
Machine learning in Intelligent
Buildings

Andreas Møller s042809, David Emil Lemvigh

s042899

Kongens Lyngby 2012

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary (English)

The purpose of this thesis is to explore the possibilities of developing a low cost
intelligent home control system, capable of reducing the power consumption in
normal households. This control system will be based on the core concepts of
smart environments. The thesis will serve as a research paper on the possi-
bilities of using machine learning algorithms to develop an advanced arti�cial
intelligence, capable of controlling a house hold, and reducing power consump-
tion. We have created a prototype of a smart environment, that serves as a
proof of concept, and can be used as the basis for further development. The
�nal product shows the power of ubiquity computing, as a means of reducing
energy consumption in the normal household.

ii

Summary (Danish)

Formålet med denne afhandling er at udforske mulighederne, for at udvikle
et billigt intelligent lys styrings system, der er i stand til at reducere energi
forbruget i normale hjem. Dette system er baseret på de centrale ideer bag
smart environments. Afhandlingen vil undersøge mulighederne, for at anvende
machine learning algoritmer, til at udvikle en avanceret kunstig intelligens, der er
i stand til at kontrollere lyset i et almindeligt hjem, og samtidigt reducere energi
forbruget. Vi har udviklet en prototype der kan se som et "proof of concept", og
som kan anvendes som udgangspunkt for videre udvikling. Det endelige produkt
demonstrerer fordelene ved ubiquitous computing, som middel til at reducere
energi forbruger i normale hjem.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

The purpose of the thesis is to examine the possibilities of incorporation machine
learning in home control systems.

The thesis consists of a comprehensive analysis of the problems involved in the
integration between these two technologies. This is followed by a description of
the design and implementation process of developing the experimental system.
Finally the report is concluded by an evaluation of the results optained.

Lyngby, 24-Febuary-2012

Andreas Møller s042809, David Emil Lemvigh s042899

vi

Acknowledgements

We would like to thank Sune Keller and Martin Skytte Khristensen for devel-
oping the smart house simulator we have used to evaluate our project. We
would also like to thank Mads Ingwar, Elisa Wangsgaard Andreasen and Ras-
mus Møller for providing feedback and great support. Most of all we would like
to thank our advisor Christian Damsgaard Jensen for providing great support
and advice throughout the project.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Analysis 5
2.1 Smart House Survey . 6

2.1.1 Controllable houses . 7
2.1.2 Programmable houses . 7
2.1.3 Intelligent houses . 7

2.2 Our solution . 12
2.3 Gathering data on the user . 13
2.4 Analyzing the collected data . 16
2.5 Controlling the house . 18

3 Design 19
3.1 Theory . 21

3.1.1 Machine learning . 21
3.1.2 Markov chains . 22
3.1.3 Markov chains with memory 22

3.2 The passive learning stage . 23
3.2.1 Event patterns . 23
3.2.2 Con�guration . 24
3.2.3 Decision Table . 24

x CONTENTS

3.2.4 Zones . 27
3.2.5 Evaluating the passive learning stage 29

3.3 The active learning stage . 30
3.3.1 Switch Timeout . 30

3.4 Controlling the house . 33

4 Implementation 35
4.1 The physical setup . 36
4.2 General system structure . 40
4.3 Simulator /AI interface . 42
4.4 Con�guration . 43
4.5 Event patterns . 43

4.5.1 Zone events . 44
4.6 Decision Matrix and KeyList . 44
4.7 Correlation table . 46

4.7.1 Correlation statistical generation 46
4.7.2 Correlation correction . 46

4.8 Timers and timeout . 47

5 Evaluation 49
5.1 Software testing . 50

5.1.1 Unit testing . 50
5.1.2 Integration testing . 50

5.2 Evaluation based on passive learning data 51
5.2.1 Decision matrix . 54
5.2.2 Correlation . 58
5.2.3 Correlation based timeout 59

6 Conclusion 63
6.1 Future work . 64

6.1.1 Active learning of switch patterns 64
6.1.2 Multiple users . 64
6.1.3 Switch and sensor correlation 65
6.1.4 Decision matrix persistency 65
6.1.5 Additional hardware . 66

.1 Source Listings . 68

A Source Listings 69
A.1 Package: smarthouse . 69

A.1.1 SmartHouse.java . 69
A.1.2 AI.java . 73

A.2 Package: timer . 73
A.2.1 Sleeper.java . 73
A.2.2 Timer.java . 74

CONTENTS xi

A.2.3 TimeoutListener.java . 76
A.2.4 TimeoutEvent.java . 76

A.3 Package: events . 76
A.3.1 EventList.java . 76
A.3.2 Event.java . 79
A.3.3 SensorEvent.java . 80
A.3.4 ZoneEvent.java . 81
A.3.5 SwitchEvent.java . 83

A.4 Package: con�g . 84
A.4.1 Con�g.java . 84

A.5 Package: core . 87
A.5.1 Correlation.java . 87
A.5.2 DecisionMatrix.java . 92
A.5.3 KeyList.java . 97

B Testing 101
B.1 Source Listings . 101

B.1.1 UnitTests.java . 101
B.2 DecisionMatrix dumps . 105

B.2.1 Pattern length 2, without zones 105
B.2.2 Pattern length 2, with zones 109
B.2.3 Pattern length 3, without zones 114
B.2.4 Pattern length 4, without zones 119

xii CONTENTS

Chapter 1

Introduction

In the recent years we have seen an increase in climate awareness. Environmen-
tal issues such as global warming, are widely debated both on a political and
personal level, and the subject is gaining increased media coverage. A survey
conducted from 2007 to 2008 by the international research organization Galllup1

shows that 82% of americans and 88% of europeans are very aware of the current
climate issues we are facing (1, gallup�2009). In the same survey Gallup also
concludes, that 67% of americans and 59% europeans view global warming as a
serious threat to them selves and their families. With the rise of concern with the
general public, the demand for sustainable solutions increases. We are already
seeing a large number of companies, spending a considerable amount of money
to be classi�ed as environmentally conscious. Companies such as Amazon are
spending millions of dollars on sustainable buildings, in order to maintain an
image as an environmentally conscious company.

In the residential sector the environmental awareness id equally present, but
the so called �green wave�[�green wave] has not had nearly the same commercial
impact. This is however not due to lack of potential. According to the United
States Energy Information Administration2, the residential sector constituted
22% of the total energy consumption in the US (2, eia�2011). The main problem

1International research organization famous for their large scale international polls. http://
ww.gallup.com

2http://www.eia.gov/

2 Introduction

in this sector is �nancial. Improving your residence to be more environmentally
friendly is costly, and though most improvements generally pay for them selves
over time, the return of investment will often take several years. This problem
is not nearly as big in the business sector, where the gain in public image can
be very valuable, and may even be worth the investment in it self. In the
residential sector, however, the �nancial bene�ts of installing environmentally
friendly technology solely come from the reduction in energy consumption.

There is a lot of focus on saving energy by changing habits, such as remembering
to turn o� the light on the bathroom, or not using the standby feature on many
appliances. All these initiatives certainly help, but if we want to make a signi�-
cant reduction in our energy consumption we need smart environments[�smart-
envirionments], that are capable of micro managing our energy use.

The idea of smart environments is a product of the concept ubiquitous com-
puting[�ubiquitous computing], a term invented by the late computer scientist
Mark Weiser[�weiser]. Weisier coined the term while working as chief tech-
nologist at the Xerox Palo Alto Research Center (PARC)[�parc]. Ubiquitous
computing proposes a new paradigm in human-computer interaction, where the
role of the computer is to serve the users, rather than act as a tool that requires
direct interaction. Smart environments ful�ll this role, by monitoring its users,
and acting on their behalf, without the need of their active participance. It is
described by Mark Weiser as:

�a physical world that is richly and invisibly interwoven with sensors, actuators,

displays, and computational elements, embedded seamlessly in the everyday ob-

jects of our lives, and connected through a continuous network� -Mark Weiser

The concept of smart environments originated in 1988, but in the recent years
we have seen a large development in this �eld. This in mainly due to the
development in computing power, and availability of embedded systems, which
lies at the heart of the smart environments.

The purpose of this thesis is to explore the possibilities of developing a low cost
intelligent home control system, capable of reducing the power consumption in
normal households. This control system will be based on the core concepts of
smart environments. The thesis will serve as a research paper on the possibilities
of using machine learning[�machine-learning] algorithms to develop an advanced
arti�cial intelligence, capable of controlling a house hold, and reducing power
consumption. We have created a prototype of a smart environment, that serves
as a proof of concept, and can be used as the basis for further development. The
�nal product shows the power of ubiquity computing, as a means of reducing
energy consumption in the normal household.

3

The thesis will focus solely on lighting control in the smart environment. This
allows us to focus on the integration of machine learning, rather than adding a
large array of functionality. The advantage of focussing on lighting compared
to other aspects, is that we are provided instant visual feedback when manipu-
lating the environment.This will prove very useful for development and testing
purposes. The core concepts of controlling the light will be similar to many of
the other task that can be handled by a smart environment, therefore the solu-
tions developed as a result of the work done in this thesis, will be transferable
to other areas, such as heating regulation, air-conditioning, etc.

The thesis is structured as follows:

In the chapter �Analysis� we will identify and analyze the problems and issues,
related to developing an intelligent home control system. This involves analyzing
existing solutions and technologies related to the technological �eld of smart
environments.

In the chapter �Design� we will discuss our solutions to the problems identi�ed
in the analysis. We will also brie�y present the development process, and how
this have a�ected the �nal product. This chapter will also hold a theory section,
where we will discuss the most important technologies we have used, along with
the mathematical theory that forms the basis for our solution.

The �Implementation� chapter examines the transition from a software blueprint
to working code. In the chapter, we will in detail describe the problems we had
to solve when coding the system.

Finally we will evaluate the results of our research in the chapter �Evaluation�.
The chapter will both evaluate our solution and contain a description of the
software tests we have performed on the system.

4 Introduction

Chapter 2

Analysis

�If I have seen further it is by standing on the shoulders of giants� � Isaac
Newton

The �rst task in any project is to analyze the problem at hand. Before attempt-
ing to design an intelligent home control system, we must �rst identify which
problems that may arise when developing a system like this. These problems
may be related to the general �eld of home control systems, or they may be arise
with the introduction of machine learning. In this chapter we will also clearly
de�ne what features we want in the system, and what features we do not want.
Some features will also be excluded to avoid spreading the focus of the project
too thin. Features ignored with the purpose of limiting the project scope will
be discussed in the section �Future work� in the �Conclusion� chapter.

The project contains a large element of unpredictability, as a result of incorpo-
rating machine learning based on real life data. As a result the development
process will be a repeating cycle where one iteration will look as follows:

Development→ Training → Evaluation

First the system is developed, then the system must be trained based on collected

6 Analysis

data, and �nally we can evaluate on our solution. This cycle will then continue
through out the development phase.

In this chapter we will only discuss the problems that we have been able to
identify in the initial stages of the project. Some problems have arisen in the
evaluation stage of the �rst development cycle. These problems will be discussed
in the �Design� chapter, since analyzing them requires some knowledge of how
the system functions. The general concept of development cycles will also be
discussed further in the �Design� chapter.

With each problem discussed in this chapter we will brie�y present our solution
strategy, and discuss relevant alternatives.

We will start out with a small representative survey of existing systems, both
available on the commercial market, and in development.

We will then, in relation to the �ndings in the survey, discuss both the problems
we have found with the existing solutions, and those related to developing a
smart environment based on machine learning.

2.1 Smart House Survey

The beginning of any good project starts with a survey of what already exists.

In the following section we present a short survey of what already exists in the
�eld of home control systems and smart environments. We evaluate the existing
solutions and their capabilities, and review the industry standards. This section
is intended as a representative selection of smart environments, and thus will not
contain an exhaustive survey of all existing solutions on the market. First we
will establish some basic classi�cations of smart houses, to better compare the
di�erent systems. All systems can contain switches, sensors and remote controls,
the di�erence is the functionally they provide, and how they operate. We classify
the smart environments into three categories, Controllable, Programmable and
Intelligent. These categories are based on the taxonomy presented in Boguslaw
Pilich's Master Thesis and we refer interested readers to (3, Boguslaw�2004)

2.1 Smart House Survey 7

2.1.1 Controllable houses

These are the simplest of the home control solutions. Input devices such as
switches, remotes and sensors, can be setup to control output devices such as
appliances, dimmer switches and HVAC (Heating, Ventilation and Air Condi-
tioning), etc. These solutions may also include macros, e.g. where a single
button may turn o� all the lights in the home.

2.1.2 Programmable houses

These solutions incorporate some degree of logical operations, like having mo-
tion sensors only turn on the lights, if lux1 sensors are below above a certain
threshold. They may be able to have scheduled, tasks e.g adjusting the ther-
mostats during standard work-hours. The behavior of these systems have to be
programmed by the manufacturer or the users. Consequently, changes in user
needs require the system to be reprogrammed.

2.1.3 Intelligent houses

In these solutions some form of arti�cial intelligence is able to control the home.
In computer science the term arti�cial intelligence is often used loosely. For the
purpose of this thesis we will de�ne an intelligent house, as a system that is
capable of machine learning. That means that the system is capable of evolving
behavioral patterns based on empirical data (4). Consequently, the system will
over time adept itself to changes in user needs.

The solutions presented, are some of the most widespread smart house solutions,
and represents the three di�erent types of systems: Controllable, Programmable
and Intelligent houses.

INSTEON

Figure 2.1: INSTEON logo

INSTEON is a controllable home control system, targeted at private homes.

1A device for measuring the amount of light in a room.

8 Analysis

Nodes in the network can communicate using either RF signals or home's exist-
ing electrical wiring. A standard array of devices are supported:

• Dimmers & switches

• HVAC

• sprinklers

• motion sensors

• assorted bridge devices

INSTEON supports external applications to be run on a PC connected through
a bridge device to the network. By extension it is technically possible to extend
the system with a programmable or even intelligent component. However no
commercial products providing these features currently exists. (5)

INSTEON's solution is fairly widespread in the US. It represents what a com-
mercial controllable house is capable of. The systems functionality is very lim-
ited, but being able to communicate using the home electrical wiring, makes
it a very non-intrusive system to install in an existing home. It enables the
user increased control of his home compared to the regular wall switches, by
allowing him to control his home with remote controls and motion sensors. The
INSTEON system is limited by its lack of intelligence or programmable logic,
and can only perform simple actions based on user inputs.

Clipsal (C-Bus)

Figure 2.2: Clipsal logo

Clipsal is a large scale control system, targeted at the industrial sector. The
system is installed in such prominent buildings as the Sydney Opera house,
Wembly Stadium and many more. Nodes communicate over its own separate
wired network, using the C-Bus protocol. Each node has its own microproces-
sor, allowing for distributed logic. This means each node can be individually
programmed, allowing a wide array of di�erent devices to be added to a Clipsal
system without having to modify the c-bus protocol. This allows unconventional
devices like motors for stadium roofs and many others, to be part of the net-
work. Nodes can also be programmed to autonomously control the system, e.g.

2.1 Smart House Survey 9

in a hotel a control unit in each apartment could monitor temperature sensors,
control ventilation and heating, while also logging power to a central database.

Clipsal represents the �exibility and scalability, programmable solutions on the
market are able to achieve. A very unique feature of Clipsal is the distributed
logic. Most programmable systems are essentially controllable systems witn a
central logic, where every other node in the system acts as slave nodes[�slave-
nodes]. With the microprocessors in each node, logic can be distributed over a
multitude of nodes, allowing nodes to be in charge of subsections of the system.
The distributed logic can also remove the problem of a single point of failure,
where a single faulty node can prevent the entire system from working. This
results in a more robust and fault tolerant system.

All of the features of the Clipsal system comes at a price. The system requires
a wired communication network, and programming nodes to individual needs
requires professional expertise. This is a negligible price to pay for a larger
corporation, compared to the features it provides, but makes the system very
expensive for a private user. (6)

LK IHC

Figure 2.3: LK logo

LK IHC is targeted at private homes. It can be installed with a wired network,
or using wireless communication. This solution tends to be build around simple
wall switches, but with programmable scenarios. An example of this could be
having a switch near the front door and the master bedroom that turns o� all
lights. The IHC is a modular system, where modules like wireless communica-
tion or alarms, can be added to the base installation.

The IHC modules includes a programmable logic controller[�plc] which allows
the system to be programmed. An example of this taken from their own presen-
tation of the product is that motion sensors that normally are set to control the
lights could, if the alarm is activated, be programmed to dial 911. LK IHC was
per 2008 installed in nearly 30% of newly constructed building in denmark. (7,
Ingwar-jensen�2008) (8).

While the programmable logic controller provides an extended list of possibil-
ities, programming the PLC requires a great deal of technical expertise and is
not a feasible task for the average end user.

10 Analysis

Zensus Z-Wave

Figure 2.4: Z-Wave logo

Zensus develops a communication standard for wireless communication between
nodes in smart environments. Z-Wave is a protocol, like C-Bus is for the Clipsal
system. Zensus only produce the communication hardware and the protocol,
and leave it to other companies to produce the actual smart house products.
Companies who produce devices for the system, have to get them certi�ed by
Zensus to ensure all Z-Wave certi�ed can communicate with each other. This
means there is no single supplier of Z-Wave products, and products from di�er-
ent suppliers are freely interchangeable. Like the Clipsal system, Z-Wave devices
can have distributed logic. Depending on the products added to a Z-Wave sys-
tem, the system can be controllable or programmable.

Some companies sell complete smarthouse solutions based on the Z-Wave, with
switches, sensors, remotes, et cetera. Other companies instead focus on their
normal market segment, producing Z-Wave cer�ed versions of their products.
The Danish company Danfoss, produces thermostats which can control the tem-
perature based a schedule, and turn o� the heating if windows are opened.

The hardware we've had available for this thesis was Z-Wave switches, sensors
and USB-dongles. This allowed us to make a setup where the a PC could
send and receive messages to a Z-Wave network. This allows us to create an
Intelligent smart environment, based on Z-Wave hardware.

The devices in a Z-Wave system are freely interchangeable, allowing a user to
tailor the system to speci�c needs. Based on commercially available products, a
Z-Wave system can be build to be controllable or programmable. There aren't
any commercially available products to make Z-Wave an intelligent system.

Aware Home Research Inititive

Figure 2.5: AHRI logo

AHRI[�ahri] di�ers from the previous systems, as it is not a �nished implemen-

2.1 Smart House Survey 11

tation, but a framework for a research projects. There are not any widespread
commercially available intelligent smart house solution on the market, or at
least that satis�es our classi�cation of intelligent.

AHRI represent one of many smart environment, build by universities around
the world. The smart environments usually houses one or more inhabitants,
and are part of a living laboratory. Part of AHRI is a living laboratory, a
thre story house, inhabited by volunteers for varying lengths of time. These
homes are designed for multi-disciplinary studies, of people and their pattens
and interactions with new technology and smart home environments. Being
university run smart homes, the work coming out of these facilities tends to be
proof of concepts. This means there are no complete product based on these
projects. (9)

Like the Clipsal system, the nodes of AHRI have distributed logic, but are also
able to learn from user behavior. The system is also able to relay data gathered
by the system, to PDA's or smartphones carried by the inhabitants of the house.

The intelligence of AHRI comes from the work of each team of master students
working on the project. Each project explores di�erent aspects of machine
learning. The exact intelligence implementation of House_n is dependant on
the currently ongoing projects (10)

The projects shown in this survey represent the solutions currently available
or in development. There are many di�erent controllable and programmable
solutions commercially available, with INSTEON, Clipsal C-bus and LK IHC
being some of the more widespread solutions. INSTEON represents the domain
of controllable houses. Clipsal C-bus and LK IHK are both programmable home
control solutions, but where LK IHC is designed for private homes, the Clipsal
C-bus system is better suited for larger buildings.

AHRI in this survey represents that truly intelligent smart houses only exists in
demonstration environments and as proofs of concept, and are not yet available
on the commercial market.

One of the general problems with current home control solutions is that pur-
chasing such a system is rather costly and requires both installation and con-
�guration, which is rarely trivial. Some of the more advanced systems on the
market, such as the LK IHC, incorporate motion sensors and timers that auto-
matically turn on and o� lights or various appliances. These systems will save
money over time, but they require extensive con�guration or programming in
order to function properly.

As mentioned in the introduction, the main focus of our project is reducing

12 Analysis

energy consumption. This is an area where most modern home control systems
falls short . Most systems are capable of providing only a modest reduction in
power consumption, and some even increase the net consumption by adding the
cost of running the control system. We want our system to di�er from others on
this speci�c aspect. In our system, reducing power consumption is the number
one priority.

2.2 Our solution

Based on the result of our survey, and the vision for our project highlighted in
the introduction, we can now begin to identify and analyze the the problems
that our solution must address.

Our main objective is reducing energy consumption. This is one area where
many of the control systems in the survey falls short. Only AHRI have made
a viable attempt, at addressing the issue of energy sustainability. We want to
go even further, by developing a smart environment capable of micro managing
the energy consumption of the house.

We will accomplish this by creating a system that focuses on turning o� all light
where it is not needed. There are several advantages to this approach, compared
to attempting to reduce the power consumption of active appliances. The main
advantage is that it provides the largest potential for reduction in energy con-
sumption. Most people remember to turn o� the light in the bathroom, when
they leave it, but this is far less common for the kitchen, or dining room, and
only the most environmentally conscious people would ever turn o� the light in
the living room when they got to the bathroom. This means that there is a lot
of wasted energy in the normal household, and therefore a large potential for
optimization.

An other advantage is that it incorporates perfectly with most other power
reducing technologies. Buying lamps and appliances that use less energy will
still give you the same percentage of power reduction as in a normal house. This
makes it a very sustainable approach to energy reduction, that does not run the
risk of being outdated, by new technology.

Though we focus on controlling the lights in the house, the system must also
be scalable so that it, in the future, can incorporate other aspects, such as
heating, ventilation, and electrical appliances. This system will also eliminate
the common problem of standby mode on many appliances such as TVs or
stereos by having the appliance only in standby mode, when the user is likely

2.3 Gathering data on the user 13

to turn it on. The rest of the time the appliance is simply turned o�.

In the spirit of ubiquitous computing, we want the users interactions with the
system, to be as simple and familiar as possible. The user should only interact
with the system through the wall mounted switches, that are already present in
all normal households.

Our approach is inspired by AHRI, and similarly we will develop an intelligent
system, capable of predicting what the user wants it to do. The system will
accomplish this by learning from what the user does and mimic these actions at
the right times. To accomplice this, the system must be do three things:

• The system must gather data on the user and his behavior in the house

• The system must analyze the data in order to build a decision scheme[�decision-
scheme] on which it will base its actions

• The system must be able control the house in real time, based on the
decision scheme.

2.3 Gathering data on the user

To mimic user actions, the system must �rst gather information on how the user
interacts with the house. Therefore the �rst question we must answer is: What
data should we collect on the user? In order for the system to e�ectively take
over the users direct interactions with the house, we need to know two things.

• What action needs to be done?

• When shall the action be done?

The �rst question can be answered by monitoring the users direct interactions
with the house. Since we have limited our system to handle lighting, this means,
monitoring the users interactions with the light switches.

The second question is a lot more complex. We need to collect data that can
help us determine, if the conditions are right for performing a speci�c action.
We could quite literally look at the time the action is performed, and then use
that as a trigger, but this requires that the user follow a very speci�c schedule.

14 Analysis

To get a more detailed picture of when an action should be performed, we must
analyze it relative to what the user is doing at the time. Since we are focussing
on lighting, this can be done simply by tracking the users movements. Thereby
we will determine when an action shall be done based on where the user is, and
where he is heading.

Perhaps the most obvious way of accomplishing this is by using cctv cameras.
Using visual analysis is the most e�ective way of monitoring the user, as it will
provide us with vast amounts of data on what the user is doing. By, for example,
installing a �sheye camera2 in every room, and use motion tracking on the video
data stream, we can determine exactly where the user is, and what he is doing.
While this is probably the solution that provides us with the most precise and
detailed data, it does pose one problem. Installing cameras in every room of
the users house is, in our opinion, an unnecessary invasion of the users privacy.
Even if the video data is not stored in the system, the presence of cameras will
give many people the feeling of being watched in their own homes.

An other approach would be to use a token worn by the user that sends out a
digital signal. The system could then use multilateration3 to pinpoint the exact
location of the user. The token could be attached to the users keychain or built
into his cellphone. Like the camera approach this solution also has very high
precision, in tracking the user through the house. However, besides the point
that the user might not always carry his keys or cellphone around, the main issue
with this solution is scalability of users. Even though we limit the system to
one user for now, we want a system that can be scaled to accommodate multiple
users. Having to attach a token to every visitor coming into the house is gonna
be an annoyance, and without it the house would not react to the visitor at all.

The solution we chose is to use motion sensors. While this solution does not
provide nearly the same precision in determining the users location as using
�sh eye cameras or multilateration, motion sensors does come with a range of
other advantages. Motion sensors are very cheap, compared to installing cctv
cameras, and will be far less invasive on the user's privacy. The motion sensor
solution will also work for any user in the house, and does not require the user
to carry any beacon device like in the multilateration system.

The system could easily be expanded by several other types of sensors as well.
E.g. pressure sensors in the furniture, so the system can determine if there is
someone present, even when motion sensors do not register them. There are
several other examples of sensor technologies that could be incorporated in the
system. Some of these will be discussed in the section `Future work' in the

2A ceiling mounted camera with a distorted lens that allows for a wider viewing angle.
3Multilateration is a navigation technique based on the measurement of the di�erence in

distance to two or more stations at known locations that broadcast signals at known times.

2.3 Gathering data on the user 15

�Conclusion� chapter.

For the moment we want to use as few hardware components as possible. There
are two reasons for this:

• We want to keep the system as simple as possible from the consumers
perspective. That means a system with as few components as possible.

• Creating a system that analyses and mimics user behavior will have a
lot of unknown variables that, are hard to predict no matter how it is
implemented. It will therefore be preferable, to start out with a system
that is stripped down to the bare necessaries, and then add components
as the need for them arises.

Because we want a system that is easy to install and con�gure, we have chosen
not to inquire any information on the position of the motion sensors in the house.
This means that the system does not know where each sensor is located, nor
which other sensors are in the same room as it. This does make analyzing the
data a lot more complicated, but we want to stick with the idea of minimizing
the installation and con�guration. This way the installation process can be
boiled down to putting up the sensors, plugging in the system, and pressing
�Start�. This also simpli�es the maintenance of the system, when for example
the user needs to replace a faulty sensor. This is again subscribes to the idea of
smart environments, that are created with the purpose of simplifying the users
life.

Choosing to only monitor the light switches and using motion sensors to track
the user, greatly simpli�es the data collection. Both the motion sensors and the
switches generate events when they are triggered, and the system should simply
store these events in a database.

An alternative to this is to have the system analyze the data live, which would
eliminate the need to store the event data. With this approach we do not have
to store the events in the system, which over time could accumulate to a con-
siderable amount of data. The problem is that if we should choose to modify
the algorithms that analyze the data, we would e�ectively loose everything the
system has learned so far. By storing the raw event data we can always recal-
culate a new decision scheme based on the collected data. This solution leaves
us with a lot more options later on. The collection of data must still happen in
real time. Since it is very important that the events are recorded exactly when
they happen, the system must not stall in this process.

16 Analysis

Since the project serves as a proof of concept for the idea of an intelligent house,
we will need to collect real user data in order to properly evaluate our system.
This is a necessary step in order to draw any meaningful conclusions on the
system. There are two reasons for this:

• If we use generated data the house is not actually intelligent, it is merely
acting on data created by the developers. The data we could supply the
house would be based on how we think the user would behave. As devel-
opers it would be almost impossible not to be bias towards a behavioral
pattern that is easy for the house to interpret, rather than how an actual
user would interact with the house.

• The project had a very large unknown element when we started out. No
system quite like it, have ever been created before, and it is almost impos-
sible to predict how the system will react to di�erent inputs. Though we
are creatures of habit, our movement patterns do not run like clockworks.
No matter how well we would generate training data using simulators,
algorithms or any other arti�cial method, there would always be a doubt
on how close to actual human behavior it actually is.

We have chosen create a fully functional physical installation, since this would
take away too much focus developing the actual software system. Instead we
opted to install a �placebo� system4 of wireless switches and sensors, to collect
training data. This gives us the best quality training data for the system, with-
out the expenses of installing operational wireless switches. With this training
data, we can then use a simulator to evaluate that the system is learning prop-
erly. The simulator cannot replace the physical installation, collecting real life
data collection, but it is an excellent tool when used for evaluation purposes.

The data collection system must be able to capture events in real time, since the
system must know the exact time an event occurs, as well as the relative time
between events. This part of the system must therefore be optimized towards a
fast runtime.

