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1. INTRODUCTION

In this investigation we shall look into the co-registration of
radar (TerraSAR-X) and optical (Pleiades and SPOT) data.

When performing geometrical co-registration of images,
correlation is often used as a measure of association between
variables. Correlation is not necessarily a good choice for
data of very different modalities (as here with radar and op-
tical data). Inspired by practise in medical image analysis,
in this work, we supplement correlation as the measure of
association between variables with the information theoreti-
cal measure mutual information (MI). Information theoretical
work was pioneered by Claude Shannon in his now classical
article [1] from 1948.

MI allows for the actual/sample joint and marginal dis-
tributions of the variables involved and not just second order
statistics. While correlation is ideal for Gaussian data and
linear associations, MI facilitates analysis of variables with
different genesis, different modalities and therefore different
statistical distributions and nonlinear associations.

Parts of Section 2 are very similar to sections in [2, 3, 4],
see also [5].

2. BASIC INFORMATION THEORY

Below, we describe the information theoretical concepts en-
tropy, relative entropy and mutual information for discrete
stochastic variables, see also [6, 7, 8, 9].

Alternatives to Shannon entropy etc. (see below) based on
work by Alfréd Rényi exist.

2.1. Entropy

Consider a discrete stochastic variable X with probability
density function (pdf) p(X = xi), i = 1, . . . , n, i.e, the
probability of observing a particular realization xi of stochas-
tic variable X , where n is the number of possible outcomes
or the number of bins. Let us look for a measure of informa-
tion content (or surprise if you like) h(X = xi) in obtaining
that particular realization. If xi is a very probable value, i.e.,
p(X = xi) is high, we receive little information by observing
xi. If on the other hand xi is a very improbable value, i.e.,

p(X = xi) is low, we receive much information by observing
xi. The measure of information content should be a mono-
tonically decreasing function of p. This can be obtained by
choosing for example h ∝ 1/p.

If we observe independent realizations xi and xj , i.e., the
two-dimensional pdf p(X = xi, X = xj) equals the product
of the one-dimensional marginal pdfs p(X = xi)p(X = xj),
we would like the joint information content to equal the sum
of the marginal information contents, i.e., h(X = xi, X =
xj) = h(X = xi) + h(X = xj). This can be obtained by
transformation by means of the logarithm.

Thus the desired characteristics of the measure of infor-
mation or surprise can be obtained if we define h(X = xi)
as

h(X = xi) = ln
1

p(X = xi)
= − ln p(X = xi).

The expectation H(X) of the information measure, i.e., the
average amount of information obtained by observing the
stochastic variable X , is termed the entropy

H(X) = −
n∑
i=1

p(X = xi) ln p(X = xi)

sometimes called the Shannon entropy. In the limit where p
tends to zero and ln p tends to minus infinity,−p ln p tends to
zero. H(X) = −E{ln p(X)} is nonnegative. A discrete vari-
able which takes on one value only has zero entropy; a uni-
form discrete variable has maximum entropy (equal to lnn).
For the joint entropy of two discrete stochastic variables X
and Y we get

H(X,Y ) =

−
∑
i,j

p(X = xi, Y = yj) ln p(X = xi, Y = yj).

Probability density functions, information content and en-
tropy may be defined for continuous variables also (and so
may relative entropy and mutual information mentioned be-
low). In this case the entropy

H(X) = −
∫
p(x) ln(p(x))dx



is termed differential entropy. Since p(x) here may be greater
than 1, H(X) in the continuous case may be negative (or in-
finite).

2.2. Relative Entropy

The relative entropy also known as the Kullback-Leibler di-
vergence [10] between two pdfs p(X = xi) and q(X = xi)
defined on the same set of outcomes (or bins) is

DKL(p, q) =
∑
i

p(X = xi) ln
p(X = xi)

q(X = xi)
. (1)

This is the expectation of the logarithmic difference between
p and q. The relative entropy is a measure of the proximity of
q and p, and it satisfies the so-called Gibbs’ inequalityDKL ≥
0 with equality for p(X = xi) = q(X = xi) only. The
relative entropy is not symmetric in p and q (it is not a metric,
and therefore it is termed a divergence and not a distance).

2.3. Mutual Information

The extent to which two discrete stochastic variables X and
Y are not independent, which is a measure of their mu-
tual information content, may be expressed as the relative
entropy or the Kullback-Leibler divergence between the two-
dimensional pdf p(X = xi, Y = yj) and the product of the
one-dimensional marginal pdfs p(X = xi)p(Y = yj), i.e.,

DKL(p(X,Y ), p(X)p(Y )) =∑
i,j

p(X = xi, Y = yj) ln
p(X = xi, Y = yj)

p(X = xi)p(Y = yj)
.

