that these actions are available to agents across multiple platforms, they
can be considered as an external component. This also applies to the agents’
percepts, having the extension of observable properties and signals generated
by the artifacts. Although dependent on the agent programming language,
observable properties are mapped into beliefs about the state of the environment,
while signals are mapped into beliefs about the occurrence of observable events.
The concrete realization can of course vary, but their semantics remain the same.

To demonstrate the integration of CArtAgO into an agent programming lan-
guage, two Jason agents are defined below which use the previously mentioned
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artifacts to coordinate their behavior. As a purely illustrative example, one
agent (A) wait for a specific count to start a guardedOp, while the other agent
(B) increments the count until the guardedOp starts, and subsequently executes
helpOps until it is complete.

Listing 3.3: agentA.asl
{ include (" focusArtifact.asl") }

!testArtifacts.

+! testArtifacts <-
makeArtifact (" myGuarded ","Guarded ");
!focusArtifact (" myCounter ").

+tick <-
.print("tick perceived ").

+count(X) : X = 3 <-
.print(" starting guarded op");
guardedOp(X);
.print(" guarded op complete ").

Listing 3.4: agentB.asl
{ include (" focusArtifact.asl") }

!testArtifacts.

+! testArtifacts <-
makeArtifact (" myCounter","Counter ");
!focusArtifact (" myGuarded ");
while (not stopInc) {

incCount; .wait (10);
}.

+start <- +stopInc; !helpWithOp.
+complete <- +stopHelp.

+! helpWithOp : stopHelp.
+! helpWithOp <-

.print(" helping with op");
helpOp; .wait (10);
!helpWithOp.

Listing 3.3 and Listing 3.4 show the implementation of the two agents A and B
respectively. Agent A executes guardedOp when a count of 3 is received, denoted
by the precondition X = 3, which is also the amount of helpOps required to
complete the guardedOp. focusArtifact.asl is included in both agents, which
simply contains plans for looking up and focusing artifacts (Listing 3.5). Agent
B is the one doing most of the operations, and reacts to the signals sent by
agent A’s execution of the guardedOp.

When a +start event is triggered, the agent stops incrementing the count and
starts executing helpOps until the +complete event is triggered. At this point
the guardedOp is complete, and the agents have successfully coordinated their
actions. As a final note, the .wait(10) actions are necessary to allow agent
A to respond in time. The result of executing these two agents in a default
environment can be seen in the following output:

Jason Http Server running on http ://192.168.0.15:3273
[agentA] tick perceived
[agentA] tick perceived
[agentA] tick perceived
[agentA] starting guarded op
[agentB] helping with op
[agentB] helping with op
[agentB] helping with op
[agentA] guarded op complete
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As expected, the count is incremented
three times before the guardedOp
starts, while three helpOps are re-
quired for the guardedOp to complete.

+! focusArtifact(Name) <-
lookupArtifact(Name , Id);
focus(Id).

-!focusArtifacts(Name) <-
.wait (10);
!focusArtifacts(Name).

Listing 3.5: focusArtifact.asl

3.4.2 Security Aspects

Given that artifacts can be dynamically created and disposed by agents across
distributed networks of workspaces, it is important to be able to set some con-
straints. This is achieved by having each workspace adopt a Role-Based Access
Control mechanism, specifying roles for different agents and which actions dif-
ferent roles may or may not execute. These roles and policies are created and
modified using one of the default workspace artifacts called security-registry,
accessible by both human administrators and agents themselves. For instance,
two roles could be defined, admin and user, where admins may dispose arti-
facts and users may not, thus preventing unauthorized agents from performing
harmful actions. Similarly, the access to the workspace itself can be restricted,
defining roles who may or may not join the workspace.

3.5 Application to Multi-Agent Systems

The CArtAgO framework introduces additional options for solving the typical
problems that arise during the development of multi-agent systems. This in-
cludes coordinating agents, synchronizing tasks, and programming resources,
which the following sections will explain how CArtAgO handles.

3.5.1 Agent Coordination

Agent coordination is one of the main aspects to developing multi-agent systems,
which is why CArtAgO provides tools to ease the process. By exploiting the
fact that artifacts are shared and concurrently used by agents, they can be used
as coordination mechanisms. An example of such coordination was shown in
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subsection 3.4.1, where two agents are able to coordinate their actions by the
use of two artifacts. Coordination artifacts are especially useful to adopt an
objective approach, where the coordination policies are defined by a state and
a set of rules which should be encapsulated and separated from the agents.

3.5.2 Task Synchronization

A barrier synchronization mechanism is an example of an objective coordination
artifact, where the state is the number of agents waiting at the barrier, and the
set of rules are e.g. how many agents must arrive before they are released, or how
many agents are released at the time. This can be achieved by having a single
synch operation, which halts the agents’ execution until a condition is fulfilled,
after which the guard releases the agents. By implementing such an artifact,
task synchronization can be ensured without having to rely on communication
protocols, and without requiring agents to be aware of one another.

3.5.3 Resource Programming

Artifacts can not only be used to encapsulate a state and a set of rules, but any
kind of data or functionality, allowing the dynamic creation of resources. These
resources can first of all be data containers, e.g. implementing an artifact as
a database with insert and select operations. Secondly, an artifact can provide
new functional capabilities, e.g. simulating a software library by extending an
agent’s action repertoire with the artifact’s usage interface. Doing so results in
a high degree of reuseability (reusing the artifacts wherever needed), flexibility
(using artifacts among heterogeneous agents) and dynamic extensibility (creat-
ing and disposing the artifacts at runtime). At the same time, by executing
computationally heavy operations on the artifacts, agents are relieved of this
burden, allowing for even increased agent performance.
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Problem Analysis

4.1 The Multi-Agent Programming Contest

The system developed in this project targets the annual Multi-Agent Program-
ming Contest (MAPC).1 The competition was established to stimulate research
within the field, and does so by creating problems that engage people. Also
because the competition is easily accessible it allows for anyone interested to
test their capabilities.

The competition has been held every year since 2005, and during these twelve
years, the competitors have had to tackle five different scenarios. The last two
years the challenge is named Agents in the City. This simulates several agents
moving around on a map, earning as much money as possible. In order to
maximize the earning potential, the agents will have to work together by the
means of coordination. The simulation will run for a specific number of steps,
usually 1000, and the winner of the simulation is whoever has the most money
at the end.

1The contest can be found at https://multiagentcontest.org

https://multiagentcontest.org
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4.2 Scenario Description

The simulation takes place in one of Europe’s famous cities, e.g. London or
Rome. Throughout the map, several types of facilities and vehicles are placed
randomly, where each vehicle is an agent. The colors of the vehicles denote their
team, and the type of vehicle their role. There are several types of facilities,
denoted by a pin on the map, where each facility has a different color, symbol
and purpose. Figure 4.1 shows a snippet of the scenario taking place in Paris.

Figure 4.1: Snippet of the scenario

4.2.1 Jobs

To earn money, the agents have to complete jobs. The server will post different
jobs when the simulation is running, which teams are able to solve. All jobs
comprise acquiring, assembling and delivering some items to a specific facility
before a deadline. Which items and how many depends on the job, as does the
delivery location. There are four types of jobs in this years scenario: standard
jobs, auctions, missions, and posted jobs.

• Standard Jobs

Standard jobs consist of delivering items to a facility.
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• Auctions

Both teams can bid on auctions. The amount they submit is what they
will get for completing the job. The team with the lowest bid wins the
opportunity to do it. However, if they are not able to complete it within
the allotted time, the team gets fined.

• Missions

Missions are given to all teams, and have to be completed within a deadline
to avoid a fine.

• Posted Jobs

Posted jobs are similar to standard jobs, only created by opposing teams.
The delivered items are given to the posters of the job, while paying the
reward.

4.2.2 Items

Items are what all jobs are about. All items have a specific volume, but can have
a different price depending on where they are sold. Some items can be bought
at shops and collected at resource nodes, while the remaining items have to be
assembled in workshops. There is also a special type of items, called tools. To
assemble certain items, specific tools are required. Each tool is associated with
specific roles, entailing that each vehicle has a distinct set of tools to utilize.

Role Speed Load Battery Travel

Drone 5 100 250 air

Motorcycle 4 300 350 road

Car 3 550 500 road

Truck 2 3000 1000 road

Table 4.1: MAPC Roles
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4.2.3 Roles

The scenario introduces four roles: car, drone, motorcycle, and truck. These
roles control how much load an agent can carry, how fast it moves, its battery
capacity, and which tools it can use. As a general rule, faster moving vehicles
can carry less and have to recharge more often. For instance, motorcycles move
faster than cars and trucks, but can carry less and has a lower battery capacity.
Drones has the additional advantage of being able to fly, moving in straight lines
(euclidean distance), while the other roles have to follow roads. An overview of
the different roles’ specifications can be found in Table 4.1.

4.2.4 Facilities

There are six different types of facilities: charging station, dump, resource node,
shop, storage, and workshop. All their locations are always known, except for
the resources nodes’, which first have to be discovered. Each type of facility
has a specific purpose to fulfill. A detailed description of these are given below,
along with an outline in Table 4.2.

Facility Purpose

Charging station Charging vehicles

Dump Dumping items

Resource node Gathering items

Shop Buying items and tools

Storage Storing items and delivering jobs

Workshop Assembling items

Table 4.2: MAPC facilities with their map icon and overall purpose.

• Charging Station

The vehicles have limited battery capacity, and to move around, charge is
consumed. To recharge a vehicle, an agent has to move to a charging sta-
tion, where its battery is filled at a given rate, depending on the charging
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station. If an agent runs out of charge, it has to utilize its solar panels to
recharge at a extremely low rate.

• Dump

Dumps allow agents to get rid of their items, removing them from the
scenario indefinitely.

• Resource Node

Resource nodes can be utilized to gather items, where each resource node
has one associated item available for gathering. An item is gathered after
several attempts (gather actions), where having multiple agents doing it
at once will speed up the process. To locate a resource node, an agent has
to be within a given proximity.

• Shop

Shops have a subset of all the items and tools available for sale. Each
shop has different prices and quantities of their associated products and
a restock value, denoting how many steps are required before one of each
product is restocked.

• Storage

Storage facilities can be used by agents to store their items and tools,
allowing them to be retrieved at a later point. Each storage facility has
a limited capacity, denoting the total volume of items and tools which
can be contained at any time. Furthermore, storage facilities are also the
delivery location for jobs, where the required items for completing a job
is delivered.

• Workshop

Last but not least, the workshops, being the facilities where tools are
utilized to assemble parts into even larger items. Multiple agents can be
used to assemble an item, which is sometimes a necessity depending on
the different tools required.

4.3 MASSim Environment

The MAPC provides the Multi-Agent System Simulation platform (MASSim),
which is a predefined environment consisting of a set of applicable actions and
a set of perceivable percepts. Actions and percepts are sent between agents
and the environment using XML files. This is handled by the Environment
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Interface Standard (EIS)2, a Java-based interface standard for connecting agents
to controllable entities in an environment. As a result, agents can easily be
connected by associating each agent with an entity on the environment side.
How this is done is illustrated in Figure 4.2. Agents are then able to send
actions to the environment by utilizing their associated entity, and EIS will
handle the conversion from Java objects into XML and into applicable actions
on the environment.

Agent

Agent

Agent

Id

Id

Id

Entity

Entity

Entity

EIS

MASSim Server

Figure 4.2: Overview of how each agent interacts with the MASSim environ-
ment running on a server using the Environment Interface Stan-
dard.

The MAPC can be executed on a single machine or multiple machines, since the
MASSim platform runs as a server, either local or remote, receiving all its data
through the EIS. Tests have been conducted locally, while the official contest
will be held on a remote server. This allows all contestants to connect from
their own computer.

4.3.1 Actions

The agents affect the environment by performing actions on it. They must do
exactly one action in each step of the simulation, where the default action is
noAction. Some actions take parameters to specify exactly what the agent
wants to achieve, e.g. goto(shop1) or buy(item1,6). All actions however,
return error messages if the circumstances in which the actions are executed

2Detailed description and source code can be found at https://github.com/eishub/eis.

https://github.com/eishub/eis
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does not correspond with the environment’s requirements. For instance, agents
have to be in a shop to use the buy action.

Furthermore, the simulation can be configured to nondeterministically replace
an agent’s action with the randomFail action, making it possible for all ac-
tions to fail at any point. Doing so, makes the environment nondeterministic
(stochastic), forcing the systems to be able to dynamically adjust to these errors.
The following list explains some of the most important actions. Details about
all the actions can be found in Appendix B.1, along with their failure codes.

• goto

Agents can use the goto action to move around the map. This action
takes either a coordinate pair, latitude and longitude, specifying the lo-
cation they want to move to, or the name of the facility they want to go
to. This also means that the task of finding a path to the given location
is abstracted away, allowing for a higher level of plans. Each goto action
will consume 10 of the agent’s charge.

• buy

Agents also have a buy action, which allows them to specify an item and
an amount they want to purchase in a shop. For this action to succeed, the
agent has to be located in the particular shop, and must have the given
amount of the item available for sale, and the agent must have enough
capacity to carry the items.

• assemble

An agent can assemble items using the assemble action, by specifying
the item it wants to assemble. This action requires the agent to have all
the required items in its inventory for the process to succeed. This means
that the agent itself must carry the items, or that an assisting agent carries
them. Other agents can assist an assembly by using the assist_assemble
action, and specifying which agent to assist.

• deliver_job

To deliver a job, agents have to be at the correct location and use the
deliver_job action. If the agent has any items to contribute towards
the completion of the job, it will get a successful_partialmessage back,
and if the job is completed a successful message, along with the reward
for the job. If the agent has no items to contribute with, the environment
will return a useless error message.
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4.3.2 Percepts

Agents receive information about the environment through percepts. The MAS-
Sim environment defines all the necessary percepts to allow agents to observe the
state of the environment, as well as the states of the individual agents. As with
actions, percepts are sent as XML messages from the environment to agents,
which are all handled by the EIS. There are two methods for the agents to re-
ceive percepts: either by manually retrieving the newest percepts on demand,
or by receiving each percept as a notification, handling them on the fly. The
first method is preferred when the percepts are received at regular intervals.
However, when percepts arrive at arbitrary intervals notifications are preferred.

The MASSim environment defines many different percepts, including the static
information, dynamic information, agent-specific percepts and job percepts. The
following list will give an explanation to each of these categories, while a com-
plete overview of all percepts is provided in Appendix B.2.

• Static Information

The initial percepts include general information about the current simu-
lation, such as how many steps it is going to be, which city it is taking
place in, and which teams are competing. The initial percepts also include
the role percepts, containing details for each of the roles, as well as the
item precepts. The item percepts comprise all the items available in the
simulation, including which items are needed for assembling them (if any).
This information will never change throughout the simulation.

• Dynamic Information

At each step, an update of the dynamic information is sent to each agent.
This first of all includes the step percept, informing the agents of the
current step. Secondly, agents receive the current information about all
the facilities, including the amount of items for sale in each shop, as well
as their price and when the shop will be restocked.

• Agent Percepts

All agents will in each step get an update on how much charge and load
they have together with their current location. If they are in a facility,
the name of the facility will also be included. Furthermore, information
regarding the agents’ last action is perceived, containing the name of the
action, the parameters given, and the result of the action, which can be
useful for handling errors.