2.4 Analyzing the collected data

Now that we have collected a lot of data on our users interactions with the
house, we need to analyze the data in order for our systems AI to act on the

4A system where the sensors and switches have no actual e�ect on the house, but are
merely there to collect data.

2.4 Analyzing the collected data 17

collected data. To be more speci�c: We need to create a decision scheme, that
the AI can use as a base for its decision making.

This is the critical part of the system. Collecting data, and acting based on an
existing scheme are both relatively simple tasks, however, designing the decision
scheme, based on collected data, is far more complicated.

The purpose of analyzing the data is to �nd which speci�c situations that require
the system to perform an action. Since the system does not know which sensors
are located near which switches, the system will have to learn these relations
based on the data collected. The simplest solution would be to have the system
learn which switches and which sensors are located in the same room, and then
create a �link� between them so the motion sensors control the light. This would
result in what we have named the silvan5 system.

The silvan system is basically having a motion sensor turn on the light when
triggered, and then to have a timer turn o� the light if the sensor is not triggered
for a set amount of time. The main problem with this kind of system is, that if
the user does not trigger a motion sensor regularly, the light will turn o� even
if the user is still in the room. This is commonly a problem in a room like the
living room, where the user is likely spend an extended amount of time sitting
still. This problem can be addressed by extending the light's timeout time.

However, this brings us to the second problem. If the user is merely passing
by a sensor, the light will still be turned on for its full duration. This greatly
reduces the e�ectiveness of the system from a power saving point of view. When
extending the timeout time of the system, this problem escalates.

A better solution is to attempt to identify the users behavior leading up to a
switch event6. Since the system only use motions sensors to track the users
movements, these sensor events will form the basis for the data analysis. The
system could simply look at what sensor was triggered right before a switch
was activated, and then create a link between that sensor and the switch. This,
however, would result in a system much like the silvan system described above.

If we instead look at a series of sensor events leading up to a switch event, we will
get a much more complex picture of what the user is doing. Since the switches
in the house are located in �xed positions around the house, these movement
patterns should repeat themselves relatively often. The movement patterns that
lead up to a switch being turned o�, will most likely also di�er from a pattern
leading up to a switch being turned on, since the user will be either entering or

5Danish building material retail-chain.
6An event generated in the system, by the user turning a switch on or o�.

18 Analysis

exiting the room. Once we have analyzed the data and identi�ed the movement
patterns related to a switch event, we need to create a decision scheme that
the system can base its decision making on. That means we have to organize
the analyzed data in a way so we easily can look up a speci�c pattern, and see
whether it should perform an action.

This concept of event patterns is also the main reason we have chosen to only use
data from a single user house. Having multiple users interacting with the house
simultaneously will break the patterns, and make it much harder for the system
to identify which situations should lead to an action. There are several ways of
handling this issue, some of which will be discussed in the section �Future work�
in the �Conclusion� chapter.

Unlike data collection, analyzing the data does not have strict time constraints.
Since the decision scheme will be based on data collected over an extended
period of time, the system will not bene�t from having the decision scheme
updated in real time. As a result the time constraints on analyzing the data
will be quite loose, and should not pose as a restriction on the system.

2.5 Controlling the house

After we have collected and analyzed data, the �nal task is to have the system
control the house in real time, using the decision scheme created from the an-
alyzed data. This is done by having the system constantly monitor the user,
and attempt to match his movement pattern to those present in the decision
scheme. As with data collection this has to happen in real time so the patterns
are not corrupted.

Chapter 3

Design

The best computer is a quiet, invisible servant. -Mark Weiser

In this chapter we will describe the design process, and discuss the major deci-
sions we have made in regard to the system design. Since the system is research
minded, and since the purpose of the project is to analyze the possibilities of de-
veloping an intelligent home control system, using machine learning technology,
we had to make some adjustments to the development process. The traditional
waterfall model[�waterfallmodel] for software development dictates that after
�nishing the project analysis, we would start designing the systems architech-
ture, and how the system should handle the problems found in the analysis.
Finally we would then implement the designed solution. With this project we
were however faced with an additional challenge. When using machine learning
you generally end up with a system that does not have an intuitive execution
�ow. This means that it can be almost impossible to predict the execution
outcome because of the vast amounts of data that form basis for the systems
decision making. This subject was brie�y discussed in the previous chapter,
where we discussed the cyclic development structure of the project. Because of
this structure we have no way of verifying the validity of our proposed solution
before implementing the system, or at least parts of it. Therefore we decided to
approach the project by using incremental development instead[�incremental-
development].

20 Design

In order to successfully apply this development model, we must �rst divide the
project into smaller parts, that can be implemented with each cycle. This design
approach also inspired our �nal system design. Just like the development had
several phases, where each phase had to be concluded in order to activate the
next, the system will have have di�erent stages of operation. These stages are
determined by the amount of data the system have collected on the user.

The system will have two di�erent stages of operation.

• In The passive learning stage, the system is running, but it has not yet
collected enough data to make intelligent decisions. This stage is called
the passive learning stage because the system is training it self solely by
monitoring the user.

• The system enters the active learning stage when there's enough data
to attempt to manipulate the switches in the house. We call this the active
learning stage, because the system now actively attempts to interact with
the house's switches . If the system makes a mistake and the user corrects
it, e.g., the system turns o� the lights and the user turns it back on, we can
use that interaction to train our system further. In this case we can see it
as the user punishing the system for making a mistake. The system will
then adjust its decision scheme. This way the system will actively initiate
a learning sequence. The system will remain in this stage inde�nitely, and
will continue to train it self using both passive and active learning.

By using incremental development we are able to design and implement the
system one stage at a time, and evaluate the passive part of the system before
designing the active part.

In this chapter we will discuss the di�erent stages of the system, the problems
that are present in each stage, and the solutions designed to solve these problems.

In the section �Theory� we will present the mathematical and statistical theory,
that forms the basis for our algorithms. This section will also provide a brief
rudimentary introduction to the concept of machine learning.

In the section Con�guration, we will brie�y discuss how the system is designed
to be �exible, and allow us to quickly manipulate the di�erent variables, that
impact how the data is analyzed.

The process of collecting data is very simple, and will not be discussed in this
chapter. In the chapter �Implementation� this process will be described in detail.

3.1 Theory 21

The section �The passive learning stage� consists of three subsections. In the
sections �Event pattern� and �Decision table� we will discuss how the system
analyses the passively collected data. As discussed in the chapter �Analysis�,
using motion sensors can reduce the precision, and reliability of the collected
data. In the subsection �Zones� we will discuss our approach to solve these
problems. We will also provide a brief evaluation of the system in this stage,
which will form the basis for the design of the active learning stage.

In the section �The active learning stage� we will discuss the additional processes
that are present in this stage. These processes are made in response to the
problems we have identi�ed in the evaluation of the passive learning stage. Some
of the problems we will address in this section has not been discussed in the
analysis, since they have arisen, in the evaluation stage of the �rst development
cycle.

3.1 Theory

�Stand back! I'm going to try science!� -Randal Munroe

In the core of our system lies a series of machine learning algorithms. In this
section we will explain some of the basic concepts of machine learning, along
with the statistical theory that our system is based on.

3.1.1 Machine learning

The purpose of machine learning is to have the system evolve behaviors based
on empirical data, rather than programming a speci�c behavioral pattern. By
using the supplied data as examples of relationships between data events, the
system can recognize complex patterns, and make intelligent decisions based on
the data analyzed (4).

With supervised learning[�supervised-learning] the system is give labeled
data consisting of examples of correct behavior. This is opposed to unsupervised
learning, where the input data in unstructured, and un labeled. Because of both
the human factor, and the imperfection of the motion sensors, the system will
generate a certain amount of invalid data called noise. The algorithm will have
to distinguish between what is proper training examples and what is noise.

Active learning is a form of supervised learning where the learner (the com-

22 Design

puter) prompts the user for information. In this form of learning the system
initiates the interaction with the user, and trains it self based on the users re-
sponse. This is especially useful if the system is generally well trained, but lacks
training in speci�c areas. The system can focus on improving its training, in
areas where its weak.

3.1.2 Markov chains

A Markov chain is a mathematical system that under goes transitions from one
stage to an other (11). In a Markov system each step taken in a Markov chain is
represented by a certain probability, based on the current state that the system
is in. Formally:

P (Xn+1|Xn)

Here Xn+1 represents the next state, and Xn represents the current state. And
the entire notion is de�ned as the probability of the event Xn+1 occurring, given
that event Xn has just occurred.

By arranging these values in a matrix you can create a lookup table for future
reference.

X1 X2 X3 X4 X5

X1 P(X1|X1) P(X1|X2) P(X1|X3) P(X1|X4) P(X1|X5)
X2 P(X2|X1) P(X2|X2) P(X2|X3) P(X2|X4) P(X2|X5)
X3 P(X3|X1) P(X3|X2) P(X3|X3) P(X3|X4) P(X3|X5)
X4 P(X4|X1) P(X4|X2) P(X4|X3) P(X4|X4) P(X4|X5)
X5 P(X5|X1) P(X5|X2) P(X5|X3) P(X5|X4) P(X5|X5)

Each cell in the table represents the probability of entering the state represented
by the cells row, assuming the system is currently in the state represented by
the cells column.

3.1.3 Markov chains with memory

One of the most iconic features of Markov chains is the fact that they are
memoryless. The probability of entering a new state is only based on the current
state of the system. The states prior to the current have no e�ect on this

3.2 The passive learning stage 23

probability. With �Markov chains of order m�, or �Markov chains with memory�,
the system has memory of the last m steps in the chain, and these a�ect the
probability of entering future states. This probability can be written as:

P (Xn+1|Xn, Xn−1, ..., Xn−m)

Now the probabilities are calculated based on the pattern of steps made through
the system rather than just the current state.

Since our probabilities are calculated based on collected data, we will not have
to perform any complex statistical calculations, but will simply estimate the
probability values based on the collected data.

3.2 The passive learning stage

In the passive learning stage the system monitors the user and trains it self
based on his actions. In this stage the system does not interact actively with
the house, but merely collects data, in order to develop a decision scheme.

3.2.1 Event patterns

As discussed in the �Analysis� Chapter, we want to base our decision making on
more than just where the user is right now. We want to be able to look at where
the user is coming from, and try to predict where the light needs to be turned
on or o�. In order to do this we look at a series of sensor events leading up to
a switch even. Thereby we are incorporating the users movement pattern in to
the decision making. We de�ne this series of events, as an event pattern. An
event pattern can consist of a number of sensor event, and may end in a singe
switch event. An event pattern consisting only of sensor events is also de�ned
as a �sensor pattern�.Since we are interested in the users behavior leading up
to a switch event, an event pattern can only contain one switch event, and this
will always be the last event in the pattern.

The event pattern is an implementation of a Markov chain. Each event in the
pattern is a separate step in the chain, and the probability to performing the
next step in a chain, can be calculated using the theory of Markov chains of
order m, where m denotes the length of the pattern.

Events are grouped in a pattern based of the time the event was triggered. If a
series of sensor events, are less than some time interval apart, we consider them

24 Design

to be part of an event pattern. We de�ne this time interval as the �pattern
interval�. The pattern interval needs to be long enough, that a user moving
around normally is seen as a continuous event pattern, and not broken into
fragments. The time interval also needs to be short enough, that di�erent user
action, is seen as separate event patterns. For instance, a user going the kitchen
to get a snack, and then returns to the living room, should ideally be seen as
two separate event patterns.

With the idea of an event pattern, we can look at what patterns lead up to
a switch event. And by extension of that analysis, when we observe an event
pattern, we can determine the probability that it would lead to a switch event.

3.2.2 Con�guration

We have designed the system in a way that allows us to rapidly change the
various variables that a�ect the calculation of our decision scheme. This is done
by using a con�g �le, that sets the list of variable, and can quickly be modi�ed
between each execution of the software. The variables we wish to manipulate
includes the length of an event pattern, and the maximum interval between two
events in the same pattern.

3.2.3 Decision Table

In the core of the intelligent system lies the decision table. This is the product of
the machine learning algorithm. The decision table is designed to be an e�cient
lookup table that the system can use as part of its decision scheme.

The algorithm for training the system in this stage is based on the concepts of
passive supervised learning, since the user generates concrete examples for the
system to follow. The data are labeled by type of event (sensor, switch), and
the switch events are further divided into �on� and �o�� events. These labels
help the system determine how to analyze each pattern of events.

The decision table is designed as a Markov matrix, but we need the system to
be able to handle Markov chains with memory, since we are tracking patterns,
instead of single events. This e�ects the design of the Markov matrix.

Lets start by looking at the simple system with a pattern of length 1. Here we
can simply use the Markov matrix described in the theory section.

3.2 The passive learning stage 25

switches extbackslash
sensors

sensor 1 sensor 2 sensor 3

switch 1 P (switch1|sensor1)P (switch1|sensor2)P (switch1|sensor3)
switch 2 P (switch2|sensor1)P (switch2|sensor2)P (switch2|sensor3)
switch 3 P (switch3|sensor1)P (switch3|sensor2)P (switch3|sensor3)

For each set of sensor and switch events, the table above holds the probability of
the switch event occurring, given that the sensor event has just occurred. This
table acts as a relation table between the sensors and switches, in a system based
on traditional Markov chains. In our system this is the result of the decision
table, if the pattern length is set to 1.

When we expand the Markov matrix to handle chains with memory, the matrix
becomes more complicated. In the table above, the number of cells is given by
the number of sensors in the system multiplied by the number of switches in the
system:

#switches ·#sensors

When we add a sensor event to the eventlist the number of cells in the matrix is
multiplied by the number of switches again. This results in the general formula:

#switches ·#sensorspatternlength

As a result of this we see that for each event we add to the event pattern the
matrix must be expanded by a new dimension. Thus a pattern length of n
results in an n-dimensional matrix.

The optimal pattern length will be determined based on experimentation and
evaluation of the implemented system, therefore we must develop a system de-
sign that is �exible enough so that we can change the pattern length. This
means that the decision table must be of n dimensions.

![Illustration of the n dimensional matrix required to contain the Markov ta-
ble. Each colum in the left side represents a new dimension][n-dimension] [n-
dimension]: �gures/n-dimension.png

One advantage is that, since we are only interested in the users behavior related
to his interaction with the wall switches, we only need to handle the patterns
where the last event is a switch event. We must now go though our database,
and for each switch event we must extract an event pattern consisting of that
event, and the n�1 sensor events preceding it. The decision matrix will consist
of the number of times a pattern has occurred in the collected data. This value

26 Design

is then divided by the number of occurrences of the event pattern without the
�nal switch event.

This value can also be interpreted as an estimate of the probability of the �nal
switch event of the pattern occurring, given that the preceding sensor pattern
has been observed.

The system must also be able to handle patterns that are shorter than the
maximum length, in case the pattern leading up to a switch event is smaller
than the maximum pattern length. This could for example occur if the interval
between two events have been too long.

The algorithm that handles the table generation looks as follows:

GenerateDecisionTable(events[]);

lastevent = 0

map decision_table

map denominator

queue eventpattern

for event in events

do

if event is sensorevent

do

if event.time <= lastevent + pattern_interval

do

push event to eventpattern

if eventpattern.length > pattern_length

remove tail from eventpattern

else

clear eventpattern

push event to eventpattern

done

insert event into denominator

lastevent = event.time

else if event is switchevent

do

if event.time <= lastevent + pattern_interval

do

insert event into decision_table

else

clear eventpattern

add event to eventpattern

3.2 The passive learning stage 27

done

done

done

for entry in decision_table

do

extract eventpattern

divide by matching denominator

done

First the algorithm creates two maps: decision_table and denominator. The
decison_table will, as the name suggests, hold the decision table. The denomi-
nator maps is used to keep track of the number of times each pattern of sensor
events occur. This is used as the denominator in the fraction for calculating
the probability in the decision table. The event pattern always contains the
last n events in the system, unless the time between events exceeds the value
stored in pattern interval. The algorithm now runs through the collected data
in chronological order.

If the current event is a sensor event, this is added to the event pattern, assuming
that the time since the last event has occurred has not exceeded the pattern
interval. The event pattern is now used to navigate through the n dimensional
matrix denominator, and increase the occurrence of the pattern by 1.

If the current event is a switch event, this is added to decision table in the same
fashion as with the denominator matrix. Since we are not interested in patterns
that contains more than one switch even, the event pattern is now emptied.

Finally each value in the decision table is divided by the corresponding value in
the denominator tables. This is done by extracting the event pattern from the
decision table and using it to navigate the denominator matrix.

The entire algorithm is run both for �on� and �o�� switch event. This results in
two separate tables, one for turning the lights on, and on for turning them o�.

3.2.4 Zones

On of the problems that arose when evaluating the �rst implementation of the
system, was that the motion sensor were not always able to deliver reliable event
patterns. The main issue is that the sensors will aways have a certain amount of
overlap on the areas they cover. If the user enters an area covered by more than

28 Design

one sensor, it is impossible to predict in which order the sensors will trigger.
For an over lap between two sensors this e�ectively means twice the amount of
sensor patterns for the same movement. As a result the system will require twice
the amount of data to train these patterns. When the overlap occurs between
more sensors the number of patterns increase by a factor of n!.

In order avoid this undermining of the collected data, we have designed a solution
called sensor zones. When using sensor zones we de�ne each area in the house
as a zone that can be covered by one or more sensors. If a zone is only covered
by a single sensor the system will handle it the same way it handles sensors. If
a zone is covered by more than one sensor the system creates a virtual sensor,
that acts as the combination of these two sensors. For a series of sensor events
to be classi�ed as a zone event, they will have to trigger with a very short
time interval between them. The e�ect of this system is that if multiple sensors
trigger within a very short time interval, the system will see them as a single
event, no matter the order they triggered in.

Take (Figure 3.1) as an example, three sensors (1, 2 and 3) with overlap, and
three paths the user could take (A, B and C). The paths B and C should only
be observed as zone events by the system. Path A should be detected as the
event pattern [1, zone 1 & 2, 2, zone 2 & 3, 3].

Figure 3.1: Sensors with overlapping zones

For path c without zone events, it's uncertain if sensor 2 or 3 would detect the
user �rst, and these would be considered distinct event patterns by the system.

3.2 The passive learning stage 29

With zone detection, the pattern will look the same to the system no matter
which sensor �red �rst, and as a result the system would be able to learn the
intended behavior for path c faster.

Zones allow the system to determine the user's position more precisely, and to
learn faster by removing ambiguity in some cases.

An other bene�t of having sensor zones, is that it e�ectively increases the amount
of sensors in the house. This results in a much better precision in tracking the
user through the house.

Sensor zones is designed to be a supplement to the basic system. This means that
the actual event pattern of events generated by the motion sensors, will always
be trained. When the system is running it will check against both the raw sensor
pattern, and the pattern with zones activated. This way the incorporation of
sensor zones will not corrupt the collected data.

3.2.5 Evaluating the passive learning stage

After the �rst development cycle we were able to evaluate on the performance of
the system. In the chapter �Evaluation� we will describe our �ndings in detail,
so for now we will simply analyze the problems we were able to identify as a
result of this evaluation.

We collected data over a two week period, and ran our data analysis on this
collected data. This resulted in the decision table, which we then used as decision
scheme while running the system in the simulator. The initial results were as
expected somewhat hard to navigate, but by adjusting the system variables
described in the con�g section, we were able to stabilize the system to a point
where we could evaluate its performance. The realization we made was that the
amount of data we had collected was far from enough. When the pattern length
were set above 3, the number of times each pattern was observed was drastically
decreased. We also realized that the system had a high probability of learning
incorrect behavior. This problem will become negligible as the amount of data
increases, but at the same time it is not practical to have a training period that
is too long. Because of this we decided to implement active learning, as the next
step for the system.

An other problem we encountered was that the system would not necessarily
identify all of the event patterns that were supposed to result in the system
turning o� the light. Because of this we decided to implement a timer function,
that can act as a backup, if the system does not recognize an �o�� event pattern.

30 Design

These two initiatives will be discussed in the next section.

3.3 The active learning stage

A key element of the system, is the transition from the passive learning stage
to the active learning stage.

The system should start attempting to control the home, once it is con�dent
enough, to act upon the decision schemes it has learned. But the system needs
to have some quanti�able metric to determine its con�dence, before it start to
take over control of the home. There are two main metrics, we believe should
determine when the system is con�dent enough:

1. The probability in the decision scheme must be above a certain threshold.
P (switchi|patternj) > ϕ

2. The speci�c patternj must have occurred at least a certain number of
times.

Exactly what the threshold should be, must be determined through experimen-
tation, once the system is fully implemented in a physical environment. The
second rule is to make sure, the system does not start acting based on patterns
only observed a few times.

3.3.1 Switch Timeout

We want to create a system where, no matter what happens, the light is eventu-
ally turned o�. We accomplish this by creating a timer for each switch that will
turn it o� after a set amount of time. This acts as a backup system, if the main
system fails to recognize an o� pattern. The idea of the timer is an extension of
the timer used in the silvan system, described in the �Analysis� chapter. When
a switch is turned on, a timer starts, that will eventually turn the switch o�.
We want the user to be able to extend the timeout period by activating motion
sensors, in order to prevent the system from turning o� the light, when he is
still in the room. Since the system does not have any previous knowledge of
which sensors and switches are in the same room, we need to establish these
connections.

3.3 The active learning stage 31

This is the purpose of the correlation table. With this table, the system attempts
to identify links between sensors and switches. When a user turns a switch on,
it we can safely assume that light is turned o� where the user intends to be in
the immediate future. So it is possible to get an idea of which sensors are near
a switch, by looking at what sensor events occur shortly after a switch is turned
on.

When �icking a switch o�, the user may be leaving the room, or just have
entered the room to turn the switch o�. Each of the two cases are just as likely
as the other, but the sensor events in the interval leaving up to the o� event
is completely opposite. Therefore this pattern is less suited for training the
correlation system.

Based on the statistical data it is possible to generate a table, containing the
probability that a speci�c sensor is triggered shortly after a switch is turned on.
This gives us an idea of which sensors are in the same room as a switch. This is
based on the same idea as the decision table, but we examine the sensor events
that follows a switch event instead of those leading up to it. Also this table does
not use sensor patterns, but only a single sensor event is correlated to a switch
event.

P (sensori|switchj ,∆t) =

∑
1sensori(switchi,∆t)∑

switchj events

The identity function 1sensori(switchi,∆t) is 1 if the sensor is triggered within
∆t after switchj is triggered, and i therefor not counted twice, if the sensor
triggers multiple times after the same switch event.

So to reiterate P (sensori|switchj ,∆t) is the probability that sensori) �res
within ∆t after switchj �res.

Table 3.1: Correlation table

sensor 1 (se1) sensor 2 (se1) . . . sensor n (sen)

switch 1 (sw1) P (se1|sw1,∆t) P (se2|sw1,∆t) . . . P (sen|sw1,∆t)
switch 2 (sw2) P (se1|sw2,∆t) P (se2|sw2,∆t) . . . P (sen|sw2,∆t)

...
...

...
. . .

...
switch m (swm) P (se1|swm,∆t) P (se2|swm,∆t) . . . P (sen|swm,∆t)

Using this table we can then identify sensors and switches as being in the same
room, if they are above a certain threshold.

32 Design

So far the correlation table is till based on passive learning. By incorporating
active learning methods, we can greatly increase the precision of the probabilities
the the correlation table.

The active learning of the system is done by the system performing a switch
action, and the user reacting to this action. There are two criteria that must be
met for this interaction to occur.

First of all the action performed by the system must be incorrect, in order for
the user to react to it. If the system does what the user wants the user will not
interact with the switch, and the system will not receive feedback.

The second condition is that this will only work when the system turns the light
o�. If the system turns the light o� at an incorrect time, it means that the
user will be present in the room where the light is turned o�. It is reasonable
to assume the user will react by turning the lights back on, thus providing
the system with the needed feedback. If the system turns on the lights at an
incorrect time, it means that the user is not present in the room where the light
is turned on. The system will there for not receive any feedback from this action,
whether its correct or not. While it is possible to imagine situations, where the
user will want the lights turned on in a room, where he is not present, and vice
versa, the system is based on probabilities, and these situations will not occur
often enough to have a noticeable a�ect on these values.

In the correlation table the active learning starts when the system turns o� a
switch based on a timeout event. If the user reacts by turning the lights back
on, the system will use this as training data. In this scenario the system will
train the correlation between the �rst sensor triggered after the system turned
o� the light, since this will be the sensor closest to the user location when the
light was turned o�.

The concept of timers was presented in the �Analysis� chapter when describing
what we call the silvan system. As described then there are some problems
that arise when choosing this solution.In order to address these problems, we
want to be able to adjust the individual timers, based on which motion sensors
are triggered. By using the correlation table, we can calculate timeout periods
based on the correlation value between a switch and a motion sensor. When the
user triggers a motion sensor, the system performs a lookup in the correlation
table, to see if there are any switches that meets the criteria of being correlated
to the sensor. If any are found, and if these are on, the timer of this switch is
then set to a value calculated based on the sensor. The default value is set as

15minutes ∗ probabilityofsensorswitchcorrelation

3.4 Controlling the house 33

The system checks the correlation value between the sensor and switch, and
multiplies by 15 minutes. The optimal value of this constant should be the
result of experimentation on the �nished system. We have arbitrarily chosen to
use 15 minutes, until such experiments can be made.

By using a combination of passive and active learning to train the systems cor-
relation table, we are able to create an enhanced timeout system, that calculates
its timeout intervals based on input generated by the user. This ensures a sys-
tem where we can minimize the timeout period, to reduces power consumption,
and at the same time the system will automatically adjust this interval in areas
where the user is likely to remain stationary for extended periods of time.

3.4 Controlling the house

Now that we have created a decision scheme based on the decision table, and
correlation table, the �nal task is to control the house, based on this decision
scheme. The amount of work put into the data analysis, greatly simpli�es
controlling the system.

The system constantly keeps track of the current event pattern. When a new
event occurs it is added to the event pattern, assuming that the time since the
last event in the pattern is not greater than the pattern interval.

Every time the system receives a sensor event,it will check the decision table to
see if the current event patterns requires an action to be made. This is done
iterating through all the switches in the system. One at a time the switches are
added to the event list, and the system performs a lookup in the decision table.
If the pattern exists in the table, and the value returned is above the probability
threshold a switch action is made. These lookups are performed based on the
current state of the switch the system is examining. If the switch is turned on,
the lookup is performed in the �o�� table, and if the switch is o�, the lookup is
performed in the �on� table. If the system receives a switch event, it resets the
event pattern.

The system is set to re analyze its collected data on a daily basis. This is a
scheduled event set to happen when the user would normally be a sleep. At
this point the decision table, and correlation table is recalculated, taking in to
account the data collected the previous day.

34 Design

Chapter 4

Implementation

�If it compiles, it is good; if it boots up, it is perfect.� � Linus Torvalds

In this section we will discuss transition from the software blueprint described
in the �Design� chapter, to functional code. We will discuss the product in its
current state, and will in this chapter not elaborate on the development process
that lead to its current state, since this has been thoroughly documented in the
previous chapters.

As stated in the introduction, the purpose of this thesis is to research the possi-
bilities of incorporating machine learning in smart environments, and is designed
to be a proof of concept study. Because the focus of the thesis is not on de-
veloping a fully functional home control system, this chapter will not include
every aspect of the implementation process but will instead highlight some of
the major choices we were facing, when implementing the system.

First we will describe the physical system we used to collect real life data. This
includes a brief introduction to the hardware, as well as the database setup we
used for storing the collected data.

We will then discuss the overall structure of the software system, and describe
how each subject discussed in the �Design� chapter are represented in the code.

36 Implementation

After presenting the general structure of the system, we will introduce the sim-
ulator we used to test our system, and describe the integration between the
two.

Finally we will discuss the implementation of each of the elements discussed in
the �Design� Chapter.

4.1 The physical setup

Since we needed real life data to train the system, the �rst task of the project
was to create a physical setup to start collecting data. We installed wireless
switches and PIR sensors1 in David's appartment (Figure 5.2). The placebo
switches were placed next to the normal switches controlling the light for each
room, in all cases being the switch closest to the entrance. We installed a total
of 10 motion sensors and 5 switches throughout the apartment, that collected
data non stop for a period of two weeks.

The sensor setup consisted of three sensors in the living room, two sensors in
the hallway, kitchen and bedroom, and one in the bathroom. When placing the
sensors, we tried to provide as close to full coverage as possible, with special
emphasis on making sure all the doorways were covered.

The wireless nodes we have available communicate using the Zensys Z-Wave
protocol. This protocol was chosen because we already prior to this project had
designed and implemented a z-wave API[�api] in java. This greatly reduced the
time and e�ort needed to setup and implement the data collection system.