This sum defines the mutual information I(X,Y ) =
DKL(p(X,Y ), p(X)p(Y )) of the stochastic variables X and
Y . Mutual information equals the sum of the two marginal
entropies minus the joint entropy

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (2)

Unlike the general Kullback-Leibler divergence in (1) this
measure is symmetric. Mutual information is always nonneg-
ative, it is zero for independent stochastic variables only.

Obviously we need to estimate joint as well as marginal
pdfs to obtain the mutual information estimate in (2).

A heuristic alternative to I in (2)

I1(X,Y ) =
H(X) +H(Y )

H(X,Y )

may be used [11, 12].

3. SUB-PIXEL ACCURACY

Once we have determined the best match between the two im-
ages (in terms of integer row and column numbers), we want

to determine the registration with sub-pixel accuracy. To this
end we fit a quadratic surface in a 3×3 window centered on
the maximum value in the (correlation or) mutual information
map. This is done by means of regression analysis.

3.1. Quadratic Surface in a 3×3 window

The 3×3 window centered on the maximum value of (corre-
lation or) MI has the following numbering of pixels

Z1 Z4 Z7

Z2 Z5 Z8

Z3 Z6 Z9

where Zi denotes the value of (correlation or) MI at location
[xi, yi]

T . The quadratic function is

Zi = θ0 + θ1xi + θ2yi + θ3x
2
i + θ4y

2
i + θ5xiyi + εi,

i = 1, . . . , 9

where θi are parameters to be estimated. In matrix notation
we get

Z =



1 x1 y1 x21 y21 x1y1
1 x2 y2 x22 y22 x2y2
1 x3 y3 x23 y23 x3y3
1 x4 y4 x24 y24 x4y4
1 x5 y5 x25 y25 x5y5
1 x6 y6 x26 y26 x6y6
1 x7 y7 x27 y27 x7y7
1 x8 y8 x28 y28 x8y8
1 x9 y9 x29 y29 x9y9


θ + ε = Xθ + ε

where Z = [Z1, . . . , Z9]T , θ = [θ0, . . . , θ5]T and ε =
[ε1, . . . , ε9]T . If we position an ordinary Cartesian coordi-
nate system in the center of the center pixel Z5 we get

X =



1 −1 1 1 1 −1
1 −1 0 1 0 0
1 −1 −1 1 1 1
1 0 1 0 0 0
1 0 0 0 1 0
1 0 −1 0 0 0
1 1 1 1 1 1
1 1 0 1 0 0
1 1 −1 1 1 −1


.

For the squared norm of the residuals ε which have dis-
persion Σ we get

||ε||2 = εTΣ−1ε = (Z −Xθ)TΣ−1(Z −Xθ)

which is a quadratic function in θ. To minimize we differen-
tiate and set the derivative to zero (and call the solution θ̂)

∂

∂θ
||ε||2 = 2XTΣ−1Xθ − 2XTΣ−1Z
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θ̂ = (XTΣ−1X)−1XTΣ−1Z.

If we use Σ = σ2I where σ2 is the variance of εi and I is
the identity matrix (Gaussian or other weights in the regres-
sion can be obtained with another choice of Σ), we get

θ̂ = (XTX)−1XTZ.

In this case (Σ = σ2I) we get for the variance-covariance
matrix (also known as the dispersion matrix) for θ̂

D{θ̂} = σ2(XTX)−1

with the estimate for σ2

σ̂2 =
êT ê

n− p

where

ê = Z −Xθ̂

and n = 9 is the number of equations and p = 6 is the number
of parameters estimated. n − p = 3 is termed the number of
degrees of freedom.

3.2. Gradients

To obtain the optimum we find the gradients (below we skip
the index i)

∂Z

∂x
= θ1 + 2θ3x+ θ5y

∂Z

∂y
= θ2 + 2θ4y + θ5x.

Setting these to zero we get the optimum at sub-pixel location
(within pixel Z5)

x̂ =
θ2θ5 − 2θ1θ4
4θ3θ4 − θ25

ŷ =
θ1θ5 − 2θ2θ3
4θ3θ4 − θ25

.

Below, ∆row = −ŷ and ∆col = x̂.

3.3. The Hessian

To make sure this optimum is a maximum (and not a mini-
mum or a saddle point) for (correlation or) MI, we calculate
the second order derivatives

∂2Z

∂x2
= 2θ3

∂2Z

∂y2
= 2θ4

∂2Z

∂x∂y
=

∂2Z

∂y∂x
= θ5.