• Job Percepts
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The last important percepts from the MASSim environment are the job
percepts. For all types of jobs, start and end time, delivery location,
reward and items required for completing the job is included. Auctions
and missions include extra information about the fine for not completing
the job. In addition, auctions also include the current lowest bid, when
the auction is going to end, and the maximum reward. Lastly, posted jobs
include the same information as standard jobs.

4.3.3 Properties

As mentioned in section 2.1, environments can model very different domains,
being characterized by several different properties. In case of the MASSim
environment, it is characterized by the following properties:

• Multi-Agent

The competition is based on having two or more teams compete against
each other, where each team comprise multiple agents. As a result, the
environment consists of both multiple cooperative agents (within a team)
and multiple competitive agents (across different teams).

• Fully Observable (with one exception)

The locations of agents and facilities, except for resource nodes, are ob-
servable at any time. As a result, the environment is technically partially
observable, but is for any other case fully observable.

• Dynamic

The agents that form the opposing teams cannot be controlled, and will
continuously act upon the environment. As a result, the environment can
change at any time, thus making it dynamic. Jobs are also a dynamic part
of the environment, being posted at different points of the simulation.

• Sequential

Given that the simulation is based on a real life scenario, the environment
is sequential. Each action executed on the environment is reflected in all
future steps, hence each step depend on the previous one. For instance,
if an agent at some point moves to a facility F , then the agent will be
stationed at F in all subsequent steps, until it moves elsewhere.

• Stochastic

All actions have multiple outcomes due to randomFail, where the prob-
ability of successfully executing an action is 1 − p given that p is the



38 Problem Analysis

probability of a random failure. For instance, with p = 0.15 the proba-
bility of successfully executing an action is 1 − 0.15 = 0.85, or 85%. As
a result, the environment is stochastic, and agents will have to adapt to
these random failures and reconsider their plans when necessary.

• Discrete

Even though the competition is based on a continuous environment, the
simulation is modelled as a discrete problem, where there is a fixed set of
actions, percepts, and states.

4.4 Problem Simplifications

To allow for faster development, some initial simplifications in terms of what the
solution should be able to handle and how easy it is to solve a given job, have
been considered. This is done by adjusting the server configuration, containing
variables for determining the difficulty of jobs and much more. A list of all the
relevant parameters is shown below.

Jobs
productTypesMax: The maximum amount of different items a

job can require.
difficultyMax: The maximum difficulty of a job.
timeMin The minimum amount of steps a job must

be completed within.
missionDifficultyMax: The maximum difficulty of a mission.

Shops
minProd: The minimum number of different items a

shop sells.
amountMin: The minimum amount of an item available.
restockMax: The maximum number of steps before one

additional item of each type is added (up to
the initial amount).

Items
baseItemsMax: The maximum number of different base

items.
volMax: The maximum volume of an item.
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valueMax: The maximum price of an item.
maxReq: The maximum number of required items for

assembly.
reqAmountMax: The maximum amount per required item for

assembly.
toolsMax: The maximum number of tools required for

assembly.
toolProbability: The probability that an item will require

tools to assemble.

Adjusting these variables allows for vast simplifications, e.g. making items free
without taking up space. You can even make jobs require a single item, and
give the shops an infinite supply of that item. Doing so does however provide
unrealistic results in terms of the competition, which is why adjustments have
been kept to a minimum. As a result, the toolProbability was first of all set
to zero, removing the possibility of items requiring tools to be assembled. Using
tools is not the first concern, and neither is handling shopping errors.

Shopping errors arise due to many agents attempting to buy the same items
simultaneously, or simply because there is a shortage of some specific items. This
is especially the case in terms of resources, which are items that can be gathered
from resource nodes. Resources are sold in limited quantities in the shops, given
that they are available elsewhere. Gathering resources is not a priority either,
hence the amount of items available in shops was increased to account for this
limitation. This simplification was done only for the first solution, and was
removed again when it was capable of handling the issue.

It is also important to note that this years competition features 28 agents in each
team opposed to 16 last year. While the number of agents has almost doubled,
a new configuration taking the increased number of agents into account has not
been made available. As a result, it is apparent that the configurations are not
up to scale with the scenario, and until they are, reasonable modifications will
be made.

4.5 Choice of Solution

Given the increased number of agents, solving task efficiently relies on a high
level of coordination in combination with problem decomposition. By dividing
tasks into several subtasks, it is ensured that all agents are utilized, not wast-
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ing resources by doing nothing. It can however be difficult to achieve a good
distribution in terms of task delegation, which is why the Contract Net Proto-
col (CNP) (section 5.6) is introduced. The protocol is used for sharing tasks,
allowing agents to bid using a predefined heuristic which takes the agent’s load,
speed, and distance to a given facility into account. As a result, the agent who
can carry the most, is fastest, and is closest to the destination wins the respon-
sibility of completing the given task, which is the strength of and why the CNP
was chosen.

A natural way of dividing jobs into subtasks is by having each subtask consist
of delivering one of the job’s required items to the delivery location, solving
partial jobs at the time. Another possibility however, is when a task requires the
acquisition of items from several shops, each subtask comprise the acquisition
of items from one distinct shop. These subtasks are however not as easily
completed, since once the items have been retrieved, they have to either be
given to the agent responsible for solving the task, or used by assisting the
agent with its assembly, both which call for coordination.

Agent coordination is usually done using protocols, i.e. predefined procedures
stating the rules and methods of a given transaction, but can also be achieved
using CArtAgO’s artifacts. Operations can be implemented to block an agent’s
execution, until some predefined rules are fulfilled or the state of the artifact is
satisfiable. By doing so, CArtAgO can be very helpful in terms of coordinating
the vast number of agents, while separating the coordination procedures from
the agents.
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Implementation

5.1 Development Process

The solutions to the MAPC have been developed and implemented using an
agile approach, having several iterations with more features and more advanced
agent logic. The first concern was to implement a solid and modular frame-
work for handling server communication, thus perceiving the environment and
performing actions on it. The second concern was to filter and organize the
overwhelming amount of percepts received. The third, but at least as impor-
tant concern, was to find a way to efficiently assign tasks to the different agents,
hence implementing a Contract Net Protocol. Finally, different strategies on
how to solve jobs most efficiently was revised, introducing problem decomposi-
tion and hierarchical planning.

5.2 Server Communication

As previously mentioned in section 4.3, actions are executed on the environment,
and percepts are perceived using the Environment Interface Standard. To al-
low this behaviour, the EIArtifact maintains an instance of the Environment
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Interface and provides operations for registering agents and executing actions,
while simultaneously receiving all the percepts. Some of the percepts are ex-
posed as observable properties, which agents that focus on the EIArtifact will
be able to observe and trigger events when they are updated. This is especially
important for the step percept, indicating when agents are allowed to execute
a new action on the environment.

Most percepts however, are passed on to various information artifacts, i.e.
data containers, where the relevant information in the percepts are extracted
and stored. This is done using two internal operations, perceiveIntial and
perceiveUpdate, where perceiveIntial is, as the name would suggest, only
used initially for perceiving the static information such as which items or roles
are defined. The EIArtifact furthermore listens to the step percept by attaching
an AgentListener (an interface provided by EIS) to one of the entities. This lis-
tener reacts to the simStart and step percepts, ensuring the perceiveInitial
and perceiveUpdate operation are executed when necessary, perceiving all the
relevant information.

5.3 Percept Filtering and Organizing

To filter and organize all the different percepts perceived, several artifacts have
been created, each being responsible for handling a share of the percepts. First
of all, it is important to distinguish the static percepts from the dynamic ones,
since all static information will be received in every step, regardless of the fact
that it never changes. Secondly, only a fraction of the percepts are agent specific,
meaning that most of them are perceived n times in a scenario with n agents. To
avoid perceiving the same information several times, all the common percepts
are collected in a set, removing duplicates.

This set of percepts is sent to different types of artifacts which filter them ac-
cording to which percepts they are assigned to handle. Each percept is then
parsed differently depending on the type, and the information is stored in the
artifacts. To simplify this process, MASSim’s class definitions have been ex-
ploited, creating some custom extensions as needed. By doing so, the artifacts
achieve a separation of concerns, while being able to define operations to re-
trieve and manipulate the information needed by the agents. Table 5.1 contains
an overview of all the different artifacts, and which kinds of percepts they are
responsible for perceiving.

Some percepts are however needed more frequently than others, i.e. used to
decide which intentions to execute or which goals to achieve. These percepts



5.4 Agent Logic 43

AgentArtifact For dynamically perceiving agent specific per-
cepts such as an agent’s charge, load, etc.

DynamicInfoArtifact For dynamically perceiving map info such as the
current money, timestamp, etc.

FacilityArtifact For dynamically perceiving all the different fa-
cilities such as shops, storages, etc. These per-
cepts are dynamic due to the change in a shop’s
assortment or a storage’s content.

ItemArtifact For statically perceiving all items and tools at
the start of a simulation.

JobArtifact For dynamically perceiving new jobs, auctions,
missions, etc.

StaticInfoArtifact For statically perceiving map info such as the
specifications of the different roles, the length
of the simulation, etc.

Table 5.1: Overview of info artifacts.

usually include the agent specific ones, and are made as observable properties,
giving the possibility of using the values in rules and as preconditions for se-
lecting plans. To prevent agents from observing all the other agents’ values, an
AgentArtifact is created. Each agent then only focuses on their corresponding
AgentArtifact.

As a result, for n agents, n− 1 additional artifacts are needed, but considering
each agent has v values, their belief bases are only extended by v beliefs opposed
to n · v beliefs, i.e. reducing the amount of beliefs by (n − 1) · v. To illustrate,
consider a scenario with 28 agents, where each agent has 12 agent-specific values,
that is 204 fewer beliefs in each agent’s belief base at the price of 27 additional
AgentArtifacts, which at the same time helps separate the agents’ knowledge.

5.4 Agent Logic

The general approach for implementing the agent logic, has been to utilize hier-
archical planning. This entails the need to define the simplest of actions, and by
creating compositions of these, build up more advanced high-level plans. The
simplest plan the agents are able to do, is executing an action on the envi-
ronment. This is mostly handled on the server side, having an internal action
(the jia.action below) request the execution of a specific action on the EIS. It is
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however important to send the actions in the correct step, which is ensured by
suspending the intention after the request using .wait. This is implemented as
follows:

+! doAction(Action) : .my_name(Me) <-
jia.action(Me , Action); .wait({ +step(_) }).

Before implementing a strategy for earning money and solving jobs in the MAPC
domain, the agents’ need some general rules and plans to allow for problem
decomposition, facilitating the use of hierarchical planning.

5.4.1 Rules

Rules are used throughout the implementation to abstract calculations away
from plans and to retrieve important information. This includes finding an
agent’s speed or max load, which both can be extracted from the role definitions.
Agents also have rules for testing whether they have sufficient charge to move,
or if they can reach their destination without charging first. Given that a goto
action consumes 10 points of charge, a canMove rule can be formalized from this
requirement:

canMove :- charge(X) & X >= 10.

To test if an agent has enough charge to reach its destination, it can use the
rule below. Using the length of the route along with its speed, the agent can
calculate how many steps it will take to complete this route. By using the step
estimate together with its charge and charge threshold, the agent can check
whether its level of charge is sufficient. The threshold is included to ensure that
the agent is able to reach a charging station afterwards.

enoughCharge :- routeLength(L) & enoughCharge(L).
enoughCharge(L) :- speed(S) & charge(C) &

chargeThreshold(Threshold) & Steps = math.ceil(L / S)
& Steps <= (C - Threshold) / 10.

Note that the rule has been split into two cases, allowing the calculation to be
done for any route. All the defined rules can be found in Appendix C.2.
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5.4.2 Plans

The agents have many different plans for solving goals in the environment. Some
are more complex and require a lot of coordination, while others are relatively
simple, but nonetheless essential for the agents. In this section, some of the
most important plans are presented.

Getting to Facilities
The most important part of the scenario is having the ability of moving around
the map and visit facilities. To do so, plans for getting to a facility have been
implemented. These plans rely on the inFacility(F) belief predicate, describing
which facility the agent is currently in. The idea behind the plans are simple,
and the Jason implementation of it can be seen below. If the agent believes it
is in the facility, the goal has been achieved. This is the base case for the first
getToFacility plan. If the agent does not believe it is in the facility, it has
three different ways of achieving its goal. As Jason always starts with the first
plan from the top, it will start by testing whether the agent can actually move,
using the canMove rule. If this is not the case, it will do a recharge action,
charging up until it is able to move again, continuing with its intention.

+! getToFacility(F) : inFacility(F).
+! getToFacility(F) : not canMove

<- !doAction(recharge); !getToFacility(F).
+! getToFacility(F) : not enoughCharge & not isChargingStation(F)

<- !charge; !getToFacility(F).
+! getToFacility(F)

<- !doAction(goto(F)); !getToFacility(F).

The next plan checks if the agent has enough charge to reach its destination,
and if it is currently going towards a charging station. If none of these are the
case, it should intend to charge first, before continuing to the facility. This will
ensure that the agent does not run out of charge before reaching the facility. If
none of the previous plans are valid, nothing is stopping the agent from going
towards the facility, simply executing one goto action at the time using plan
recursion.

Buying Items
Retrieving items is also an important part of the scenario. This is primarily done
by buying items at shops. To do so, three buyItems plans have been defined,
taking a list of items where each item is a literal with a name and an amount,
i.e. map(Name, Amount). The base case for this plan is when the list is empty,
and there are no more items to be bought. The second plan simply removes
the first element from the list, given that the amount to buy is zero, continuing
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recursively with the rest of the list.

The last plan is the only plan that actually performs the buy action. Note that
the agent is assumed to be in a shop when using these plans, and the inShop rule
is used to retrieve the name of the shop. The agent uses this name to ask the
ItemArtifact for the amount available of a given item in a given shop using the
getAvailableAmount operation. By passing the desired amount to buy as well,
the AmountAvailable variable is the minimum of the desired amount and the
available amount. After the buy action has been executed, the plan proceeds by
recursion on the rest of the list and on the same item with an updated amount.
The ordering is to allow the shop to restock before trying to buy the remaining
amount.

+! buyItems ([]).
+! buyItems ([map(Item , 0)|Items]) <- !buyItems(Items).
+! buyItems ([map(Item , Amount)|Items ]) : inShop(Shop) <-

getAvailableAmount(Item , Amount , Shop , AmountAvailable);
!doAction(buy(Item , AmountAvailable));
!buyItems(Items);
!buyItems ([map(Item , Amount - AmountAvailable)]).

Retrieving Items
By dividing plans into as small and simple cases as possible, more complex plans
can be developed using a hierarchical approach. For example, to retrieve items
from any shop, the buyItem and getToFacility plans can be combined. As
seen in the retrieveItems plan, retrieving items from a given shop is done by
first getting to the shop, followed by buying the items.

+! retrieveItems(map(Shop , Items)) <-
!getToFacility(Shop);
!buyItems(Items).

Delivering Items
In a very similar way, the agents can use the getToFacility plan in combination
with the deliver_job action to deliver items for jobs. This is achieved by the
deliverItems plan, going to the facility, followed by executing the action.

+! deliverItems(TaskId , Facility) <-
!getToFacility(Facility);
!doAction(deliver_job(TaskId)).

These are some of the most essential plans, which all agents need in order to
complete jobs. All agents also include different plans for how to complete other
intentions, such as charging. Plans for actions requiring coordination is more
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extensive, e.g. assembling items, and will be discussed in the later sections.

