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Professor, PhD Jan Larsen

Section for Cognitive Systems
DTU Compute, Technical University of Denmark

.

.\\B

ANISH
OUND

ALY

Participation in 17 international and national collaborative research projects.
Mentoring of 2 Senior Researchers and 9 Postdocs, 34 PhD, and 90 MSc students.
>60% of projects in collaboration with private companies and stakeholders.
Danish Sound Innovation Network national network.

12 commissioned RDI projects.



© My dream related to sound...

To create better quality of life by providing
augmented and immersive sound experiences
for people in society 4.0 using Al technology



A copy of the physical world
through digitization makes it
possible for cyber-physical
systems to communicate and
cooperate with each other
and with humans in real time
and perform decentralized
decision-making

https://en.wikipedia.org/wiki/Industry_4.0

B. Marr: Forbes, June 20, 2016, http://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-must-know-about-industry-4-
0/#4c979f804e3b

http://www.enterrasolutions.com/2015/10/industry-4-0-facing-the-coming-revolution.html



‘ InduStr& 4.0 =
Civilization 4.0

It is a cognitive revolution that
could be even more disruptive
than earlier as it concerns not
only the industry but the whole
way we live our lives.




Al

Artificial Intelligence




1A

Intelligence Augmentation




research focus

CoSound

Machine learning based processing of audio data and related information,
such as context, users’ states, interaction, intention, and goals with the
purpose of providing innovative services related to societal challenges in

Transforming big audio data into semantically interoperable data
assets and knowledge: Enrichment and navigation in large sound
archives such as broadcast

Experience economy and edutainment: New music services based on
mood, optimization of sound systems

Healthcare: Music interventions to improve quality of life in relation to
disorders such as e.g. stress, pain, and ADHD.
User-driven optimization of hearing aids.




research focus MakeSense

Processing of sensor signals and related IoT data streams with the purpose of
fostering innovative systems addressing societal challenges in

Food: Grain analysis
Security: Explosives and drug detection

Health: Blood and water analysis, intelligent drug delivery and sensing, e-health,
personalized medicine

Energy: Wind mill maintenance
Environment: Exhaust gas analysis, large diesel engine predictive monitoring

Resource efficiency: Waste sorting

Digital economy: Event recommendation




SOUND IS AFFECTIVE







What are the mechanism? —the BRECVEM model

* Brain stem reflexes linked to acoustical properties, e.g. loudness

— association between music and emotion when they occur
together

— emotion expressed in music, sad is e.g. linked low-pitches,
slow, and quiet

— movement synchronization with rhythm
e Visual images — creation of visual images
e Episodic memories — e.g. strong emotion when you hear a melody linked to an episode

- mental analysis of music an creation of analytic or aesthetic
pleasure (hit-songs)
* Musical expectancy - balance between surprise and expectation

Ref: Juslin, P. N. and Vastfall, D. Emotional response to music: The need to consider underlying mechanism. Behavioral and Brain Sciences,
vol. 31, pp. 559-621, 2008.
Line Gebauer & Peter Vuust, Music interventions in Health Care, 2014.



Al IS EFFECTIVE



What is machine learning?

Learning structures and patterns
form from historical data to reliably
predict outcome for new data.

Computers only do what they are
programmed to do. ML infers new
relations and patterns, which were
not programmed. They learn and
adapt to changing environment.

1. Computer systems that automatically

improve through experience, or learns
from data.

. Inferential process that operate from

representations that encode probabilistic
dependencies among data variables
capturing the likelihoods of relevant
states in the world.

. Development of fundamental statistical

computational-information-theoretic laws
that govern learning systems - including
computers, humans, and other entities.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, July 2015.
Samuel J. Gershman, Eric J. Horvitz, Joshua B. Tenenbaum. Computational rationality: A converging paradigm for intelligence in brains,

minds, and machines. Science, July 2015.