Hence the symmetric Hessian is

H =

[
Hxx Hxy

Hxy Hyy

]
=

[
2θ3 θ5
θ5 2θ4

]
with determinant 4θ3θ4 − θ25 and eigenvalues

κ1 =
1

2

(
Hxx +Hyy −

√
(Hxx −Hyy)2 + 4H2

xy

)
= θ3 + θ4 −

√
(θ3 − θ4)2 + θ25

and

κ2 =
1

2

(
Hxx +Hyy +

√
(Hxx −Hyy)2 + 4H2

xy

)
= θ3 + θ4 +

√
(θ3 − θ4)2 + θ25.

For a maximum, H must be negative definite, i.e., it must
have negative eigenvalues. The eigenvalues are termed the
principal curvatures [13]. They describe the strength of the
curvature along the extremal directions where the curvatures
are minimal and maximal, respectively. The curvedness c is
defined as

c =
√
κ21 + κ22

=
√
H2
xx +H2

yy + 2H2
xy

=
√

4(θ23 + θ24) + 2θ25

which should be high for a good optimum.
For completeness and as a supplement to checking for

negative eigenvalues for a maximum, we can calculate a shape
index s in the interval

]
−π2 ,

π
2

[
as

tan s =
κ1 + κ2
κ1 − κ2

= − Hxx +Hyy√
(Hxx −Hyy)2 + 4H2

xy

= − θ3 + θ4√
(θ3 − θ4)2 + θ25

.

s→ −π2 gives a minimum, s = 0 a saddle point, and s→ π
2

a maximum.

4. CASES

For this study we have TerraSAR-X, Pleiades and SPOT data.
We’ll use the red band of the four-band Pleiades and SPOT
data only. The Pleiades data have 0.5 m pixels, the SPOT
data have 1.5 m pixels. For the analysis carried out here, the
SPOT data are resampled to 0.5 m pixels by means of bicubic
interpolation. We have two 0.5 m pixels radar chips (num-
bered 7 and 8) which both overlap the Pleiades and SPOT
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images. We will match/(co-)register the radar chips and the
optical data by means of the correlation and the mutual infor-
mation measures.

To illustrate the quality of the correlation and MI mea-
sures, we calculate 400×400 maps near the best matches
(we allow for translation only). In an operational situation
we would know an approximate match and not calculate that
many (mis-)matches.

4.1. Pleiades Data

The best matches of the two radar chips and the Pleiades data
as found by correlation and MI for both radar chips are shown
in Figures 1 to 4 which show smoother (i.e., less noisy) sur-
faces for MI than for correlation.

For the best matches we find these row and column num-
bers in the Pleiades image for the upper left corner of the radar
chips (R7 is the northern-most radar chip, R8 the southern-
most one)

Corr R7 MI R7 Corr R8 MI R8
row 191 193 1165 1165
col 1625 1624 1522 1523
∆row 0.0413 –0.5059 0.0421 0.5257
∆col –0.3178 –0.0488 0.1259 0.0195
c 0.001526 0.001536 0.001623 0.001322

.

∆row and ∆col are the sub-pixel corrections to the best fit in-
teger row and column numbers. Both eigenvalues of all Hes-
sians are negative. c is the curvedness. Measured locally by
c, for R7 MI is marginally better than correlation, for R8 cor-
relation is better.

This table shows estimated row and column numbers, and
distances (measured in pixels) from the estimated to the man-
ually determined registration (for R7 (192.47,1625.36), for
R8 (1163.47,1521.36))

Corr R7 MI R7 Corr R8 MI R8
row+∆row 191.04 192.49 1165.04 1165.53
col+∆col 1624.68 1623.95 1522.13 1523.02
distance 1.58 1.41 1.75 2.64

.

4.2. SPOT Data

The best matches of the two radar chips and the resampled
SPOT data as found by correlation and MI for both radar chips
are shown in Figures 5 to 8 which show smoother (i.e., less
noisy) surfaces for MI than for correlation.

For the best matches we find these row and column num-
bers in the resampled SPOT image for the upper left corner
of the radar chips (R7 is the northern-most radar chip, R8 the
southern-most one)

Corr R7 MI R7 Corr R8 MI R8
row 238 238 1205 1207
col 1716 1718 1617 1619
∆row 0.0435 0.1228 –0.0395 –0.1741
∆col –0.1052 0.2357 –0.4903 –0.0834
c 0.001243 0.001124 0.0009868 0.001478

.

∆row and ∆col are the sub-pixel corrections to the best fit in-
teger row and column numbers. Both eigenvalues of all Hes-
sians are negative. c is the curvedness. Measured locally by
c, for R7 correlation is better than MI, for R8 MI is better.