5.5 First Iteration

The first iteration of the multi-agent system focus on getting jobs divided into
partial jobs, greatly simplifying some of the problems. This entails splitting
jobs into subtasks, delivering a share of the items at the time. By doing so,
the agents use quite a few steps to solve each job, but at the same time solving
many in parallel. It is worth noting, that for this strategy to work, the problem
was simplified by removing the tool requirement, avoiding the need of agent
coordination.

Each partial job consist of acquiring the required items, assembling them if
necessary, and delivering the items to a specific location. Such a plan can easily
be expressed in Jason, as seen below, dividing the process of solving a partial
job into three smaller and simpler goals.

+! solve_job(Id , Items , DeliveryLocation) <-
!retrieve(Items);
!assemble(Items);
!deliver(Id , DeliveryLocation).

To decide which agent gets the responsibility of solving which job, a Contract
Net Protocol has been implemented allowing agents to bid on who can solve
each job most efficiently.

5.6 Contract Net Protocol

Contract Net Protocol (CNP) is a task-sharing protocol in multi-agent systems,
where agents form the contract net and where each agent may take the role
of a contractor. This protocol is used to select which agent is most suited to
complete a task or subtask, by having all available agents bid on the announced
task based on their current values (load, speed, charge). As a result, the agent
bidding the lowest, i.e. can complete the task with the least cost, will win the
responsibility of solving the task.

Having integrated the CArtAgO framework into the solution, the CNP has been
developed using two types of artifacts: a CNPArtifact for receiving and main-
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taining bids, and a TaskArtifact for creating and announcing CNPArtifacts.
The CNPArtifacts are announced by defining an observable property containing
the name of the announced task, an arbitrary amount of arguments and finally
the unique id of the CNPArtifact. By using an observable property, the task is
received by all agents. The implementation is shown in Listing 5.1, where the
artifact is made, the id of the CNPArtifact is appended to the arguments, and
the observable property is defined.

@OPERATION
private void announce(String property , Object ... args)
{

try
{

String cnpName = "CNPArtifact" + (++ cnpId);

ArtifactId id = makeArtifact(cnpName , "cnp.CNPArtifact",
ArtifactConfig.DEFAULT_CONFIG);

List <Object > properties = new LinkedList <Object >( Arrays.
asList(args));

properties.add(id);

defineObsProperty(property , properties.toArray ());
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in announce: " + e.
getMessage (), e);

}
}

Listing 5.1: Method for creating and announcing CNPArtifacts

To exemplify the use of the TaskArtifact, assume that it has just received
a job from the server requiring a set of Items to be delivered to a Storage.
This could be done by calling announce("job", Items, Storage), which will
instantiate a new CNPArtifact and define the observable property with the
contents. Agents focusing on the TaskArtifact will then have job(Items,
Storage, CNPId) added to their belief base. This will trigger an event, in
which they bid using the CNPArtifact associated with the given CNPId.

When a CNPArtifact is created, a timer is started by executing an internal
operation, indicating the period of time the artifact accepts bids. After an
agent has given a bid, the agent executes the artifact’s winner operation, using
the timer as a guard before evaluating to true of false indicating whether the
agent has won. If two or more agents share the same lowest bid, the winner is
whoever placed its bid first. From an agent’s point of view, the bidding process
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has the following sequencing:

...
bid(Bid)[artifact_id(CNPId)];
winner(Won)[artifact_id(CNPId)];

if (Won)
{

... // Complete the task
}.

Tasks often involve many subtasks, which is why bidding is only done on one
subtask at the time, re-announcing the rest of the task afterwards. By doing
so, the CNP greedily picks one agent for each subtask, where all subtask are to
be coordinated accordingly.

5.7 Second Iteration

The second iteration of the MAS system focused on a new strategy, relying on
much more coordination between the agents. The goal was to move away from
solving partial jobs in parallel and instead define smaller tasks, like buying items
or moving them from one location to another. The goal of this solution is to have
agents do jobs more efficiently by introducing a higher level of coordination.

To do so, the solution defines a specific role for trucks. Each shop has a truck
assigned to it at the beginning of the simulation, after which the trucks are
tasked with buying the items required for each job. The other agents are then
set to retrieve the items from the trucks instead of the shop, meaning that
they no longer had to be concerned about buying items. The trucks that are
not assigned to any shops, given that there are more trucks than shops in the
simulation, are assigned to workshops. Thee workshop trucks will then focus on
assembling items, again simplifying the tasks the other agents have to do.

The remaining tasks comprise the retrieving and delivering of items. Similarly
to the first iteration, all subtasks are posted using the CNP, distributing them
across the agents. Given the initial simplifications, the subtasks mostly involve
giving and receiving items to and from the trucks. To coordinate this behavior,
protocols have been established.

The transaction of items require the giver and receiver to do the give and
receive actions in the same step respectively. By utilizing Jason’s internal
.send action, this can easily be achieved by sending messages back and forth.
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A truck and another agent can easily communicate which step they want to
exchange items. The details of these protocols are explained in subsection 5.9.1.

This iteration also introduced the announcer agent. The announcer does not
represent any agent in the environment, but serves the purpose of defining sub-
tasks and announcing them to the other agents. The initializer was also intro-
duced, creating all the necessary artifacts in the beginning of the simulation.
This agent is necessary due to the fact that artifacts can only be made by
agents or artifacts themselves. The initializer removes itself once it has fulfilled
its purpose.

5.8 Third Iteration

Using trucks as mediators for solving jobs in the second solution proved to be a
huge bottleneck, which led to a different approach in the third iteration. Jobs
are still being divided into subtasks, where the agents use the CNP to distribute
their workload. However, this solution defines different subtasks, being an at-
tempt at backwards reasoning. Backwards reasoning entail considering how to
achieve the initial goal by possibly introducing new goals, repeating the process
for each additional goal.

The initial goal is to deliver a set of assembled items to a location. To do so,
the assembled items must be acquired, which is done by assembling a set of
base items. Furthermore, the base items must also be retrieved, buying them
from shops. This calls for two different subtasks, the first is similar to the
first solution, dividing the acquisition of assembled items into partial jobs. The
second however, divides the retrieval of items into one subtask for each shop to
visit. These subtasks are defined as assembleRequests and retrieveRequests
respectively.

The winner of an assembleRequest is responsible for assembling and deliv-
ering a subset of items. In order to do so, the required base items must be
retrieved, creating a shopping list and announcing retrieveRequests for each
shop. Agents that are assigned the responsibility of retrieving items from a
shop, are considered as assistants, assisting with the assembly. To do so, the
agents meet at a workshop, initiating the assemble protocol, explained in sub-
section 5.9.2. Once all items have been assembled, the assembler can deliver the
items to complete its task.
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5.9 Communication Protocols

To coordinate the agents in terms of assembling, giving and receiving items, the
agents have several communication protocols at their disposal, allowing them to
agree upon a step of execution.

5.9.1 Give/Receive Protocol

The give and receive protocols are between two agents, where one of them
initiates the protocol (initiator), and the other one accepts it (acceptor). As
a result, the acceptor has the final say in which step the transaction will take
place.

The give protocol is initiated by telling the acceptor which items the initiator
would like to give. The initiator then waits for the acceptor to respond with
readyToReceive and in which step it is ready. This step is then the agreed
upon transaction step, and is always a step in the future to account for already
pending actions. Both agents waits for the transaction step before executing
the give and receive actions.

The receive protocol is identical to the give protocol, only difference being the
replacement of give with receive and vice versa.

5.9.2 Assemble Protocol

The assemble protocol is based on having one agent in charge of assembling an
item, possibly being a part of a subtask. To assemble the item in the most ef-
ficient manner, the assembler requests help from other agents to retrieve the
required items, assisting with the assembly afterwards. The assembler will
therefore retrieve as many items as it can, and post the remaining items to
the Contract Net Protocol. Every other agent then bids on these tasks, sending
a message if they have been assigned to the task to tell the assembler they are
assisting.

After the assembler and every assistant have retrieved the necessary items, they
meet at a workshop, it sends a message to the assembler with the assistantReady
literal and its name as soon as it arrives. When the assembler is at the store,
and have received this message from every assistant, the actual assemble process
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can begin. This is first done by coordinating which step they will begin. The as-
sembler sends a step to every assistant, which is the step it will do the assemble
action. Every assistant will do the assist_assemble action simultaneously.

An assistant will stop doing this action if it does not have any items left in its
inventory, or if it receives an assembleComplete signal. This signal is sent by the
assembler once it has all the necessary items to complete its task. Subsequently,
all agents remove their beliefs associated with the assembly, thus concluding
the protocol. The assembler proceeds by delivering the items to the required
location, completing the given task.

5.10 Fourth Iteration

The fourth iteration was an attempt to deploy the same strategy as in the
previous iteration, but with a much more dynamic approach. This was done by
having each task divided into even more subtasks, and having the agents check
their individual states before continuing towards their goals. As a result, the
agents do not have to rely on every action succeeding, being more robust in terms
of a competition setting. At the same time, this solution greatly emphasizes that
agents should always be able to solve their tasks individually, not having to rely
on others to achieve their goals.

This was a huge disadvantage with the previous solution, where agents some-
times relied on assistance from other agents to solve given subtasks, thus allow-
ing for deadlocks in cases where all agents require help from one another. To
prevent agents from taking jobs they cannot solve on their own, a load require-
ment is calculated for each job, only bidding on jobs for which they meet this
requirement. Doing so has a downside however, since many of the jobs require
heavy items only trucks have the capacity to carry. As a result, the agents take
on fewer jobs, leaving the smaller vehicles idle.

The overall algorithmic functionality is explained by the following steps:

1. When a job is announced, the fastest agent who meets the load require-
ment gets the responsibility of solving it.

2. If the agent is unable to carry all the items at once, the task is announced
further, in which free agents may take the responsibility of solving parts
of it. If no other agents are free, the task is divided into several subtasks,
completing one subtask at the time by delivering partial jobs.
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3. To solve a subtask, a shopping list is created, telling which shops to visit
and which items to buy in each shop. The shopping task is announced
further as well, in which free agents may take the responsibility of retriev-
ing the items from one of the shops. Similarly to the previous step, if no
agents are available, the task is divided into several subtasks, retrieving
the items from one shop at the time.

4. Depending on whether the agent has received assistance or not, the assem-
bling procedure requires coordination. If the agent carries all the required
base items by itself, it can proceed to a workshop and start assembling
the items. If not, the agent initiates the assemble protocol, coordinating
the assembly with its assistants.

5. Once all items of the given task or subtask has been assembled, the agent
can proceed to the delivery location and deliver the items.

To ensure dynamic behavior, the agent attempts to reannounce the remaining
workload after completing a subtask, unless there is only one subtask to go.
To illustrate the difference between this solution and the previous one, consider
how items are assembled:

+! assembleItems ([]).
+! assembleItems ([map( _, 0) | Items ]) <-

!assembleItems(Items).
+! assembleItems ([map(Item , Amount) | Items ]) <-

getRequiredItems(Item , ReqItems);
!assembleItem(Item , ReqItems);
!assembleItems ([map(Item , Amount - 1) | Items]).

// Recursively assemble required items
+! assembleItem( _, []).
+! assembleItem(Item , ReqItems) <-

!assembleItems(ReqItems);
!doAction(assemble(Item)).

Listing 5.2: Third iteration’s implementation of item assembly.

This implementation assumes that the items are successfully assembled in each
step, simply assembling one quantity of an item at the time while calling it-
self recursively with a decremented amount. In scenarios where randomFail is
a possibility, this solution will not be adequate, since the failures will cascade
making subsequent assemblies fail and eventually making the agent unable to
solve its task. The more dynamic approach on the other hand, has been de-
veloped to take random failures into account by consistently trying to achieve
some postcondition before continuing.
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// Postcondition: Items in inventory.
+! assembleItems(Items) : hasItems(Items).
+! assembleItems ([map(Name , _)|Items ]) :

jia.getReqItems(Name , []) <-
!assembleItems(Items).

+! assembleItems ([map(Name , Amount)|Items]) :
jia.getReqItems(Name , ReqItems) <-
!assembleItem(map(Name , Amount), ReqItems);
!assembleItems(Items).

// Postcondition: Item = map(Name , Amount) in inventory.
+! assembleItem(Item , _) : hasItems ([Item]).
+! assembleItem(map(Name , Amount), ReqItems) : hasItems(ReqItems) <-

!doAction(assemble(Name));
!assembleItem(map(Name , Amount), ReqItems).

+! assembleItem(map(Name , Amount), ReqItems) <-
!assembleItems(ReqItems);
!doAction(assemble(Name));
!assembleItem(map(Name , Amount), ReqItems).

Listing 5.3: Fourth iteration’s implementation of item assembly.

The assembleItem plan is used to assemble an amount of a specific item, being
its postcondition to have these assembled items in the agent’s inventory. Assum-
ing correct implementation and that the postcondition holds, the assembleItem
plan can be used several times in the assembleItems plan to guarantee that
after executing the higher-order plan, several items are in the agent’s inventory,
being its postcondition. By making sure that all low-level plans holds some
postcondition, compositions of these can be used to make complex high-order
plans while still ensuring the correct and dynamic behavior a nondeterministic
scenario requires.

5.11 Fifth Iteration

The fifth iteration is a simple attempt at utilizing tools, building on the previous
dynamic version. This is achieved by having all agents acquire the tools they can
use in the beginning of the simulation, as long their capacity holds. Vehicles
such as drones can carry a limited number of tools, and to account for this
limitation, the agents will prioritize the acquisition of role-specific tools, i.e.
tools usable by only one type of vehicle.

Once all the tools have been acquired, the solution continues by solving jobs
as mentioned in the previous section, with the addition of coordinating tools.
Before initiating the assemble protocol, the agent checks which tools are required
for the assembly, inspecting its own and its assistants’ inventories to see if any of
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the tools are missing. The agent proceeds by announcing a toolRequest with
the missing tools, allowing other agents with the appropriate tools to take part
in the assembly.

5.12 Evaluating Jobs

So far, all solutions have focused on solving as many jobs as possible, with no
regards of evaluating which jobs to solve. Instead, each agent has bid on all
announced jobs while idle, making the job selection process essentially random.
With several solutions running, the next step was to implement a heuristic func-
tion for choosing jobs, making agents capable of solving the best jobs available.
At the same time, solving missions should be prioritized, as not doing so will re-
sult in a fine, along with the addition of handling auctions. Auctions have higher
rewards than standard jobs, being significant in terms of earning potential.

Two different approaches for this functionality were considered: estimating the
total earnings for each job, or estimating how many steps it would require to
complete the job, and thereby give a reward per step value. The former is a
simpler way to evaluate jobs, as it only requires looking at the cost of buying
all the necessary items and subtracting this from the reward. Furthermore, jobs
can be filtered by introducing a certain threshold, avoiding the announcement
of jobs whose reward is insignificant.

The latter approach is more complex, as it requires estimating how many steps
it takes to complete jobs. This estimate is based on how many items must
be assembled, how many items must be bought and how many shops must be
visited. Additionally, the distance between all the facilities must be taken into
account, and whether or not the agent has to charge in between. While this is
not necessarily easy to estimate, an amount of steps can be calculated assuming
a single agent will solve the job on its own. A more accurate estimate would
take the actual agents solving the job into account, but this cannot be known
beforehand having a decentralized solution. However, since the system only
needs to compare all jobs on the same terms, this simplification is valid.