1Passive infrared sensors. [�api]: Application programmers interface

4.1 The physical setup 37

Figure 4.1: Map of the testing environment with sensor and switch locations

38 Implementation

4.1 The physical setup 39

We setup a mini PC with a Z-Wave serial device, and con�gured all PIR sensor
and switches to send noti�cations to the PC, when they where triggered. The
PC ran a Z-Wave API, which we added a listener to, so that sensor and switch
event was logged to an SQL database.

40 Implementation

We kept the database vary simple, and only logged the type of event, along with
the time the event occurred. Below is a representation of the database setup.

Table 4.1: Database table for sensor events

sensor_events

id Integer
timestamp Timestamp

Table 4.2: Database table for switch events

switch_events

id Integer
timestamp Timestamp
status Boolean

4.2 General system structure

The system is divided into 5 packages.

• The �smarthouse� contains SmartHouse.java which is the class in charge
of controlling the house. This is the central class of the system.

• The �con�g� contains Con�g.java which loads the system con�gurations
from a "�.settings� �le.

• The �core� package contains DecisionMatrix.java which is the class in
charge of generating the decision tables �on� and �o��. This package also
contains the class Correlation.java which generates the correlation table.

• The �event� package contains the classes representing the various types
of events in the system, along with the class EventList.java, which is the
implementation of the event pattern.

• The �timer� package contains the classes dedicated to handling timeout
events, and running timers for the individual switches.

We have divided the class diagram in to three separate diagrams for simplicity:

4.2 General system structure 41

Figure 4.2: The class diagram of the con�g class

Figure 4.3: Class diagram for the events package

42 Implementation

Figure 4.4: Class diagram for the smarthouse, core and timer packages

4.3 Simulator /AI interface

In order to e�ectively evaluate the system we use a smart house simulator, which
was developed by a team of DTU students as part of a (12, bachelor thesis). We
extended the simulator with an AI module, implementing the features discussed
in this report. The simulator is implemented in scala, but we chose to implement
the AI module in Java. Since both languages compiles to Java byte code Scala
and Java interfaces very seamlessly, and Scala code can directly invoke Java
methods and vice versa. We chose to implement the AI in Java, to work in a
language we're well-versed in, to increase our productivity and quality of the
code.

With the simulator we are able the test, and evaluate, the system in the di�erent
stages of development. The system has all the data gathered from the passive
learning stage, and we are able to see how the system would behave in the
beginning of the active learning stage. As stated in the analysis, simulated
user data will never be as good as actual user data, and we have therefore not
trained the system based on data generated in the simulator. The advantage of
the simulator is that we can see if the system is acting and reacting as expected
in the active learning stage.

We can also compare the output of the simulator to the probabilities calculated
in the decision table and correlation table.

4.4 Con�guration 43

4.4 Con�guration

The Con�g.java class in created as a simple static class, that uses a �le reader
to load a con�g �le stored on the hard drive. The con�g class initially holds the
default values for the system, which are overwritten with the values from the
con�g �le. If no con�g �le is present on the system, the con�g class generates a
�le based on the default values. After loading the con�g �le, the other classes
in the system, can then access the static �elds of the class. These values remain
constant after initially loading the con�g �le.

A typical con�g �le could look like this:

#automatically generated preferences file

#delete to return to default settings

pattern_interval 3000

pattern_length 2

probability_threshold 0.01

use_zones true

zone_interval 500

correlation_interval 7000

4.5 Event patterns

To make lookups based on the observed event pattern, each new sensor event
is matched to see if it is part of a pattern. As each sensor and switch event is
received by the system, a list of the most recent event pattern is maintained in
an EventList. EventList is basically a queue of sensor events. It is implemented
as a FIFO list with a max length matching the pattern length property. If the
list is at max capacity when a new event is added, the �rst item in the list is
subsequently dequeued. The pattern interval rule is maintained by looking that
last event in the queue, when a new event is added. If the last event is more
than pattern interval old compared to the new event, the queue is cleared before
the new event is queued.

EventList add(event):

queue events

if events.tail.time + pattern_interval < event.time

do

events.clear

44 Implementation

fi

events.add(event)

If zone detection is enabled, EventList �rst checks if the di�erence in the times-
tamp between the last event and current event is smaller than the zone interval.
If a zone is detected, the last event in the list is replaced with a zone event.

The EventList is used to make lookups in the decision matrix, which takes a
�xed length array of sensor IDs as key. When looking up patterns shorter than
the con�gured pattern length, the pattern is pre�xed with the id �1, to maintain
the �xed length.

4.5.1 Zone events

Zone events are represented as en extension of sensor events, with a list o� all
the sensors that are part of the zone event. In order to look up zone events in
the decision matrix, each zone also has a single integer id representation. The
id is calculated from the sorted list sensor.

getID()

sum = 0

for sensor in zone

sum = sum*256 + sensor.id

return sum

For zone events based on at most 4 sensors, with id values less than 256, this
function generates unique, comparable ids.

4.6 Decision Matrix and KeyList

The Decision Matrix is the class that holds the decision table. The class consists
of the two matrices �on� and �o�� which together forms the decision table.
Instead of implementing the matrices as multidimensional arrays, we have chosen
to use hash-maps were the key is an array with a size equal to the pattern length.
There are two main advantages to using hash maps instead of multidimensional
arrays. The �rst advantage of this is that the lookup time is much faster in a
hash map, than an n-dimensional array. This is especially true when the amount

4.6 Decision Matrix and KeyList 45

of data in the system increases, and when increasing the number of dimension,
i.e. increasing the pattern length. Secondly the multidimensional array would
be much larger, since it would have to allocate space for every possible pattern
instead of just the ones extrapolated from the collected data.

Using an array as a key for the hash map does however create a few problems.
The main issue is that the hash function for arrays is inherited from the object
class. This means that two arrays containing the same elements will produce
di�erent hash codes. In order for our map to function properly, identical arrays
must produce identical hash codes. The same problem occurs when comparing
arrays using the equals() method.

We addressed this problem by implementing a KeyList class with a custom
designed hashCode() and equals() method. The equals method was done by in-
dividually comparing each element in the list, and returning true, if the pairwise
comparisons all succeeded. The hasCode() method is based on the hashCode
method used in the String object in java. The method iterated through each ele-
ment in the list, and for each value the sum of the previous values are multiplied
by 31, and the current value is added. This ensures a very low collision rate
with the amount of sensor and switches that are likely to be used in a private
home.

Besides the increased speed when performing lookup operations, the main ad-
vantage of using Hash maps is that it greatly simpli�es extracting the keylist
from a speci�c value. This is necessary when we divide the values in the de-
cision maps �on� and�o�� with the values in the denominator map. This is
done by iterating through the decision maps, and for each value we extract
the key, remove the last element, the switch event, and converts the resulting
EventList into a KeyList to be used in the denominator map. When using Hash
Maps this process is simply done using the keySet() method. If instead we had
used multidimensional arrays, we would have to iterate through all possible key
combinations in an array of n dimensions.

The Hash maps are generated in the method generateBasicMatrices(). This
function �rst sends a query to the database returning all existing events. As the
system scales, this will be have to be changed since collecting all the data using
a single query could be a problem especially on a system with limited memory.
During the course of the project the size of the database never exceeded 1.3 MB,
so it will require a substantial amount of data to cause problems for an average
laptop.

Once the data is returned from the database the system iterates through the
resultset, and inserts the data into the hash maps as described in the design
chapter. Finally the values in the maps �on� and �o�� is divided by the corre-

46 Implementation

sponding values in the denominator map.

If the use_zones option is enabled in the con�g �le, the Decision matrix will
repeat the process above using an EventList with zones enabled. This is done in
the method generateZoneMatrices(). This time how ever any pattern not con-
taining a zone event will not be added to the decision maps. This method uses
temporary decision maps called �zoneOn� and �zoneO��. After the probability
values in these maps have been properly calculated, the content of these maps
are appended to the original decision maps �on� and �o��.

4.7 Correlation table

The correlation table is based on both statistical data from the passive learning
stage, as well as corrections and punishments from the active learning stage.
First the statistical correlation is calculated, and then the corrections are added
on top of that.

4.7.1 Correlation statistical generation

Correlation is the system's estimate of the probability of a switch and sensor
being in the same room. The system looks at the time interval after a switch
is triggered. The sensors triggered in this interval, are de�ned as having a
correlation to the switch. Each sensor is counted only once per switch event.

The correlation is the probability that sensori is triggered at most ∆t after
switchj was turned on.

4.7.2 Correlation correction

The system is able to adjust correlations, based on active learning. When a
switch is turned on, a timer is started for that switch. If a correlated sen-
sor is triggered, the timeout is extended. The duration is determined by the
correlation between the sensor and the switch, higher correlation gives longer
timeouts.

If the switch is turned o� before the timeout is reached, the timer is stopped and
nothing further happens. If the timer runs out a timeout event is triggered, and

4.8 Timers and timeout 47

the light is turned o�. A new timer is started when a switch is autonomously
turned o�, to verify that no manual overrides occur. If a manual override occurs
(e.g. the user turns the switch on again, while the timer is running), the system is
�punished�. The system increases the timeout time, by increasing the correlation
between the switch and the �rst sensor triggered after the switch was turned
o�. If no manual override occurs, the system was correct in turning o� the light,
and lowers the timeout time, by reducing the correlation between switch and
the last sensor triggered, before the switch was turned o�.

These correlation corrections are stored in a database. The correlations used for
the timeout is based on both the statistical correlation, and the correlation cor-
rections. The correlation for each switch-sensor pair is the statistical probability
plus any correlation corrections.

The correlation corrections increase or reduce the correlation by 10 percent
points, each time is punished or correct. The system doesn't have a limit to
correlation corrections, so correlations can be higher than 100%. This gives the
system the ability to get timeouts longer than the default timeout.

Table 4.3: Database table for correlation corrections

correlation_con�rmation

switch Integer
sensor Integer
correlation Float

4.8 Timers and timeout

Timers are implemented in the Timer and Sleeper class. Sleeper is a fairly
simple class. It starts a new thread, sleeps for a given time, then �res a timeout
event to a given timeout listener. Timer simply holds a map, where each switch
can set a timeout. Timer creates a sleeper object, and puts in the map. The
sleepers can then easily be monitored and interrupted if needed.

To received the timeout events the SmartHouse class implements TimeoutLis-
tener.

48 Implementation

Chapter 5

Evaluation

If you torture data long enough, it will tell you what you want -Ronald Coase

In this chapter we will evaluate the system that we have developed, and the
data the system has been able to produce. As de�ned in the introduction the
purpose of the thesis is to investigate the possibilities of incorporating machine
learning in home control systems. In this chapter we will discuss the results of
this investigation, and and examine the results we have produced during the
project. Finally we will discuss what conclusion that can be made based on
these results.

Before any evaluation is made, we must however �rst describe our strategy for
testing our software. Since this is what allows us to argue for the correctness of
the produced results.

The main focus in our software testing strategy have been to ensure that the
parts of the software that is responsible for producing that data we evaluate on,
are functioning as intended. For this purpose we have used a combination of
unit testing, and integration testing.

50 Evaluation

5.1 Software testing

As mentioned above the software testing has been divided into two separate
types of tests.

5.1.1 Unit testing

We have used JUnit tests to test the implementation of the relative simple
classes Event, EventList, and KeyList. The testing �les have been included in
the appendix. All these �les produced the expected output.

5.1.2 Integration testing

The more complex classes DecisionMatrix and Correlation are tested using in-
tegration testing, since they are very tightly coupled to EventList and KeyList.
The integration testing, is based on simulated data, instead of the collected
data, in order to have veri�able outputs. The simulated setup consists of 6 sen-
sors (1,2,3,7,8,9) and 3 switches (4,5,6). A simulated user takes various paths to
generate a representative sample of event patterns. These test are made using
the smart house simulator.

Table 5.1: Event patterns used for black box testing

Test case Description Event sequence

1 Path A, switch 4 on, sensor 9 [1, 1&2, 2&3, 3, 4 on, 9]
2 Path B then turns switch 5 o� [1&2, 5 o�]
3 Path B without using any switches [1&2]
4 Path C, switch 6 on, sensor 7 [2&3, 6 on, 7]
5 Path C without using any switches [2&3]
6 Path C, switch 6 on, sensor 8 [2&3, 6 on, 8]

Based on these simple event patterns, an expected output can be determined
for both the DecisionMatrix and Correlation. The expected output for the
DecisionMatrix is based on the number of times each event pattern has been
seen, and the number of times they have led to a switch event.

Testing of the DecisionMatrix revealed what at �rst looked like an error. The
probability for Path C without zones had a probability of 100%, but with zones
had the expected probability of 67%. Investigation revealed the cause was test

5.2 Evaluation based on passive learning data 51

Table 5.2: DecisionMatrix's expected output

Description Sensor pattern Switch State Probability

without zone events
Path A [1, 1, 2, 2, 3] 4 on 1
Path B [1, 2] 5 o� 0.5
Path C [2, 3] 6 on 0.67

with zone events
Path A [1, 1&2, 2&3] 4 on 1
Path B [1, 2] 5 o� 0.5
Path C [2, 3] 6 on 0.67

case 5, where sensor 2 and 3 was triggered in the opposite order as test case
4 and 6. So while this error at �rst glance looked like a bug, is actually a
feature, and one of the very reasons zone events were implemented. All other
probabilities in the DecisionMatrix was as expected.

For the correlation table, the output is determined only by test cases where
switches are turned on (test case 1, 4 and 6). The expected output is seen in
the table below.

Table 5.3: Correlation table's expected output

switches sensors
7 8 9

4 0 0 1
6 0.5 0.5 0

The correlation table produced the expected results.

5.2 Evaluation based on passive learning data

In this section we are going to evaluate how much the system have been able
to learn, based on the data collected from the passive learning stage. In total
45.628 sensor events and 346 switch events was recorded. This is a very high
sensor event to switch event ration, slightly above 130 sensor events per switch
event.

Of the 346 switch events, 194 was ON events and 152 was OFF events. If all
switch event in a continuous period was recorded, the discrepancy between ON

52 Evaluation

Figure 5.1: Overview of the simple setup used for black box testing the Deci-
sionMatrix and Correlation

5.2 Evaluation based on passive learning data 53

Figure 5.2: Map of the testing environment with sensor and switch locations

54 Evaluation

and OFF events would be at most the number of actual switches. This could be
due to lost Z-Wave messages or users forgetting to press the placebo switches.
The system is not dependent on the correct ordering of switch events, i.e. that
ON events are eventually always followed by an OFF event, and vice versa.

The discrepancy between ON and OFF events, are an indicator that data have
been lost, the system should still be able to learn based on the user data. As-
suming only switch events are lost, this will impact the system by having an
increased sensor to switch event ratio, thus lowering the estimated probabilities
in the decision matrix.

The Correlation table is not based on the entire data set of sensor events, but
merely the interval after each On event. Therefor the sensor to switch event
ratio for the Correlation table, is not widely a�ected by missing switch events.

5.2.1 Decision matrix

In order to better evaluate the Decision Matrix, it has been run on the training
data several times, with di�erent pattern lengths, with and without zone detec-
tion. The evaluation will look upon the advantages and disadvantages of the
di�erent con�gurations, and evaluate on how much the system is able to learn
from the collected data.

Table 5.4: Statistics about the Decision Matrix, using di�erent con�gurations

Settings Unique observed patterns
Pattern length Zones enabled Movement patterns On patterns O� patterns

2 No 111 90 78
2 Yes 1.168 149 121
3 No 910 142 116
3 Yes 3.870 227 173
4 No 3.614 169 121
7 Yes 12.967 322 215

With zones enabled, the system looks at the event patterns leading up to each
switch event, with and without zone detection. Detecting up to two switch
patterns for every switch event, in some con�gurations there are more total
switch patterns detected than actual switch events. A complete dump of all
patterns detected by the Decision Matrix for each con�guration is included in
the appendix.

With a 130 to 1 sensor to switch event ratio, the probabilities for each event

5.2 Evaluation based on passive learning data 55

pattern leading to a switch event is very low. This is not necessarily a problem,
it may just mean the probability threshold, for the system, needs to be equally
low.

A lot of the ON and OFF patterns detected by the Decision Matrix have only
been observed once. We're going to set the con�dence threshold so that a pattern
must have lead to an On or O� event at least 5 times, and then analyze the
correctness of the patterns observed

With the expectancy that the probabilities are going to be relatively low, for
each switch pattern, the evaluation of Decision Matrix will look at plausibility
of the patterns detected, more than how high or low the probability should
be. Does the detected patterns make sense from a user point of view? The
expected result is to detect plausible user patterns, when users press switches
as they're entering or leaving each room. The reverse of that expectancy is
the system shouldn't detect implausible patterns, where motion events lead to
switch events in non-adjacent rooms.

Table 5.5: Decision matrix, patterns detected at least 5 times, pattern length
2, without zone detection

Pattern Probability Description

20 21 13 on 0.57% Moving in the hallway, and turning on
the light in the Living room

27 28 18 on 0.75% Moving in the bedroom, and turning on
the light

20 20 19 on 2.38% Moving in the hallway and turning on
the light in the restroom

20 21 19 on 2.17%
21 20 19 on 1.70%
21 25 17 on 3.26% Moving from the hallway into the

kitchen and turning on the light
20 25 17 on 5.76%
20 20 19 o� 1.49% Moving in the hallway turning o� the

light in the restroom
21 20 19 o� 1.2%
20 21 19 o� 1.14%

With pattern length two, most of the patterns above the con�dence limit, only
contain sensor event from a single room (from here on referred to as single room
patterns). In some cases there are identical patterns for turning a switch on and
o�; [20, 20],[20,21],[21,20] all both turn the switch to the rest room on and o�.
This is partially because the switch for the restroom is outside the restroom,
so the light is turned on before the user opens the door and is detected by the

56 Evaluation

motion sensor inside. With the probabilities being as low as they are, the system
cannot meaningfully determine if the light should be turned on or o�. If the
system were to act based on these con�icting patterns, it would mostly likely
turn the lights on and o� constantly, without there being need for it. Since the
con�icting pattern are for an adjacent room, where the door is likely closed, the
user wouldn't necessarily be aware of it.

There are two pattern where sensor events are from di�erent room (from here
on referred to as multi room patterns): [20, 25 -> 17 on] and [21, 25 -> 17
on]. These two patterns occur when the user moves from the hallway and into
the kitchen, and then turns on the light in the kitchen. These two multi room
patterns, not only sound reasonable, but also have the highest probabilities of
all the patterns above the con�dence limit.

With pattern length two, and zone detection enabled, no event patterns with
zones (from here on referred to as zone patterns) are seen leading to switch events
5 times or more. So for pattern length two, adding zones detection doesn't give
any patterns above the con�dence limit, for our data set. While zone events
can reduce the ambiguity and allow the system to learn faster, physical motion
sensors tends to have a cooldown. Cooldown means it takes some time, after the
sensor has detected motion, before it will detect motion again. A result of this
is that zone events are less likely to be detected. Two sensors might overlap, but
if time between the two sensors are triggered are longer than the zone detection
interval. The cooldown will cause the two sensors to keep �ring sensor events
too far apart to be detected as zone events. This problem should be solved by
choosing motion sensors with a more adjustable cooldown.

Table 5.6: Decision matrix, patterns detected at least 5 times, pattern length
3, without zone detection

Pattern Probability Description

27 27 28 18 on 1.86% Moving in the bedroom, and turning on
the light

20 21 20 19 on 2.35% Moving in the hallway, and turning on
the light in the restroom

21 20 21 19 on 2.03%
29 21 20 19 o� 10.2% Moving from the restroom to the

hallway, turning o� the light in the
restroom

21 20 21 19 o� 2.36% Moving in the hallway, turning o� the
light in the restroom

When the pattern length is increased to three, fewer distinct switch patterns
above the con�dence limit are detected. Just as when the pattern length was

5.2 Evaluation based on passive learning data 57

two, the majority of the patterns are single room patterns. There is one multi
room pattern: [29, 21, 10 -> 19 o�] where the user leaves the restroom, enters the
hallway and turns o� the light to the restroom. Like the other two multi room
patterns, this pattern sounds reasonable, and have a relatively high probability
of just over 10%.

Again adding zone detection doesn't produce any zone patterns above the con-
�dence threshold.

Table 5.7: Decision matrix, patterns detected at least 3 times, pattern length
4, without zone detection

Pattern Probability Description

28 27 21 20 19 on 8.33% Moving from the bedroom to the
hallway, turning on the light in the
restroom

29 29 21 20 19 o� 11.11% Moving from the restroom the the
hallway, turning o� the light in the
restroom

�1 21 20 21 19 o� 9.38% Moving in the hallway, turning o� the
light in the restroom

When increasing the pattern length to 4, no patterns were above the con�dence
limit of 5, so these patterns have only been see 3 or more times. This matrix
has an interesting multi room pattern [28, 27, 21, 20 -> 19 on], where the user
moves from the bedroom to the hallway, and then turn on the light to the
restroom. While a plausible pattern, it isn't a pattern that can be guaranteed
to always happen. This is because the switch for the restroom is located outside
the restroom, so users tend to activate the switch before being detected by the
sensor on the other side of the door.

The multi room patterns detected by the system, all seem like plausible behavior,
and these pattens have some of the highest probabilities, of the patterns seen at
least 5 times. Although three con�rmed multi room patterns aren't a lot. With
more learning data, more patterns would be above the con�dence limit. The
data suggests, that the plausible patterns that system should learn to act on
stand out with high probabilities. So with more data, more plausible patterns
should appear which stand out by having high probabilities.

The Decision Matrix learned di�erent patterns, when the pattern length was
changed. With pattern length 2, the most distinct patterns above the con�dence
limit was detected. The number of con�dently detected patterns decreased as
the pattern length increased. This mean the system is able to learn faster with
a lower pattern length. The patterns learned from pattern length 2 and 3 both

58 Evaluation

had merit, so while a lower pattern length cause the system to learn faster,
longer patterns enables the system to better take into account where the user is
coming from. For instance the pattern [29, 21, 20, 19 o�] where the system turns
o� the light in the restroom, when the user leaves is too long to be detected
with a pattern length of 2.

5.2.2 Correlation

In this section we are going to evaluate how well correlation, based on the
generated user data, matches to the actual setup. The system's ability to get
accurate estimates of which sensors and switches are in the same room. We are
also going to evaluate how well the correlation based timeout would work, with
or without correlation corrections. Prior to looking at the actual data, we want
to state some reasonable goals we want the system to achieve for the correlation
probabilities:

1. A sensor should have the highest correlation to the switch in the room it
is in.

2. Some correlation threshold should exist, so that sensors and switches in
the same room are above the threshold, and those not in the same room
are below the threshold.

Table 5.8: Correlation table, based on statistical data. > 40% in bold, 40�20%
in italic.

Switches Sensors
20 21 22 23 24 25 26 27 28 29
Hallway Living room Kitchen Bedroom WC

4 Hallway 0.4 0.67 0 0.2 0.13 0.07 0 0 0.07 0
13 Living

room
0.35 0.23 0.12 0.27 0.42 0.04 0.04 0.08 0.08 0

17 Kitchen 0.22 0.28 0 0.03 0.17 0.39 0.58 0.14 0.03 0.03
18 Bedroom 0.1 0.13 0 0 0.03 0.03 0 0.57 0.6 0.03
19 WC 0.29 0.29 0.06 0.09 0.08 0.06 0 0.07 0.03 0.75

The correlation table (Table 5.8) is based on collected data from the testing en-
vironment. The �rst criteria holds, that all sensors have the highest correlation
with the switch in the room they are in.

The second criteria does not hold for all correlations. Most correlation proba-
bility for sensors and switches in the same room are above 40%. All correlations

5.2 Evaluation based on passive learning data 59

for switches and sensors not in the same room are below 40%. Although three
sensors have correlations lower than 40% to the switch in the room they are in,
and one of them as low as 12%. In the living room, two sensors not only have
correlations below 40%, but correlations below those of sensors in the adjacent
hallway.

As can be seen in the overview of the apartment (Figure 5.2), the sensors 22 and
25 are located in the far end of the rooms from the switch and doorway. The
calculated correlations are based on the time interval after a switch is turned
on, so it makes sense that sensors being relatively far away from the switches
ends up with a lower correlation.

Sensor 23 is positioned to monitor the sofa in front of the TV, and the data
suggest that it only detect motion if the user goes to the sofa immediately after
entering the room. So not all sensors necessarily trigger in a room, depending
on what the user decides to do in the room.

So in this case, the correlation still gives an excellent estimate of which switches
and sensors are in the same room, by looking switch each sensor has the highest
correlation probability too.

One thing to note is, these are the probabilities based solely on the statistical
data, and that correlation corretions would be added onto this schema. So it is
not a perfect re�ect of which sensors are in the same room each switch, on it is
own. But it does gives a good approximation.

5.2.3 Correlation based timeout

The implemented functionality of the correlation table, is to determine the time-
out for each switch. How well is the correlation table able to keep the light on
where it's needed. Di�erent areas should have di�erent timeouts, but most im-
portant aspect, is for the system to have long timeouts in areas where the user
is likely to be still for extended periods of time, while still wanting the light to
remain on. The most obvious area would be the sofa, where a user is likely to
be for hours. Based on passive learning data, the system would have one of the
lowest timeouts when the user is detected in the sofa, where it should be the
highest.

However with active learning the correlation correction comes into e�ect. Every
time the system incorrectly turns o� the light, and the user turns it on again, the
system is punished and increases the correlation, and by extension the timeout.
As a result of this, the system will gradually increase the timeout until it no

60 Evaluation

longer turns o� the light, while the user is watching TV.

Power savings

The proposition for this project, was its ability to reduce energy consumption.
One thing is learning power reducing behavior, another how well this learned
behavior is able to reduce power consumption. This section is going to evaluate
how well the system is able to turn the light o� when it is not needed.

If the system was fully functional and installed, the ideal way to measure the
energy savings would be to simply look at how much power the home consumes
when the system is running, and how much it consumed before the system was
installed. Since the system have not been installed in a home, where it is able
to control the switches, this is not a possibility.

Since we are not able to evaluate the system based on its actual performance,
due to the lack of a complete installation, we will have to analyze the collected
data, and create estimates of how much energy the system is capable of saving.

A suitable room to analyze for energy savings is the living room. This is a room
where most people do not turn o� the light until they go to bed at night. This
a place where our system would be much more vigorous about controlling the
light. Therefore we are going to analyze how well the system would be able to
learn, when to turn the light in the living room on and o�, and how much power
is saved by comparing automated light switching to the actual switch data.
Unfortunately not all switch events have been logged, as there is a discrepancy
of 40 more ON events than OFF events. So care has to be taken when analyzing
how long the light have been on based on the switch events. We have looked at
the data and chosen periods where the switch patterns look plausible.

First we examine who well the system have learned the patterns related to
turning on and o� the light, when the user enters or leaves the living room.
(4/716) key: 20 23 13 on value: 0.005586592 (3/530) key: 20 24 13 on value:
0.0056603774 (2/593) key: 24 20 13 o� value: 0.0033726813 (2/577) key: 23 20
13 o� value: 0.0034662045

These are the patterns the system have detected. None of the patterns are
above the con�dence limit, but they have been detected more than once, so
it is plausible that more user data would get them above the con�dence limit.
The probabilities are very low, but this is natural, for a room such as the living
room, where lights are kept on most of the time. For the purpose of evaluating
the potential energy saving, lets assume that the system has learned the four
decision patterns listed above.

5.2 Evaluation based on passive learning data 61

First attempt of analyzing the data this way revealed that the system was some
times not able to detect the user reentering the living room. This would result
in the system leaving the user in darkness for hours. This was due to the pattern
being interrupted by other sensors. To �x this problem, the simulated user will
turn on the light upon entering the living room, even if the ON pattern is not
registered by the system.

Table 5.9: Power saving when running the system. The duration is how long
the light was on for without the system, and the power saving how
much time light was o� with the system running

Date Duration Power saving

Dec 18th 11 hours 1.5 hours
Dec 23rd 15 hours 1 hour

For most other days the switch data was to unreliable to be used for evaluation.
The data does not have any o� events for the living room from December 26th
to the 29th. Based on December 18th and 23rd, the system is able to reduce
living room energy consumption by 10%.

This is a very low estimate of the systems energy reduction. Since we have
identi�ed that the system often did not recognize the correct ON pattern when
the user returned to the living room, this is most likely also the case for detecting
OFF patterns. This problem is a result of the system not being properly trained
because of the relatively small amount of data available. The living room was
chosen because it had the best available sensor data. It is however the room
with the smallest potential for energy reductions, since it is the room where the
user spends most of his time.