This table shows estimated row and column numbers, and
distances (measured in pixels) from the estimated to the man-
ually determined registration (for R7 (238.68,1716.58), for
R8 (1209.68,1612.58))

Corr R7 MI R7 Corr R8 MI R8
row+∆row 238.04 238.12 1204.96 1206.83
col+∆col 1715.89 1718.24 1616.51 1618.92
distance 0.93 1.74 6.14 6.94

.

5. DISCUSSION AND CONCLUSIONS

Histograms of the radar data (not shown) indicate severe sat-
uration in the maximum value (DN 255). This is a potential
problem for both correlation and mutual information calcula-
tions and should be avoided in future data acquisitions.

Also, the fact that missing values are coded with zeros
which are also valid data values in the images is a potential
problem. In future acquisitions this should be avoided.

Figures 9 to 12 show 21×21 pixels 2 1
2 -D surface plots of

correlation and MI based matching centered on the optimum
for the MI matching for the Pleiades data and radar chips 7
and 8.

Figures 13 to 16 show 21×21 pixels 2 1
2 -D surface plots of

correlation and MI based matching centered on the optimum
for the MI matching for the resampled SPOT data and radar
chips 7 and 8.

To give further visual evidence to the desired smoothness
of the mutual information measure compared to correlation in
the matching process to 8), Figure 17 shows a 2 1

2 -D surface
plot of the image shown in Figure 1 (top). Also, Figure 18
shows a 2 1

2 -D surface plot of the image shown in Figure 2
(top).

Figures 19 and 20 show examples on alternative ways of
visualizing the matching result in Figure 2 (bottom).

The maxima found for the registration of the radar and op-
tical data are not exactly the same for the correlation and mu-
tual information measures (the integer row and column num-
bers are nearly the same but not exactly equal). Also, the
sub-pixel corrections are different (which is to be expected
given that the integer row and column numbers differ). The
MI based registration is closest to a manual registration for
radar chip 7 for the Pleiades data only.
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Visual inspection of the correlation and mutual infor-
mation maps shows that mutual information gives a clearly
smoother, i.e., less noisy, global expression for the registra-
tion matches. However, the local curvedness estimated in a
3×3 window around the maximum is sometimes higher for
the mutual information measure, sometimes for the correla-
tion measure.

Results from analyses like the ones given here are very
data dependent. In other cases the results from the correlation
based registration may fail completely.
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Fig. 1. Correlation map for radar chip 7 and the Pleiades data
(top) and best estimated position of chip (bottom).

Fig. 2. Mutual information map for radar chip 7 and the
Pleiades data (top) and best estimated position of chip (bot-
tom).
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Fig. 3. Correlation map for radar chip 8 and the Pleiades data
(top) and best estimated position of chip (bottom).

Fig. 4. Mutual information map for radar chip 8 and the
Pleiades data (top) and best estimated position of chip (bot-
tom).
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Fig. 5. Correlation map for radar chip 7 and the resampled
SPOT data (top) and best estimated position of chip (bottom).

Fig. 6. Mutual information map for radar chip 7 and the re-
sampled SPOT data (top) and best estimated position of chip
(bottom).
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Fig. 7. Correlation map for radar chip 8 and the resampled
SPOT data (top) and best estimated position of chip (bottom).

Fig. 8. Mutual information map for radar chip 8 and the re-
sampled SPOT data (top) and best estimated position of chip
(bottom).
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Fig. 9. Correlation map near optimum, radar chip 7 and
Pleiades data.
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Fig. 10. Mutual information map near optimum, radar chip 7
and Pleiades data.
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Fig. 11. Correlation map near optimum, radar chip 8 and
Pleiades data.
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Fig. 12. Mutual information map near optimum, radar chip 8
and Pleiades data.

0.52

25

0.53

0.54

20 25

0.55

15

0.56

20

y

0.57

15

x

10
10

5
5

0 0

Fig. 13. Correlation map near optimum, radar chip 7 and re-
sampled SPOT data.
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Fig. 14. Mutual information map near optimum, radar chip 7
and resampled SPOT data.
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Fig. 15. Correlation map near optimum, radar chip 8 and re-
sampled SPOT data.
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Fig. 16. Mutual information map near optimum, radar chip 8
and resampled SPOT data.
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Fig. 17. Correlation map for radar chip 7 and the Pleiades data.

Fig. 18. Mutual information map for radar chip 7 and the Pleiades data.
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Fig. 19. Example on an alternative way of visualizing the matching result (integer part only) in Figure 2 (mutual information
used on radar chip 7 and Pleiades data), zoomed version of radar data in magenta, Pleiades data in green.

Fig. 20. Example on an alternative way of visualizing the matching result (integer part only) in Figure 2 (mutual information
used on radar chip 7 and Pleiades data), zoomed version of radar data in green, Pleiades data in magenta.
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