To solve an auction job, the team first have to win the rights to do so. This
is done by having an agent bid on the auction, using the bid_for_job action,
specifying the id of the job and the bid. By utilizing the heuristics evaluating
job rewards, a bid can be calculated. The agent will then decide whether or not
to bid depending on the profit being above a certain threshold. Agents will not
bid on every auction, as winning an auction without completing it will result
in a fine. To prevent taking on more auctions than the system is capable of
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handling, a soft limit is introduced, limiting the number of active auctions to
five at any time. The limit is soft, since it does not prevent missions and well
rewarding jobs from being started.



Chapter 6

Results

6.1 Evaluation

The metrics for evaluating the solution have been based primarily on the amount
of money acquired at the end of the simulation, along with the number of jobs the
agents were able to complete. These results depend on the configuration used,
which should also be taken into account during comparisons. When a simulation
is over, the MAS will output a file with each team and their corresponding
score and ranking. Along with the rankings, the solutions will output a log
file with the amount of money the team had in each step, and how many jobs
was completed during the simulation. This log file is the base for the evaluation
of each solution in this chapter. Please note that the results shown only include
a data point for every 50 step.

The goal is to earn as much money as possible, however as the rewards for jobs
varies, the primary focus for the five iterations has primarily been on solving as
many jobs as possible. Therefore, no function was used to specifically choose
jobs. Later, focus was changed to optimize which jobs to solve, increasing the
earning potential. As the jobs in this year’s MAPC scenario is very different
from last year’s scenario, the solutions will not be compared with the results
from last year.
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Each iteration has been tested extensively through several simulations. The
results displayed in the following sections is selected from the benchmarks, being
regarded as the average output of a given solution. As the scenario introduces
multiple random factors, there have been some slight variations in the results,
causing deviations of at most a few thousands. However, the number of jobs
completed has been very consistent.

6.2 Configuration

All simulations have been tested using the same configurations, unless otherwise
specified. The configuration is taken from the MAPC as of June 1st 2017, with
tools and random failures deactivated, as this was not a focus for the first
solutions. This configuration had 28 agents on each team, four drones and eight
of the other types, starting with a capital of 50000. The amount and location
of each facility is randomly generated by the server, but by using the same
random seed, the facilities in the simulations stays the same. The number of
items generated given by the MAPC is based on last years version, which only
had 16 agents on each team. It was therefore chosen to increase the items’
availability, to account for the extra agents.

6.3 Solution 1

The results from the first iteration of the MAS is shown in Figure 6.1. This,
along with all the data displayed in this chapter, can be found in Appendix A.
The first solution was able to make profit of almost 40,000 during a simulation
by completing 39 jobs, giving a good baseline for future iterations. However,
there is some interesting information learned from this data. First of all, the
agents actually lost money during the last 300 steps, possibly due to agents not
being able to complete jobs in time. Furthermore, the agents do not consider
when the simulation is going to end, and starts jobs regardless of being able to
complete them in time. As a result, money is spent in vain on items that are
never used.

Agents have to invest money in items to be able to complete jobs. As a con-
sequence, the amount of money has to decrease before it can increase, which
is especially apparent in the beginning of the simulation. Jobs vary in both
difficulty and reward, where those requiring more items, hence also more steps,
will result in a larger profit once completed. While the graph shows an im-
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Figure 6.1: Money earned by the first solution of the MAS.

mense increase of nearly 20,000 from step 200 to step 250, this is most likely
due to several jobs being completed at once, solving several tasks in parallel.
This implementation does not consider which jobs to take, simply committing
to completing the first ones that become available. Choosing the jobs that give
the highest rewards could therefore help improve the system.

This solution solves several jobs at once, by splitting tasks into subtasks. How-
ever, if all subtasks are not completed, i.e. all items are not delivered, no profit
is granted. As a result, if the last subtask of a job is not completed in time,
all previous subtasks have been solved in vain. The same applies in terms of
errors, where if one of the agents fail, all agents doing the same job practically
fail, wasting time and money trying to complete an unsolvable job.

6.4 Solution 2

The second solution introduced bottlenecks at both the shops and the work-
shops. By having all items go through trucks, the trucks became overloaded
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with work, only being able to give one type of item to a single agent at the
time. The idea is that by having vehicles stationed at the shops, the system
is able to buy items quicker than its opponents, thus ensuring the resources
to solve a given task. While this limits the opposing teams, it also limits the
system itself by having to pass on all the items bought. Similarly, by having
trucks responsible for assembling, the other vehicles would not have to take part
as assistants. As a result, the agents would only be tasked with simply carrying
items between shops and workshops, and workshops and storage facilities.

However, the potential advantages does not outweigh the disadvantages, given
that the solution had difficulties solving a single job. Because of this, further
development was stopped and discarded for a better strategy, hence no results
have been produced.

6.5 Solution 3

0 200 400 600 800 1,000

50,000

100,000

150,000
50,000

42
,218

44
,627

52
,156

60
,791

64
,454

78
,063

88,710
97,675
95

,610
98

,095
113

,761
108

,49
0

1
12

,301
119

,159
131

,028
139

,206
148

,179
142

,635
157

,067
155

,402

Step

M
on

ey

Solution 3 - 64 Jobs

Figure 6.2: Money earned by the third solution of the MAS.

The results of the third iteration is shown in Figure 6.2. This time, the agents
were able to triple the initial capital, ending on 155,000 by completing 64 jobs.
Having a profit of 105,000, this solution earns more than twice as much compared
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to the first solution. The results reflect the benefit of concentrating the resources
towards fewer jobs at the time, avoiding situations where one subtask is solved
too slowly for the system to earn any profit.

This version relies on agents being able to assist each other, having to coordinate
their tasks. In previous solutions tasks have been independent of one another,
allowing agents to focus on one subtask at a time, and continue with a new,
unrelated task once it is complete. However, since agents have to wait for each
other before assembling items, the solution has some limitations. The agents
have to wait for all of them to arrive at the workshop before assembling, thus
multiple agents may have to wait for the last. Instead, this can be optimized to
allow agents to give their acquired items to other agents, relieving themselves
of their duties. This assumes the other agents have the capacity to carry the
given items.

6.6 Solution 4
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Figure 6.3: Money earned by the fourth iteration of the MAS.

The results of the fourth iteration is shown in Figure 6.3. As seen from the
figure, the solution solves significantly more jobs, having an increase of about
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15% from the previous solution. This is a result of dynamic behavior, being
able to handle possible failures, while reusing leftover items. The solution does
however not evaluate possible earnings from the various jobs, or take the agents’
current items into account when choosing which jobs to solve, thus the results
are very dependant on the solution coincidentally making the correct decisions.

The aim of this iteration is however not about solving an increased number of
jobs, or earning more money per job, but about still earning money regardless
of failures. To demonstrate its capabilities of failure handling, a comparison
with various percentages of randomFail can be seen in Figure 6.4. With a
randomFail of 1% and 28 agents on the team, a random failure will occur every
3.6 step on average for an arbitrary agent. Furthermore, with a randomFail of
10%, each agent will fail 100 actions on average during a 1000 step simulation,
resulting in 2800 failed actions in total for 28 agents.
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Figure 6.4: Comparison of solution 4 with various percentages of randomFail.

Despite this vast amount of failures, the error prone versions manage to keep up
with the error free. Although the one with a 10% chance of failure falls off at
the end, the solution with 1% chance of failure seems to be just as good as the
one without any failures. The impact of the random failures will of course vary,
for instance in a situation where five agents are assembling together, a random
failure from one of the agents may result in all of the agents failing, failing not
one, but five actions in practice. On the other hand, multiple failures e.g. going
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to a workshop, will have no impact if the agent is to wait for another agent at
the workshop anyways.

Given multiple reruns, ensuring that the results are consistent, it can be con-
cluded that the system is capable of adjusting to random failures, facilitating
the interaction with nondeterministic environments.

6.7 Comparison

Figure 6.5 includes a comparison between the solutions created so far. Here,
the differences between the solutions are more apparent. One of the strengths
of the first solutions is its ability to solve many jobs in parallel. As it will try to
solve more jobs, it needs to invest in more items as well, which is why solution
1 uses more money then the other solutions at the beginning of the simulation.
However, this also becomes the solution’s weakness, as taking too many jobs at
the same time prevents it from solving them all in time.
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Figure 6.5: Comparison between the different solutions. All these simulations
have been executed with the same configuration.
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The third solution does not solve as many jobs at the same time, focusing on
completing the jobs it has already started. This means it solves fewer jobs in
parallel, but solves them faster. From this data, it seems to be a more efficient
strategy, as solution 3 is solving 25 more jobs than solution 1. Solution 4 did
best overall, solving a total of 74 jobs, beating solution 3 on the finish line. This
is most likely due to solution 4 being more robust against errors, ensuring that
failures are handled correctly.

6.8 Solution 5
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Figure 6.6: Money earned by the fifth iteration of the MAS.

The fifth iteration is the first attempt at utilizing tools, and the results of
doing so are shown in Figure 6.6. This solution solves about 10 fewer jobs
than the previous solution, earning approximately 25,000 less. This is a result
of tools making jobs more difficult to solve, requiring a higher degree of agent
coordination. Additionally, the agents have to spend quite a few steps in the
beginning of the simulation to acquire tools, while solution 4’s agents starts
solving their first job as soon as it becomes available. Acquiring tools does not
only take time, but has a cost as well, not earning any significant profit prior to
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step 250.

At the same time, additional resources in terms of agents are needed to solve
jobs, where some required tools are missing. For instance, consider a group
of agents consisting of trucks, cars and motorcycles, having retrieved all base
items needed for a job. These base items are to be assembled, requiring a set of
tools including a tool only usable by drones. To assemble the items, the agents
depend on a drone being available, having to wait with the assembly if all drones
are occupied solving other jobs.

While solution 4 emphasizes that agents should be able to solve the jobs they
take individually, this is no longer the case having included tool requirements.
Once again, this introduces the possibility of deadlocks, where several groups
of agents await some resource to become available, while in fact, waiting for
each other. To prevent such scenarios, instead of assigning one agent to a job
at the time, groups of agents could be assigned, ensuring that this group is able
to solve the job independently. By doing so, the tools could also be bought
on demand while retrieving items, not having to waste additional money and
capacity on excess tools.
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Figure 6.7: Comparison of solutions 4 and 5.

Regardless of these disadvantages, the results of this solution is not far from
the previous, as can be seen in Figure 6.7. Similar to solution 4, the results are
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dependent on which jobs are coincidentally chosen, avoiding situations where
the agents have to wait on one another. Furthermore, which roles can use which
tools will also have an impact on the results. If many of the tools are only
usable by drones, the drones will not be able to carry all tools, due to the
limited number of drones in the simulation compared to other agent types.

6.9 Job Evaluation
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Figure 6.8: Results from solution 3.1, which uses a job heuristic to chose the
best jobs to solve. This has resulted in doubling the money earned
during a simulation compared to solution 3.

By implementing a more clever strategy to choose jobs, a massive increase in
the amount of money the team earned was found, even though they where
able to complete far fewer jobs. Figure 6.8 shows the results of including job
evaluation to solution 3. This version uses the simpler heuristic function, only
considering the reward compared to price. While the results of this inclusion is
only shown for solution 3, the feature has been added to the newer solutions as
well, but without being thoroughly tested and therefore not included. However,
similar improvements can be expected, and have so far been confirmed by the
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few simulations run.

As shown in the graph, this addition made the system able to actually double
the profit, earning an additional 100,000. It should be noted, that as it is solving
auction jobs, which no opposing team is bidding on, the rewards for these jobs
are likely higher than they would be in a competitive match. While the team is
earning much more, this is done by solving fewer jobs (44 now compared to 64
before), likely because the difficulty of the jobs increases with the reward.

6.10 Matches

The MAPC is designed to have two or more teams compete against each other
in a match. To test the solutions in a real contest scenario, they have been
pitched against each other in order to evaluate their performance. This is done
using the same configuration as the previous simulations, only with multiple
teams instead of one.

During a competitive match, the solutions generally perform worse than they
do by themselves. This is likely due to the fact, that there are the same amount
of items and jobs available to the teams, and each job can only be solved by one
team. When multiple teams attempt to solve the same job, all teams except
one will end up having wasted their time and resources solving the job. The
amount of resources available remain the same, making it more difficult to get
the required items to solve the jobs.
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Solution 1 vs. Solution 3

The first match pitched the first and third solutions against each other. The
results of this can be seen in Figure 6.9. It is clear that both solutions have
more problems in a competitive setting. Solution 1 solves 20 jobs, nearly half
compared to the single team scenario, while solution 3 only solves 39 jobs, 25
jobs less than before. As a result, solution 1 is not able to make a profit, while
solution 3 barely reaches 100,000, earning 50% less than when it was on its own.
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Figure 6.9: The first solution against the third solution in a match.

When agents fail at completing a job, they are not able to deliver their items
at the storage facility. By not taking this into account, their inventories will
eventually build, reducing their capacities as the simulation goes on. As a
consequence, the agents will be less capable of completing jobs in the future. If
the items were to be reused, it would not only preserve space, but allow agents
to more easily solve subsequent jobs.
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Solution 3 vs. Solution 3

The next match compared two instances of the third solution, testing them
against each other. This turned out to be rather interesting, as one did much
better than the other. It was expected that both would choose the same jobs
to begin with, and try to solve them in a rather similar way. While they did
choose the same jobs, different agents were chosen to solve them, resulting in
one team earning much more money than the other. However, none of them
earned nearly as much money as they did on their own.
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Figure 6.10: Match between two teams, both controlled by the third solution.

Solution 3 vs. Solution 4

All the matches simulated between the third and fourth solution have been very
close. One of these matches can be seen in Figure 6.11. In all cases, solution 4
came out on top, but with a relatively small deficit. Solution 3 did manage to
make a small profit in some simulation, but did poorly in most.

Solution 4 is developed with additional constraints, but is at the same time
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Figure 6.11: Match between solution 3 and 4.

more resistant to failures. When failing a job, it is capable of reusing the items
already bought, allowing for faster completion of jobs in the future. The solution
also ensures correct behavior by having agents base their execution of plans on
beliefs. For instance, an agent will not continue to a given deliver location before
it believes that it has all the required items.

Solution 1 vs. Solution 3 vs. Solution 4

The MAPC simulations allows for several teams to compete at the same time,
hence solutions 1, 3, and 4 were tested against each other. The results of this
simulation is shown in Figure 6.12. The outcome shows that the third and
fourth solutions are vastly superior to the first solution, completing only 5 jobs
during the entire simulation.

Solution 3 and 4 perform similar to their other matches, completing the exact
same number of jobs as in Figure 6.11. Despite solving 21 jobs, solution 3 is
unable to earn a profit, possibly due to the agents’ inventories filling up, only
being able to complete the simplest of jobs.
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Figure 6.12: Solution 1, 3, and 4 against each other in one match.

The features added in solution 5 focus on a new configuration, where tools
are required and random failures a possibility. As so, the other solutions are
not capable of competing in the same environment, thus no matches have been
simulated with this solution.
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Chapter 7

Discussion

7.1 Pitfalls of AgentSpeak

AgentSpeak is based on logic programming, allowing for elegant but expressive
notation. Given that the language builds on a Belief-Desire-Intention architec-
ture, it is intuitive for agent reasoning. This allows for defining means of how
to achieve ones desires, in terms of the beliefs about the environment. However,
implementing good reasoning is not always as intuitive, and there some pitfalls
to the agent-oriented programming language.