Brief history of Al

Allan Touring: theory of computation
Claude Shannon: A Mathematical Theory of Communication

Norbert Wiener: Cybernetics - Control and Communication in
the Animal and the Machine

The Touring test
Marvin Minsky’s analog neural networks (1°* generation)

Dartmouth conference: Artificial intelligence with aim of
human like intelligence

Bernard Widrow’s ADALINE - adatpive linear systems

Many small scale “toy” projects in robotics, control and
game solving

Failure of success and Minsky’s criticism of perceptron, lack of

computational power, combinatorial explosion, Moravec’s paradox:
simple tasks are not easy to solve




Expert systems useful in restricted domains

Knowledge based systems — integration of diverse information sources
The 2" generation neural network revolution starts
Robotics and the role of embodiment to achieve intelligence

Al and cybernetics research under new names such as machine
learning, computational intelligence, evolutionary computing, neural
networks, Bayesian networks, complex systems, game theory, deep neural
networks (3 generation) cognitive systems

deep neural networks (4 generation) and cognitive systems, large
scale data and computational frameworks, ML is commoditized

http://en.wikipedia.org/wiki/Timeline_of_artificial_intelligence
http://en.wikipedia.org/wiki/History_of_artificial_intelligence



Deep Learning:
Automating
Feature Discovery

Geoff Hinton, Yoshua
Bengio, Yann LeCun,

Output

Output

Output

Deep Learning
Tutorial, NIPS 2015, Calips
Montreal.
3 3
Hand- Hand-
designed designed
Dee p Iea rn i n g program features
is a disruptive ) )
technology
Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning

learning



Machine learning is very successful for speech recognition and chat bots

100 Iﬂgmdmmm

o
e

ACHIEVING HUMAN PARITY IN CONVERSATIONAL SPEECH RECOGNITION

W. Xiong. J. Droppo, X. Huang. F. Seide, M. Selrzer. A. Stolcke, D. Yu and G. Zweig

Mi. it Rescarch
Technical Report MSR-TR-2016-T1
Revised February 2017

i

Word Error Rate

little progress for 10+ yrs

MSR Rashid
e Demo

0% ... omei?
Human parity is achieved Feb/March 2017

&,

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and
Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition. IEEE Signal Processing Magazine, 82, Nov. 2012.

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li
Lim, Bergul Roomi, Phil Hall. English Conversational Telephone Speech Recognition by Humans and Machines, https://arxiv.org/abs/1703.02136, March 2017

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig. Achieving Human Parity in Conversational Speech Recognition,
https://arxiv.org/abs/1610.05256, October 2016.



Machine learning is very successful for audio classification

Audio Class

Music

Speech

Vehicle

Musical Instrument

Inside, small room

Boom

Fusillade

Swing music
Crumpling, crinkling

Lawn mower

Splinter
Pulleys
Creak
Gargling
Toothbrush

| 1,011,949
1 1,011,065
] 128,110
] 117,384 .
| 76.767 2.1 million
< 262 classes omitted ... annotated
] 1,651 .
| 1,650 videos
] 1,642
o 5.8 thousand
<= 250 classes omitted ... hOUrS Of aUdIO
[ ] 153
[ ] 182
= 527 classes
m— T of annotated
[ 1127 Sou nds
100 1,000 10,000 100,000 1,000,000

Number of examples

Table 2: Comparison of performance of several DNN architectures
trained on 70M videos, each tagged with labels from a set of 3K. The
last row contains results for a model that was trained much longer
than the others, with a reduction in leaming rate after 13 million
steps.

Architectures Steps Time AUC d-prime mAP
Fully Connected 5M 35h 0.851 1471 0.058
AlexNet 5M 82h 0.894 1764 0.115
VGG M 184h 0911 1.909 0.161
Inception V3 M 137h 0918 1.969 0.181
ResNet-50 SM 119 0916 1.952 0.182
ResNet-50 1™ 0.212

356h (0.926 ) 2.041

Mean average precision mAP is low because of low
class prior <104,

AUC is the area under curve of true positive rate vs.
false positive rate.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, Marvin Ritter. Audio Set: An
ontology and human-labeled dataset for audio events, IEEE ICASSP 2017, New Orleans, LA, March 2017.

Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron Weiss, Kevin Wilson. CNN Architectures for Large-Scale Audio Classification, ICASSP 2017, New Orleans, LA, March 2017.
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Machine learning is very successful
for speech generation

@)
O
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Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

WaveNet is a deep generative
model of raw audio waveforms

Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

WaveNets are able to generate Us Engish Mandari Chinese
speech which mimics any

human voice and which sounds
more natural than the best a1 421
existing Text-to-Speech o
systems, reducing the gap with e 379
human performance by over
50%.

4.55

3.47

Concatenative Parametric WaveNet Human Speech Concatenative Parametric WaveNet Human Speech

Adron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu.
WAWENET: A Generative Model for Raw Audio, https://arxiv.org/pdf/1609.03499.pdf, Sept 2016, https://deepmind.com/blog/wavenet-generative-model-raw-
audio/
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Adversarial
learning
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(b) Input intercepted by adversary Al

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning and Music Adversaries, IEEE Transactions on Multimedia, Nov. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning, Audio Adversaries, and Music Content Analysis, 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct.

2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: ?El Caballo Viejo? Latin Genre Recognition with Deep Learning and Spectral Periodicity, Fifth Biennial International Conference on Mathematics and

Computation in Music (MCM2015), 2015.
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Fig. 5. Top left: spectrogram excerpt from GTZAN Classical “21” (Mozart, Symphony No. 39 Finale) that the DNN-based system in Fig. 2(b) classifies
as Classical. Top middle: spectrogram of adversarial example classified as Reggae. Top right: spectrogram of the difference of the two. Bottom: magnitude
spectrum of one frame (1024 samples) of the original (light blue), adversarial example (black), and difference (orange). Note that all excerpts in GTZAN have
a sampling rate of 22050 Hz. The SNR = 21.1dB.

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning and Music Adversaries, IEEE Transactions on Multimedia, Nov. 2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: Deep Learning, Audio Adversaries, and Music Content Analysis, 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct.
2015

Corey Kereliuk, Bob L. Sturm, Jan Larsen: ?El Caballo Viejo? Latin Genre Recognition with Deep Learning and Spectral Periodicity, Fifth Biennial International Conference on Mathematics and
Computation in Music (MCM2015), 2015.



Universal Adversarial Learning

Indian elep!
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(b) VGG-F

common newt carousel grey fox

(d) VGG-19 (e) GoogLeNet () ResNet-152

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard: Universal adversarial perturbations, arXiv:1610.08401. 2017



What defines simple and complex problems -

and how do we solve them them?

prediction

continuous learning
reflection
pro-activeness
engagement

active and experimentation
autonoumous Creativity

Unreasonable effectiveness of

Mathematics E. wigner, 1960

Data Halevy, Norvig, Pereira, 2009

RNNS Karpathy, 2015

Experimentation and

interaction through
users-in-the-loop




INTERACTIVE MACHINE
LEARNING IN SOUND




Expressed emotions in music

¢ Jens Madsen, Jan Larsen. The Confidence Effect in Elicitation of Expressed Emotion in Music. To be
submitted.

¢ Jens Madsen, Jan Larsen. Designing a Cognitive Music System. To be submitted.

¢ Jens Madsen, Bjg ure

e ¢ Is it possible to model the users representation

FEUVELRNRE:  of expressed and induced emotion? abilistic
Features Represe

Expressed

¢ Jens Madsen, Bj¢ ; ]
* Which scaling method should we use? ce, 2012.

Emotion in Music

d Emotions in
deling and

¢ Jens Madsen, Je

Rl « - \Which role does mood play?
Retrieval (CMMR

e Madsen, J., Jensen, B.S., Larsen, J., Predictive modeling of expressed emotions in music using pairwise
comparisons. M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 253—-277, 2013. Springer-Verlag
Berlin Heidelberg 2013.