62 Evaluation

Chapter 6

Conclusion

The goal of the thesis was to examine the possibilities of incorporating machine
learning technology in home control systems, and thus creating a smart environ-
ment, capable of micromanaging the homes energy consumption. The purpose
of the thesis was to act as a proof of concept for this idea.

During the project we have successfully designed and implemented a system
that uses state of the art machine learning algorithms, to evolve a behavioral
pattern based on empirical data. By processing sensor data, the system has
been able to identify key movement patterns that can be used to predict the
users intentions. The software implementation can act as a solid base for future
development, and potentially lead to a commercial implementation.

While we regard all of the achievements above as criteria for success, the most
important evaluation of the project must be based on the results our system
was able to produce. In a very early stage of analyzing the collected data, we
realized that the amount of data we were able to collect would not be ideal. Due
to changes in the living conditions in the apartment the system was installed in,
this was however the most we could collect. While the amount of data does not
allow us to draw any de�nitive conclusions, we were still able to identify some
clear patterns that can be used to predict user behavior. As described in the
�Evaluation� chapter the system was able to �nd and extensive list of patterns
that have been seen at least �ve time, which is considerable compared to the

64 Conclusion

amount of data collected.

As a result of the evaluation, we can certainly conclude that there exists a
potential in integrating machine learning in home control systems, and by in-
corporating the technologies developed during the project, it is possible to guide
the learning process of the system.

The system has also shown its potential for reducing energy consumption. While
the estimated reduction for the living room was only 10 percent, this is a very
modest estimate, based on the room with the lowest potential. It is very likely
that a properly trained system will be able to produce an energy reduction that
is several times higher.

6.1 Future work

Since the project is intended as a proof of concept study, this section could
potentially be quite comprehensive. We have chosen only to discuss some of the
most relevant additions that should be made to the project.

6.1.1 Active learning of switch patterns

The next phase of development for the project would be to get ready for the
active learning stage. It would be necessary to create a fully functional installa-
tion of sensors and switches in a home, so the system is able to manipulate the
light, and monitor the system's interaction with the user. The next incremental
development stage should focus on allowing the system learn switch patterns
based on active learning. This would allow the system to try and guess which
switches should be turned on or o�, and learn from the user's reactions. This
step in the development would probably take several month, in order for the
system to accumulate enough data, to create informed decisions.

6.1.2 Multiple users

The system is very sensitive to the noise from having multiple users in the same
environment. Multiple users moving around, will break the movement patterns
detected by the system, making it unrealistic for the system to learn anything
meaningful.

6.1 Future work 65

A way to solve this problem could be to have a thread for each user moving
around. The challenge then becomes matching each motion event to the right
user. The correlation table gives a good estimate of which sensors are in the
same room. By assuming the patterns of each user is made up of adjacent sensor
events, the system would be able to track each pattern separately, as long as
the users doesn't get near each other.

6.1.3 Switch and sensor correlation

We base our statistical correlation table on the assumption, that a user will most
likely turn on the light where he is, and look at the interval just after a switch is
turned on. A way to augment that analysis, is by �ipping the assumption on its
head, that the user will most likely turn o� the light where he is not. The user
is most likely not going to be where the lights are o�, so any sensors activated
when the lights are o�, are most likely not in the same room as the switch.

6.1.4 Decision matrix persistency

The longer back in time the system looks for user data, the more likely it is
too see each pattern multiple times. The more times the system sees a given
pattern, the more precise estimates the system can calculate of the probabilities
for that pattern. However the system should also be able to react to changes
in user behavior, so there is a limit to how long back in time the system should
look.

To be able to best react to changes, the system should only keep the most recent
data. But this would drastically reduce the systems con�dence in the decision
matrix. A static way to solve the problem would be to always look a �xed period
of time back, attempting to strike a balance between the systems con�dence and
ability to react.

A dynamic way to solve the problem would be to compare the most recent
patterns to the old patterns. As long as there is a reasonably low discrepancy,
the system can keep using old data. And if the discrepancy gets too big, the
system base it decisions purely on recent data, to better react to the changes in
user behavior.

66 Conclusion

6.1.5 Additional hardware

There are many types of hardware it would be interesting to add to the system.
Lux sensors would allow the system to not waste power if there is enough natural
light present. Pressure sensors in chairs and furniture, would allow the system
to detect users when they are sitting still. However these hardware additions
does not simplify the system, but instead adds complexity and means the system
needs consider more variables. While some of these addition will certainly be
necessary for the system to reach a commercial level, the potential of the system
in its current state should �rst be fully explored. This will require a fully
implemented system.

Bibliography

[1] Awareness of Climate Change and Threat Vary by Region, Anita
Pugliese and Julie Ray, http://www.gallup.com/poll/124652/awareness-
climate-change-threat-vary-region.aspx, December 11, 2009

[2] Annual Energy Review, US Energy Information Administraion, http://
205.254.135.24/totalenergy/data/annual/showtext.cfm?t=ptb0201a, Octo-
ber 19, 2011

[3] Boguslaw Pilich. Engineering Smart Houses, DTU IMM MSc Thesis Nr. 49/
2004

[4] Wikipedia article on machine learning. http://en.wikipedia.org/wiki/
Machine_learning, February 2012

[5] INSTEON. http://www.insteon.net

[6] Wipedia article on the Clipsal C-Bus protocol. http://en.wikipedia.org/
wiki/C-Bus_(protocol), February 2012

[7] Mads Ingwar and Soeren Kristian Jensen. IMM Smart House Project: a
state of the art survey. 2008.

[8] Lauritz Knudsens. http://www.lk.dk

[9] Aware Home Research Initiative. http://awarehome.imtc.gatech.edu

[10] http://awarehome.imtc.gatech.edu/publications

[11] Wikipedia article on markov chains. http://en.wikipedia.org/wiki/
Markov_chain, February 2012

[12] Sune Keller and Martin Skytte Kristensen. Simulation and visualization of
intellight light control system. Bachelor thesis 2010.

68 BIBLIOGRAPHY

.1 Source Listings

Appendix A

Source Listings

A.1 Package: smarthouse

A.1.1 SmartHouse.java

1 package smarthouse ;
2

3 import java . s q l . DriverManager ;
4 import java . s q l . SQLException ;
5 import java . s q l . Connection ;
6 import java . s q l . Statement ;
7 import java . u t i l . ArrayList ;
8 import java . u t i l . HashMap ;
9 import java . u t i l . L i s t ;

10 import java . u t i l .Map;
11

12 import t imer . TimeoutEvent ;
13 import t imer . TimeoutListener ;
14 import t imer . Timer ;
15

16 import events . ∗ ;
17 import c on f i g . Config ;
18 import core . ∗ ;
19

20 /∗∗
21 ∗ @author Andreas & David
22 ∗/
23 pub l i c c l a s s SmartHouse implements TimeoutListener {
24

25 pr i va t e s t a t i c boolean debug = true ;

70 Source Listings

26 Connection conn = nu l l ;
27 Statement stmt ;
28 AI a i ;
29 EventList e v e n t l i s t , z o n e e v en t l i s t ;
30 Cor r e l a t i on c o r r e l a t i o n ;
31 Timer t imer ;
32 List<Integer> timeout ;
33 i n t onTime ;
34 i n t punishmentTimeout ;
35 Map<Integer , Boolean> switchStatus ;
36 Map<Integer , Integer> f i r s tSenso rAf t e rT imeout ;
37 Decis ionMatr ix dec i s i onMatr ix ;
38 pub l i c s t a t i c void main (St r ing [] a rgs) {
39 SmartHouse sh = new SmartHouse () ;
40 }
41

42 /∗
43 ∗ Constructor f o r the c l a s s SmartHouse
44 ∗ Handles the input and output f o r the a i
45 ∗/
46 pub l i c SmartHouse () {
47 Config . loadConf ig () ;
48 t ry {
49 debug = Config . debug ;
50 Class . forName ("com . mysql . jdbc . Dr iver ") ; // load the mysql d r i v e r
51 conn = DriverManager . getConnect ion (Config .DB) ; // connect to the

database
52 stmt = conn . createStatement () ;
53 dec i s i onMatr ix = new Decis ionMatr ix () ;
54 c o r r e l a t i o n = new Cor r e l a t i on () ;
55

56 e v e n t l i s t = new EventList () ;
57 z on e e v en t l i s t = new EventList (t rue) ;
58 t imer = new Timer () ;
59 timeout = new ArrayList<Integer >(10) ;
60 onTime = Config . defaultOnTime ;
61 punishmentTimeout = Config . punishmentTimeout ;
62 f i r s tSenso rAf t e rT imeout = new HashMap<Integer , Integer >() ;
63 swi tchStatus = new HashMap<Integer , Boolean >() ;
64 f o r (i n t sw : dec i s i onMatr ix . sw i t ches) {
65 swi tchStatus . put (sw , f a l s e) ;
66 }
67 }
68 catch (SQLException se) {
69 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
70 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
71 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
72

73 }
74 catch (Exception e) {
75 e . pr intStackTrace () ;
76 }
77 }
78

79 pub l i c SmartHouse (AI a i) {
80 t h i s () ;
81 t h i s . a i = a i ;
82 }
83

84 /∗
85 ∗ Method c a l l e d when a sensorevent occurs in the s imulator
86 ∗ @author Andreas & David
87 ∗/
88 pub l i c void sensorEvent (i n t s en so r Id) {
89 t ry {

A.1 Package: smarthouse 71

90 System . out . p r i n t l n (" Sensor "+senso r Id+" f i r e d ! ") ;
91 e v e n t l i s t . sensorEvent (s en so r Id) ;
92 z on e e v en t l i s t . sensorEvent (s enso r Id) ;
93

94 i f (! debug)
95 stmt . executeUpdate ("INSERT INTO sensor_events VALUES("+senso r Id+

" ,NOW()) ") ;
96

97 f o r (i n t sw : timeout) {
98 i f (! f i r s tSenso rAf t e rT imeout . containsKey (sw))
99 f i r s tSenso rAf t e rT imeout . put (sw , s en so r Id) ;

100 }
101 f o r (i n t sw : c o r r e l a t i o n . getSwitches (sensor Id , 0 .5 f)) {
102 i f (isOn (sw) && ! timeout . conta in s (sw)) {
103 f l o a t t = onTime ∗ c o r r e l a t i o n . g e tCo r r e l a t i on (sw , s en so r Id) ;
104 System . out . p r i n t f ("keep switch %d on (%d ms) \n" , sw , (long) t)

;
105 t imer . updateTimeout (sw , (long) t , t h i s) ;
106 }
107 }
108 }
109 catch (SQLException se) {
110 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
111 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
112 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
113 }
114 matrixLookUp () ;
115 }
116 /∗
117 ∗ Method c a l l e d when a switch event occurs in the s imulator
118 ∗ @author Andreas & David
119 ∗/
120 pub l i c void switchEvent (i n t switchId , i n t s t a tu s) {
121 t ry {
122 System . out . p r i n t l n ("Switch "+switchId+" turned "+s ta tu s) ;
123 // System . out . p r i n t l n (e v e n t l i s t) ;
124 boolean cmd = (s ta tu s == 1) ? true : f a l s e ;
125

126 i f (cmd) {
127 i f (t imeout . conta in s (switchId)) {
128 timeout . remove ((Object) swi tchId) ;
129 t imer . stop (switchId) ;
130 i f (f i r s tSenso rAf t e rT imeout . containsKey (switchId))
131 c o r r e l a t i o n . i n c r e a s eCo r r e l a t i o n (switchId ,

f i r s tSenso rAf t e rT imeout . get (switchId)) ;
132 }
133 on (switchId) ;
134 t imer . setTimeout (switchId , onTime , t h i s) ;
135

136 } e l s e {
137 o f f (swi tchId) ;
138 }
139 i f (! debug)
140 stmt . executeUpdate ("INSERT INTO switch_events VALUES("+switchId+

" , "+s ta tu s+" ,NOW()) ") ;
141 }
142 catch (SQLException se) {
143 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
144 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
145 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
146 }
147 }
148

149 pr i va t e Map<Integer , Boolean> testMap = new HashMap<Integer , Boolean
>() ;

72 Source Listings

150

151 pub l i c void TimeoutEventOccurred (TimeoutEvent event) {
152 System . out . p r i n t l n (" I should probably turn o f f the l i g h t now") ;
153 i n t id = (In t eg e r) event . getSource () ;
154 i f (t imeout . conta in s (id) && e v e n t l i s t . getLastEvent () != nu l l) {
155 c o r r e l a t i o n . r educeCor r e l a t i on (id , e v e n t l i s t . getLastEvent () . getID ()

) ; // ad jus t f o r z on e e v en t l i s t
156 timeout . remove (event . getSource ()) ;
157 } e l s e {
158 o f f (id) ;
159 timeout . add (id) ;
160 t imer . setTimeout (id , punishmentTimeout , t h i s) ;
161 }
162 }
163 pr i va t e void matrixLookUp () {
164 t ry {
165 KeyList k e y l i s t ;
166 i n t P;
167 f l o a t value = 0 ;
168 f o r (i n t sw : dec i s i onMatr ix . sw i t ches) {
169 k e y l i s t = new KeyList (e v e n t l i s t) ;
170 k e y l i s t . add (sw) ;
171 i f (sw i tchStatus . get (sw)) {
172 i f (dec i s i onMatr ix . o f f . containsKey (k e y l i s t)) {
173 value = dec i s i onMatr ix . o f f . get (k e y l i s t) ;
174 }
175 System . out . p r i n t l n (" p r obab i l i t y value : "+value) ;
176 i f (value>Config . p robab i l i t yThre sho ld) {
177 o f f (sw) ;
178 }
179 i f (Config . useZones) {
180 i f (dec i s i onMatr ix . o f f . containsKey (k e y l i s t)) {
181 k e y l i s t = new KeyList (z on e e v en t l i s t) ;
182 k e y l i s t . add (sw) ;
183 value = dec i s i onMatr ix . o f f . get (k e y l i s t) ;
184 }
185

186 }
187

188 }
189 e l s e {
190 i f (dec i s i onMatr ix . on . containsKey (k e y l i s t)) {
191

192 value = dec i s i onMatr ix . on . get (k e y l i s t) ;
193 }
194 i f (Config . useZones) {
195 i f (dec i s i onMatr ix . on . containsKey (k e y l i s t)) {
196 k e y l i s t = new KeyList (z on e e v en t l i s t) ;
197 k e y l i s t . add (sw) ;
198 value = dec i s i onMatr ix . on . get (k e y l i s t) ;
199 }
200

201 }
202 System . out . p r i n t l n (" p r obab i l i t y value f o r switch "+sw+" : "+

value) ;
203 i f (value>Config . p robab i l i t yThre sho ld) {
204 on (sw) ;
205 }
206

207 }
208 }
209 }
210 catch (Exception e) {
211 e . pr intStackTrace () ;
212 }

A.2 Package: timer 73

213 }
214

215 pr i va t e void on (i n t id) {
216 System . out . p r i n t l n ("Turning switch "+id+" on") ;
217 a i . on (id) ;
218 swi tchStatus . put (id , t rue) ;
219 }
220

221 pr i va t e void o f f (i n t id) {
222 System . out . p r i n t l n ("Turning switch "+id+" o f f ") ;
223 a i . o f f (id) ;
224 swi tchStatus . put (id , f a l s e) ;
225 }
226

227 pr i va t e boolean isOn (i n t id) {
228 i f (sw i tchStatus . containsKey (id))
229 re turn swi tchStatus . get (id) ;
230

231 re turn f a l s e ;
232 }
233 }

Listing A.1: SmartHouse.java

A.1.2 AI.java

1 package smarthouse ;
2

3 pub l i c i n t e r f a c e AI {
4

5 pub l i c void on (i n t id) ;
6 pub l i c void o f f (i n t id) ;
7

8 }

Listing A.2: AI.java

A.2 Package: timer

A.2.1 Sleeper.java

1 package t imer ;
2

3 import javax . swing . event . EventL i s t ene rL i s t ;
4

5 /∗∗
6 ∗ @author David
7 ∗/
8 pub l i c c l a s s S l e epe r extends Thread {
9

10 pr i va t e i n t id ;
11 pr i va t e long time ;

74 Source Listings

12 pr i va t e long end ;
13 pr i va t e TimeoutListener l i s t e n e r ;
14

15 pub l i c s t a t i c void main (St r ing args []) throws Inter ruptedExcept ion {
16 System . out . p r i n t l n (" here we go . . . ") ;
17 new S l e epe r (1 , 1000) ;
18 new S l e epe r (2 , 2000) ;
19 new S l e epe r (2 , 2000) ;
20 new S l e epe r (3 , 3000) . j o i n () ;
21 System . out . p r i n t l n (" a l l done") ;
22 }
23

24 pub l i c S l e epe r (i n t id , long time) {
25 t h i s . id = id ;
26 t h i s . time = time ;
27 t h i s . end = System . cur rentTimeMi l l i s () + time ;
28 t h i s . s t a r t () ;
29 }
30

31 pub l i c S l e epe r (i n t id , long time , TimeoutListener l) {
32 t h i s (id , time) ;
33 t h i s . l i s t e n e r = l ;
34 }
35

36 pub l i c long getEnd () {
37 re turn end ;
38 }
39

40 pub l i c void run () {
41 t ry {
42 s l e ep (time) ;
43 System . out . p r i n t l n (id + " : done") ;
44

45 i f (l i s t e n e r != nu l l) {
46 l i s t e n e r . TimeoutEventOccurred (new TimeoutEvent (id)) ;
47 System . out . p r i n t l n (id + " : event f i r e d ") ;
48 }
49 } catch (Inter ruptedExcept ion ex) {
50 re turn ;
51 }
52 }
53 }

Listing A.3: Sleeper.java

A.2.2 Timer.java

1 package t imer ;
2

3 import java . i o . IOException ;
4 import java . u t i l . HashMap ;
5 import java . u t i l .Map;
6

7 import javax . swing . event . EventL i s t ene rL i s t ;
8

9 /∗∗
10 ∗ @author David
11 ∗/
12 pub l i c c l a s s Timer implements TimeoutListener {
13

A.2 Package: timer 75

14

15 pr i va t e Map<Integer , S leeper> t imers ;
16 pr i va t e TimeoutListener l i s t e n e r ;
17

18 pub l i c s t a t i c void main (St r ing [] a rgs) throws Exception {
19 Timer t = new Timer () ;
20 t . setTimeout (1 , 1000 , t) ;
21 t . setTimeout (2 , 2000 , t) ;
22 t . setTimeout (3 , 2000 , t) ;
23 Thread . s l e ep (1000) ;
24 t . setTimeout (3 , 2000 , t) ;
25 }
26

27 pub l i c Timer () {
28 t imers = new HashMap<Integer , S leeper >() ;
29 }
30

31 pub l i c Timer (TimeoutListener l) {
32 t h i s . l i s t e n e r = l ;
33 }
34

35 pub l i c void setTimeout (i n t id , long time) {
36 setTimeout (id , time , l i s t e n e r) ;
37 }
38

39 pub l i c void setTimeout (i n t id , long time , TimeoutListener l) {
40 i f (t imers . containsKey (id))
41 t imers . get (id) . i n t e r r up t () ;
42

43 t imers . put (id , new S l e epe r (id , time , l)) ;
44 }
45

46 /∗∗
47 ∗ s e t the timeout , only i f a t imer i s a l r eady i s s e t f o r the id ,
48 ∗ and the new timeout w i l l end l a t e r than the o ld timeout
49 ∗ @param id
50 ∗ @param time
51 ∗/
52 pub l i c void updateTimeout (i n t id , long time , TimeoutListener l) {
53 i f (! t imers . containsKey (id) | | ! t imers . get (id) . i sA l i v e ())
54 re turn ;
55

56 i f (t imers . get (id) . getEnd () < System . cur rentTimeMi l l i s () + time)
57 setTimeout (id , time , l) ;
58 }
59

60 pub l i c void updateTimeout (i n t id , long time) {
61 updateTimeout (id , time , l i s t e n e r) ;
62 }
63

64 pub l i c void stop (i n t id) {
65 t imers . get (id) . i n t e r r up t () ;
66 }
67

68 @Override
69 pub l i c void TimeoutEventOccurred (TimeoutEvent event) {
70 // TODO Auto−generated method stub
71 System . out . p r i n t l n (event . getSource () + " : event detected ") ;
72 }
73

74 }

Listing A.4: Timer.java

76 Source Listings

A.2.3 TimeoutListener.java

1 package t imer ;
2

3 import java . u t i l . EventLis tener ;
4

5 pub l i c i n t e r f a c e TimeoutListener extends EventListener {
6

7 pub l i c void TimeoutEventOccurred (TimeoutEvent event) ;
8

9 }

Listing A.5: TimeoutListener.java

A.2.4 TimeoutEvent.java

1 package t imer ;
2

3 import java . u t i l . EventObject ;
4

5 pub l i c c l a s s TimeoutEvent extends EventObject {
6

7 pub l i c TimeoutEvent (i n t id) {
8 super (id) ;
9 }

10

11 }

Listing A.6: TimeoutEvent.java

A.3 Package: events

A.3.1 EventList.java

1 package events ;
2

3 import java . u t i l . HashSet ;
4 import java . u t i l . I t e r a t o r ;
5 import java . u t i l . L inkedList ;
6

7 import c on f i g . Config ;
8

9 /∗∗
10 ∗ @author David
11 ∗/
12 pub l i c c l a s s EventList {
13

14 pr i va t e LinkedList<Event> events ;
15 // p r i va t e LinkedList<Event> zone ;
16

17 /∗∗

A.3 Package: events 77

18 ∗ Maximum i n t e r v a l between senso r events , f o r the event to be
cons ide red a zone event .

19 ∗ Defau l t va lue 1 sec .
20 ∗/
21 pr i va t e i n t zone_interva l ;
22

23 /∗∗
24 ∗ Time i n t e r v a l s to r ed in the event l i s t .
25 ∗/
26 pr i va t e i n t pat t e rn_inte rva l ;
27 pr i va t e i n t pattern_length ;
28 pr i va t e boolean useZones ;
29

30 pub l i c EventList () {
31 events = new LinkedList<Event>() ;
32 t h i s . pa t t e rn_inte rva l = Config . p a t t e r n In t e r va l ;
33 t h i s . pattern_length = Config . patternLength ;
34 t h i s . zone_interva l = Config . z one In t e rva l ;
35 t h i s . useZones = Config . useZones ;
36 }
37

38 pub l i c EventList (boolean useZones) {
39 t h i s () ;
40 t h i s . useZones = useZones ;
41 }
42

43 pub l i c EventList (i n t zone_interval , i n t patte rn_interva l , i n t
pattern_length) {

44 t h i s () ;
45 i f (zone_interva l <= 0) {
46 useZones = f a l s e ;
47 } e l s e {
48 useZones = true ;
49 }
50 t h i s . zone_interva l = zone_interva l ;
51 t h i s . pa t t e rn_inte rva l = pat te rn_inte rva l ;
52 t h i s . pattern_length = pattern_length ;
53 }
54

55

56

57 /∗∗
58 ∗ Add event
59 ∗ @param e
60 ∗/
61 pub l i c void add (Event e) {
62 removeOld (e . getTS ()) ;
63

64 i f (useZones && e in s t an c e o f SensorEvent)
65 determineZone (e) ;
66 e l s e
67 events . add (e) ;
68

69 whi le (events . s i z e () > pattern_length)
70 events . removeFirst () ;
71 }
72

73 /∗∗
74 ∗ removes a l l events i f more than pattern i n t e r v a l has passed s i n c e

the l a s t event
75 ∗ a l s o mantains a maximum pattern depth
76 ∗/
77 pr i va t e void removeOld (long time) {
78 i f (events . s i z e () > 0 && time − events . getLast () . getTS () >

pat te rn_inte rva l)

78 Source Listings

79 events . c l e a r () ;
80

81 }
82

83 pr i va t e i n t currentPatternLength () {
84 i n t count = 0 ;
85 f o r (Event e : events)
86 i f (e i n s t an c e o f SensorEvent | | e i n s t an c e o f ZoneEvent)
87 count++;
88 re turn count ;
89 }
90

91 pr i va t e void determineZone (Event e) {
92 i f (events . s i z e () > 0 && events . getLast () . getTS () +

zone_interva l > e . getTS ()) {
93

94 Event l a s t = events . getLast () ;
95 i f (l a s t i n s t an c e o f ZoneEvent) {
96 boolean conta in s = f a l s e ;
97 ZoneEvent z = (ZoneEvent) l a s t ;
98 f o r (i n t id : z . getIDs ()) {
99 i f (id == e . getID ()) {

100 conta in s = true ;
101 break ;
102 }
103 }
104 i f (! conta in s) {
105 z . addID (e . getID ()) ;
106 re turn ;
107 }
108

109 } e l s e i f (l a s t i n s t an c e o f SensorEvent) {
110 i f (l a s t . getID () != e . getID ()) {
111 events . removeLast () ;
112 events . addLast (new ZoneEvent (l a s t . getTS () , l a s t .

getID () , e . getID ())) ;
113 re turn ;
114 }
115 }
116 }
117 events . add (e) ;
118 }
119

120 pub l i c S t r ing toS t r i ng () {
121 St r i ngBu f f e r sb = new St r i ngBu f f e r ("=== Event l i s t ===\n") ;
122 f o r (Event e : events) {
123 sb . append (e . t oS t r i ng () + "\n") ;
124 }
125 re turn sb . t oS t r i ng () ;
126 }
127

128 pub l i c void sensorEvent (i n t id) {
129 add (new SensorEvent (id)) ;
130 }
131

132 pub l i c void switchEvent (i n t id , i n t s t a tu s) {
133 boolean cmd = (s ta tu s == 0) ? f a l s e : t rue ;
134 add (new SwitchEvent (id , cmd)) ;
135 }
136

137 /∗∗
138 ∗ get events in event l i s t , i n c l ud ing detected zone events
139 ∗ @return
140 ∗/
141 pub l i c Event [] getEvents () {

A.3 Package: events 79

142 Event [] array = new Event [events . s i z e ()] ;
143 events . toArray (array) ;
144 re turn array ;
145 }
146

147 pub l i c Event [] g e tD i s t inc tEvent s () {
148 HashSet<Event> se t = new HashSet<Event>(events) ;
149 Event [] array = new Event [s e t . s i z e ()] ;
150 s e t . toArray (array) ;
151 re turn array ;
152 }
153

154 /∗∗
155 ∗ get only senso r and zone events
156 ∗ @return
157 ∗/
158 pub l i c Event [] getPattern () {
159 Event [] pattern = new Event [pattern_length] ;
160 // i f cur rent pattern depth i s l e s s than pattern depth , f i l l

miss ing with −1
161 f o r (i n t i = 0 ; i < pattern_length − currentPatternLength () ; i

++) {
162 pattern [i] = new SensorEvent (−1) ;
163 }
164

165 I t e r a t o r <Event> i t = events . i t e r a t o r () ;
166 f o r (i n t i = pattern_length − currentPatternLength () ; i <

pattern_length ; i++) {
167 pattern [i] = i t . next () ;
168 }
169 re turn pattern ;
170 }
171

172 pub l i c Event getLastEvent () {
173 i f (events . s i z e () > 0)
174 re turn events . getLast () ;
175

176 re turn nu l l ;
177 }
178 pub l i c boolean containsZoneEvent () {
179 i f (useZones) {
180 f o r (Event e : events) {
181 i f (e i n s t an c e o f ZoneEvent)
182 re turn true ;
183 }
184 }
185 re turn f a l s e ;
186 }
187 }

Listing A.7: EventList.java

A.3.2 Event.java

1 package events ;
2

3 import java . t ext . SimpleDateFormat ;
4 import java . u t i l . Date ;
5

6 /∗∗

80 Source Listings

7 ∗ @author David
8 ∗/
9 pub l i c ab s t r a c t c l a s s Event {

10

11 pr i va t e s t a t i c SimpleDateFormat sdm = new SimpleDateFormat (" [HH:mm:
s s] ") ;

12

13 protec ted i n t id ;
14 protec ted long t s ;
15

16 pub l i c Event (i n t id , long t s) {
17 t h i s . id = id ;
18 t h i s . t s = t s ;
19 }
20

21 pub l i c Event (i n t id) {
22 t h i s (id , System . cur rentTimeMi l l i s ()) ;
23 }
24

25 pub l i c i n t getID () {
26 re turn id ;
27 }
28

29 pub l i c long getTS () {
30 re turn t s ;
31 }
32

33 pub l i c boolean compareID (i n t id) {
34 re turn t h i s . id == id ;
35 }
36 pub l i c boolean equa l s (Object o) {
37 i f (! (o i n s t an c e o f Event)) {
38 re turn f a l s e ;
39 }
40 Event e = (Event) o ;
41 i f (e . id != th i s . id)
42 re turn f a l s e ;
43 i f (e . t s != t h i s . t s)
44 re turn f a l s e ;
45