7.1.1 Performance Issues

Having experienced several situations where the Java Virutal Machine (JVM)
starts tearing at the CPU, while steadily allocating and consuming more RAM.
While the cause is obvious, being an infinite loop, or more likely an infinite
recursion, the root of the problem is not obvious or easily detectable. Consid-
ering a pure Java application, this would either result in a OutOfMemoryError
or StackOverflowError, with a stack trace leading directly to its origin. In
AgentSpeak however, the excessive use of computer resources continues until
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the program is terminated, having limited debugging options available. To ex-
emplify, consider the following minimalistic excerpt:

+start <- -+start.

In this example, when the start belief is first added, it will trigger an event
removing and adding the belief once more, which will trigger the same event,
resulting in an infinite sequence. While the pitfall is obvious, it can be hard to
detect when the removing and adding of beliefs are in different plans or wrapped
within a larger and more complex piece of code. For instance, by including a
free belief to denote when an agent is free in terms of taking on new tasks.
When solving a task, the free belief should be removed, and after completing
the task, it should be added once again. Furthermore, once an agent is free, it
should try to solve already existing tasks before taking on new ones. If unaware
of the possible pitfall, more advance code can easily be boiled down to the
previous excerpt. To illustrate:

+free : task(Some , Terms) <-
-free;
!solveTask(Some , Terms);
+free.

If the task(Some, Terms) belief is never removed, the AgentSpeak reasoning
will continue solving the task indefinitely, regardless of the task being solved or
not. Event triggers are however not the only pitfalls to be aware of, considering
simple plan recursion as well. The first plans for buying items were previously
defined as follows:

+! buyItems ([]).
+! buyItems ([map(Item , 0)|Items]) <- !buyItems(Items).
+! buyItems ([map(Item , Amount)|Items ]) : inShop(Shop) <-

getAvailableAmount(Item , Amount , Shop , AmountAvailable);
if (AmountAvailable > 0) {

!doAction(buy(Item , AmountAvailable));
}
!buyItems(Items);
!buyItems ([map(Item , Amount - AmountAvailable)]).

The only difference is the additional if-statement encapsulating the doAction
to prevent the agents from attempting to buy 0, or none, of an item. Doing so
would in fact fail on the server, responding with a failure message. By including
the if-statement, the agent will instead of failing, attempt to buy one of the
other items first and retry to buy the item at last, assuming that the shop has
been restocked. The results of this inclusion is however undesirable, considering
a scenario where there are no other items, or the other items cannot be bought
as well. In this case, the plans will enter an infinite recursion, once again,
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consuming all computational resources available.

7.1.2 Delayed Percepts

Delayed percepts have also been a difficulty, where agents would use an addi-
tional goto action to get to a facility they are already in, or charge one ad-
ditional time when they are already fully charged. Having traced the percepts
all the way from the server, through the environment interface, entity, artifact,
observable property, and finally to the agent, it seems that the observable prop-
erty would nondeterministically not be received by the agent. This made its
beliefs about the environment not synchronized with the actual environment.
This asynchronous behavior also occurred at different times for the individual
agents, often in combination with solving tasks. Examine the following two very
similar methods of executing actions on the environment:

+! doAction(Action) : .my_name(Me) <-
jia.action(Me , Action); .wait(step(_)).

+! doAction(Action) : .my_name(Me) <-
jia.action(Me , Action); .wait ({+ step(_)}).

In the first example, after an action is executed, an arbitrary step is waited for,
e.g. step(10). In the second example however, an explicitly new step is waited
for. The examples are nearly identical, so how big an impact can it possibly
have? The first solution waits for an arbitrary step belief, hence it does not
wait at all, given that the agents always believes that the step is something,
whether it is 0 or 567. What it does on the other hand, is attempting to execute
several actions on the environment at once. The environment is set to block the
execution of additional actions until an action id becomes available, that is, in
the next step when agents are allowed to execute another action.

As a result, the environment blocks the agents, making them unable to receive
updates of the observable properties, and the actions they execute in step n are
based on the percepts from step n − 1, hence using an additional action when
going to a facility or charging. For instance, when an agent has just charged up
to full battery capacity, its believes about its charge, which is from the previous
step, indicates that one more charge action is required. By explicitly waiting for
a new step, the agent perceives the changes to the environment before continuing
its reasoning, and thereby basing the execution of the next action on beliefs that
are up to date.
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7.2 Side-Effects of CArtAgO

While CArtAgO provides some great functionality for coordinating agents and
creating vast distributed networks, it also introduces some unwanted side-effects
which are not to be ignored. First of all, CArtAgO provides their own imple-
mentation of the environment and the agent architecture, extending the Jason
implementation. This is not necessarily a bad thing, but while Jason strongly
encourages overriding and customizing their classes, CArtAgO does not. For
instance, the perceive method in the agent architecture, which is usually over-
ridden to account for the domain-specific percepts, is replaced by an almost 300
lines long method, making it difficult to change its behavior without causing er-
rors. As a result, the developer is forced to work with what CArtAgO provides,
instead of using it as an optional extension to the sometimes more intuitive
Jason approach.

7.2.1 Percepts and Perceiving

Observable properties would be one of the greatest additions CArtAgO provides,
had it not removed the possibility of adding percepts to agents in the environ-
ment in other ways. Unless the intention is to create one artifact for each agent,
all agent specific percepts have to be defined as observable properties with the
name of the associated agent as an argument to distinguish the percepts from
one another. Furthermore, the agent specific percepts will be observable by all
agents in the environment, which is not very intuitive. Using only Jason, this
could easily be achieved by simply adding the percepts to the respective agents
in the environment, but since CArtAgO implements their own reasoning cycle,
this has not been made possible.

Recall how this project’s solutions handle percepts using different (information)
artifacts and storing the information in objects (section 5.3). While this ap-
proach is more object-oriented than agent-oriented, the alternative is to define
every percept as an observable property, given that CArtAgO removes the pos-
sibility of adding percepts to agents in the environment. Doing so would not
only be less efficient, but less modular and harder to work with. Instead, arti-
facts in the solutions have been provided with an extensive usage interface, e.g.
returning all base items required for an item, or the name of the closest facility
of a specific type.

The information artifacts are implemented as static data containers, with oper-
ations to retrieve the data and static perceive methods to update them. Instead
of relying on static classes, the same could be achieved by using CArtAgO’s
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artifact approach. This is done by defining the static methods as link opera-
tions instead, being able to execute the operations from other artifacts, e.g. the
EIArtifact which passes on the percepts. However, linked operations are exe-
cuted asynchronously, and does therefore not guarantee that the percepts have
been perceived once the agents continue their reasoning. This issue arose in an
attempt to do so, where none of the information was up to date any longer.

7.2.2 Operation Semantics

CArtAgO operations are very useful for retrieving information from the arti-
facts. However, they are not very useful for selecting plans given that they do
not rely on unification to provide feedback. As a result, operations are not us-
able in rules or in preconditions for plans. For example, a useful rule could be
one which evaluates to true if and only if an agent has all items in a given list.
This should easily be achieved by using an operation to retrieve the list of items
in the agent’s inventory, followed by unifying it with the given list. However,
AgentSpeak does not allow for compositions of statements in rules and precon-
ditions, and must therefore be implemented as an internal action instead. The
illustration below attempts to clarify the dilemma:

// As two separate statements. Valid syntax , but the operation does
not evaluate to true or false , and is parsed as a rule/belief.

hasItems(Agent , Items) :- getInventory(Agent , Inventory) & Items =
Inventory.

// As a composition of two statements. The composition evaluates to
true or false , but this is not valid AgentSpeak syntax.

hasItems(Agent , Items) :- (getInventory(Agent , Inventory); Items =
Inventory).

// Implementing an internal action which does exactly the same.
Only valid solution.

hasItems(Agent , Items) :- jia.hasItems(Agent , Items).

While this is not entirely on CArtAgO, they could for instance have successfully
executed operations evaluate to true, and otherwise to false. More importantly,
a prefix should be added to distinguish the operations from rules and beliefs,
which is what AgentSpeak recognizes the operation in the first example above
as.

7.2.3 Operation Invocation

Aside from not being usable in rules and preconditions, some operations halted
the execution of the agent’s reasoning cycle. In particular, the operation per-
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forming a given action on the server environment. Since the environment
changes in every step, the agents should continue their reasoning once they have
perceived a new step, which is after all other percepts have been perceived. The
appropriate way to do so, would be to wait for the new step to be perceived,
once the agent has sent its desired action for the current step to the server.
However, the EIArtifact would nondeterministically prevent agents from con-
tinuing their reasoning, leading to several missed steps. While the cause seems
to be related to synchronous behavior in the CArtAgO kernel, the solution was
simply to replace the operation with an internal action.

There has also been some issues disposing an artifact from another artifact.
Given prior experiences with the CArtAgO implementation, their source code
was inspected and the cause found. Calling the artifact’s dispose(ArtifactId
aid) method with aid being the id of the artifact to dispose, subsequently calls
the CArtAgO environment’s disposeArtifact method, but with the wrong id.
Instead of passing on the provided aid, the method passes on its own field id,
resulting in the disposal of itself. The bug has been reported and fixed by the
CArtAgO development team.

7.3 Future Work

7.3.1 Freeing Resources

There are several situations where the system uses more resources than required,
especially considering the number of agents dispatched. This is due to a lack of
replanning, for instance when a new job requires the acquisition of items from
shops where agents are currently located or on their way to. Assuming they
have room for the items and the destination is the same, it would make perfect
sense to have the agents shop for multiple jobs simultaneously. By doing so,
it would save several agents the extra trip, being able to focus the resources
elsewhere.

This is however not as straight forward as it sounds, because some agents, the
shoppers, suddenly have the responsibility of solving multiple jobs at once. As a
result, the shopping agents have to pass on their additional items, which requires
just as many steps as buying the items separately, and will delay the agents’
current jobs as well. Alternatively, the shopping agents can simply solve the
tasks one at the time, becoming huge bottlenecks and unable to guarantee that
the jobs are completed in time.
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Replanning can free up a lot of unnecessarily spent resources, but is a complex
task when it requires agent coordination. Given the solution of the third itera-
tion (section 5.8), there is an easier way to increase performance. The solution
relies on the assembly protocol (subsection 5.9.2) to coordinate the assembling
of items. When this protocol involves three or more agents, two or more agents
will always be waiting for the last ones. This could however be avoided, if some
of the agents were to give all their items to the other agents, hence relieving
themselves of the task and freeing the previously unavailable resources. The
number of agents that can be freed depends on the volume of the items and
the capacity of the remaining agents, and with the introduction of tools, it also
depends on which roles are required in terms of role-specific tools.

7.3.2 Competition Application

Having focused on agent coordination rather than competition application, han-
dling simEnd percepts have not been a priority, denoting the end of a simula-
tion. After receiving such a percept, all processes should be halted, followed
by perceiving initial percepts for the new simulation if and when a simStart is
received. This has to be done, as the new simulation could take place in a new
city with new facilities at new locations. Furthermore, the agents’ beliefs about
the previous environment should be discarded, allowing for a fresh start in the
next round.

While the initialization should happen correctly in the beginning of each contin-
uous simulation, it has not been tested with a complete competition setup. To
do so, the simulation should run on a remote server, allowing the system to con-
nect over internet. By using correct configurations, this process should be more
or less automatic, but will be tested thoroughly before the actual competition.
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Chapter 8

Conclusion

This project has shown several successful implementations of a multi-agent sys-
tem, capable of interacting and competing in the nondeterministic environment
from this year’s Multi-Agent Programming Competition. The first few solutions
have focused on solving as many jobs as possible, while later solutions expand
previous ones with additional features. These features include selecting which
jobs to complete, handling random failures, and utilizing tools. The best results
have shown profits up to 200,000 during a simulation. However, there are still
some optimizations to be done regarding choosing jobs, which will likely increase
earning potential. This has been done using problem decomposition and hier-
archical planning, making the agents are capable of solving goals individually,
but also coordinating their efforts to solve more complex problems.

The simulation environment is about earning as much money as possible, which
is done by solving jobs. To do so, the solutions utilize many different techniques
and technologies, making agents able to complete them efficiently. By using
Jason and exploiting its Belief-Desire-Intention agent architecture, the agents
are able to maintain beliefs about the environment and themselves, desire goals,
and achieve these desires by fulfilling intentions. These concepts have proved to
be great tools for developing highly sophisticated agent reasoning, making the
agents capable of autonomously deliberate how to most efficiently solve their
tasks.
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Another important tool is the CArtAgO framework, being used to facilitate
agent coordination, to store general information shared by the system, and to
implement a Contract Net Protocol. The latter has proven very efficient in terms
of task delegation, allowing agents to easily share tasks between each other, and
select the agent best suited for the various jobs. In a competition scenario, how
well the teams performs boils down to which team is superior in terms of agent
coordination.

At this point, the multi-agent system still has room for improvement, especially
in terms of using agents more efficiently and possibly how the jobs are selected.
However, the focus for this project has been to implement efficient agent coor-
dination, being one the most challenging tasks in terms of multi-agent systems.
Having successfully done so, optimizing parts of the system will pose a smaller
challenge for future iterations.
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Benchmark Data

The data from the simulations conducted in this project are included in the
following tables. Please note that no data from the second solution has been
included, as it was not able to complete an entire simulation without halting.
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Step Sol. 1 Sol. 3 Sol. 3.1 Sol. 4 Sol. 5
0 50000 50000 50000 50000 50000
50 42449 42218 45527 35283 41198
100 32449 44627 45778 56771 39489
150 34827 52156 54018 55965 50263
200 41894 60791 65335 59472 50781
250 61395 64454 86297 65630 75398
300 59796 78063 100469 78502 80863
350 69437 88710 106328 82602 88455
400 76187 97675 116925 89916 89994
450 75048 95610 124192 92363 92249
500 79201 98095 138123 101136 103739
550 76186 113761 156734 100325 109657
600 80620 108490 170158 112910 105083
650 83671 112301 182057 127309 108570
700 91359 119159 174883 125937 126056
750 89749 131028 194515 131901 135322
800 84898 139206 217991 145611 132706
850 81186 148179 225709 143734 138213
900 88612 142635 233380 153297 135537
950 87123 157067 247022 151208 139741
1000 88366 155402 254644 166473 142372

Table A.1: The results from the all the solutions of the multi-agent system.
Solution 3.1 is solution 3 with job evaluation.