Music Emotion Modeling

_ arousal
User modeling/
e’(perimental Annotations ;
paradigm afraid exited
____________________________________________________________________________________ Claleln joyous
A distressed happy
Machine predictions tval
: EE—
learning Model valence
depressed
____________________________________________________________________________________ content
sad I
_ calm
Feat“:et, melancholic "
. . representation ; mellow
Audio signal P i bored idle
processing/ ST passive
Machine learning Audio Feature L
extraction T, J. A. Russel: "A Circumplex Model of Affect," Journal of Personality and
¥ e Social Psychology, 39(6):1161, 1980
J. A. Russel, M. Lewicka, and T. Niit, "A Cross-Cultural Study of a
Music Circumplex Model of Affect," Journal of Personality and Social Psychology,
archive E vol. 57, pp. 848-856, 1989




Learning curve modeling arousal shows nonlinear modelling is best
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How many pairwise comparisons do we need to model emotions?

0.4

I : | ulRéLlld
. 0.35 - NN NOUNUIT NN, SRR . SRR N == 1VOI
S = VOl . .
5 | ; Using active
= 0:3 - -+ learning
2 ‘ | 3 3 | 3 159% for valence
;:5 0.250 ..\ ; ____________ _____________ _____________ ____________ ____________ ____________ 1 9% for arousal

0.15
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Fraction of training set
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Madsen, J., Jensen, B.S., Larsen, J., Predictive modeling of expressed emotions in music using pairwise
comparisons. M. Aramaki et al. (Eds.): CMMR 2012, LNCS 7900, pp. 253-277, 2013. Springer-Verlag Berlin
Heidelberg 2013



The power of human data

Why - Humans.as a measurement device
How - Humahs'in the loop

Who - Humans in the loop




Why - Humans as a measurement device

e \Vith the purpose of individualization and dynamical response.
e \With the purpose of group studies and population models.
eFor eliciting perceptual, affective, and cognitive aspects.

e For acquiring other aspects e.g. behavioral and physical.

e For quality measurement and control.

e For obtaining shared cognitive and cultural information and contexts
that helps disambiguation of meaning.




How - Humans in the loop

eDirect measurement of physiological, cognitive and behavior
states from physical devices.

measurements from self-reports, experiments using
direct, indirect and related scaling methods of objective or
subjective information.

Whether data are Experimental or
Observational plays an important role!




Who - Humans in the loop

eEnd-user
eExperimenter
eDeveloper
eExpert user

eCollaborative, transfer learning for crowds of
humans




Challenge: Robust adaptive learning and optimization from
interaction with inconsistent, biased and often inattentive users

—Modeling and/or knowledge of many aspects of the state of person(s) and
the environment

—Modeling and representing uncertainty

e concerning the “objective” (incl. needs, intentions, level of
engagement)

e concerning the interaction/answers/measurements from the subjects
—Support for varying complexity of a multi-aspect objective function

—Adaptive/online elicitation and learning of the objective function




Human

interaction

with

information

COGNITIVE BIAS CODEX, 2016

We store memories differently based

on how they were sxperienced We notice things already primed

in memory or repeated often

We reduce events and lists

to their key elements Bizarre/funny/visually-striking/

. anthropomorphic things stick out more
than non-bizarre/unfunny things

Too Much
Information

What Should We
Remember?