46 re turn true ;
47 }
48

49 pub l i c i n t hashCode () {
50 re turn id ^ (i n t) t s ;
51 }
52

53 /∗∗
54 ∗ re turn timestamp as human readab le s t r i n g
55 ∗ @return
56 ∗/
57 pub l i c S t r ing t s S t r i n g () {
58 re turn sdm . format (new Date (t s)) ;
59 }
60

61 }

Listing A.8: Event.java

A.3.3 SensorEvent.java

A.3 Package: events 81

1 package events ;
2

3 /∗∗
4 ∗ @author David
5 ∗/
6 pub l i c c l a s s SensorEvent extends Event {
7

8 pub l i c SensorEvent (i n t id , long t s) {
9 super (id , t s) ;

10 }
11

12 pub l i c SensorEvent (i n t id) {
13 super (id) ;
14 }
15

16 pub l i c S t r ing toS t r i ng () {
17 re turn t s S t r i n g () + " Sensor event " + th i s . id ;
18 }
19

20 pub l i c boolean equa l s (Object o) {
21 i f (! super . equa l s (o))
22 re turn f a l s e ;
23

24 i f (! (o i n s t an c e o f SensorEvent))
25 re turn f a l s e ;
26

27 re turn true ;
28 }
29

30 }

Listing A.9: SensorEvent.java

A.3.4 ZoneEvent.java

1 package events ;
2

3 import java . u t i l . Arrays ;
4 import java . u t i l . L inkedList ;
5 import java . u t i l . L i s t ;
6

7 /∗∗
8 ∗ @author David
9 ∗/

10 pub l i c c l a s s ZoneEvent extends Event {
11

12 protec ted i n t [] i d s ;
13

14 pub l i c ZoneEvent (i n t . . . i d s) {
15 super (0) ;
16 Arrays . s o r t (i d s) ;
17 t h i s . i d s = id s ;
18

19 t h i s . id = getID (i d s) ;
20 }
21

22 pub l i c ZoneEvent (long ts , i n t . . . i d s) {
23 t h i s (i d s) ;
24 t h i s . t s = t s ;
25 t h i s . id = getID (i d s) ;

82 Source Listings

26 }
27

28 pub l i c ZoneEvent (List<Event> zone) {
29 t h i s (zone , System . cur rentTimeMi l l i s ()) ;
30 }
31

32 pub l i c ZoneEvent (List<Event> zone , long t s) {
33 super (0) ;
34

35 i d s = new in t [zone . s i z e ()] ;
36 f o r (i n t i = 0 ; i < zone . s i z e () ; i++)
37 i d s [i] = zone . get (i) . getID () ;
38

39 Arrays . s o r t (i d s) ;
40

41 t h i s . id = getID (i d s) ;
42 t h i s . t s = zone . get (zone . s i z e ()−1) . getTS () ;
43 }
44

45 pr i va t e s t a t i c i n t getID (i n t . . . i d s) {
46 i n t sum = 0 ;
47 f o r (i n t i : i d s)
48 sum = sum∗256 + i ;
49

50 re turn sum ;
51 }
52

53 pub l i c i n t [] getIDs () {
54 re turn id s ;
55 }
56

57 pub l i c void addID (i n t id) {
58 i n t [] tmp = new in t [i d s . l ength + 1] ;
59 tmp [0] = id ;
60 System . arraycopy (ids , 0 , tmp , 1 , i d s . l ength) ;
61 i d s = tmp ;
62 Arrays . s o r t (i d s) ;
63 t h i s . id = getID (i d s) ;
64 }
65

66

67 /∗∗
68 ∗ ov e r r i d e s the super c l a s s method compareID , to compare idx to a l l

the i d s in the zone event
69 ∗/
70 @Override
71 pub l i c boolean compareID (i n t idx) {
72 f o r (i n t id : i d s) {
73 i f (id == idx)
74 re turn true ;
75 }
76 re turn f a l s e ;
77 }
78

79 pub l i c S t r ing toS t r i ng () {
80 re turn t s S t r i n g () + " Zone event " + Arrays . t oS t r i ng (i d s) ;
81 }
82

83 pub l i c boolean equa l s (Object o) {
84 i f (! super . equa l s (o))
85 re turn f a l s e ;
86

87 i f (! (o i n s t an c e o f ZoneEvent))
88 re turn f a l s e ;
89

A.3 Package: events 83

90 ZoneEvent e = (ZoneEvent) o ;
91 i f (e . i d s . l ength != th i s . i d s . l ength)
92 re turn f a l s e ;
93

94 f o r (i n t i = 0 ; i < e . i d s . l ength ; i++) {
95 i f (e . i d s [i] != t h i s . i d s [i])
96 re turn f a l s e ;
97 }
98 re turn true ;
99 }

100

101 /∗∗
102 ∗
103 ∗ @param id
104 ∗ @return
105 ∗/
106 pub l i c s t a t i c List<Integer> getIDs (i n t id) {
107 LinkedList<Integer> id s = new LinkedList<Integer >() ;
108 whi le (id > 0) {
109 i d s . addFirs t (id % 256) ;
110 id /= 256 ;
111 }
112

113 re turn id s ;
114 }
115

116 pub l i c s t a t i c S t r ing get IDStr ing (i n t id) {
117 i f (id < 256)
118 re turn In t eg e r . t oS t r i ng (id) ;
119

120 St r i ngBu f f e r sb = new St r i ngBu f f e r (" [") ;
121 f o r (i n t i : getIDs (id))
122 sb . append (i + " , ") ;
123 sb . setCharAt (sb . l ength ()−1, '] ') ;
124

125 re turn sb . t oS t r i ng () ;
126 }
127 }

Listing A.10: ZoneEvent.java

A.3.5 SwitchEvent.java

1 package events ;
2

3 /∗∗
4 ∗ @author David
5 ∗/
6 pub l i c c l a s s SwitchEvent extends Event {
7

8 protec ted boolean cmd ;
9

10 pub l i c SwitchEvent (i n t id , long ts , boolean cmd) {
11 super (id , t s) ;
12 t h i s . cmd = cmd ;
13 }
14

15 pub l i c SwitchEvent (i n t id , boolean cmd) {
16 super (id) ;
17 t h i s . cmd = cmd ;

84 Source Listings

18 }
19

20 pub l i c boolean getCmd () {
21 re turn cmd ;
22 }
23

24 pub l i c S t r ing toS t r i ng () {
25 re turn t s S t r i n g () + " Switch event " + th i s . id +
26 ((cmd) ? " on" : " o f f ") ;
27 }
28

29 pub l i c boolean equa l s (Object o) {
30 i f (! super . equa l s (o))
31 re turn f a l s e ;
32

33 i f (! (o i n s t an c e o f SwitchEvent))
34 re turn f a l s e ;
35

36 SwitchEvent e = (SwitchEvent) o ;
37 i f (e . cmd != th i s . cmd)
38 re turn f a l s e ;
39

40 re turn true ;
41 }
42 }

Listing A.11: SwitchEvent.java

A.4 Package: con�g

A.4.1 Con�g.java

1 package con f i g ;
2 import java . i o . ∗ ;
3 import java . u t i l . Scanner ;
4

5 /∗∗
6 ∗ @author Andreas
7 ∗/
8 pub l i c c l a s s Config {
9

10 /∗∗
11 ∗ database
12 ∗/
13 pub l i c s t a t i c S t r ing DB = " jdbc : mysql : // l o c a l h o s t / k i i ib_dev ? user=

KIIIB&password=42" ;
14 /∗∗
15 ∗ pattern l ength f o r markov cha ins
16 ∗/
17 pub l i c s t a t i c i n t patternLength = 2 ;
18 /∗∗
19 ∗ maximum time i n t e r v a l in ms , f o r events to count as a pattern
20 ∗/
21 pub l i c s t a t i c i n t pa t t e rn In t e r va l = 10∗1000;
22 /∗∗
23 ∗ maximum time i n t e r v a l in ms , f o r events to count as a zone event
24 ∗/

A.4 Package: con�g 85

25 pub l i c s t a t i c i n t zone In t e rva l = 500 ;
26 /∗∗
27 ∗ the i n t e r v a l a f t e r an on event , that s enso r events i s cons ide red

to be c o r r e l a t e d to the switch
28 ∗/
29 pub l i c s t a t i c i n t c o r r e l a t i o n I n t e r v a l = 7∗1000;
30 /∗∗
31 ∗ minimum co r r e l a t i o n p r obab i l i t y f o r a senso r to extend the

timeout o f a switch
32 ∗/
33 pub l i c s t a t i c f l o a t p robab i l i t yThre sho ld = .5 f ;
34 /∗∗
35 ∗ should the system detec t zone events
36 ∗/
37 pub l i c s t a t i c boolean useZones = true ;
38 /∗∗
39 ∗ base timeout f o r a l l sw i t che s in ms
40 ∗/
41 pub l i c s t a t i c i n t defaultOnTime = 5000 ;
42 /∗∗
43 ∗ the i n t e r v a l a f t e r a switch i s turned o f f based on timeout , that

the system con s i d e r s a on event a punishment
44 ∗/
45 pub l i c s t a t i c i n t punishmentTimeout = 10∗1000;
46 /∗∗
47 ∗ the c o r r e l a t i o n c o r r e c t i o n when the system i s punished
48 ∗/
49 pub l i c s t a t i c f l o a t c o r r e l a t i onCo r r e c t i onS t ep = .1 f ;
50 /∗∗
51 ∗ f l a g f o r when the system i s in debug mode
52 ∗ used togg l e debug output
53 ∗ a l s o t o g g l e s s imulator l ogg ing motion and switch event to

database (doesn ' t l og in debug mode)
54 ∗/
55 pub l i c s t a t i c boolean debug = f a l s e ;
56

57 pub l i c s t a t i c void main (St r ing [] a rgs) {
58 Config . loadConf ig () ;
59 }
60

61 pub l i c s t a t i c void loadConf ig () {
62 System . out . p r i n t l n ("Loading Con f i gura t i ons ") ;
63 t ry {
64 F i l e f = new F i l e (" k i i i b . s e t t i n g s ") ;
65 i f (! f . e x i s t s ()) {
66 System . out . p r i n t l n (" could not f i nd p r e f e r e n c e s f i l e ,

g ene ra t ing a new one") ;
67 f . c reateNewFi le () ;
68 Fi l eWr i t e r f s t ream = new Fi l eWr i t e r (f) ;
69 Buf feredWriter out = new Buf feredWriter (f s t ream) ;
70 out . wr i t e ("#automat i ca l l y generated p r e f e r e n c e s f i l e \n#

de l e t e to re turn to d e f au l t s e t t i n g s \n") ;
71 out . wr i t e ("DB " + DB +"\n") ;
72

73 out . wr i t e (" pat t e rn_inte rva l " + pa t t e rn In t e r va l + "\n") ;
74 out . wr i t e (" pattern_length " + patternLength + "\n") ;
75

76 out . wr i t e ("use_zones " + useZones + "\n") ;
77 out . wr i t e (" zone_interva l " + zone In t e rva l + "\n") ;
78

79 out . wr i t e (" probab i l i t y_thre sho ld " +
probab i l i tyThre sho ld + "\n") ;

80 out . wr i t e (" c o r r e l a t i o n_ in t e r v a l " + c o r r e l a t i o n I n t e r v a l+
"\n") ;

86 Source Listings

81 out . wr i t e (" c o r r e l a t i o n_co r r e c t i on " +
co r r e l a t i onCo r r e c t i onS t ep +"\n") ;

82 out . wr i t e ("default_on_time " + defaultOnTime +"\n") ;
83 out . wr i t e ("punishment_timeout " + punishmentTimeout +"\n

") ;
84

85 out . wr i t e ("debug " + debug +"\n") ;
86 out . c l o s e () ;
87

88 }
89 e l s e {
90 Scanner scan = new Scanner (f) ;
91 St r ing token ;
92 whi le (scan . hasNextLine ()) {
93 token = scan . next () ;
94 i f (token . equa l s (" pattern_length ")) {
95 patternLength = In t ege r . pa r s e In t (scan . next ()) ;
96 System . out . p r i n t l n (" pattern_length = "+

patternLength) ;
97 }
98 e l s e i f (token . equa l s (" pat t e rn_inte rva l ")) {
99 pa t t e rn In t e r va l = In t eg e r . pa r s e In t (scan . next ()) ;

100 System . out . p r i n t l n (" pat t e rn_inte rva l = "+
pa t t e rn In t e r va l) ;

101 }
102 e l s e i f (token . equa l s ("use_zones")) {
103 useZones = Boolean . parseBoolean (scan . next ()) ;
104 System . out . p r i n t l n ("use_zones = "+useZones) ;
105 }
106 e l s e i f (token . equa l s (" zone_interva l ")) {
107 zone In t e rva l = In t ege r . pa r s e In t (scan . next ()) ;
108 System . out . p r i n t l n (" zone_interva l = "+

zone In t e rva l) ;
109 }
110 e l s e i f (token . equa l s (" probab i l i t y_thre sho ld ")) {
111 probab i l i tyThre sho ld = Float . par seF loat (scan .

next ()) ;
112 System . out . p r i n t l n (" p robab l i l i t y_th r e sho ld = "+

probab i l i tyThre sho ld) ;
113 }
114 e l s e i f (token . equa l s (" c o r r e l a t i o n_ in t e r v a l ")) {
115 c o r r e l a t i o n I n t e r v a l = In t eg e r . pa r s e In t (scan . next

()) ;
116 System . out . p r i n t l n (" c o r r e l a t i o n_ in t e r v a l = " +

c o r r e l a t i o n I n t e r v a l) ;
117 }
118 e l s e i f (token . equa l s (" c o r r e l a t i o n_co r r e c t i o n ")) {
119 c o r r e l a t i onCo r r e c t i onS t ep = Float . par seF loat (

scan . next ()) ;
120 System . out . p r i n t l n (" c o r r e l a t i o n_co r r e c t i o n = " +

co r r e l a t i onCo r r e c t i onS t ep) ;
121 }
122 e l s e i f (token . equa l s ("default_on_time")) {
123 defaultOnTime = In t eg e r . pa r s e In t (scan . next ()) ;
124 System . out . p r i n t l n ("default_on_time = " +

defaultOnTime) ;
125 }
126 e l s e i f (token . equa l s ("punishment_timeout")) {
127 punishmentTimeout = In t eg e r . pa r s e In t (scan . next ()

) ;
128 System . out . p r i n t l n ("punishment_timeout = " +

punishmentTimeout) ;
129 }
130 e l s e i f (token . equa l s ("DB")) {
131 DB = scan . next () ;

A.5 Package: core 87

132 System . out . p r i n t l n ("Database = " + DB) ;
133 }
134 e l s e i f (token . equa l s ("debug")) {
135 debug = Boolean . parseBoolean (scan . next ()) ;
136 System . out . p r i n t l n ("debug = " + debug) ;
137 }
138 scan . nextLine () ;
139

140 }
141 }
142 }
143 catch (IOException e) {
144 e . pr intStackTrace () ;
145 }
146 catch (Exception e) {
147 System . out . p r i n t l n (" could not read p r e f e r e n c e s f i l e . . . us ing

d e f au l t s e t t i n g s ") ;
148 }
149 }
150 }

Listing A.12: Con�g.java

A.5 Package: core

A.5.1 Correlation.java

1 package core ;
2

3 import java . i o . IOException ;
4 import java . s q l . Connection ;
5 import java . s q l . DriverManager ;
6 import java . s q l . Resu l tSet ;
7 import java . s q l . SQLException ;
8 import java . s q l . Statement ;
9 import java . u t i l . Arrays ;

10 import java . u t i l . HashMap ;
11 import java . u t i l . HashSet ;
12 import java . u t i l . L inkedList ;
13 import java . u t i l . L i s t ;
14 import java . u t i l .Map;
15 import java . u t i l . Set ;
16 import java . u t i l . TreeSet ;
17

18 import t imer . TimeoutEvent ;
19 import t imer . TimeoutListener ;
20

21 import c on f i g . Config ;
22

23 import events . ∗ ;
24

25 /∗∗
26 ∗ @author David
27 ∗/
28 pub l i c c l a s s Cor r e l a t i on implements TimeoutListener {
29

30 pr i va t e Statement stmt ;

88 Source Listings

31 pr i va t e Connection conn ;
32 pr i va t e Resu l tSet r e s u l t ;
33 pr i va t e long c o r r e l a t i o n_ in t e r v a l = 7∗1000;
34 pr i va t e f l o a t c o r r e c t i o n ;
35 pr i va t e Map<Integer , Map<Integer , Float>> co r r e l a t i o n ;
36

37 pub l i c s t a t i c void main (St r ing [] a rgs) throws IOException {
38 System . out . p r i n t l n (new Cor r e l a t i on ()) ;
39 }
40

41 pub l i c Cor r e l a t i on () {
42 c o r r e l a t i o n = new HashMap<Integer , Map<Integer , Float >>() ;
43 t ry {
44 Class . forName ("com . mysql . jdbc . Dr iver ") ; // load the mysql

d r i v e r
45 conn = DriverManager . getConnect ion (Config .DB) ; // connect to

the database
46 stmt = conn . createStatement () ;
47 }
48 catch (SQLException se) {
49 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
50 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
51 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
52

53 }
54 catch (Exception e) {
55 e . pr intStackTrace () ;
56 }
57 c o r r e c t i o n = Config . c o r r e l a t i onCo r r e c t i onS t ep ;
58 gene ra t eCor r e l a t i on () ;
59 // ge tS to r edCor r e l a t i on s () ;
60 }
61

62 pub l i c f l o a t g e tCo r r e l a t i on (i n t switchId , i n t s enso r Id) {
63 i f (! c o r r e l a t i o n . containsKey (switchId))
64 re turn 0 ;
65

66 i f (! c o r r e l a t i o n . get (switchId) . containsKey (s enso r Id))
67 re turn 0 ;
68

69 re turn c o r r e l a t i o n . get (switchId) . get (s enso r Id) ;
70 }
71

72 pub l i c s t a t i c void incrementSwitchCount (Map<Integer , Integer>
switch_count , i n t id) {

73 i f (! switch_count . containsKey (id))
74 switch_count . put (id , 1) ;
75 e l s e
76 switch_count . put (id , switch_count . get (id) + 1) ;
77 }
78

79 pub l i c s t a t i c void incrementSensorCount (Map<Integer , Map<Integer ,
Integer>> sensor_count , i n t switchId , i n t s enso r Id) {

80 i f (! sensor_count . containsKey (switchId)) {
81 sensor_count . put (switchId , new HashMap<Integer , Integer >()) ;
82 }
83

84 Map<Integer , Integer> map = sensor_count . get (switchId) ;
85 i f (!map . containsKey (s enso r Id)) {
86 map . put (sensor Id , 1) ;
87 } e l s e {
88 map . put (sensor Id , map . get (s en so r Id) + 1) ;
89 }
90 }
91

A.5 Package: core 89

92 pr i va t e void updateCorre la t ion (i n t sw , i n t se , f l o a t co r r) {
93 i f (c o r r e l a t i o n . containsKey (sw)) {
94 Map<Integer , Float> map = co r r e l a t i o n . get (sw) ;
95 i f (map . containsKey (se)) {
96 map . put (se , Math .max(0 , map . get (se) + cor r)) ;
97 }
98 }
99 }

100

101 pub l i c void gene ra t eCor r e l a t i on () {
102

103 t ry {
104 Map<SwitchEvent , EventList> sw i t ch_event l i s t = new HashMap<

SwitchEvent , EventList >() ;
105 Map<Integer , Integer> switch_count = new HashMap<Integer ,

Integer >() ;
106 Map<Integer , Map<Integer , Integer>> sensor_count = new

HashMap<Integer , Map<Integer , Integer >>() ;
107 LinkedList<SwitchEvent> gc = new LinkedList<SwitchEvent >() ;
108

109 r e s u l t = stmt . executeQuery (" (s e l e c t id , timestamp , ' s enso r ' AS
type , '0 ' AS s ta tu s from sensor_events) union (s e l e c t

id , timestamp , ' switch ' AS type , s t a tu s from switch_events)
order by timestamp ; ") ;

110 whi le (r e s u l t . next ()) {
111 i n t id = r e s u l t . g e t In t (" id ") ;
112 long t s = r e s u l t . getTimestamp ("timestamp") . getTime () ;
113 i f (r e s u l t . g e tS t r i ng (" type") . equa l s (" switch ")) {
114 boolean cmd = (r e s u l t . g e t In t (" s t a tu s ") == 1) ? true

: f a l s e ;
115 i f (cmd) {
116 SwitchEvent s = new SwitchEvent (id , ts , cmd) ;
117 sw i t ch_event l i s t . put (s , new EventList (Config .

zone Inte rva l , Config . c o r r e l a t i o n I n t e r v a l ,
I n t eg e r .MAX_VALUE)) ;

118 gc . addLast (s) ;
119 }
120 } e l s e i f (r e s u l t . g e tS t r i ng (" type") . equa l s (" senso r ")) {
121 f o r (SwitchEvent e : sw i t ch_event l i s t . keySet ()) {
122 i f (e . getTS () + co r r e l a t i o n_ in t e r v a l > t s) {
123 sw i t ch_event l i s t . get (e) . add (new SensorEvent (

id , t s)) ;
124 }
125 }
126 }
127

128 whi le (gc . s i z e () > 0 && gc . g e tF i r s t () . getTS () +
co r r e l a t i o n_ in t e r v a l < t s) {

129 SwitchEvent se = gc . g e tF i r s t () ;
130 incrementSwitchCount (switch_count , se . getID ()) ;
131

132 f o r (Event e : new HashSet<Event>(Arrays . a sL i s t (
sw i t ch_event l i s t . get (se) . getEvents ()))) {

133 incrementSensorCount (sensor_count , se . getID () , e
. getID ()) ;

134 }
135 gc . removeFirst () ;
136 sw i t ch_event l i s t . remove (se) ;
137 }
138

139 f o r (i n t sw : sensor_count . keySet ()) {
140 Map<Integer , Float> map = new HashMap<Integer , Float

>() ;
141 f o r (i n t se : sensor_count . get (sw) . keySet ()) {

90 Source Listings

142 map . put (se , (f l o a t) sensor_count . get (sw) . get (se)
/ switch_count . get (sw)) ;

143 }
144 c o r r e l a t i o n . put (sw , map) ;
145 }
146 }
147 i n t i = 0 ;
148 whi le (gc . s i z e () > 0) {
149 SwitchEvent se = gc . g e tF i r s t () ;
150 incrementSwitchCount (switch_count , se . getID ()) ;
151

152 f o r (Event e : new HashSet<Event>(Arrays . a sL i s t (
sw i t ch_event l i s t . get (se) . getEvents ()))) {

153 incrementSensorCount (sensor_count , se . getID () , e .
getID ()) ;

154 }
155 gc . removeFirst () ;
156 sw i t ch_event l i s t . remove (se) ;
157 }
158 f o r (i n t sw : sensor_count . keySet ()) {
159 Map<Integer , Float> map = new HashMap<Integer , Float >() ;
160 f o r (i n t se : sensor_count . get (sw) . keySet ()) {
161 map . put (se , (f l o a t) sensor_count . get (sw) . get (se) /

switch_count . get (sw)) ;
162 }
163 c o r r e l a t i o n . put (sw , map) ;
164 }
165 } catch (SQLException se) {
166 se . pr intStackTrace () ;
167 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
168 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
169 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
170 }
171 }
172

173 pub l i c Set<Integer> getSwitches () {
174 re turn new TreeSet<Integer >(c o r r e l a t i o n . keySet ()) ;
175 }
176

177 pub l i c Set<Integer> getSensor s () {
178 Set<Integer> sen so r s = new TreeSet<Integer >() ;
179 f o r (i n t sw : c o r r e l a t i o n . keySet ()) {
180 s en so r s . addAll (c o r r e l a t i o n . get (sw) . keySet ()) ;
181 }
182 re turn s en so r s ;
183 }
184

185 /∗∗
186 ∗ get a l i s t o f switches , that have a c o r r e l a t i o n with a senso r

above the thre sho ld
187 ∗ @param sensor
188 ∗ @param thre sho ld 0 <= x <= 1
189 ∗ @return
190 ∗/
191 pub l i c List<Integer> getSwitches (i n t sensor , f l o a t th r e sho ld) {
192 List<Integer> l i s t = new LinkedList<Integer >() ;
193 f o r (i n t sw : c o r r e l a t i o n . keySet ()) {
194 Map<Integer , Float> map = co r r e l a t i o n . get (sw) ;
195 i f (!map . containsKey (senso r))
196 cont inue ;
197

198 i f (map . get (s enso r) > thre sho ld)
199 l i s t . add (sw) ;
200 }
201 re turn l i s t ;

A.5 Package: core 91

202 }
203

204 pub l i c S t r ing toS t r i ng () {
205 St r ingBu i ld e r sb = new St r ingBu i l d e r (1024) ;
206 sb . append ("Corr . \ t ") ;
207 f o r (i n t s : ge tSensor s ())
208 sb . append (ZoneEvent . get IDStr ing (s) + "\ t ") ;
209 sb . append ("\n") ;
210

211 f o r (i n t sw : getSwitches ()) {
212 sb . append (sw + "\ t ") ;
213 f o r (i n t se : ge tSensor s ()) {
214 i f (c o r r e l a t i o n . get (sw) . containsKey (se)) {
215 f l o a t f = c o r r e l a t i o n . get (sw) . get (se) ;
216 i f (f >= 0 . 5)
217 sb . append ("∗") ;
218 i f (f > 0)
219 sb . append (St r ing . format ("%.2 f \ t " , f)) ;
220 e l s e
221 sb . append ("\ t ") ;
222 } e l s e {
223 sb . append ("0\ t ") ;
224 }
225 }
226 sb . append ("\n") ;
227 }
228 re turn sb . t oS t r i ng () ;
229 }
230

231 @Override
232 pub l i c void TimeoutEventOccurred (TimeoutEvent event) {
233 // TODO Auto−generated method stub
234

235 }
236

237 pub l i c void i n c r e a s eCo r r e l a t i o n (i n t sw , i n t se) {
238 System . out . p r i n t l n (" In c r ea s e c o r r e l a t i o n " + sw + "~" +se) ;
239 s t o r eCo r r e l a t i o n (sw , se , Config . c o r r e l a t i onCo r r e c t i onS t ep) ;
240 updateCorre la t ion (sw , se , c o r r e c t i o n) ;
241 s t o r eCo r r e l a t i o n (sw , se , c o r r e c t i o n) ;
242 }
243

244 pub l i c void r educeCor r e l a t i on (i n t sw , i n t se) {
245 System . out . p r i n t l n ("Reduce c o r r e l a t i o n " + sw + "~" +se) ;
246 s t o r eCo r r e l a t i o n (sw , se , −Config . c o r r e l a t i onCo r r e c t i onS t ep) ;
247 updateCorre la t ion (sw , se , −c o r r e c t i o n) ;
248 s t o r eCo r r e l a t i o n (sw , se , −c o r r e c t i o n) ;
249 }
250

251 pub l i c void g e tS to r edCor r e l a t i on s () {
252 St r ing query = "SELECT switch , sensor , c o r r e l a t i o n FROM

cor r e l a t i on_con f i rmat i on " ;
253 t ry {
254 r e s u l t = stmt . executeQuery (query) ;
255 whi le (r e s u l t . next ()) {
256 i n t sw = r e s u l t . g e t In t (" switch ") ;
257 i n t se = r e s u l t . g e t In t (" senso r ") ;
258 f l o a t co r r = r e s u l t . ge tF loat (" c o r r e l a t i o n ") ;
259 updateCorre la t ion (sw , se , co r r) ;
260 }
261 } catch (SQLException ex) {
262 ex . pr intStackTrace () ;
263 System . out . p r i n t l n ("SQLException : " + ex . getMessage ()) ;
264 System . out . p r i n t l n ("SQLState : " + ex . getSQLState ()) ;
265 System . out . p r i n t l n ("VendorError : " + ex . getErrorCode ()) ;