85

Step 0% Failures 1% Failures 10% Failures
0 50000 50000 50000
50 35283 36107 38726
100 56771 55498 41627
150 55965 50931 50464
200 59472 56720 50751
250 65630 65632 60000
300 78502 58325 72751
350 82602 76742 86727
400 89916 89731 86770
450 92363 95444 89098
500 101136 99083 92120
550 100325 106496 100013
600 112910 118526 101241
650 127309 110203 113390
700 125937 133001 119514
750 131901 127097 111838
800 145611 138560 121425
850 143734 144283 122952
900 153297 150061 129939
950 151208 159076 127839
1000 166473 155292 133295

Table A.2: The result data from the three different simulations with solution
4, where random failures are active.
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Match 1 Match 2 Match 3
Step Sol. 1 Sol. 3 Sol. 3 Sol. 3 Sol. 3 Sol. 3
0 50000 50000 50000 50000 50000 50000
50 45943 44005 44174 44376 46072 44526
100 37552 44176 41283 42477 42489 41280
150 31906 39963 34437 41616 40469 38974
200 41016 37650 40813 41407 41706 36643
250 45476 39655 42734 46935 40561 34119
300 38671 42395 41171 44727 40126 37131
350 41865 45919 37598 53897 44326 32124
400 35585 44137 40187 47312 49016 35481
450 35114 45601 43520 49060 50500 41778
500 34856 53528 40871 47506 49281 40244
550 35130 57823 44600 51645 46398 38302
600 35415 64260 43034 45887 46249 41125
650 33479 69918 38425 44974 53957 40462
700 30953 69553 37074 49414 54143 41396
750 29334 69703 31721 59634 53184 45147
800 28886 80149 29248 58269 55745 49772
850 28430 80313 32098 61807 53765 52356
900 27371 81495 34307 63976 56277 56652
950 28533 86474 35774 64371 52891 57706
1000 28090 94176 33106 69783 52646 58801

Table A.3: Data from the three matches between two teams.
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Step Solution 1 Solution 2 Solution 3
0 50000 50000 50000
50 45444 41821 42124
100 32487 38381 34598
150 29949 32262 38337
200 24276 27907 37167
250 20905 28614 39491
300 18839 25670 37952
350 16176 38630 35844
400 15003 31507 36011
450 18066 39480 35954
500 16057 38790 33954
550 14833 36443 34335
600 14553 37337 48018
650 11833 32793 53447
700 11245 31625 51847
750 9571 33147 58457
800 13282 35037 61237
850 16269 38865 59065
900 14935 36097 64521
950 13939 31405 62640
1000 13939 32929 58951

Table A.4: Results from match between every solution.
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Appendix B

Multi-Agent Environment
Details

Below we have listed some of the official details of the Multi-agent Competition
platform. These have been defined by the creators of the competition, and can
be found at https://github.com/agentcontest/massim/blob/master/docs/
scenario.md.

B.1 Environment Actions

In each step, an agent may execute exactly one action. The actions are gathered
and executed in random order.

All actions have the same probability to just fail randomly.

Some actions may lead to conflicts. For example, two agents might want to
buy the same item from a shop (and only one of these items is left). In that
case, the agent whose action is executed first gets the item, while the action of
the other agent is treated as though no item is available (which is actually true).

Each action has a number of parameters. The exact number depends on the

https://github.com/agentcontest/massim/blob/master/docs/scenario.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md
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type of action. Also, the position of each parameter determines its meaning.
Parameters are always string values.

goto

Moves the agent towards a destination. Consumes 10 charge units if successful.
Can be used with 0, 1 or 2 parameters. If 0 parameters are used, the agent
needs to have an existing route which can be followed.

No Parameter Meaning
0 Facility The name of a facility the agent wants to move to.

Note: Names of ResourceNodes are not allowed, as they are not common knowl-
edge.

No Parameter Meaning
0 latitude The latitude of the agent’s desired destination.
1 longitude The longitude of the agent’s desired destination.

Failure Code Reason
failed_wrong_param The agent has no route to follow (0 parame-

ters), more than 2 parameters were given or
the given coordinates were not valid double
values (2 parameters).

failed_unknown_facility No facility by the given name exists (1 param-
eter).

failed_no_route No route to the destination exists or the
charge is insufficient to reach the next way-
point.

give

Gives a number of items to another agent in the same location.

No Parameter Meaning
0 Agent Name of the agent to receive the items.
1 Item Name of the item to give.
2 Amount How many items to give.
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Failure Code Reason
failed_wrong_param More or less than 3 parameters have been given,

no agent by the name is known or an amount <
0 was specified.

failed_unknown_item No item by the given name is known.
failed_counterpart The receiving agent did not use the receive action.
failed_location The agents are not in the same location.
failed_item_amount The giving agent does not carry enough items to

give.
failed_capacity The receiving agent could not carry all given

items.

receive
Receives items from other agents. Can receive items from multiple agents in the
same step.

No parameters.

Failure Code Reason
failed_counterpart No agent gave items to this agent.

store
Stores a number of items in a storage facility.

No Parameter Meaning
0 Item Name of the item to store.
1 Amount How many items to store.

Failure Code Reason
failed_wrong_param More or less than 2 parameters were given.
failed_location The agent is not located in a facility.
failed_wrong_facility The agent is not in a storage facility.
failed_unknown_item No item by the given name is known.
failed_item_amount The given amount is not an integer, less than 1

or greater than what the agent is carrying.
failed_capacity The storage does not have enough free space.
failed An unforeseen error has occurred.
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retrieve and retrieve_delivered
Retrieves a number of items from a storage. The first can be used to retrieve
items that have been stored before, while the second is used to retrieve items
from the team’s ’special’ compartment (see Storage).

No Parameter Meaning
0 Item Name of the item to retrieve.
1 Amount How many items to retrieve.

Failure Code Reason
failed_wrong_param More or less than 2 parameters have been

given.
failed_location The agent is not located in a facility.
failed_wrong_facility The agent is not in a storage facility.
failed_unknown_item No item by the given name is known.
failed_item_amount The given amount is not an integer, less than

1 or more than available.
failed_capacity The agent has not enough free space to carry

the items.

assemble
Assembles an item.

No Parameter Meaning
0 Item Name of the item to assemble.

Failure Code Reason
failed_wrong_param Not exactly 1 parameter has been given.
failed_location The agent is not in a facility.
failed_wrong_facility The agent is not in a workshop.
failed_unknown_item No item by the given name is known.
failed_item_type The item cannot be assembled (since it has no

requirements).
failed_tools Some tool is missing.
failed_item_amount At least one required item is missing.
failed_capacity The agent does not have enough free space to

carry the assembled item (after required items
have been removed).
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assist_assemble
Marks the agent as an assistant for assembly.

If multiple agents could provide the same item for assembly, it is preferably
taken from the agent that used the assemble action. If that agent cannot pro-
vide the item, the assistants are sorted by name (i.e. first by length and then
lexicographically, as the last part of the name is traditionally their number) as
provided in the server’s team config. Then, the item is taken from the assistants
in that order.

Example: Imagine agentA4, agentA3 and agentA20 want to assemble an item
that requires 5 pieces of item1. Further, let all agents carry 2 pieces of item1
and agentA4 be the "main" assembler (i.e. the one that uses the assemble
action). Then, the first 2 pieces of item1 are taken from agentA4 since it is the
initiator. Another 2 pieces are taken from agentA3 and the last one is taken
from agentA20 (since agentA3 ’s name is shorter).

No Parameter Meaning
0 Agent Name of an agent who uses the

assemble action and whom this
agent should help.

Failure Code Reason
failed_wrong_param Not exactly 1 parameter has

been given.
failed_unknown_agent No agent by the given name is

known.
failed_counterpart The initiator’s action has failed

or is not assemble.
failed_tools Some tool is missing.
failed_location The given agent is too far away.

buy
Buys a number of items in a shop.

No Parameter Meaning
0 Item Name of the item to buy.
1 Amount How many items to buy.
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Failure Code Reason
failed_wrong_param More or less than 2 parameters have been given.
failed_location The agent is not in a facility.
failed_wrong_facility The agent is not in a shop.
failed_unknown_item No item by the given name is known.
failed_item_amount The given amount is not an integer, less than 1,

or greater than the shop’s available quantity.
failed_capacity The agent does not have enough free space to

carry the items.

deliver_job
Delivers items towards the completion of a job. The agent is automatically
drained of all items matching the job’s remaining requirements.

No Parameter Meaning
0 Job The name of the job to deliver items for.

Failure Code Reason
failed_wrong_param Not exactly 1 parameter has been given.
failed_unknown_job No job by the given name is known.
failed_job_status The given job is not active, or the job is an auc-

tion and has not been assigned yet or has not
been assigned to the agent’s team.

failed_location The agent is not in the storage associated with
the job.

successful_partial Not really a failue. Items have been delivered but
the job has not been completed by this action.

useless The agent does not have any items to contribute
to the job.

bid_for_job
Places a bid for an auction job. The bid has to be lower than the current lowest
bid.

No Parameter Meaning
0 Job Name of the job to bid on.
1 Bid The bid to place.
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Failure Code Reason
failed_wrong_param Not exactly 2 parameters have been given, or the

bid is not a positive integer.
failed_unknown_job No job by the given name is known.
failed_job_type The job is not an auction.
failed_job_status The job’s auctioning phase is over.

post_job

Posts a job that the other teams may complete. Only regular jobs may be
posted.

The number of jobs a team may have posted at any one time is limited. Also,
a job cannot be retracted once posted.

A successfully posted job starts being active in the next step.

No Parameter Meaning
0 Reward How much to pay if the job is completed suc-

cessfully.
1 Duration After how many steps the job should end.
2 Storage The target storage for the job.
3, 5, 7, ... Item The name of an item required for the job.
4, 6, 8, ... Amount How many items to require.

Failure Code Reason
failed_wrong_param Less than 5 or an even number of parameters

have been given.
Reward or duration is less than 1.

failed_wrong_facility No storage by the given name is known.
failed_job_status The agent’s team has reached its post limit.
failed_unkown_item Some name given is not the name of an item.
failed_item_amount Some amount given is not a positive integer.

dump

Destroys a number of items at a dump facility.
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No Parameter Meaning
0 Item Name of the item to destroy.
1 Amount How many items to destroy.

Failure Code Reason
failed_wrong_param Not exactly 2 parameters have been given.
failed_location The agent is not in a facility.
failed_wrong_facility The agent is not at a dump location.
failed_unknown_item No item by the given name is known.
failed_item_amount The given amount is not a positive integer or

more than the agent is carrying.

charge
Charges the agent’s battery at a charging station.

No parameters.

Failure Code Reason
failed_wrong_param Parameters have been given.
failed_location The agent is not in a facility.
failed_wrong_facility The agent is not in a charging station.
failed_facility_state The charging station is currently out of order

due to a blackout.

recharge
Uses the agent’s solar collectors to recharge its battery (slowly).

No parameters.

Failure Code Reason
failed_wrong_param Parameters have been given.

continue and skip
Follows an agent’s route or does nothing if the agent has no route.

No parameters.
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Failure Code Reason
failed_wrong_param Parameters have been given.
failed_no_route The agent’s route could not be followed any

longer (charge may be too low).

abort
Does nothing and clears the agent’s route (if it exists).

unknownAction
This action is substituted if an agent submitted an action of unknown type.

randomFail
This action is substituted if the agent’s action randomly failed.

noAction
This action is substituted if the agent did not send an action in time.

gather
Gathers a resource from a resource node.

No parameters.

Failure Code Reason
failed_wrong_param Parameters have been given.
failed_location The agent is not in a facility.
failed_wrong_facility The agent is not in a resource node.
failed_capacity The agent does not have enough free space to

carry the resource.
partial_success Not really a failure. The action was executed

successfully but there was no resource found.

B.2 Environment Percepts

The parameters for all the percepts can be found at https://github.com/
agentcontest/massim/blob/master/docs/eismassim.md. Detailed descrip-
tion of the XML send between the server and client can also be found in https:
//github.com/agentcontest/massim/blob/master/docs/scenario.md.

https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md
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SIM-START percepts
The following percepts might be included in a SIM-START message:

• id(simId)

– simId : Identifier - name of the simulation

• map(mapName)

– mapName : Identifier - name of the current map

• seedCapital(sc)

– sc : Numeral - seed capital of any team in the simulation

• steps(stepNumber)

– stepNumber : Numeral - number of steps the simulation will take

• team(name)

– name : Identifier - name of the agent’s team

• role(name, speed, load, battery, [tool1, ...])

– represents the agent’s role
– name : Identifier - name of the role
– speed : Numeral - speed of the role
– load : Numeral - carrying capacity of the role
– battery : Numeral - maximum battery charge of the role
– tool1 : Identifier - a tool usable by the role (list might be empty)

• item(name, volume, tools([tool1, ...]), parts([[item1, qty1], ...]))

– represents an item type in the simulation
– name : Identifier - name of the item
– volume : Numeral - the item’s volume
– tools : Function - all tools required to assemble the item
∗ tool1 : Identifier - one of the tools required for assembly

– parts : Function - all quantities of items required for assembly
∗ item1 : Identifier - the first item required for assembly
∗ qty1 : Numeral - quantity of ’item1’ required for assembly

• min,maxLat,Lon(coordinate)

– coordinate: Numeral - one of the 4 map bounds
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REQUEST-ACTION percepts
The following percepts might be included in a REQUEST-ACTION message.
Most of them should be self-explanatory.

• actionID(id)

– id : Numeral - current action-id to reply with

• timestamp(time)

– time : Numeral - server time the message was created at

• deadline(time)

– time : Numeral - timepoint at which the action must be available

• step(number)

– number : Numeral - the current step

• charge(ch)

– ch : Numeral - agent’s current battery charge

• load(cap)

– cap : Numeral - agent’s currently used capacity

• lat(d)

– d : Numeral - latitude of the agent’s location

• lon(d)

– d : Numeral - longitude of the agent’s location

• routeLength(ln)

– ln : Numeral - length of the agent’s current route

• money(m)

– m : Numeral - the agent’s team’s current money

• facility(f)

– f : Identifier - name of the agent’s current facility

• lastAction(type)

– type : Identifier - name of the last executed action
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• lastActionParams([param1, ...])

– param1 : Identifier - first parameter of the last executed action (list
might be empty)

• lastActionResult(result)

– result : Identifier - result of the last executed action

• hasItem(name, qty)

– name : Identifier - name of a carried item

– qty : Numeral - carried quantity

• route([wp(index, lat, lon), ...])

– represents the agent’s current route

– wp : Function - a waypoint in the route

∗ index : Numeral - index of the waypoint
∗ lat : Numeral - latitude of the waypoint
∗ lon : Numeral - longitude of the waypoint

• entity(name, team, lat, lon, role)

– name : Identifier - name of an entity/agent in the simulation

– team : Identifier - name of that entity’s team

– lat : Numeral - latitude

– lon : Numeral - longitude

– role : Identifier - that entity’s role

• chargingStation(name, lat, lon, rate)

– name : Identifier

– lat : Numeral

– lon : Numeral

– rate : Numeral - the station’s charging rate

• dump(name, lat, lon)

– name : Identifier

– lat : Numeral

– lon : Numeral

• shop(name, lat, lon, restock, [item(name1, price1, qty1), ...])
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– name : Identifier - the shop’s name

– lat : Numeral

– lon : Numeral

– restock : Numeral - number of steps between restocks

– item : Function - an item stocked in the shop

∗ name1 - Identifier : that item’s name
∗ price1 - Numeral : the item’s price in this shop
∗ qty1 - Numeral : the quantity available in this shop

• storage(name, lat, lon, cap, used, [item(name1, stored1, delivered1), ...])

– name : Identifier - the storage’s name

– lat : Numeral

– lon : Numeral

– cap : Numeral - the storage’s total capacity

– used : Numeral - the used capacity of the storage

– item : Function - an item available in this storage

∗ name1 : Identifier - that item’s name
∗ stored1 : Numeral - quantity stored by the agent’s team
∗ delivered1 : Numeral - quantity delivered by or for the agent’s

team (see Storage section)

• workshop(name, lat, lon)

– name : Identifier

– lat : Numeral

– lon : Numeral

• resourceNode(name, lat, lon, resource)

– name : Identifier

– lat : Numeral

– lon : Numeral

– resource : Identifier - name of the item that can be gathered at the
node

• job(id, storage, reward, start, end, [required(name1, qty1), ...])

– represents a non-auction job (excluding those posted by the agent’s
team)

– id : Identifier - the job’s ID
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– storage : Identifier - name of the storage associated with this job

– reward : Numeral

– start : Numeral

– end : Numeral

– required : Function - an item required to complete the job

∗ name1 : Identififer - name of that item
∗ qty1 : Numeral - required quantity

• posted(id, storage, reward, start, end, [required(name1, qty1), ...])