We discard specifics

to form generalities
We notice when

@ something has changed

We edit and reinforce
some memories after the fact

-

We are drawn to details that
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We notice flaws in others
® more easily than flaws in ourselves

To avoid mistakes, we're motivated to
preserve our autonomy and status in a
group, and to avoid irreversible decisions

probability
fallacy
validity
]:’:‘”""f ) We find stories and patterns
usion @
fallacy even in sparse data
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Act Fast
To act, we must be confident we can a ‘We imagine things and people we're
make an impact and feel what we do familiar with or fond of as better

is important

Not Enough
Meaning

We simplify probabilities and numbers
@' fmake them easier to think about

We think we know what

We project our current mindset and ®
other people are thinking

assumptions onto the past and future

ALGORITHMIC LAYOUT + DESIGN BY JM3 - JOHN MANOOGIAN 11l // CONCEPT + METICULOUS CATEGORIZATION BY BUSTER BENSON // DEEP RESEARCH BY WIKIPEDIANS FAR + WIDE



Interactive Learning / Sequential Experimental Design

Generalization objective

Eliciting and learning the entire model /
objective function.

Expected change in relative entropy is
derived from the posterior and predictive
distribution.

Optimization objective

Learning and identifying optimum

The Expected Improvement of a new
candidate sample (green points) is
derived from the predictive distribution.

Which of the four green parameters
settings/products/interface, x, should
the user assess (rate/annotate/see/
hear), or where do we need tp
evaluate objective performance
measurements




General framework

State of users’ mind
Users’ profile
Intention/task/objective

Context

Subjective observation y
users’
assessments

or objective Interface Probabilistic Sequential

performance model design
measurements

object(s) features rep. object(s)

proposed
object(s),

feature(s),
Systems/objects represented by features user(s)



Opn oticon

. o PEOPLE FIRST
e Highly personalization needs.

e Dynamic environment and use
with different needs.

e Latent, convoluted object

IDEX

HIGH DEFINI N HEA

\ functions which are difficult to
express though verbal and
motor actions.

e Users with disabilities — and O

often elderly people - provide
inconsistent and noisy
interactions.

Optimization of
hearing aids
/~p using Bayesian
A optimization

Jens Brehm Nielsen, Jakob Nielsen: Efficient Individualization of Hearing and Processers Sound, ICASSP2013.
Jens Brehm Nielsen, Jakob Nielsen, Jan Larsen: Perception based Personalization of Hearing Aids using
Gaussian Process and.Ag;ive\Learning, IEEE Trans. ASLP, vol. 23, no. 1, pp. 162 - 173, Jan 2015.

Maciej Korzepa, Michael Kai Petersen, Benjamin Johansen, Jan Larsen, Jakob Eg Larsen: Learning soundscapes
from OPN sound navigator, poster 2017.



Pairwise (2AFC) personalization of HA
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Hearing Aids Personalization

A real interactive optimization sequence in 30 iterations
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VOXVIP model

User
VOXVIP interface _ _ _ _|[_ _ _ ‘I‘ _______ I ________
' i
Active _
learning Points model
( A 4 \
M_achme User skill model
learning model
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Audio Feature extraction

*

Automatic segmentation

*

1 mio hours of radio
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NSIDE

by Michael Rossato Bennett,
www.youtube.com/watch?v

HENRY
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Personalized adaptive audio —
nvironment

intervention solutions measurements
— in particular

other sound
. sources
music/sound
intervention
Self-reports and oral
utterances
other therapy, .
treatment, and Physical and

intervention

physiological
measurements

The goal is in-
context evidence Individuals’ goals
and individualized and tasks

solutions






Cognizant audio systems Context:
fully informed and aware systems who, where, what

Users in the loop: |
direct and indirect ‘ Listen in on
audio and other
Content, sensor streams
Psychology, HCl, information to segment,

social network sources,

Interactive dialog
with the user

models sensors, and |dent|fy and
transducers
enables long understand
term/continuous
behavior t_rac!(lng, Adaptive, N
personalization, multimodal
elicitation of interfaces
perceptual and

affective ] . .
preferences, as Flexible integration

Qvell as adaptatioy with other media
modalities

Copyright Jan Larsen, 2011
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THE WAYS AHEAD

eNeed for possibility to include co-creation and production.
e Need for more data across domains and situations.

eNeed for systems and platforms that enables experimentation and
direct user interaction.

eNeed for better Al and machine learning methodology that can

provides robust, interpretable, interactive learning from few
examples.