92 Source Listings

266 }
267 }
268

269 /∗∗
270 ∗ i n s e r t c o r r e l a t i o n c o r r e c t i o n in to s q l t ab l e
271 ∗ @param sw switch id
272 ∗ @param se senso r id
273 ∗ @param cor r c o r r e l a t i o n change
274 ∗/
275 pub l i c void s t o r eCo r r e l a t i o n (i n t sw , i n t se , f l o a t co r r) {
276 St r ing query = St r ing . format ("INSERT INTO

cor r e l a t i on_con f i rmat i on " +
277 " (switch , sensor , c o r r e l a t i o n) VALUES (%d , %d , %f) " +
278 "ON DUPLICATE KEY UPDATE co r r e l a t i o n = c o r r e l a t i o n + %f ; " ,

sw , se , corr , co r r) ;
279 t ry {
280 stmt . executeUpdate (query) ;
281 } catch (SQLException ex) {
282 ex . pr intStackTrace () ;
283 System . out . p r i n t l n ("SQLException : " + ex . getMessage ()) ;
284 System . out . p r i n t l n ("SQLState : " + ex . getSQLState ()) ;
285 System . out . p r i n t l n ("VendorError : " + ex . getErrorCode ()) ;
286 }
287

288 }
289 }

Listing A.13: Correlation.java

A.5.2 DecisionMatrix.java

1 package core ;
2

3 import java . s q l . DriverManager ;
4 import java . s q l . SQLException ;
5 import java . s q l . Connection ;
6 import java . s q l . Statement ;
7 import java . s q l . Resu l tSet ;
8 import java . u t i l . HashMap ;
9 import c on f i g . Config ;

10 import core . KeyList ;
11

12 import java . u t i l . Date ;
13 import java . u t i l . L inkedList ;
14 import java . u t i l . ArrayList ;
15 import events . ∗ ;
16

17 /∗∗
18 ∗ @author Andreas
19 ∗/
20 pub l i c c l a s s Dec is ionMatr ix {
21 pub l i c HashMap<KeyList , Float> on , o f f ;
22 pr i va t e HashMap<KeyList , Integer> count ;
23 pr i va t e Statement stmt ;
24 pr i va t e Connection conn ;
25 pr i va t e LinkedList<Integer> eventBuf f e r ; // ho lds the l a s t n

sensorevents , n = memoryDepth
26 pub l i c ArrayList<Integer> switches , s en so r s ;
27

28 /∗∗

A.5 Package: core 93

29 ∗ temporary main method f o r t e s t i n g puposes
30 ∗ @author Andreas
31 ∗∗/
32 pub l i c s t a t i c void main (St r ing [] a rgs) {
33 Config . loadConf ig () ;
34 Decis ionMatr ix dm = new Decis ionMatr ix () ;
35 }
36

37 pub l i c Dec is ionMatr ix () {
38 connect2DB () ;
39 genera teBas i cMatr i c e s () ;
40 i f (Config . useZones)
41 generateZoneMatr ices () ;
42 // pr intTab le s () ;
43 System . out . p r i n t l n (" sw i t ches ") ;
44 f o r (i n t i : sw i t che s) {
45 System . out . p r i n t l n (i) ;
46 }
47 System . out . p r i n t l n (" s en so r s ") ;
48 f o r (i n t i : s en so r s) {
49 System . out . p r i n t l n (i) ;
50 }
51 pr in tMat r i c e s () ;
52 }
53 /∗∗
54 ∗ Connects to the database , and i n i t i a t e s the statement ob j e c t to

be used l a t e r
55 ∗ @author Andreas
56 ∗∗/
57 pub l i c void connect2DB () {
58 t ry {
59 System . out . p r i n t l n ("Trying to connect to the database ") ;
60 Class . forName ("com . mysql . jdbc . Dr iver ") ; // load the mysql

d r i v e r
61 conn = DriverManager . getConnect ion (Config .DB) ; // connect to

the database
62 stmt = conn . createStatement () ;
63 System . out . p r i n t l n (" connect ion e s t ab l i s h ed ") ;
64

65

66 }
67 catch (SQLException se) {
68 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
69 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
70 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
71

72 }
73 catch (Exception e) {
74 e . pr intStackTrace () ;
75 }
76

77

78 }
79 /∗∗
80 ∗ gene ra t e s the ba s i c t ab l e s on / o f f
81 ∗ @author Andreas
82 ∗ ∗/
83 pub l i c void genera teBas i cMatr i c e s () {
84 System . out . p r i n t l n (" genera t ing ba s i c matr i ce s ") ;
85 t ry {
86 HashMap<KeyList , Float> temp ;
87

88

89 sw i t che s = new ArrayList<Integer >() ;
90 s en so r s = new ArrayList<Integer >() ;

94 Source Listings

91

92 Resu l tSet r e s u l t = stmt . executeQuery ("SELECT DISTINCT id
FROM sensor_events ") ;

93 whi le (r e s u l t . next ()) {
94 s en so r s . add (r e s u l t . g e t In t (" id ")) ;
95 }
96 r e s u l t = stmt . executeQuery ("SELECT DISTINCT id FROM

switch_events ") ;
97 whi le (r e s u l t . next ()) {
98 sw i t che s . add (r e s u l t . g e t In t (" id ")) ;
99 }

100

101

102 long l a s t e v en t = 0 ;
103 i n t val , id ;
104 i n t i = 0 ;
105 EventList e v e n t l i s t = new EventList (f a l s e) ;
106 long time ;
107 long s t a r t = System . cur rentTimeMi l l i s () ;
108 St r ing type ;
109 KeyList k e y l i s t ;
110 on = new HashMap<KeyList , Float >() ;
111 o f f = new HashMap<KeyList , Float >() ;
112 count = new HashMap<KeyList , Integer >() ;
113 HashMap<KeyList , Integer> denominator = new HashMap<KeyList ,

Integer >() ;
114 System . out . p r i n t l n (" f e t ch i n g data from db") ;
115 r e s u l t = stmt . executeQuery (" (SELECT id , timestamp , ' s enso r '

AS type , '0 ' AS s ta tu s FROM sensor_events) UNION " +
116 " (SELECT id , timestamp , ' switch ' AS type , s t a tu s FROM

switch_events) ORDER BY timestamp ; ") ;
117 System . out . p r i n t l n (" i t e r a t i n g r e s u l t s e t ") ;
118 whi le (r e s u l t . next ()) {
119 i++;
120 id = r e s u l t . g e t In t (" id ") ;
121 time = r e s u l t . getTimestamp ("timestamp") . getTime () ;
122 type = r e s u l t . g e tS t r i ng (" type") ;
123 //System . out . p r i n t l n (" event : "+id+" type : "+type+" time

: "+time) ;
124 i f (type . equa l s (" s enso r ")) {
125 e v e n t l i s t . add (new SensorEvent (id , time)) ;
126 k e y l i s t = new KeyList (e v e n t l i s t) ;
127 i f (denominator . containsKey (k e y l i s t)) {
128 denominator . put (k e y l i s t , denominator . get (k e y l i s t

) + 1) ;
129 } e l s e {
130 denominator . put (k e y l i s t , 1) ;
131 }
132 l a s t e v en t = time ;
133 }
134 e l s e i f (type . equa l s (" switch ")) {
135 temp = (r e s u l t . getBoolean (" s t a tu s ")) ? on : o f f ;
136

137 i f (time > l a s t e v en t + Config . p a t t e rn In t e r va l) {
138 e v e n t l i s t = new EventList (f a l s e) ;
139 k e y l i s t = new KeyList (e v e n t l i s t) ;
140 i f (denominator . containsKey (k e y l i s t)) {
141 denominator . put (k e y l i s t , denominator . get (

k e y l i s t)+1) ;
142 } e l s e {
143 denominator . put (k e y l i s t , 1) ;
144 }
145 }
146 k e y l i s t = new KeyList (e v e n t l i s t) ;
147 k e y l i s t . add (id) ;

A.5 Package: core 95

148

149 i f (temp . containsKey (k e y l i s t)) {
150 temp . put (k e y l i s t , temp . get (k e y l i s t)+1) ;
151 }
152 e l s e {
153 temp . put (k e y l i s t , 1 f) ;
154 }
155

156 }
157 }
158 KeyList ksub ;
159 long end = System . cur rentTimeMi l l i s () ;
160 long runtime = end−s t a r t ;
161 System . out . p r i n t l n (" rows : "+i) ;
162 System . out . p r i n t l n (" runtime = "+runtime) ;
163 f o r (KeyList k : on . keySet ()) {
164 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
165 on . put (k , on . get (k) / denominator . get (ksub)) ;
166 count . put (ksub , denominator . get (ksub)) ;
167 }
168 f o r (KeyList k : o f f . keySet ()) {
169 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
170 o f f . put (k , o f f . get (k) / denominator . get (ksub)) ;
171 count . put (ksub , denominator . get (ksub)) ;
172 }
173 System . out . p r i n t f (" ba s i c %d/%d (%d) \n" , on . s i z e () , o f f . s i z e

() , denominator . s i z e ()) ;
174

175 } catch (SQLException se) {
176 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
177 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
178 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
179

180 }
181 }
182

183 pub l i c void generateZoneMatr ices () {
184 System . out . p r i n t l n (" genera t ing zone matr i ce s ") ;
185

186 HashMap<KeyList , Float> temp , zoneOn , zoneOff ;
187 zoneOn = new HashMap<KeyList , Float >() ;
188 zoneOff = new HashMap<KeyList , Float >() ;
189 long l a s t e v en t = 0 ;
190 i n t val , id ;
191 i n t i = 0 ;
192 EventList e v e n t l i s t = new EventList (t rue) ;
193 long time ;
194 long s t a r t = System . cur rentTimeMi l l i s () ;
195 St r ing type ;
196 KeyList k e y l i s t ;
197 HashMap<KeyList , Integer> denominator = new HashMap<KeyList , Integer

>() ;
198 t ry {
199 System . out . p r i n t l n (" f e t ch i n g data from db") ;
200 Resu l tSet r e s u l t = stmt . executeQuery (" (s e l e c t id , timestamp , '

s enso r ' AS type , '0 ' AS s ta tu s from sensor_events) union
(s e l e c t id , timestamp , ' switch ' AS type , s t a tu s from

switch_events) order by timestamp ; ") ;
201 System . out . p r i n t l n (" i t e r a t i n g r e s u l t s e t ") ;
202 whi le (r e s u l t . next ()) {
203 i++;
204 id = r e s u l t . g e t In t (" id ") ;
205 time = r e s u l t . getTimestamp ("timestamp") . getTime () ;
206 type = r e s u l t . g e tS t r i ng (" type") ;

96 Source Listings

207 //System . out . p r i n t l n (" event : "+id+" type : "+type+" time
: "+time) ;

208 i f (type . equa l s (" s enso r ")) {
209 e v e n t l i s t . add (new SensorEvent (id , time)) ;
210 l a s t e v en t = time ;
211 i f (! e v e n t l i s t . containsZoneEvent ())
212 cont inue ;
213

214 k e y l i s t = new KeyList (e v e n t l i s t) ;
215 i f (denominator . containsKey (k e y l i s t)) {
216 denominator . put (k e y l i s t , denominator . get (k e y l i s t)

+1) ;
217 } e l s e {
218 denominator . put (k e y l i s t , 1) ;
219 }
220 }
221 e l s e i f (type . equa l s (" switch ")) {
222 temp = (r e s u l t . getBoolean (" s t a tu s ")) ? zoneOn :

zoneOff ;
223 // i f (time > l a s t e v en t+Config . p a t t e r n In t e r va l) {
224 // e v e n t l i s t = new EventList (t rue) ;
225 // k e y l i s t = new KeyList (e v e n t l i s t) ;
226 // i f (denominator . containsKey (k e y l i s t)) {
227 // denominator . put (k e y l i s t , denominator . get (

k e y l i s t)+1) ;
228 // } e l s e {
229 // denominator . put (k e y l i s t , 1) ;
230 // }
231 // }
232 i f (e v e n t l i s t . containsZoneEvent ()) {
233 k e y l i s t = new KeyList (e v e n t l i s t) ;
234 k e y l i s t . add (id) ;
235 // System . out . p r i n t l n (" k e y l i s t : "+k e y l i s t . t oS t r i ng ()) ;
236 i f (temp . containsKey (k e y l i s t)) {
237 temp . put (k e y l i s t , temp . get (k e y l i s t)+1) ;
238 }
239 e l s e {
240 temp . put (k e y l i s t , 1 f) ;
241 }
242 }
243 }
244 }
245 KeyList ksub ;
246 long end = System . cur rentTimeMi l l i s () ;
247 long runtime = end−s t a r t ;
248 System . out . p r i n t l n (" rows : "+i) ;
249 System . out . p r i n t l n (" runtime = "+runtime) ;
250 f o r (KeyList k : zoneOn . keySet ()) {
251 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
252 zoneOn . put (k , zoneOn . get (k) /denominator . get (ksub)) ;
253 count . put (ksub , denominator . get (ksub)) ;
254 }
255 f o r (KeyList k : zoneOff . keySet ()) {
256 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
257 zoneOff . put (k , zoneOff . get (k) /denominator . get (ksub)) ;
258 count . put (ksub , denominator . get (ksub)) ;
259 }
260

261 }
262 catch (SQLException se) {
263 System . out . p r i n t l n ("SQLException : " + se . getMessage ()) ;
264 System . out . p r i n t l n ("SQLState : " + se . getSQLState ()) ;
265 System . out . p r i n t l n ("VendorError : " + se . getErrorCode ()) ;
266

267 }

A.5 Package: core 97

268 f o r (KeyList k : zoneOn . keySet ()) {
269 on . put (k , zoneOn . get (k)) ;
270 }
271 f o r (KeyList k : zoneOff . keySet ()) {
272 o f f . put (k , zoneOff . get (k)) ;
273 }
274 System . out . p r i n t f (" zone %d/%d (%d) \n" , on . s i z e () , o f f . s i z e () ,

denominator . s i z e ()) ;
275 }
276 pub l i c void pr in tMat r i c e s () {
277 KeyList ksub ;
278 System . out . p r i n t l n () ;
279 System . out . p r i n t l n ("∗∗∗") ;
280 System . out . p r i n t l n (" p r i n t i ng matrix on") ;
281 System . out . p r i n t l n ("∗∗∗") ;
282 f o r (KeyList k : on . keySet ()) {
283 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
284 long seen = Math . round (count . get (ksub) ∗ on . get (k)) ;
285 i f (seen <= 1)
286 cont inue ;
287 i f (k . get (Config . patternLength) != 13)
288 cont inue ;
289

290 System . out . p r i n t f ("(%d/%d) " , seen , count . get (ksub)) ;
291

292 System . out . p r i n t ("key : ") ;
293 k . pr intVa lues () ;
294

295 System . out . p r i n t l n (" value : "+on . get (k)) ;
296 }
297 System . out . p r i n t l n () ;
298 System . out . p r i n t l n () ;
299 System . out . p r i n t l n ("∗∗∗") ;
300 System . out . p r i n t l n (" p r i n t i ng matrix o f f ") ;
301 System . out . p r i n t l n ("∗∗∗") ;
302

303 f o r (KeyList k : o f f . keySet ()) {
304 ksub = k . subLi s t (0 , k . s i z e ()−2) ;
305 long seen = Math . round (count . get (ksub) ∗ o f f . get (k)) ;
306 i f (seen <= 1)
307 cont inue ;
308 i f (k . get (Config . patternLength) != 13)
309 cont inue ;
310

311 System . out . p r i n t f ("(%d/%d) " , seen , count . get (ksub)) ;
312

313 System . out . p r i n t ("key : ") ;
314 k . pr intVa lues () ;
315

316 System . out . p r i n t l n (" value : "+o f f . get (k)) ;
317 }
318 System . out . p r i n t l n () ;
319 }
320

321 }

Listing A.14: DecisionMatrix.java

A.5.3 KeyList.java

98 Source Listings

1 package core ;
2 import java . u t i l . ArrayList ;
3 import events . ∗ ;
4 /∗∗
5 ∗ @author Andreas
6 ∗ ∗/
7 pub l i c c l a s s KeyList {
8 pr i va t e ArrayList<Integer> keys ;
9 pub l i c KeyList () {

10 keys = new ArrayList<Integer >() ;
11 }
12 pub l i c KeyList (EventList e l i s t) {
13 keys = new ArrayList<Integer >() ;
14 f o r (Event e : e l i s t . getPattern ()) {
15 keys . add (e . getID ()) ;
16 }
17 }
18 pub l i c i n t hashCode () {
19 i n t hashcode=0;
20 f o r (i n t i : keys) {
21 hashcode = hashcode ∗31 +i ;
22 }
23 re turn hashcode ;
24 }
25 pub l i c boolean equa l s (Object o) {
26 t ry {
27 KeyList a = (KeyList) o ;
28 i f (t h i s . s i z e () != a . s i z e ()) {
29 re turn f a l s e ;
30 }
31 f o r (i n t i =0; i<keys . s i z e () ; i++){
32 i f (t h i s . get (i) !=a . get (i)) {
33 re turn f a l s e ;
34 }
35 }
36 re turn true ;
37 }
38 catch (Exception e) {
39 re turn f a l s e ;
40 }
41 }
42 pub l i c void add (i n t i) {
43 keys . add (i) ;
44 }
45 pub l i c void add (i n t k , i n t i) {
46 keys . add (k , i) ;
47 }
48 pub l i c i n t get (i n t k) {
49 re turn keys . get (k) ;
50 }
51 pub l i c i n t s i z e () {
52 re turn keys . s i z e () ;
53 }
54 pub l i c KeyList subLi s t (i n t x , i n t y) {
55 KeyList k = new KeyList () ;
56 f o r (i n t i = x ; i<=y ; i++){
57 k . add (keys . get (i)) ;
58 }
59 re turn k ;
60 }
61 pub l i c void pr intVa lues () {
62 f o r (i n t i : keys) {
63 System . out . p r i n t (ZoneEvent . get IDStr ing (i) + " ") ;
64 }
65 }

A.5 Package: core 99

66 pub l i c ArrayList<Integer> getKeys () {
67 re turn keys ;
68 }
69

70 pub l i c boolean hasZoneEvent () {
71 f o r (i n t i : keys) {
72 i f (i >= 256)
73 re turn true ;
74 }
75 re turn f a l s e ;
76 }
77 pub l i c S t r ing toS t r i ng () {
78 St r ing r e t u rn s t r = "" ;
79 f o r (i n t i : keys) {
80 r e t u r n s t r = r e t u rn s t r+ZoneEvent . get IDStr ing (i)+" " ;
81 }
82 re turn r e t u r n s t r ;
83 }
84 }

Listing A.15: KeyList.java

100 Source Listings

Appendix B

Testing

B.1 Source Listings

B.1.1 UnitTests.java

1 package events ;
2

3 import s t a t i c org . j u n i t . Assert . ∗ ;
4

5 import java . u t i l . Arrays ;
6

7 import org . j un i t . Before ;
8 import org . j un i t . Test ;
9

10 import c on f i g . Config ;
11

12 pub l i c c l a s s UnitTests {
13

14 EventList events ;
15 SensorEvent [] se ;
16 SwitchEvent [] sw ;
17 ZoneEvent z1 ;
18

19 @Before
20 pub l i c void setUp () throws Exception {
21 events = new EventList (500 , 10000 , 7) ;
22 se = new SensorEvent [] { new SensorEvent (1) , new SensorEvent (2) ,

new SensorEvent (3) } ;
23 sw = new SwitchEvent [] { new SwitchEvent (11 , t rue) , new

SwitchEvent (12 , f a l s e) } ;

102 Testing

24 z1 = new ZoneEvent (0L , 20 , 21) ;
25 }
26

27 /∗∗
28 ∗ t e s t that the s i n g l e i n t e g e r id f o r zone events are the no matter

, no matter the order the i d s are added to the zone event .
29 ∗/
30 @Test
31 pub l i c void zoneIdCons i s tency () {
32 i n t actual , expected = new ZoneEvent (0L , 1 , 2 , 3) . getID () ;
33

34 ZoneEvent z = new ZoneEvent () ;
35 z . addID (1) ;
36 z . addID (2) ;
37 z . addID (3) ;
38 ac tua l = z . getID () ;
39 as s e r tEqua l s (expected , ac tua l) ;
40

41 z = new ZoneEvent () ;
42 z . addID (2) ;
43 z . addID (3) ;
44 z . addID (1) ;
45 ac tua l = z . getID () ;
46 as s e r tEqua l s (expected , ac tua l) ;
47

48 z = new ZoneEvent () ;
49 z . addID (3) ;
50 z . addID (1) ;
51 z . addID (2) ;
52 ac tua l = z . getID () ;
53 as s e r tEqua l s (expected , ac tua l) ;
54 }
55

56 /∗∗
57 ∗ t e s t the equa l s method f o r s enso r events
58 ∗/
59 @Test
60 pub l i c void te s tEqua l s () {
61 SensorEvent s1 = new SensorEvent (1 , 123456789) ;
62 SensorEvent s2 = new SensorEvent (1 , 123456789) ;
63 as s e r tEqua l s (s1 , s2) ;
64 SensorEvent s3 = new SensorEvent (3 , 123456789) ;
65 asser tTrue (! s1 . equa l s (s3)) ;
66 }
67

68 /∗∗
69 ∗ bas i c get events t e s t
70 ∗ the same sensor event 3 times , then one switch event
71 ∗/
72 @Test
73 pub l i c void testGetEvents () {
74 events . add (se [0]) ;
75 events . add (se [0]) ;
76 events . add (se [0]) ;
77 events . add (sw [0]) ;
78

79 Event [] expected = { se [0] , se [0] , se [0] , sw [0] } ;
80 Event [] a c tua l = events . getEvents () ;
81 f o r (i n t i = 0 ; i < expected . l ength ; i++) {
82 as s e r tEqua l s (expected [i] , a c tua l [i]) ;
83 }
84 }
85

86 /∗∗
87 ∗ t e s t s the o rde r ing o f s enso r events going in to an e v e n t l i s t

B.1 Source Listings 103

88 ∗ adds 7 senso r events to event l i s t ,
89 ∗ i d s are s equenc ia l ,
90 ∗ and timestamps are 1000ms appart .
91 ∗ v e r i f i e s the o rde r ing o f the e n t i r e l i s t , a f t e r each event i s

added .
92 ∗ a l s o t e s t s the getLastEvent method
93 ∗/
94 @Test
95 pub l i c void testEventOrder ing () {
96 Event expected , ac tua l ;
97 Event [] e = new Event [7] ;
98 f o r (i n t i = 0 ; i < 7 ; i++) {
99 e [i] = new SensorEvent (i , 1000∗ i) ;

100 events . add (e [i]) ;
101

102 expected = e [i] ;
103 ac tua l = events . getLastEvent () ;
104 as s e r tEqua l s (expected , ac tua l) ;
105

106 f o r (i n t j = 0 ; j <= i ; j++) {
107 expected = e [j] ;
108 ac tua l = events . getEvents () [j] ;
109 as s e r tEqua l s (expected , ac tua l) ;
110 }
111 }
112

113

114 }
115

116 /∗∗
117 ∗ t e s t getPattern , to make sure the array has f i x ed length ,
118 ∗ independant o f events in e v en t l i s t ,
119 ∗ and that the array i s proper ly p r e f i x ed with −1
120 ∗/
121 @Test
122 pub l i c void testGetPattern () {
123 as s e r tEqua l s (7 , events . getPattern () . l ength) ;
124 f o r (Event ac tua l : events . getPattern ()) {
125 as s e r tEqua l s (−1 , ac tua l . getID ()) ;
126 }
127 events . add (se [0]) ;
128 events . add (se [0]) ;
129 events . add (se [0]) ;
130

131 Event [] a c tua l s = events . getPattern () ;
132 f o r (i n t i = 0 ; i < Config . patternLength ; i++) {
133 i f (i < 4)
134 as s e r tEqua l s (−1 , a c tua l s [i] . getID ()) ;
135 e l s e
136 as s e r tEqua l s (se [0] , a c tua l s [i]) ;
137 }
138

139 //adds 5 more events , f o r a t o t a l o f 8
140 events . add (se [0]) ;
141 events . add (se [0]) ;
142 events . add (se [0]) ;
143 events . add (se [0]) ;
144 events . add (se [0]) ;
145

146 f o r (Event ac tua l : events . getPattern ()) {
147 as s e r tEqua l s (se [0] , a c tua l) ;
148 }
149 as s e r tEqua l s (7 , events . getPattern () . l ength) ;
150 }
151

104 Testing

152 /∗∗
153 ∗ t e s t o f zone events :
154 ∗ 1 − e v e n t l i s t i s ab le to de tec t zone events , i f zones are enabled

.
155 ∗ 2 − zone events are not produced , i f zones are d i s ab l ed .
156 ∗/
157 @Test
158 pub l i c void tes tZoneDetect ion () {
159

160 se [0] = new SensorEvent (1 , 123456781000L) ;
161 se [1] = new SensorEvent (2 , 123456781000L) ;
162 se [2] = new SensorEvent (1 , 123456789000L) ;
163

164 events . add (se [0]) ;
165 events . add (se [1]) ;
166 events . add (se [2]) ;
167

168 Event [] a c tua l s = events . getEvents () ;
169

170 asser tTrue (a c tua l s [0] i n s t an c e o f ZoneEvent) ;
171 asser tTrue (a c tua l s [0] . compareID (se [0] . getID ())) ;
172 asser tTrue (a c tua l s [0] . compareID (se [1] . getID ())) ;
173 as s e r tEqua l s (se [2] , a c tua l s [1]) ;
174

175 // repea t s t e s t without zone de t e c t i on
176 events = new EventList (0 , 10000 , 7) ;
177 events . add (se [0]) ;
178 events . add (se [1]) ;
179 events . add (se [2]) ;
180

181 ac tua l s = events . getEvents () ;
182

183 f o r (i n t i = 0 ; i < 3 ; i++) {
184 as s e r tEqua l s (se [i] , a c tua l s [i]) ;
185 }
186

187 }
188

189

190 /∗∗
191 ∗ t e s t s the removal o f events " pattern i n t e r v a l " o ld e r than the

l a s t event
192 ∗/
193 @Test
194 pub l i c void testPurgeOld () {
195 se [0] = new SensorEvent (1 , 0L) ;
196 se [1] = new SensorEvent (2 , 123456781000L) ;
197

198 events . add (se [0]) ;
199 events . add (se [1]) ;
200

201 as s e r tEqua l s (1 , events . getEvents () . l ength) ;
202

203 SensorEvent expected = se [1] ;
204 Event ac tua l = events . getEvents () [0] ;
205 as s e r tEqua l s (expected , ac tua l) ;
206 }
207

208 /∗∗
209 ∗ t e s t s that event l i s t maintains the c o r r e c t number o f events ,
210 ∗ us ing var i ous pattern length c on f i g u r a t i o n s (2 , 3 and 7)
211 ∗/
212 @Test
213 pub l i c void testPatternLength () {
214 EventList e2 = new EventList (500 , 10000 , 2) ;

B.2 DecisionMatrix dumps 105

215 EventList e3 = new EventList (500 , 10000 , 3) ;
216 EventList e7 = new EventList (500 , 10000 , 7) ;
217 EventList [] e s = new EventList [] { e2 , e3 , e7 } ;
218

219 i n t actual , expected = 0 ;
220

221 //makes sure the l ength i s i n i t i a l l y zero
222 f o r (EventList e : es) {
223 ac tua l = e . getEvents () . l ength ;
224 as s e r tEqua l s (expected , ac tua l) ;
225 }
226

227 //adds an event to each l i s t , and v e r i f i e s the l ength to be 1
228 expected = 1 ;
229 f o r (EventList e : es) {
230 e . add (se [0]) ;
231 ac tua l = e . getEvents () . l ength ;
232 as s e r tEqua l s (expected , ac tua l) ;
233 }
234

235 //adds the event a 2nd time , and v e r i f i e s the l ength to be 2
236 expected = 2 ;
237 f o r (EventList e : es) {
238 e . add (se [0]) ;
239 ac tua l = e . getEvents () . l ength ;
240 as s e r tEqua l s (expected , ac tua l) ;
241 }
242

243 //adds 8 more senso r events , so a l l l i s t s are f u l l
244 f o r (EventList e : es) {
245 f o r (i n t i = 0 ; i < 8 ; i++)
246 e . add (se [0]) ;
247 }
248

249 // v e r i f i e s that a l l l i s t s are at t h e i r max capac i ty
250 as s e r tEqua l s (2 , e2 . getEvents () . l ength) ;
251 as s e r tEqua l s (3 , e3 . getEvents () . l ength) ;
252 as s e r tEqua l s (7 , e7 . getEvents () . l ength) ;
253

254 }
255

256 }

Listing B.1: UnitTests.java

B.2 DecisionMatrix dumps

B.2.1 Pattern length 2, without zones

1 Loading Con f i gura t i ons
2 Database = jdbc :mysq l : // l o c a l h o s t / k i i i b ? user=KIIIB&password=42
3 pat t e rn_inte rva l = 10000
4 pattern_length = 2
5 use_zones = f a l s e
6 zone_interva l = 500
7 probab l i l i t y_th r e sho ld = 0 .5
8 c o r r e l a t i o n_ in t e r v a l = 7000