– represents a job posted by the agent’s team (parameters are the same
as for job)

• auction(id, storage, reward, start, end, fine, bid, time, [required(name1,
qty1), ...])

– same parameters as job plus:

∗ fine : Numeral - amount to pay if the auction is assigned but not
completed

∗ bid : Numeral - the current lowest bid; might update each step
during auction time

∗ time : Numeral - number of steps the auction phase will take

• mission(id, storage, reward, start, end, fine, bid, time, [required(name1,
qty1), ...])

– same parameters as auction

∗ reward and bid are the same

SIM-END percepts
The following percepts might be included in a SIM-END message:

• ranking(r)

– r : Numeral - the final ranking of the agent’s team

• score(s)

– s : Numeral - the final score of the agent’s team
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Roles

The roles in the scenario can be configured under the top-level roles key in the
simulation JSON object (which is one element of the ‘match‘ array).

" r o l e s " : {
" car " : {

" speed " : 3 ,
" load " : 550 ,
" bat te ry " : 500 ,
" roads " : [ " road " ]

} ,
"drone" : {

" speed " : 5 ,
" load " : 100 ,
" bat te ry " : 250 ,
" roads " : [ " a i r " ]

} ,
"motorcyc le " : {

" speed " : 4 ,
" load " : 300 ,
" bat te ry " : 350 ,
" roads " : [ " road " ]

} ,
" truck " : {

" speed " : 2 ,
" load " : 3000 ,
" bat te ry " : 1000 ,
" roads " : [ " road " ]

}
}

Each role has its name as key and the following parameters:

• speed: how many ’units’ the agent can move in one step

• load: how much volume the agent may carry

• battery: the agent’s battery size

• roads: which roads the agent can navigate (currently ’road’ for all roads
and ’air’ for travelling linear distances between two points)
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Appendix C

Source Code

C.1 Jason MAS Configuration File

Below can our configuration file for the system be found. It can be seen, that
CArtAgO’s environment extension is used to support artifacts, while each agent
also uses the CArtAgO agent class. As no agents have special roles, they all
uses the same base source file.

MAS multiagent_jason {

environment: c4jason.CartagoEnvironment

agents:
initializer agentArchClass c4jason.CAgentArch;
agent agentArchClass c4jason.CAgentArch #28;

aslSourcePath: "src/asl";
}
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C.2 Jason Source Code

The Jason source code have been divided into different source files for clarity.
General plans and rules that all agents use, have been put into its own files,
which each of the agents then imports. Protocols for coordination which helps
with giving items and assisting assembling, has also been put into its own folder.
All Jason files have the .asl extension, meaning AgentSpeak Language.

agent.asl
The general code for all agents are included in the agent.asl. As it can be seen
at the top of this file, many other files containing general plans and rules are
included.

{ include (" connections.asl") }
{ include ("rules.asl") }
{ include ("plans.asl") }
{ include (" protocols.asl") }
{ include (" requests.asl") }

// Initial beliefs
free.

// Initial goals
!register.
!focusArtifacts.

+task(JobId , Items , Storage , "mission", CNPId) : free <-
!doIntention(newTask(JobId , Items , Storage , "mission", CNPId)).

+task(JobId , Items , Storage , Type , CNPId) :
free & canSolve(Items) & Type \== "auction" <-
!doIntention(newTask(JobId , Items , Storage , Type , CNPId)).

+! newTask(JobId , Items , Storage , Type , CNPId) : getBid(Items , Bid)
<-
bid(Bid)[artifact_id(CNPId)];
winner(Won)[artifact_id(CNPId)];
if (Won) {

jia.getBaseVolume(Items , V);
?capacity(C);
.print(JobId , " ", V, " ", C);
clear("task", 5, CNPId);
!deliverJob(JobId , Items , Storage);

}.

+! doIntention(_) : not free <- .print (" Illegal execution ").
+! doIntention(Intention) <- -free; !Intention; +free.

+! doAction(Action) : .my_name(Me) <- jia.action(Me, Action); .wait
({+ step(_)}).
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+step (0) <- !doIntention(acquireTools).
+step(X) : lastAction(A) & A = "deliver_job" & lastActionResult(R)

& R = "successful"
& lastActionParam(P) <- .print(R, " ", A, " ", P);

incJobCompletedCount.
+step(X) : lastActionResult(R) & lastAction(A) & lastActionParam(P)

& not A = "goto" & not A = "noAction" & not A = "charge" &
not A = "buy"

& not A = "assist_assemble" <- .print(R, " ", A, " ", P).
+step(X) : lastActionResult(R) & not lastActionResult (" successful

")
& lastAction(A) & lastActionParam(P) <- .print(R, " ", A,

" ", P).

+reset <- .print(" resetting "); .drop_all_desires; .drop_all_events;
.drop_all_intentions; -reset.

rules.asl
Agents can use rules abstract some of the calculation away from the individual
plans. For example, agents have a rule to calculate the number of steps it takes
to reach its current destination, along with rules for if it has enough charge.

// Rules
speed(S) :- myRole(Role) & role(Role , S, _, _, _).
maxLoad(L) :- myRole(Role) & role(Role , _, L, _, _).
maxCharge(C) :- myRole(Role) & role(Role , _, _, C, _).
tools(T) :- myRole(Role) & role(Role , _, _, _, T).
canUseTool(T) :- tools(Tools) & .member(T, Tools).
canUseAll(Req) :- tools(Tools) & .findall(T, .member(T, Req) & .

member(T, Tools), Use) &
.length(Req , N) & .length(Use , N).

canUseAndCarry(T) :- canUseTool(T) & canCarry ([T]).
canUseAndCarry(T, Me) :- canUseTool(T) & canCarry ([T]) & .my_name

(Me).
// Facility types
isChargingStation(F) :- .substring (" chargingStation", F).
isWorkshop(F) :- .substring (" workshop", F).
isStorage(F) :- .substring (" storage", F).
isShop(F) :- .substring ("shop", F).
isDump(F) :- .substring ("dump", F).
// In facility
inChargingStation :- inFacility(F) & isChargingStation(F).
inWorkshop :- inFacility(F) & isWorkshop(F).
inStorage :- inFacility(F) & isStorage(F).
inShop :- inFacility(F) & isShop(F).
inShop(F) :- inFacility(F) & inShop.
inDump :- inFacility(F) & isDump(F).
// Utility
routeDuration(D) :- routeLength(L) & speed(S) & D = math.ceil(L

/ S).
capacity(C) :- maxLoad(M) & load(L) & C = M - L.
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canMove :- charge(X) & X >= 10.
chargeThreshold(X) :- maxCharge(C) & X = 0.35 * C.
enoughCharge :- routeLength(L) & enoughCharge(L).
enoughCharge(L) :- speed(S) & charge(C) & chargeThreshold(

Threshold) &
Steps = math.ceil(L / S) & Steps <= (C -

Threshold) / 10.
// Internal utility actions
canCarry(Items) :- capacity(C) & jia.getBaseVolume(

Items , V) & V <= C.
canSolve(Items) :- capacity(C) & jia.getLoadReq(

Items , R) & R <= C.
getBid(Items , Bid) :- capacity(C) & speed(S) & jia.

getBaseVolume(Items , V) &
.min([C, V], Min) & Bid = -S-

Min.
// Internal actions
getInventory(Inventory) :- .my_name(Me) & getInventory(Me ,

Inventory).
getInventory(Agent , Inventory) :- jia.getInventory(Agent ,

Inventory).
hasItems(Items) :- .my_name(Me) & hasItems(Me ,

Items).
hasItems(Agent , Items) :- jia.hasItems(Agent , Items).
hasBaseItems(Items) :- .my_name(Me) & hasBaseItems(Me,

Items).
hasBaseItems(Agent , Items) :- jia.hasBaseItems(Agent , Items).
hasAmount(Item , Amount) :- .my_name(Me) & hasAmount(Me,

Item , Amount).
hasAmount(Agent , Item , Amount) :- jia.hasAmount(Agent , Item ,

Amount).
hasTools(Tools) :- .my_name(Me) & hasTools(Me ,

Tools).
hasTools(Agent , Tools) :- jia.hasTools(Agent , Tools).

contains(map(Item , X), [map(Item , Y) | _]) :- X <= Y.
contains(Item , [_ | Inventory ]) :- contains(Item ,

Inventory).

getUsableTools ([], [], []).
getUsableTools ([H|T], [H|Y], N) :- canUseTool(H) & getUsableTools(T

, Y, N).
getUsableTools ([H|T], Y, [H|N]) :- getUsableTools(T, Y, N).

getInvTools(T, Y, N) :- getInventory(I) & getInvTools(T,
Y, N, I).

getInvTools ([], [], [], _).
getInvTools ([H|T], [H|Y], N, I) :- contains(map(H, 1), I) &

getInvTools(T, Y, N, I).
getInvTools ([H|T], Y, [H|N], I) :- getInvTools(T, Y, N, I).
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plans.asl

The plans have the code for actually completing goals and thereby jobs. They
include plans for buying and retrieving items, assembling, and delivering items.

+! deliverJob(Id, Items , F) : hasItems(Items) & inFacility(F) <- !
doAction(deliver_job(Id)).

+! deliverJob(Id, Items , F) : hasItems(Items) <- !
getToFacility(F); !deliverJob(Id , Items , F).

+! deliverJob(Id, Items , F) <- !
delegateJob(Id, Items , F).

+! delegateJob( _, [], _).
+! delegateJob(Id, Items , F) : canCarry(Items)

<- !solveJob(Id, Items , F).
+! delegateJob(Id, Items , F) : jia.delegateJob(Id , Items , F, Rest)

<- !delegateJob(Id , Rest , F).
+! delegateJob(Id, Items , F) : capacity(C)

<-
getItemsToCarry(Items , C, ItemsToCarry , Rest);
!solveJob(Id, ItemsToCarry , F);
!delegateJob(Id , Rest , F).

// Pre -condition: Items can be carried by agent
//+! solveJob(Id, Items , Storage) : .print(" Solving ", Id , " ",

Items) & false.
+! solveJob(Id , Items , Storage) <-

getClosestWorkshopToStorage(Storage , Workshop);
getRequiredTools(Items , Tools);
getBaseItems(Items , BaseItems);
getShoppingList(BaseItems , ShoppingList);
!delegateItems(ShoppingList , Workshop);
!coordinateAssemble(Items , Tools , Workshop);
!deliverJob(Id , Items , Storage).

+! delegateItems ([ ], _).
+! delegateItems ([map( _, [])|ShopList], F) <-

!delegateItems(ShopList , F).
+! delegateItems ([map(Shop , Items)| []], F) <-

!retrieveItems(Shop , Items).
+! delegateItems ([map(Shop , Items)|ShopList], F) : .my_name(Me)

& jia.delegateItems(Shop , Items , F, Me, Agent , Carry , Rest) <-
+assistant(Agent , Shop , Carry);
!delegateItems ([map(Shop , Rest)|ShopList], F).

+! delegateItems ([map(Shop , Items)|ShopList], F) <-
!retrieveItems(Shop , Items);
!delegateItems(ShopList , F).

+! retrieveItems( _, Items) : hasItems(Items).
+! retrieveItems(Shop , Items) : inShop(Shop) <- !buyItems(Items)

.
//+! retrieveItems(Shop , Items) : .print(" Retrieving: ", Shop , " ",

Items) & false.
+! retrieveItems(Shop , Items) <- !getToFacility(Shop); !
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retrieveItems(Shop , Items).

// Pre -condition: In workshop and all base items available.
// Post -condition: Items in inventory.
+! assembleItems(Items) : hasItems(Items).
+! assembleItems ([map(Name , _)|Items ]) : jia.getReqItems(Name ,

[]) <-
!assembleItems(Items).

+! assembleItems ([map(Name , Amount)|Items]) : jia.getReqItems(Name ,
ReqItems) <-
!assembleItem(map(Name , Amount), ReqItems);
!assembleItems(Items).

// Pre -condition: In workshop and base items available.
// Post -condition: Amount of Item with Name in inventory.
+! assembleItem(Item , _) : hasItems ([Item]).
+! assembleItem(map(Name , Amount), ReqItems) : hasItems(ReqItems) <-

!doAction(assemble(Name));
!assembleItem(map(Name , Amount), ReqItems).

+! assembleItem(map(Name , Amount), ReqItems) <-
!assembleItems(ReqItems);
!doAction(assemble(Name));
!assembleItem(map(Name , Amount), ReqItems).

+! coordinateAssemble(Items , [], F) <-
!getToFacility(F);
!initiateAssembleProtocol(Items).

+! coordinateAssemble(Items , Tools , _) : not assistant(_, _, _) &
hasTools(Tools).

+! coordinateAssemble(Items , Tools , F) : not assistant(_, _, _) &
getInventory(Inv) <-
getMissingTools(Tools , Inv , MissingTools);
!! getToFacility(F);
!delegateTools(MissingTools , F);
.wait(inFacility(F));
!initiateAssembleProtocol(Items).

+! coordinateAssemble(Items , Tools , F) : getInventory(Inv) <-
.findall(I, assistant(X, _, _) & getInventory(X, I), AllInv);
collectInventories ([Inv|AllInv], Inventory);
getMissingTools(Tools , Inventory , MissingTools);
!! getToFacility(F);
!delegateTools(MissingTools , F);
.wait(inFacility(F));
!initiateAssembleProtocol(Items).

+! delegateTools ([], _).
+! delegateTools(Tools , F) : .my_name(Me) & .print (" delegateTools:

", Tools)
& jia.delegateTools(Tools , F, Me, Agent , Carry , Rest) <-
+assistant(Agent , "tool", Carry);
!delegateTools(Rest , F).

+! delegateTools(Tools , F) <-
.wait ({+ step(_)});
!delegateTools(Tools , F).
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+! coordinateAssist(Workshop , Agent) <-
!getToFacility(Workshop);
!acceptAssembleProtocol(Agent).

+! acquireTools : tools(Tools) <-
sortByPermissionCount(Tools , SortedTools);
for (. member(T, SortedTools)) {

getToolVolume(T, V); ?capacity(C);
if (C >= V) { !retrieveTool(T); }

}.
-!acquireTools <- .wait (100); !acquireTools.

+! retrieveTools ([]).
+! retrieveTools ([Tool|Tools ]) <-

!retrieveTool(Tool);
!retrieveTools(Tools).

+! retrieveTool(Tool) : hasTools ([Tool]).
+! retrieveTool(Tool) <-

getClosestShopSelling(Tool , Shop);
!retrieveItems(Shop , [map(Tool , 1)]).

// Post -condition: Empty inventory or -assemble.
+! assistAssemble( _) : load (0) | not assemble.
+! assistAssemble(Agent) <-

!doAction(assist_assemble(Agent));
.wait (1000); // To allow assembler to remove assemble
!assistAssemble(Agent).

// Pre -condition: In shop and shop selling the items.
// Post -condition: Items in inventory.
//+! buyItems ([]) <- !doAction(skip). // To prevent duplicate

purchases.
+! buyItems(Items) : hasItems(Items).
+! buyItems ([Item|Items ]) : hasItems ([Item]) <- !buyItems(Items).
+! buyItems ([map(Item , Amount)|Items ]) <-

?hasAmount(Item , HasAmount); ?inShop(Shop);
getAvailableAmount(Item , Amount - HasAmount , Shop ,

AmountAvailable);
!doAction(buy(Item , AmountAvailable));
!buyItems(Items);
!buyItems ([map(Item , Amount)]).