106 Testing

9 c o r r e l a t i o n_co r r e c t i on = 0 .1
10 default_on_time = 5000
11 punishment_timeout = 10000
12 debug = f a l s e
13 Trying to connect to the database
14 connect ion e s t ab l i s h ed
15 genera t ing ba s i c matr i ce s
16 f e t c h i n g data from db
17 i t e r a t i n g r e s u l t s e t
18 rows : 45797
19 runtime = 1854
20 bas i c 88/75 (114)
21 sw i t che s
22 18
23 13
24 19
25 17
26 4
27 s en so r s
28 24
29 23
30 20
31 21
32 27
33 28
34 22
35 25
36 26
37 29
38 30
39

40 ∗∗∗
41 p r i n t i ng matrix on
42 ∗∗∗
43 (1/1150) key : 28 28 18 va l u e : 8 .6956524E−4
44 (1/935) key : 27 28 19 va l u e : 0 .0010695187
45 (9/935) key : 27 28 18 va l u e : 0 .009625669
46 (1/161) key : 20 27 19 va l u e : 0 .0062111802
47 (4/666) key : 29 29 19 va l u e : 0 .006006006
48 (1/161) key : 20 27 17 va l u e : 0 .0062111802
49 (1/1627) key : 22 23 13 va l u e : 6 .1462814E−4
50 (1/161) key : 20 27 18 va l u e : 0 .0062111802
51 (1/289) key : 21 23 13 va l u e : 0 .0034602077
52 (1/105) key : 25 20 19 va l u e : 0 .00952381
53 (3/1209) key : 24 23 13 va l u e : 0 .0024813896
54 (1/42) key : 23 26 17 va l u e : 0 .023809524
55 (1/53) key : 27 25 17 va l u e : 0 .018867925
56 (1/170) key : 21 27 13 va l u e : 0 .005882353
57 (2/170) key : 21 27 17 va l u e : 0 .011764706
58 (2/720) key : 20 23 13 va l u e : 0 .0027777778
59 (1/126) key : −1 21 19 va l u e : 0 .007936508
60 (2/170) key : 21 27 19 va l u e : 0 .011764706
61 (1/41) key : 20 26 19 va l u e : 0 .024390243
62 (3/231) key : 25 21 17 va l u e : 0 .012987013
63 (2/106) key : 26 21 19 va l u e : 0 .018867925
64 (1/666) key : 26 25 17 va l u e : 0 .0015015015
65 (2/231) key : 25 21 19 va l u e : 0 .008658009
66 (1/41) key : 20 26 17 va l u e : 0 .024390243
67 (1/231) key : 25 21 18 va l u e : 0 .0043290043
68 (3/811) key : 25 25 17 va l u e : 0 .003699137
69 (1/811) key : 25 25 19 va l u e : 0 .0012330456
70 (3/106) key : 26 21 17 va l u e : 0 .028301887
71 (2/126) key : −1 21 4 va l u e : 0 .015873017
72 (1/187) key : 28 21 4 va l u e : 0 .0053475937
73 (1/230) key : 24 21 19 va l u e : 0 .004347826

B.2 DecisionMatrix dumps 107

74 (1/371) key : 21 21 17 va l u e : 0 .0026954177
75 (1/334) key : 20 20 4 va l u e : 0 .002994012
76 (1/371) key : 21 21 19 va l u e : 0 .0026954177
77 (2/722) key : 25 26 17 va l u e : 0 .002770083
78 (1/722) key : 25 26 19 va l u e : 0 .0013850415
79 (1/180) key : −1 20 19 va l u e : 0 .0055555557
80 (1/146) key : 21 28 19 va l u e : 0 .006849315
81 (1/146) key : 21 28 18 va l u e : 0 .006849315
82 (4/363) key : 23 21 19 va l u e : 0 .011019284
83 (1/58) key : 23 25 17 va l u e : 0 .01724138
84 (1/134) key : 27 21 19 va l u e : 0 .0074626864
85 (1/363) key : 23 21 18 va l u e : 0 .002754821
86 (1/1161) key : −1 28 19 va l u e : 8 .6132647E−4
87 (3/107) key : 29 21 19 va l u e : 0 .028037382
88 (5/334) key : 20 20 19 va l u e : 0 .0149700595
89 (4/215) key : 21 25 17 va l u e : 0 .018604651
90 (1/363) key : 23 21 13 va l u e : 0 .002754821
91 (6/136) key : 20 25 17 va l u e : 0 .04411765
92 (1/180) key : −1 20 4 va l u e : 0 .0055555557
93 (1/73) key : 20 29 19 va l u e : 0 .01369863
94 (1/81) key : 24 25 17 va l u e : 0 .012345679
95 (3/991) key : 21 20 17 va l u e : 0 .0030272452
96 (2/1230) key : 23 24 4 va l u e : 0 .0016260162
97 (1/991) key : 21 20 18 va l u e : 0 .0010090817
98 (2/584) key : 24 20 19 va l u e : 0 .0034246575
99 (2/584) key : 24 20 13 va l u e : 0 .0034246575

100 (4/875) key : 20 21 4 va l u e : 0 .0045714285
101 (20/991) key : 21 20 19 va l u e : 0 .020181635
102 (1/28) key : 22 29 19 va l u e : 0 .035714287
103 (5/19) key : −1 −1 18 va l u e : 0 .2631579
104 (5/593) key : 23 20 13 va l u e : 0 .008431703
105 (4/875) key : 20 21 13 va l u e : 0 .0045714285
106 (3/870) key : 28 27 18 va l u e : 0 .0034482758
107 (1/88) key : 22 20 19 va l u e : 0 .011363637
108 (1/296) key : 21 24 19 va l u e : 0 .0033783785
109 (3/100) key : 21 29 19 va l u e : 0 .03
110 (1/593) key : 23 20 18 va l u e : 0 .0016863407
111 (1/1044) key : 27 27 17 va l u e : 9 .578544E−4
112 (2/103) key : 27 20 19 va l u e : 0 .019417476
113 (1/1044) key : 27 27 18 va l u e : 9 .578544E−4
114 (2/593) key : 23 20 19 va l u e : 0 .0033726813
115 (1/1044) key : 27 27 13 va l u e : 9 .578544E−4
116 (1/88) key : 22 20 13 va l u e : 0 .011363637
117 (1/571) key : −1 27 18 va l u e : 0 .0017513135
118 (1/529) key : 20 24 13 va l u e : 0 .0018903592
119 (1/1230) key : 23 24 18 va l u e : 8 .130081E−4
120 (1/149) key : 28 20 19 va l u e : 0 .0067114094
121 (1/875) key : 20 21 17 va l u e : 0 .0011428571
122 (1/875) key : 20 21 18 va l u e : 0 .0011428571
123 (17/875) key : 20 21 19 va l u e : 0 .019428572
124 (2/991) key : 21 20 4 va l u e : 0 .0020181634
125 (1/529) key : 20 24 19 va l u e : 0 .0018903592
126 (1/19) key : −1 −1 13 va l u e : 0 .05263158
127 (1/529) key : 20 24 4 va l u e : 0 .0018903592
128 (2/116) key : 20 28 18 va l u e : 0 .01724138
129 (1/584) key : 24 20 4 va l u e : 0 .0017123288
130 (2/991) key : 21 20 13 va l u e : 0 .0020181634
131

132

133 ∗∗∗
134 p r i n t i ng matrix o f f
135 ∗∗∗
136 (1/1209) key : 24 23 18 va l u e : 8 .271299E−4
137 (1/1150) key : 28 28 18 va l u e : 8 .6956524E−4
138 (2/68) key : 24 27 18 va l u e : 0 .029411765

108 Testing

139 (1/935) key : 27 28 19 va l u e : 0 .0010695187
140 (2/935) key : 27 28 18 va l u e : 0 .0021390375
141 (1/58) key : 28 24 13 va l u e : 0 .01724138
142 (3/161) key : 20 27 19 va l u e : 0 .01863354
143 (2/666) key : 29 29 19 va l u e : 0 .003003003
144 (1/65) key : 27 24 4 va l u e : 0 .015384615
145 (1/105) key : 25 20 17 va l u e : 0 .00952381
146 (3/1209) key : 24 23 13 va l u e : 0 .0024813896
147 (1/197) key : −1 26 17 va l u e : 0 .005076142
148 (1/720) key : 20 23 4 va l u e : 0 .0013888889
149 (3/720) key : 20 23 13 va l u e : 0 .004166667
150 (1/720) key : 20 23 18 va l u e : 0 .0013888889
151 (1/28) key : 28 22 18 va l u e : 0 .035714287
152 (1/1842) key : 23 22 17 va l u e : 5 .428882E−4
153 (1/666) key : 26 25 17 va l u e : 0 .0015015015
154 (1/811) key : 25 25 17 va l u e : 0 .0012330456
155 (1/811) key : 25 25 19 va l u e : 0 .0012330456
156 (1/106) key : 26 21 17 va l u e : 0 .009433962
157 (1/246) key : −1 25 17 va l u e : 0 .0040650405
158 (1/371) key : 21 21 18 va l u e : 0 .0026954177
159 (1/230) key : 24 21 18 va l u e : 0 .004347826
160 (1/371) key : 21 21 19 va l u e : 0 .0026954177
161 (2/334) key : 20 20 4 va l u e : 0 .005988024
162 (1/28) key : 22 28 18 va l u e : 0 .035714287
163 (2/722) key : 25 26 17 va l u e : 0 .002770083
164 (1/180) key : −1 20 19 va l u e : 0 .0055555557
165 (1/363) key : 23 21 19 va l u e : 0 .002754821
166 (1/58) key : 23 25 17 va l u e : 0 .01724138
167 (1/134) key : 27 21 19 va l u e : 0 .0074626864
168 (1/230) key : 24 21 4 va l u e : 0 .004347826
169 (3/1161) key : −1 28 18 va l u e : 0 .0025839794
170 (2/821) key : 26 26 17 va l u e : 0 .0024360537
171 (3/107) key : 29 21 19 va l u e : 0 .028037382
172 (1/363) key : 23 21 13 va l u e : 0 .002754821
173 (1/371) key : 21 21 4 va l u e : 0 .0026954177
174 (4/334) key : 20 20 19 va l u e : 0 .011976048
175 (2/136) key : 20 25 17 va l u e : 0 .014705882
176 (2/5968) key : −1 24 13 va l u e : 3 .3512065E−4
177 (3/363) key : 23 21 4 va l u e : 0 .008264462
178 (1/991) key : 21 20 17 va l u e : 0 .0010090817
179 (3/991) key : 21 20 18 va l u e : 0 .0030272452
180 (1/62) key : 27 23 19 va l u e : 0 .016129032
181 (2/584) key : 24 20 13 va l u e : 0 .0034246575
182 (12/991) key : 21 20 19 va l u e : 0 .012108981
183 (3/875) key : 20 21 4 va l u e : 0 .0034285714
184 (3/19) key : −1 −1 19 va l u e : 0 .15789473
185 (2/593) key : 23 20 13 va l u e : 0 .0033726813
186 (9/19) key : −1 −1 18 va l u e : 0 .47368422
187 (2/875) key : 20 21 13 va l u e : 0 .0022857143
188 (4/870) key : 28 27 18 va l u e : 0 .004597701
189 (1/296) key : 21 24 19 va l u e : 0 .0033783785
190 (1/103) key : 27 20 19 va l u e : 0 .009708738
191 (2/1044) key : 27 27 18 va l u e : 0 .0019157088
192 (1/1044) key : 27 27 13 va l u e : 9 .578544E−4
193 (1/571) key : −1 27 18 va l u e : 0 .0017513135
194 (1/41) key : 29 20 19 va l u e : 0 .024390243
195 (2/1230) key : 23 24 17 va l u e : 0 .0016260162
196 (1/149) key : 28 20 19 va l u e : 0 .0067114094
197 (1/1230) key : 23 24 18 va l u e : 8 .130081E−4
198 (1/875) key : 20 21 17 va l u e : 0 .0011428571
199 (4/2575) key : −1 23 18 va l u e : 0 .0015533981
200 (2/870) key : 28 27 13 va l u e : 0 .0022988506
201 (13/875) key : 20 21 19 va l u e : 0 .014857143
202 (3/991) key : 21 20 4 va l u e : 0 .0030272452
203 (1/529) key : 20 24 19 va l u e : 0 .0018903592

B.2 DecisionMatrix dumps 109

204 (1/19) key : −1 −1 13 va l u e : 0 .05263158
205 (1/116) key : 20 28 17 va l u e : 0 .00862069
206 (1/116) key : 20 28 19 va l u e : 0 .00862069
207 (1/296) key : 21 24 4 va l u e : 0 .0033783785
208 (2/116) key : 20 28 18 va l u e : 0 .01724138
209 (2/4375) key : 24 24 18 va l u e : 4 .5714286E−4
210 (2/584) key : 24 20 4 va l u e : 0 .0034246575

Listing B.2: EventList.java

B.2.2 Pattern length 2, with zones

1 Loading Con f i gura t i ons
2 Database = jdbc :mysq l : // l o c a l h o s t / k i i i b ? user=KIIIB&password=42
3 pat t e rn_inte rva l = 10000
4 pattern_length = 2
5 use_zones = true
6 zone_interva l = 500
7 probab l i l i t y_th r e sho ld = 0 .5
8 c o r r e l a t i o n_ in t e r v a l = 7000
9 c o r r e l a t i o n_co r r e c t i on = 0 .1

10 default_on_time = 5000
11 punishment_timeout = 10000
12 debug = f a l s e
13 Trying to connect to the database
14 connect ion e s t ab l i s h ed
15 genera t ing ba s i c matr i ce s
16 f e t c h i n g data from db
17 i t e r a t i n g r e s u l t s e t
18 rows : 45797
19 runtime = 1662
20 bas i c 88/75 (114)
21 genera t ing zone matr i ce s
22 f e t c h i n g data from db
23 i t e r a t i n g r e s u l t s e t
24 rows : 45797
25 runtime = 680
26 zone 144/119 (1173)
27 sw i t che s
28 18
29 13
30 19
31 17
32 4
33 s en so r s
34 24
35 23
36 20
37 21
38 27
39 28
40 22
41 25
42 26
43 29
44 30
45

46 ∗∗∗
47 p r i n t i ng matrix on
48 ∗∗∗

110 Testing

49 (1/4) key : [2 0 , 2 1] [2 1 , 2 9] 19 va l u e : 0 .25
50 (2/2) key : [2 1 , 2 4] [2 3 , 2 4] 4 va l u e : 1 .0
51 (1/9) key : 28 [2 0 , 2 1 , 2 7] 19 va l u e : 0 .11111111
52 (1/36) key : 23 [2 0 , 2 1] 4 va l u e : 0 .027777778
53 (1/161) key : 20 27 19 va l u e : 0 .0062111802
54 (1/169) key : [2 0 , 2 3] 21 19 va l u e : 0 .00591716
55 (1/26) key : [2 0 , 2 1] 28 18 va l u e : 0 .03846154
56 (1/1) key : 28 [2 0 , 2 7 , 2 8] 19 va l u e : 1 . 0
57 (1/20) key : [2 7 , 2 8] [2 0 , 2 1] 19 va l u e : 0 .05
58 (1/161) key : 20 27 17 va l u e : 0 .0062111802
59 (1/161) key : 20 27 18 va l u e : 0 .0062111802
60 (1/289) key : 21 23 13 va l u e : 0 .0034602077
61 (1/2) key : 25 [2 1 , 2 7] 17 va l u e : 0 . 5
62 (2/36) key : 23 [2 0 , 2 1] 19 va l u e : 0 .055555556
63 (2/97) key : [2 0 , 2 1] 21 19 va l u e : 0 .020618556
64 (1/20) key : [2 5 , 2 6] 21 19 va l u e : 0 .05
65 (1/53) key : 27 25 17 va l u e : 0 .018867925
66 (1/43) key : 21 [2 0 , 2 3] 13 va l u e : 0 .023255814
67 (1/4) key : [2 0 , 2 5] 21 18 va l u e : 0 .25
68 (1/126) key : −1 21 19 va l u e : 0 .007936508
69 (1/1) key : 21 [2 4 , 2 5] 17 va l u e : 1 . 0
70 (1/40) key : [2 0 , 2 3] 20 18 va l u e : 0 .025
71 (1/41) key : 20 26 19 va l u e : 0 .024390243
72 (1/666) key : 26 25 17 va l u e : 0 .0015015015
73 (1/41) key : 20 26 17 va l u e : 0 .024390243
74 (3/811) key : 25 25 17 va l u e : 0 .003699137
75 (1/73) key : [2 0 , 2 1] 20 19 va l u e : 0 .01369863
76 (1/811) key : 25 25 19 va l u e : 0 .0012330456
77 (1/73) key : [2 0 , 2 1] 20 17 va l u e : 0 .01369863
78 (2/126) key : −1 21 4 va l u e : 0 .015873017
79 (1/10) key : [2 0 , 2 7] 21 19 va l u e : 0 . 1
80 (3/111) key : 28 [2 0 , 2 1] 19 va l u e : 0 .027027028
81 (1/26) key : [2 0 , 2 1] [2 0 , 2 1] 13 va l u e : 0 .03846154
82 (1/180) key : −1 20 19 va l u e : 0 .0055555557
83 (1/1) key : [2 2 , 2 9] 21 19 va l u e : 1 . 0
84 (1/44) key : 27 [2 0 , 2 1] 19 va l u e : 0 .022727273
85 (1/58) key : 23 25 17 va l u e : 0 .01724138
86 (2/111) key : 28 [2 0 , 2 1] 13 va l u e : 0 .018018018
87 (1/134) key : 27 21 19 va l u e : 0 .0074626864
88 (1/8) key : [2 0 , 2 1] 26 19 va l u e : 0 .125
89 (1/1161) key : −1 28 19 va l u e : 8 .6132647E−4
90 (3/107) key : 29 21 19 va l u e : 0 .028037382
91 (4/215) key : 21 25 17 va l u e : 0 .018604651
92 (1/57) key : −1 [2 0 , 2 3] 13 va l u e : 0 .01754386
93 (6/136) key : 20 25 17 va l u e : 0 .04411765
94 (1/95) key : [2 7 , 2 8] 28 18 va l u e : 0 .010526316
95 (1/180) key : −1 20 4 va l u e : 0 .0055555557
96 (1/81) key : 24 25 17 va l u e : 0 .012345679
97 (1/5) key : 27 [2 1 , 2 7] 13 va l u e : 0 . 2
98 (1/28) key : 21 [2 0 , 2 4] 19 va l u e : 0 .035714287
99 (2/1230) key : 23 24 4 va l u e : 0 .0016260162

100 (1/39) key : 20 [2 0 , 2 1] 4 va l u e : 0 .025641026
101 (1/3) key : [2 0 , 2 1] [2 0 , 2 1 , 2 4] 19 va l u e : 0 .33333334
102 (1/4) key : [2 1 , 2 3] 25 17 va l u e : 0 .25
103 (3/870) key : 28 27 18 va l u e : 0 .0034482758
104 (1/296) key : 21 24 19 va l u e : 0 .0033783785
105 (1/6) key : 21 [2 1 , 2 7] 17 va l u e : 0 .16666667
106 (1/96) key : 27 [2 7 , 2 8] 18 va l u e : 0 .010416667
107 (2/103) key : 27 20 19 va l u e : 0 .019417476
108 (1/571) key : −1 27 18 va l u e : 0 .0017513135
109 (1/529) key : 20 24 13 va l u e : 0 .0018903592
110 (1/2) key : 25 [2 0 , 2 1 , 2 5] 19 va l u e : 0 . 5
111 (1/39) key : 20 [2 0 , 2 1] 19 va l u e : 0 .025641026
112 (1/1230) key : 23 24 18 va l u e : 8 .130081E−4
113 (1/529) key : 20 24 19 va l u e : 0 .0018903592

B.2 DecisionMatrix dumps 111

114 (1/529) key : 20 24 4 va l u e : 0 .0018903592
115 (1/33) key : −1 [2 0 , 2 1] 19 va l u e : 0 .030303031
116 (1/1150) key : 28 28 18 va l u e : 8 .6956524E−4
117 (1/33) key : −1 [2 0 , 2 1] 17 va l u e : 0 .030303031
118 (1/935) key : 27 28 19 va l u e : 0 .0010695187
119 (1/34) key : [2 0 , 2 1] 25 17 va l u e : 0 .029411765
120 (9/935) key : 27 28 18 va l u e : 0 .009625669
121 (1/5) key : 22 [2 0 , 2 1] 19 va l u e : 0 . 2
122 (4/666) key : 29 29 19 va l u e : 0 .006006006
123 (1/1627) key : 22 23 13 va l u e : 6 .1462814E−4
124 (1/26) key : 21 [2 0 , 2 7] 19 va l u e : 0 .03846154
125 (1/105) key : 25 20 19 va l u e : 0 .00952381
126 (1/26) key : 21 [2 0 , 2 7] 17 va l u e : 0 .03846154
127 (3/1209) key : 24 23 13 va l u e : 0 .0024813896
128 (1/2) key : [2 5 , 2 7] 27 17 va l u e : 0 . 5
129 (1/8) key : [2 0 , 2 1] [2 1 , 2 5] 17 va l u e : 0 .125
130 (1/42) key : 23 26 17 va l u e : 0 .023809524
131 (1/8) key : [2 1 , 2 8] 20 18 va l u e : 0 .125
132 (1/170) key : 21 27 13 va l u e : 0 .005882353
133 (2/170) key : 21 27 17 va l u e : 0 .011764706
134 (2/720) key : 20 23 13 va l u e : 0 .0027777778
135 (2/170) key : 21 27 19 va l u e : 0 .011764706
136 (1/26) key : [2 0 , 2 3 , 2 4] 21 18 va l u e : 0 .03846154
137 (1/26) key : [2 0 , 2 3 , 2 4] 21 19 va l u e : 0 .03846154
138 (3/231) key : 25 21 17 va l u e : 0 .012987013
139 (1/16) key : 21 [2 1 , 2 5] 17 va l u e : 0 .0625
140 (2/106) key : 26 21 19 va l u e : 0 .018867925
141 (2/231) key : 25 21 19 va l u e : 0 .008658009
142 (1/231) key : 25 21 18 va l u e : 0 .0043290043
143 (3/106) key : 26 21 17 va l u e : 0 .028301887
144 (1/56) key : 23 [2 0 , 2 4] 13 va l u e : 0 .017857144
145 (1/14) key : 28 [2 1 , 2 7] 19 va l u e : 0 .071428575
146 (1/187) key : 28 21 4 va l u e : 0 .0053475937
147 (1/371) key : 21 21 17 va l u e : 0 .0026954177
148 (1/230) key : 24 21 19 va l u e : 0 .004347826
149 (1/371) key : 21 21 19 va l u e : 0 .0026954177
150 (1/334) key : 20 20 4 va l u e : 0 .002994012
151 (1/17) key : [2 1 , 2 7] 28 19 va l u e : 0 .05882353
152 (2/722) key : 25 26 17 va l u e : 0 .002770083
153 (1/7) key : [2 1 , 2 4] 25 17 va l u e : 0 .14285715
154 (1/722) key : 25 26 19 va l u e : 0 .0013850415
155 (1/146) key : 21 28 19 va l u e : 0 .006849315
156 (1/92) key : [2 0 , 2 1] 23 13 va l u e : 0 .010869565
157 (4/363) key : 23 21 19 va l u e : 0 .011019284
158 (1/146) key : 21 28 18 va l u e : 0 .006849315
159 (1/363) key : 23 21 18 va l u e : 0 .002754821
160 (1/363) key : 23 21 13 va l u e : 0 .002754821
161 (5/334) key : 20 20 19 va l u e : 0 .0149700595
162 (1/3) key : 21 [2 0 , 2 9] 19 va l u e : 0 .33333334
163 (1/73) key : 20 29 19 va l u e : 0 .01369863
164 (1/16) key : [2 1 , 2 7] 20 19 va l u e : 0 .0625
165 (3/991) key : 21 20 17 va l u e : 0 .0030272452
166 (1/62) key : 21 [2 0 , 2 1] 4 va l u e : 0 .016129032
167 (1/991) key : 21 20 18 va l u e : 0 .0010090817
168 (2/584) key : 24 20 19 va l u e : 0 .0034246575
169 (2/584) key : 24 20 13 va l u e : 0 .0034246575
170 (20/991) key : 21 20 19 va l u e : 0 .020181635
171 (4/875) key : 20 21 4 va l u e : 0 .0045714285
172 (1/28) key : 22 29 19 va l u e : 0 .035714287
173 (4/875) key : 20 21 13 va l u e : 0 .0045714285
174 (5/593) key : 23 20 13 va l u e : 0 .008431703
175 (5/19) key : −1 −1 18 va l u e : 0 .2631579
176 (1/88) key : 22 20 19 va l u e : 0 .011363637
177 (1/593) key : 23 20 18 va l u e : 0 .0016863407
178 (3/100) key : 21 29 19 va l u e : 0 .03

112 Testing

179 (1/1044) key : 27 27 17 va l u e : 9 .578544E−4
180 (1/1044) key : 27 27 18 va l u e : 9 .578544E−4
181 (2/593) key : 23 20 19 va l u e : 0 .0033726813
182 (1/88) key : 22 20 13 va l u e : 0 .011363637
183 (1/1044) key : 27 27 13 va l u e : 9 .578544E−4
184 (1/149) key : 28 20 19 va l u e : 0 .0067114094
185 (1/875) key : 20 21 17 va l u e : 0 .0011428571
186 (1/875) key : 20 21 18 va l u e : 0 .0011428571
187 (2/991) key : 21 20 4 va l u e : 0 .0020181634
188 (17/875) key : 20 21 19 va l u e : 0 .019428572
189 (1/19) key : −1 −1 13 va l u e : 0 .05263158
190 (2/116) key : 20 28 18 va l u e : 0 .01724138
191 (1/584) key : 24 20 4 va l u e : 0 .0017123288
192 (2/991) key : 21 20 13 va l u e : 0 .0020181634
193

194

195 ∗∗∗
196 p r i n t i ng matrix o f f
197 ∗∗∗
198 (1/169) key : [2 0 , 2 3] 21 4 va l u e : 0 .00591716
199 (2/68) key : 24 27 18 va l u e : 0 .029411765
200 (1/131) key : [2 3 , 2 4] 24 18 va l u e : 0 .007633588
201 (1/58) key : 28 24 13 va l u e : 0 .01724138
202 (3/161) key : 20 27 19 va l u e : 0 .01863354
203 (1/20) key : [2 0 , 2 7] 28 18 va l u e : 0 .05
204 (1/65) key : 27 24 4 va l u e : 0 .015384615
205 (1/20) key : [2 7 , 2 8] [2 0 , 2 1] 13 va l u e : 0 .05
206 (2/97) key : [2 0 , 2 1] 21 19 va l u e : 0 .020618556
207 (1/3) key : 26 [2 3 , 2 4] 17 va l u e : 0 .33333334
208 (1/8) key : [2 3 , 2 4] 25 17 va l u e : 0 .125
209 (1/2) key : 21 [2 0 , 2 1 , 2 3] 19 va l u e : 0 . 5
210 (1/1) key : [2 0 , 2 1 , 2 8] [2 4 , 2 7] 18 va l u e : 1 . 0
211 (2/5) key : [2 0 , 2 4] [2 1 , 2 3] 4 va l u e : 0 .4
212 (1/1842) key : 23 22 17 va l u e : 5 .428882E−4
213 (1/666) key : 26 25 17 va l u e : 0 .0015015015
214 (1/226) key : 23 [2 2 , 2 3] 17 va l u e : 0 .0044247787
215 (1/811) key : 25 25 17 va l u e : 0 .0012330456
216 (1/73) key : [2 0 , 2 1] 20 19 va l u e : 0 .01369863
217 (1/811) key : 25 25 19 va l u e : 0 .0012330456
218 (1/111) key : 28 [2 0 , 2 1] 19 va l u e : 0 .009009009
219 (1/111) key : 28 [2 0 , 2 1] 18 va l u e : 0 .009009009
220 (1/180) key : −1 20 19 va l u e : 0 .0055555557
221 (1/58) key : 23 25 17 va l u e : 0 .01724138
222 (2/44) key : 27 [2 0 , 2 1] 19 va l u e : 0 .045454547
223 (1/134) key : 27 21 19 va l u e : 0 .0074626864
224 (3/1161) key : −1 28 18 va l u e : 0 .0025839794
225 (2/821) key : 26 26 17 va l u e : 0 .0024360537
226 (3/107) key : 29 21 19 va l u e : 0 .028037382
227 (2/8) key : 29 [2 0 , 2 1] 19 va l u e : 0 .25
228 (2/136) key : 20 25 17 va l u e : 0 .014705882
229 (2/57) key : −1 [2 0 , 2 3] 13 va l u e : 0 .03508772
230 (2/95) key : [2 7 , 2 8] 28 18 va l u e : 0 .021052632
231 (1/57) key : −1 [2 0 , 2 3] 18 va l u e : 0 .01754386
232 (1/1) key : 21 [2 2 , 2 8] 18 va l u e : 1 . 0
233 (1/62) key : 27 23 19 va l u e : 0 .016129032
234 (1/29) key : [2 0 , 2 3 , 2 4] 24 18 va l u e : 0 .03448276
235 (1/1) key : [2 0 , 2 1 , 2 6] [2 0 , 2 3 , 2 4] 19 va l u e : 1 .0
236 (1/19) key : [2 5 , 2 6] [2 5 , 2 6] 17 va l u e : 0 .05263158
237 (4/870) key : 28 27 18 va l u e : 0 .004597701
238 (1/296) key : 21 24 19 va l u e : 0 .0033783785
239 (2/96) key : 27 [2 7 , 2 8] 18 va l u e : 0 .020833334
240 (1/103) key : 27 20 19 va l u e : 0 .009708738
241 (1/571) key : −1 27 18 va l u e : 0 .0017513135
242 (1/41) key : 29 20 19 va l u e : 0 .024390243
243 (2/1230) key : 23 24 17 va l u e : 0 .0016260162