// Post -condition: In facility F.
+! getToFacility(F) : inFacility(F).
+! getToFacility(F) : not canMove

<- !doAction(recharge); !getToFacility(F).
+! getToFacility(F) : not enoughCharge & not isChargingStation(F)

<- !charge; !getToFacility(F).
+! getToFacility(F)

<- !doAction(goto(F)); !getToFacility(F).

// Post -condition: Full charge.
+! charge : charge(X) & maxCharge(X).
+! charge : inChargingStation <- !doAction(charge); !charge.
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+! charge <- getClosestFacility (" chargingStation", F); !
getToFacility(F); !charge.

requests.asl
The request event handlers for the agent are what distributes the work to the
individual agents. These handlers will take new requests that have been an-
nounced, bid on them if necessary, and begin to complete the job if the agent
has won the task. These handlers will also ensure that the agent begin doing
something as soon as they are free, assuming there is something for them to do.

+assembleRequest(JobId , Items , Storage , CNPId) : free <-
!! doIntention(assembleRequest(JobId , Items , Storage , CNPId)).

+retrieveRequest(Shop , Items , Workshop , Agent , CNPId) : free <-
!! doIntention(retrieveRequest(Shop , Items , Workshop , Agent ,

CNPId)).

+toolRequest(Tools , Workshop , Agent , CNPId) : free <-
!! doIntention(toolRequest(Tools , Workshop , Agent , CNPId)).

+auction(TaskId , CNPId) : free <-
-free;
takeTask(Can)[artifact_id(CNPId)];
if (Can)
{

getBid(TaskId , Bid);
if (Bid \== 0) { !doAction(bid_for_job(TaskId , Bid)); }

}
+free.

+! assembleRequest(JobId , Items , Storage , CNPId)
: capacity(Capacity) & speed(Speed) <-
getItemsToCarry(Items , Capacity , ItemsToAssemble , AssembleRest)

;
getBaseVolume(ItemsToAssemble , Volume);

// Negative volume since lower is better
Bid = -Speed - Volume;

if (not ItemsToRetrieve = [])
{

bid(Bid , AssembleRest)[artifact_id(CNPId)];
winner(Won)[artifact_id(CNPId)];

if (Won)
{

.print("Job: ", JobId , "Assembling: ", ItemsToAssemble)
;

!solveJob(JobId , ItemsToAssemble , Storage);
}

}.
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+! retrieveRequest(Shop , Items , Workshop , Agent , CNPId)
: capacity(Capacity) & speed(Speed) <-
getItemsToCarry(Items , Capacity , ItemsToRetrieve , RetrieveRest)

;
getVolume(ItemsToRetrieve , Volume);
distanceToFacility(Shop , Distance);

// Negative volume since lower is better
Bid = math.ceil(Distance/Speed) * 10 - Volume;

if (not ItemsToRetrieve = [])
{

bid(Bid , ItemsToRetrieve , RetrieveRest)[artifact_id(CNPId)
];

winner(Won)[artifact_id(CNPId)];

if (Won)
{

.print(" Helping ", Agent);
!retrieveItems(Shop , ItemsToRetrieve);
!coordinateAssist(Workshop , Agent);

}
}.

+! toolRequest(Tools , Workshop , Agent , CNPId)
: capacity(Capacity) & speed(Speed) <-
?getUsableTools(Tools , Usable , NotUsable);
?getInvTools(Usable , InInv , NotInInv);

getToolsToCarry(NotInInv , Capacity , ToolsToRetrieve ,
RetrieveRest);

.concat(InInv , ToolsToRetrieve , AllTools);

.concat(NotUsable , RetrieveRest , RestTools);

if (not AllTools = [])
{

getToolsVolume(AllTools , Volume);
Bid = -Speed - Volume;

bid(Bid , AllTools , RestTools)[artifact_id(CNPId)];
winner(Won)[artifact_id(CNPId)];

if (Won)
{

.print(" Helping ", Agent , " with ", AllTools);
!retrieveTools(ToolsToRetrieve);
!coordinateAssist(Workshop , Agent);

}
}.
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protocols.asl

The protocols source file contains the different plans for coordination between
agents, such as giving items from one agent to another and helping each other
with item assembling.

+give(Items , InitStep)[source(Agent)] : not free <-
!addIntentionFirst(acceptReceiveProtocol(Agent , Items , InitStep

)).

+give(Items , InitStep)[source(Agent)] <-
-free; !acceptReceiveProtocol(Agent , Items , InitStep); +free.

+receive(Items , InitStep)[source(Agent)] : not free <-
!addIntentionFirst(acceptGiveProtocol(Agent , Items , InitStep)).

+receive(Items , InitStep)[source(Agent)] <-
-free; !acceptGiveProtocol(Agent , Items , InitStep); +free.

+! initiateReceiveProtocol(Agent , Items) : step(MyStep) <-
.send(Agent , tell , give(Items , MyStep));
.wait(readyToGive(ReadyStep));
.print(" Waiting for step ", ReadyStep , " to retrieve ", Items);
.wait(step(ReadyStep));
!receiveItems(Items).

+! acceptReceiveProtocol(Agent , Items , InitStep) : not hasItems(
Items) <-
!addIntentionLast(acceptReceiveProtocol(Agent , Items , InitStep)

).
+! acceptReceiveProtocol(Agent , Items , InitStep) : step(MyStep) <-

.max([InitStep , MyStep], MaxStep);
ReadyStep = MaxStep + 1;
.send(Agent , tell , readyToGive(ReadyStep));
.print(" Waiting for step ", ReadyStep , " to give ", Items);
.wait(step(ReadyStep));
!giveItems(Agent , Items).

+! initiateGiveProtocol(Agent , Items) : step(MyStep) <-
.send(Agent , tell , receive(Items , MyStep));
.wait(readyToReceive(ReadyStep));
.print(" Waiting for step ", ReadyStep , " to give ", Items);
.wait(step(ReadyStep));
!giveItems(Agent , Items).

+! acceptGiveProtocol(Agent , Items , InitStep) : step(MyStep) <-
.max([InitStep , MyStep], MaxStep);
ReadyStep = MaxStep + 1;
.send(Agent , tell , readyToReceive(ReadyStep));
.print(" Waiting for step ", ReadyStep);
.wait(step(ReadyStep));
!receiveItems(Items).

+! initiateAssembleProtocol(Items) <-
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.wait(.count(assistant(_, _, _), N)
& .count(assistantReady(_), N));

for (assistant(A, _, _)) {
.send(A, tell , assemble);

}

!assembleItems(Items);

for (assistant(A, _, _)) {
-assistant(A, _ ,_);
.send(A, untell , assemble);

}.

+! acceptAssembleProtocol(Agent) : .my_name(Me) <-
.send(Agent , tell , assistantReady(Me));

.wait(assemble);

!assistAssemble(Agent);

.send(Agent , untell , assistantReady(Me)).

initializer.asl
The initializer is a special agent, that does not appear in the environment, but
only lives in the beginning of each simulation. Its job is to setup artifacts for
other agents, and reset every remove all data from other agents beliefs when the
system resets.

!init.

+!init : .my_name(Me) <-
makeArtifact (" EIArtifact", "env.EIArtifact", [], Id);
makeArtifact (" ItemArtifact", "info.ItemArtifact", [], _);
makeArtifact (" FacilityArtifact", "info.FacilityArtifact", [], _

);
makeArtifact (" StaticInfoArtifact", "info.StaticInfoArtifact",

[], _);
makeArtifact (" DynamicInfoArtifact", "info.DynamicInfoArtifact",

[], _);
makeArtifact (" JobArtifact", "info.JobArtifact", [], _);
makeArtifact (" TaskArtifact", "cnp.TaskArtifact", [], TaskId);
focus(Id);
focus(TaskId).

+reset <-
for (assembleRequest(_, _, _, _, _, CnpId)) { clear ("

assembleRequest", 6, CnpId); };
for (retrieveRequest(_, _, _, CnpId)) { clear("

retrieveRequest", 4, CnpId); };
-reset.
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C.3 Java Source Code

Here are the EIArtifict class included, which are the central part of the Multi-
Agent System. It handles the connection between the agents and the environ-
ment, ensuring percepts are passed into the correct artifacts.

package env;
// Environment code for project multiagent_jason

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.logging.Level;
import java.util.logging.Logger;

import cartago.Artifact;
import cartago.INTERNAL_OPERATION;
import cartago.OPERATION;
import eis.AgentListener;
import eis.EnvironmentInterfaceStandard;
import eis.iilang.Action;
import eis.iilang.Identifier;
import eis.iilang.Parameter;
import eis.iilang.Percept;
import eis.iilang.PrologVisitor;
import info.AgentArtifact;
import info.DynamicInfoArtifact;
import info.FacilityArtifact;
import info.ItemArtifact;
import info.JobArtifact;
import info.StaticInfoArtifact;
import logging.LoggerFactory;
import massim.eismassim.EnvironmentInterface;
import massim.scenario.city.data.Role;

public class EIArtifact extends Artifact {

private static final Logger logger = Logger.getLogger(
EIArtifact.class.getName ());

public static final boolean LOGGING_ENABLED = false;

private static EnvironmentInterfaceStandard ei;
private static final String TEAM_A = "conf/eismassimconfig.json

";
private static final String TEAM_B = "conf/

eismassimconfig_team_B.json";



C.3 Java Source Code 117

private String configFile = TEAM_A;

private static Map <String , String > connections = new HashMap
<>();

private static Map <String , String > entities = new HashMap
<>();

private String team;

/**
* Instantiates and starts the environment interface.
*/

void init()
{

logger.setLevel(Level.SEVERE);
logger.info("init");

try
{

ei = new EnvironmentInterface(configFile);

// Get the team name from EI. Should be a better way
this.team = (( String) (ei.getEntities ().toArray ())[0]).

substring (10, 11);

fileLogger = LoggerFactory.createFileLogger(team);

ei.start();
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in init: " + e.
getMessage (), e);

}
}

@OPERATION
void register ()
{

String agentName = getOpUserName ();
String id = agentName.substring (5);
String connection = "connection" + team + id;
String entity = "agent" + team + id;

logger.fine("register " + agentName + " on " + connection);

try
{

ei.registerAgent(agentName);

ei.associateEntity(agentName , connection);

connections .put(agentName , connection);
entities .put(agentName , entity);
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if (connections.size() == ei.getEntities ().size())
{

// Attach listener for perceiving the following
steps

ei.attachAgentListener(agentName , new AgentListener
()

{
@Override
public void handlePercept(String agentName ,

Percept percept)
{

if (percept.getName ().equals("simStart"))
{

execInternalOp("perceiveInitial");
}
else if (percept.getName ().equals("simEnd")

)
{

System.out.println("This is the end!");
System.out.println(percept);

}
else if (percept.getName ().equals("step"))
{

execInternalOp("perceiveUpdate");
}

}
});

}
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in register: " + e.
getMessage (), e);

}
}

public static void performAction(String agentName , Action
action)

{
logger.fine("Step " + DynamicInfoArtifact.getStep () + ": "

+ agentName + " doing " + action);

try
{

if (action.getName ().equals("assist_assemble"))
{

String name = PrologVisitor.staticVisit(action.
getParameters ().get (0));

LinkedList <Parameter > params = new LinkedList <>();
params.add(new Identifier(EIArtifact.getAgentName(

name)));

action.setParameters(params);
}
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ei.performAction(agentName , action);
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in performAction: " +
e.getMessage (), e);

}
}

@INTERNAL_OPERATION
void perceiveInitial ()
{

logger.finest("perceiveInitial");
if (DynamicInfoArtifact.getStep () == StaticInfoArtifact.

getSteps () - 1)
{

this.reset();
}

try
{

Set <Percept > allPercepts = new HashSet <>();

Map <String , Collection <Percept >> agentPercepts = new
HashMap <>();

for (Entry <String , String > entry : connections.entrySet
())

{
String agentName = entry.getKey ();

Collection <Percept > percepts = ei.getAllPercepts(
agentName).get(entry.getValue ());

agentPercepts.put(agentName , percepts);

allPercepts.addAll(percepts);
}

// Perceive static info
ItemArtifact .perceiveInitial(allPercepts);
StaticInfoArtifact .perceiveInitial(allPercepts);
// Perceive dynamic info
FacilityArtifact .perceiveUpdate(allPercepts);
DynamicInfoArtifact .perceiveUpdate(allPercepts);
JobArtifact .perceiveUpdate(allPercepts);

// Define roles
for (Role role : StaticInfoArtifact.getRoles ())
{

defineObsProperty("role", role.getName (), role.
getSpeed (), role.getMaxLoad (),

role.getMaxBattery (), role.getPermissions ()
.toArray ());
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}

// Perceive agent info
for (Entry <String , Collection <Percept >> entry :

agentPercepts.entrySet ())
{

String agentName = entry.getKey ();

AgentArtifact.getAgentArtifact(agentName).
precevieInitial(entry.getValue ());

}

// Define step
defineObsProperty("step", DynamicInfoArtifact.getStep ()

);

FacilityArtifact.announceShops ();
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in perceive: " + e.
getMessage (), e);

}

logger.finest("Perceive initial done");
}

@INTERNAL_OPERATION
void perceiveUpdate ()
{

logger.finest("perceiveUpdate");

try
{

Set <Percept > allPercepts = new HashSet <>();

for (Entry <String , String > entry : connections.entrySet
())

{
Collection <Percept > percepts = ei.getAllPercepts(

entry.getKey ()).get(entry.getValue ());

AgentArtifact.getAgentArtifact(entry.getKey ()).
perceiveUpdate(percepts);

allPercepts.addAll(percepts);
}

FacilityArtifact .perceiveUpdate(allPercepts);
DynamicInfoArtifact .perceiveUpdate(allPercepts);
JobArtifact .perceiveUpdate(allPercepts);

getObsProperty("step").updateValue(DynamicInfoArtifact.
getStep ());
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logData ();

JobArtifact.announceJobs ();
}
catch (Throwable e)
{

logger.log(Level.SEVERE , "Failure in perceive: " + e.
getMessage (), e);

}
}

private void reset ()
{

defineObsProperty("reset");

DynamicInfoArtifact.reset();
StaticInfoArtifact.reset();
FacilityArtifact.reset();
JobArtifact.reset ();
ItemArtifact.reset();

for (Entry <String , String > entry : connections.entrySet ())
{

AgentArtifact.getAgentArtifact(entry.getKey ()).reset();
}

fileLogger = LoggerFactory.createFileLogger(team);

removeObsProperty("step");
for (Role role : StaticInfoArtifact.getRoles ())
{

removeObsPropertyByTemplate("role", role.getName (),
role.getSpeed (), role.getMaxLoad (),

role.getMaxBattery (), role.getPermissions ().
toArray ());

}

removeObsProperty("reset");
}

/**
* @param entity
* @return Get the name of the agent associated with the entity
*/

public static String getAgentName(String entity)
{

return entities.get(entity);
}

private static Logger fileLogger;

private void logData ()
{

fileLogger.info("Step: " + DynamicInfoArtifact.getStep () +
" - Money: " + DynamicInfoArtifact.getMoney ());
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if (DynamicInfoArtifact.getStep () == StaticInfoArtifact.
getSteps () - 1)

{
fileLogger.info("Completed jobs: " +

DynamicInfoArtifact.getJobsCompleted ());
}

}
}
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