B.2 DecisionMatrix dumps 113

244 (1/39) key : 20 [2 0 , 2 1] 19 va l u e : 0 .025641026
245 (1/1230) key : 23 24 18 va l u e : 8 .130081E−4
246 (2/870) key : 28 27 13 va l u e : 0 .0022988506
247 (1/529) key : 20 24 19 va l u e : 0 .0018903592
248 (1/296) key : 21 24 4 va l u e : 0 .0033783785
249 (1/1) key : [2 0 , 2 3] [2 0 , 2 8] 19 va l u e : 1 . 0
250 (2/4375) key : 24 24 18 va l u e : 4 .5714286E−4
251 (1/1209) key : 24 23 18 va l u e : 8 .271299E−4
252 (2/33) key : −1 [2 0 , 2 1] 19 va l u e : 0 .060606062
253 (1/27) key : 24 [2 0 , 2 1] 19 va l u e : 0 .037037037
254 (1/1150) key : 28 28 18 va l u e : 8 .6956524E−4
255 (1/935) key : 27 28 19 va l u e : 0 .0010695187
256 (1/34) key : [2 0 , 2 1] 25 17 va l u e : 0 .029411765
257 (2/935) key : 27 28 18 va l u e : 0 .0021390375
258 (2/666) key : 29 29 19 va l u e : 0 .003003003
259 (1/1) key : [2 3 , 2 8] 24 13 va l u e : 1 . 0
260 (1/105) key : 25 20 17 va l u e : 0 .00952381
261 (1/6) key : [2 5 , 2 6] [2 0 , 2 1] 19 va l u e : 0 .16666667
262 (1/26) key : 21 [2 0 , 2 7] 19 va l u e : 0 .03846154
263 (3/1209) key : 24 23 13 va l u e : 0 .0024813896
264 (1/197) key : −1 26 17 va l u e : 0 .005076142
265 (1/720) key : 20 23 4 va l u e : 0 .0013888889
266 (1/125) key : [2 7 , 2 8] 27 13 va l u e : 0 .008
267 (1/79) key : [2 0 , 2 1] 24 4 va l u e : 0 .012658228
268 (3/720) key : 20 23 13 va l u e : 0 .004166667
269 (1/720) key : 20 23 18 va l u e : 0 .0013888889
270 (1/1) key : [2 3 , 2 6] [2 5 , 2 6] 17 va l u e : 1 . 0
271 (1/28) key : 28 22 18 va l u e : 0 .035714287
272 (1/2) key : [2 0 , 2 4] [2 1 , 2 4] 19 va l u e : 0 . 5
273 (1/106) key : 26 21 17 va l u e : 0 .009433962
274 (1/246) key : −1 25 17 va l u e : 0 .0040650405
275 (1/230) key : 24 21 18 va l u e : 0 .004347826
276 (1/371) key : 21 21 18 va l u e : 0 .0026954177
277 (2/334) key : 20 20 4 va l u e : 0 .005988024
278 (1/371) key : 21 21 19 va l u e : 0 .0026954177
279 (1/84) key : [2 5 , 2 6] 26 17 va l u e : 0 .011904762
280 (2/722) key : 25 26 17 va l u e : 0 .002770083
281 (1/28) key : 22 28 18 va l u e : 0 .035714287
282 (1/24) key : [2 3 , 2 4] 21 4 va l u e : 0 .041666668
283 (1/2) key : [2 3 , 2 8] [2 0 , 2 1] 19 va l u e : 0 . 5
284 (1/363) key : 23 21 19 va l u e : 0 .002754821
285 (1/230) key : 24 21 4 va l u e : 0 .004347826
286 (4/334) key : 20 20 19 va l u e : 0 .011976048
287 (1/371) key : 21 21 4 va l u e : 0 .0026954177
288 (1/363) key : 23 21 13 va l u e : 0 .002754821
289 (2/5968) key : −1 24 13 va l u e : 3 .3512065E−4
290 (3/363) key : 23 21 4 va l u e : 0 .008264462
291 (1/181) key : 24 [2 0 , 2 3] 13 va l u e : 0 .005524862
292 (1/991) key : 21 20 17 va l u e : 0 .0010090817
293 (3/991) key : 21 20 18 va l u e : 0 .0030272452
294 (2/584) key : 24 20 13 va l u e : 0 .0034246575
295 (3/875) key : 20 21 4 va l u e : 0 .0034285714
296 (12/991) key : 21 20 19 va l u e : 0 .012108981
297 (3/19) key : −1 −1 19 va l u e : 0 .15789473
298 (2/875) key : 20 21 13 va l u e : 0 .0022857143
299 (9/19) key : −1 −1 18 va l u e : 0 .47368422
300 (2/593) key : 23 20 13 va l u e : 0 .0033726813
301 (1/55) key : [2 0 , 2 4] 23 18 va l u e : 0 .018181818
302 (2/1044) key : 27 27 18 va l u e : 0 .0019157088
303 (1/1044) key : 27 27 13 va l u e : 9 .578544E−4
304 (1/149) key : 28 20 19 va l u e : 0 .0067114094
305 (1/875) key : 20 21 17 va l u e : 0 .0011428571
306 (4/2575) key : −1 23 18 va l u e : 0 .0015533981
307 (3/991) key : 21 20 4 va l u e : 0 .0030272452
308 (13/875) key : 20 21 19 va l u e : 0 .014857143

114 Testing

309 (4/62) key : 21 [2 0 , 2 1] 19 va l u e : 0 .06451613
310 (1/19) key : −1 −1 13 va l u e : 0 .05263158
311 (1/116) key : 20 28 17 va l u e : 0 .00862069
312 (1/5) key : 21 [2 0 , 2 8] 18 va l u e : 0 . 2
313 (1/116) key : 20 28 19 va l u e : 0 .00862069
314 (2/116) key : 20 28 18 va l u e : 0 .01724138
315 (2/584) key : 24 20 4 va l u e : 0 .0034246575
316 (1/1) key : 26 [2 1 , 2 9] 19 va l u e : 1 . 0

Listing B.3: EventList.java

B.2.3 Pattern length 3, without zones

1 Loading Con f i gura t i ons
2 Database = jdbc :mysq l : // l o c a l h o s t / k i i i b ? user=KIIIB&password=42
3 pat t e rn_inte rva l = 10000
4 pattern_length = 3
5 use_zones = f a l s e
6 zone_interva l = 500
7 probab l i l i t y_th r e sho ld = 0 .5
8 c o r r e l a t i o n_ in t e r v a l = 7000
9 c o r r e l a t i o n_co r r e c t i on = 0 .1

10 default_on_time = 5000
11 punishment_timeout = 10000
12 debug = f a l s e
13 Trying to connect to the database
14 connect ion e s t ab l i s h ed
15 genera t ing ba s i c matr i ce s
16 f e t c h i n g data from db
17 i t e r a t i n g r e s u l t s e t
18 rows : 45797
19 runtime = 1666
20 bas i c 142/112 (914)
21 sw i t che s
22 18
23 13
24 19
25 17
26 4
27 s en so r s
28 24
29 23
30 20
31 21
32 27
33 28
34 22
35 25
36 26
37 29
38 30
39

40 ∗∗∗
41 p r i n t i ng matrix on
42 ∗∗∗
43 (1/10) key : 21 27 25 17 va l u e : 0 . 1
44 (6/255) key : 20 21 20 19 va l u e : 0 .023529412
45 (1/180) key : −1 −1 20 4 va l u e : 0 .0055555557
46 (1/30) key : 20 21 29 19 va l u e : 0 .033333335
47 (1/10) key : 21 21 27 17 va l u e : 0 . 1

B.2 DecisionMatrix dumps 115

48 (1/180) key : −1 −1 20 19 va l u e : 0 .0055555557
49 (1/47) key : 23 20 20 4 va l u e : 0 .021276595
50 (1/72) key : 27 28 21 4 va l u e : 0 .013888889
51 (1/12) key : 20 22 20 19 va l u e : 0 .083333336
52 (1/150) key : 23 24 20 13 va l u e : 0 .006666667
53 (1/1161) key : −1 −1 28 19 va l u e : 8 .6132647E−4
54 (1/204) key : 26 25 25 17 va l u e : 0 .004901961
55 (1/397) key : 25 25 25 17 va l u e : 0 .0025188916
56 (1/78) key : 20 24 21 19 va l u e : 0 .012820513
57 (2/202) key : 20 23 21 19 va l u e : 0 .00990099
58 (1/56) key : −1 23 20 19 va l u e : 0 .017857144
59 (3/68) key : 20 20 21 19 va l u e : 0 .04411765
60 (1/14) key : 26 23 26 17 va l u e : 0 .071428575
61 (1/56) key : −1 23 20 13 va l u e : 0 .017857144
62 (1/72) key : 27 28 20 19 va l u e : 0 .013888889
63 (1/382) key : 24 23 24 18 va l u e : 0 .002617801
64 (1/202) key : 20 23 21 13 va l u e : 0 .004950495
65 (1/93) key : 24 20 21 18 va l u e : 0 .010752688
66 (2/23) key : 26 26 21 17 va l u e : 0 .08695652
67 (1/167) key : 28 28 27 18 va l u e : 0 .005988024
68 (1/126) key : −1 −1 21 19 va l u e : 0 .007936508
69 (1/180) key : 23 20 21 4 va l u e : 0 .0055555557
70 (1/1) key : 22 29 21 19 va l u e : 1 . 0
71 (1/438) key : 29 29 29 19 va l u e : 0 .002283105
72 (2/382) key : 24 23 24 4 va l u e : 0 .005235602
73 (1/6) key : 21 24 25 17 va l u e : 0 .16666667
74 (1/58) key : 29 29 21 19 va l u e : 0 .01724138
75 (1/81) key : 20 24 20 19 va l u e : 0 .012345679
76 (1/23) key : 23 22 20 13 va l u e : 0 .04347826
77 (1/6) key : 21 23 25 17 va l u e : 0 .16666667
78 (1/160) key : −1 24 23 13 va l u e : 0 .00625
79 (1/139) key : 20 23 20 19 va l u e : 0 .007194245
80 (1/31) key : 21 25 25 19 va l u e : 0 .032258064
81 (1/139) key : 20 23 20 18 va l u e : 0 .007194245
82 (2/126) key : −1 −1 21 4 va l u e : 0 .015873017
83 (2/180) key : 23 20 21 19 va l u e : 0 .011111111
84 (2/22) key : 20 29 29 19 va l u e : 0 .09090909
85 (5/19) key : −1 −1 −1 18 va l u e : 0 .2631579
86 (2/30) key : 21 21 25 17 va l u e : 0 .06666667
87 (1/68) key : 20 21 27 19 va l u e : 0 .014705882
88 (4/73) key : 21 20 25 17 va l u e : 0 .05479452
89 (1/7) key : 22 20 20 19 va l u e : 0 .14285715
90 (1/17) key : 20 28 28 18 va l u e : 0 .05882353
91 (2/91) key : 21 25 26 17 va l u e : 0 .021978023
92 (1/9) key : 27 21 27 13 va l u e : 0 .11111111
93 (1/19) key : −1 −1 −1 13 va l u e : 0 .05263158
94 (2/83) key : 28 20 21 19 va l u e : 0 .024096385
95 (2/47) key : 25 26 21 19 va l u e : 0 .04255319
96 (2/83) key : 28 20 21 13 va l u e : 0 .024096385
97 (1/47) key : 25 26 21 17 va l u e : 0 .021276595
98 (1/114) key : 21 20 24 19 va l u e : 0 .00877193
99 (3/61) key : −1 21 20 19 va l u e : 0 .04918033

100 (1/15) key : 22 21 20 19 va l u e : 0 .06666667
101 (1/2) key : 29 28 27 18 va l u e : 0 . 5
102 (1/61) key : −1 21 20 17 va l u e : 0 .016393442
103 (1/222) key : 24 20 23 13 va l u e : 0 .0045045046
104 (1/6) key : 25 21 27 17 va l u e : 0 .16666667
105 (1/46) key : 20 20 24 4 va l u e : 0 .02173913
106 (1/37) key : 27 20 21 19 va l u e : 0 .027027028
107 (1/111) key : 21 24 23 13 va l u e : 0 .009009009
108 (1/571) key : −1 −1 27 18 va l u e : 0 .0017513135
109 (1/255) key : 20 21 20 4 va l u e : 0 .003921569
110 (1/46) key : 20 20 24 13 va l u e : 0 .02173913
111 (1/110) key : 23 20 23 13 va l u e : 0 .009090909
112 (2/255) key : 20 21 20 17 va l u e : 0 .007843138

116 Testing

113 (1/14) key : 29 22 29 19 va l u e : 0 .071428575
114 (1/255) key : 20 21 20 13 va l u e : 0 .003921569
115 (1/54) key : −1 20 21 4 va l u e : 0 .018518519
116 (1/62) key : 20 21 25 17 va l u e : 0 .016129032
117 (1/54) key : −1 20 21 13 va l u e : 0 .018518519
118 (1/59) key : 23 21 21 17 va l u e : 0 .016949153
119 (2/68) key : 21 23 20 13 va l u e : 0 .029411765
120 (1/59) key : 23 21 21 19 va l u e : 0 .016949153
121 (1/5) key : 29 20 21 19 va l u e : 0 . 2
122 (1/35) key : 23 21 28 19 va l u e : 0 .028571429
123 (1/35) key : 23 21 28 18 va l u e : 0 .028571429
124 (1/21) key : 21 29 21 19 va l u e : 0 .04761905
125 (2/15) key : 23 23 21 19 va l u e : 0 .13333334
126 (1/54) key : −1 20 21 19 va l u e : 0 .018518519
127 (1/69) key : 26 25 21 19 va l u e : 0 .014492754
128 (1/60) key : 20 25 26 19 va l u e : 0 .016666668
129 (1/18) key : 21 20 26 19 va l u e : 0 .055555556
130 (1/11) key : 25 27 27 17 va l u e : 0 .09090909
131 (1/13) key : 28 21 27 19 va l u e : 0 .07692308
132 (2/235) key : 24 23 20 13 va l u e : 0 .008510638
133 (1/327) key : 28 27 28 18 va l u e : 0 .003058104
134 (1/6) key : 27 20 25 17 va l u e : 0 .16666667
135 (1/255) key : 26 26 25 17 va l u e : 0 .003921569
136 (1/117) key : 25 21 20 19 va l u e : 0 .008547009
137 (5/269) key : 27 27 28 18 va l u e : 0 .01858736
138 (1/65) key : 21 24 20 19 va l u e : 0 .015384615
139 (1/112) key : 23 21 20 13 va l u e : 0 .008928572
140 (1/81) key : 21 27 28 19 va l u e : 0 .012345679
141 (2/81) key : 21 27 28 18 va l u e : 0 .024691358
142 (2/112) key : 23 21 20 19 va l u e : 0 .017857144
143 (1/10) key : 28 20 28 18 va l u e : 0 . 1
144 (2/52) key : 25 25 21 17 va l u e : 0 .03846154
145 (1/73) key : 20 27 28 18 va l u e : 0 .01369863
146 (1/30) key : 25 20 21 19 va l u e : 0 .033333335
147 (1/81) key : 20 24 20 4 va l u e : 0 .012345679
148 (1/12) key : 24 21 25 17 va l u e : 0 .083333336
149 (1/92) key : 21 20 27 19 va l u e : 0 .010869565
150 (1/7) key : 27 29 29 19 va l u e : 0 .14285715
151 (1/92) key : 21 20 27 17 va l u e : 0 .010869565
152 (1/22) key : 20 25 25 17 va l u e : 0 .045454547
153 (1/81) key : 20 24 20 13 va l u e : 0 .012345679
154 (1/18) key : 23 20 25 17 va l u e : 0 .055555556
155 (1/261) key : 24 24 23 13 va l u e : 0 .0038314175
156 (1/289) key : 28 27 27 18 va l u e : 0 .0034602077
157 (2/49) key : 29 21 20 19 va l u e : 0 .040816326
158 (1/555) key : 27 27 27 13 va l u e : 0 .0018018018
159 (3/68) key : 27 21 20 19 va l u e : 0 .04411765
160 (1/104) key : 28 21 20 18 va l u e : 0 .009615385
161 (1/296) key : 21 20 21 13 va l u e : 0 .0033783785
162 (1/11) key : 20 25 20 19 va l u e : 0 .09090909
163 (2/104) key : 28 21 20 19 va l u e : 0 .01923077
164 (1/34) key : 21 25 21 17 va l u e : 0 .029411765
165 (1/225) key : 22 22 23 13 va l u e : 0 .0044444446
166 (1/128) key : 20 21 23 13 va l u e : 0 .0078125
167 (1/296) key : 21 20 21 17 va l u e : 0 .0033783785
168 (6/296) key : 21 20 21 19 va l u e : 0 .02027027
169 (1/54) key : 21 20 28 18 va l u e : 0 .018518519
170 (1/56) key : 21 28 27 18 va l u e : 0 .017857144
171 (1/3) key : 23 20 26 17 va l u e : 0 .33333334
172 (2/296) key : 21 20 21 4 va l u e : 0 .006756757
173 (1/48) key : 28 27 21 19 va l u e : 0 .020833334
174 (1/129) key : 20 21 24 19 va l u e : 0 .007751938
175 (1/79) key : 20 20 20 19 va l u e : 0 .012658228
176 (1/27) key : 20 25 21 18 va l u e : 0 .037037037
177 (3/97) key : 21 20 20 19 va l u e : 0 .030927835

B.2 DecisionMatrix dumps 117

178 (1/27) key : 20 25 21 19 va l u e : 0 .037037037
179 (1/9) key : 25 20 27 18 va l u e : 0 .11111111
180 (1/90) key : 21 21 20 4 va l u e : 0 .011111111
181 (2/28) key : 21 27 20 19 va l u e : 0 .071428575
182 (1/34) key : 21 20 29 19 va l u e : 0 .029411765
183 (2/21) key : 21 21 29 19 va l u e : 0 .0952381
184 (1/62) key : 24 23 21 18 va l u e : 0 .016129032
185

186

187 ∗∗∗
188 p r i n t i ng matrix o f f
189 ∗∗∗
190 (1/255) key : 20 21 20 19 va l u e : 0 .003921569
191 (1/6) key : 23 20 28 19 va l u e : 0 .16666667
192 (1/180) key : −1 −1 20 19 va l u e : 0 .0055555557
193 (1/249) key : 25 26 26 17 va l u e : 0 .004016064
194 (1/47) key : 23 20 20 4 va l u e : 0 .021276595
195 (1/176) key : 21 20 23 4 va l u e : 0 .0056818184
196 (3/1161) key : −1 −1 28 18 va l u e : 0 .0025839794
197 (1/397) key : 25 25 25 19 va l u e : 0 .0025188916
198 (1/14) key : 29 29 20 19 va l u e : 0 .071428575
199 (1/202) key : 20 23 21 19 va l u e : 0 .004950495
200 (2/68) key : 20 20 21 19 va l u e : 0 .029411765
201 (1/207) key : 27 28 28 18 va l u e : 0 .004830918
202 (1/124) key : −1 27 27 18 va l u e : 0 .008064516
203 (2/56) key : −1 23 20 13 va l u e : 0 .035714287
204 (1/8) key : 24 27 24 4 va l u e : 0 .125
205 (1/382) key : 24 23 24 18 va l u e : 0 .002617801
206 (1/382) key : 24 23 24 17 va l u e : 0 .002617801
207 (1/93) key : 24 20 21 17 va l u e : 0 .010752688
208 (1/66) key : 23 24 21 4 va l u e : 0 .015151516
209 (1/202) key : 20 23 21 4 va l u e : 0 .004950495
210 (1/167) key : 28 28 27 18 va l u e : 0 .005988024
211 (1/17) key : 27 20 28 18 va l u e : 0 .05882353
212 (2/180) key : 23 20 21 4 va l u e : 0 .011111111
213 (2/58) key : 29 29 21 19 va l u e : 0 .03448276
214 (1/26) key : 28 28 20 19 va l u e : 0 .03846154
215 (1/180) key : 23 20 21 13 va l u e : 0 .0055555557
216 (1/284) key : 26 25 26 17 va l u e : 0 .0035211267
217 (1/180) key : 23 20 21 19 va l u e : 0 .0055555557
218 (3/19) key : −1 −1 −1 19 va l u e : 0 .15789473
219 (1/58) key : −1 20 23 13 va l u e : 0 .01724138
220 (2/69) key : 24 21 20 4 va l u e : 0 .028985508
221 (1/7) key : 27 20 20 19 va l u e : 0 .14285715
222 (1/14) key : 27 27 23 19 va l u e : 0 .071428575
223 (9/19) key : −1 −1 −1 18 va l u e : 0 .47368422
224 (1/12) key : 24 23 25 17 va l u e : 0 .083333336
225 (2/73) key : 21 20 25 17 va l u e : 0 .02739726
226 (1/45) key : 21 24 21 18 va l u e : 0 .022222223
227 (1/69) key : 24 21 20 19 va l u e : 0 .014492754
228 (1/197) key : −1 −1 26 17 va l u e : 0 .005076142
229 (1/19) key : −1 −1 −1 13 va l u e : 0 .05263158
230 (1/10) key : 28 24 27 18 va l u e : 0 . 1
231 (1/83) key : 28 20 21 13 va l u e : 0 .012048192
232 (1/47) key : 25 26 21 17 va l u e : 0 .021276595
233 (1/13) key : 26 20 21 19 va l u e : 0 .07692308
234 (1/61) key : −1 21 20 19 va l u e : 0 .016393442
235 (1/7) key : 22 25 25 17 va l u e : 0 .14285715
236 (1/51) key : 22 24 20 13 va l u e : 0 .019607844
237 (1/168) key : 20 24 23 13 va l u e : 0 .005952381
238 (1/222) key : 24 20 23 13 va l u e : 0 .0045045046
239 (1/222) key : 24 20 23 18 va l u e : 0 .0045045046
240 (1/37) key : 27 20 21 19 va l u e : 0 .027027028
241 (1/54) key : 20 28 27 13 va l u e : 0 .018518519
242 (1/571) key : −1 −1 27 18 va l u e : 0 .0017513135

118 Testing

243 (1/110) key : 23 20 23 13 va l u e : 0 .009090909
244 (1/2) key : 26 29 21 19 va l u e : 0 . 5
245 (1/255) key : 20 21 20 18 va l u e : 0 .003921569
246 (1/485) key : 23 23 22 17 va l u e : 0 .0020618557
247 (1/175) key : 25 25 26 17 va l u e : 0 .0057142857
248 (1/130) key : −1 28 27 18 va l u e : 0 .0076923077
249 (2/321) key : 23 24 24 18 va l u e : 0 .0062305294
250 (1/27) key : 28 27 20 19 va l u e : 0 .037037037
251 (2/5968) key : −1 −1 24 13 va l u e : 3 .3512065E−4
252 (1/43) key : 21 29 29 19 va l u e : 0 .023255814
253 (1/156) key : 23 20 24 19 va l u e : 0 .0064102565
254 (1/14) key : 22 23 21 13 va l u e : 0 .071428575
255 (1/54) key : −1 20 21 19 va l u e : 0 .018518519
256 (1/117) key : 25 21 20 17 va l u e : 0 .008547009
257 (1/327) key : 28 27 28 18 va l u e : 0 .003058104
258 (1/65) key : 21 24 20 13 va l u e : 0 .015384615
259 (1/255) key : 26 26 25 17 va l u e : 0 .003921569
260 (1/3) key : 21 22 28 18 va l u e : 0 .33333334
261 (1/269) key : 27 27 28 19 va l u e : 0 .003717472
262 (1/6) key : 29 20 20 4 va l u e : 0 .16666667
263 (1/269) key : 27 27 28 18 va l u e : 0 .003717472
264 (1/246) key : −1 −1 25 17 va l u e : 0 .0040650405
265 (1/10) key : 28 20 28 17 va l u e : 0 . 1
266 (1/413) key : 26 26 26 17 va l u e : 0 .0024213076
267 (2/81) key : 20 24 20 4 va l u e : 0 .024691358
268 (1/261) key : 24 24 23 18 va l u e : 0 .0038314175
269 (3/92) key : 21 20 27 19 va l u e : 0 .032608695
270 (1/7) key : 27 29 29 19 va l u e : 0 .14285715
271 (1/261) key : 24 24 23 13 va l u e : 0 .0038314175
272 (1/93) key : 21 21 21 18 va l u e : 0 .010752688
273 (5/49) key : 29 21 20 19 va l u e : 0 .10204082
274 (1/93) key : 21 21 21 19 va l u e : 0 .010752688
275 (1/555) key : 27 27 27 13 va l u e : 0 .0018018018
276 (1/6) key : 26 23 24 17 va l u e : 0 .16666667
277 (1/68) key : 27 21 20 19 va l u e : 0 .014705882
278 (1/555) key : 27 27 27 18 va l u e : 0 .0018018018
279 (1/104) key : 28 21 20 18 va l u e : 0 .009615385
280 (1/68) key : 27 21 20 18 va l u e : 0 .014705882
281 (1/104) key : 28 21 20 19 va l u e : 0 .009615385
282 (7/296) key : 21 20 21 19 va l u e : 0 .02364865
283 (1/11) key : 20 25 20 17 va l u e : 0 .09090909
284 (1/54) key : 21 20 28 18 va l u e : 0 .018518519
285 (1/93) key : 21 21 21 4 va l u e : 0 .010752688
286 (1/7) key : 28 24 23 13 va l u e : 0 .14285715
287 (1/296) key : 21 20 21 4 va l u e : 0 .0033783785
288 (1/27) key : 24 21 24 19 va l u e : 0 .037037037
289 (1/7) key : 20 24 27 18 va l u e : 0 .14285715
290 (2/90) key : 21 21 20 19 va l u e : 0 .022222223
291 (4/2575) key : −1 −1 23 18 va l u e : 0 .0015533981
292 (1/1) key : 20 28 22 18 va l u e : 1 . 0
293 (1/79) key : 20 20 20 19 va l u e : 0 .012658228
294 (2/97) key : 21 20 20 19 va l u e : 0 .020618556
295 (1/90) key : 21 21 20 4 va l u e : 0 .011111111
296 (2/62) key : 24 23 21 4 va l u e : 0 .032258064
297 (1/31) key : 20 27 21 19 va l u e : 0 .032258064
298 (1/129) key : 20 21 24 4 va l u e : 0 .007751938
299 (1/414) key : 27 28 27 13 va l u e : 0 .002415459
300 (1/3) key : 23 28 24 13 va l u e : 0 .33333334
301 (2/414) key : 27 28 27 18 va l u e : 0 .004830918

Listing B.4: EventList.java

B.2 DecisionMatrix dumps 119

B.2.4 Pattern length 4, without zones

1 Loading Con f i gura t i ons
2 Database = jdbc :mysq l : // l o c a l h o s t / k i i i b ? user=KIIIB&password=42
3 pat t e rn_inte rva l = 10000
4 pattern_length = 3
5 use_zones = true
6 zone_interva l = 500
7 probab l i l i t y_th r e sho ld = 0 .5
8 c o r r e l a t i o n_ in t e r v a l = 7000
9 c o r r e l a t i o n_co r r e c t i on = 0 .1

10 default_on_time = 5000
11 punishment_timeout = 10000
12 debug = f a l s e
13 Trying to connect to the database
14 connect ion e s t ab l i s h ed
15 genera t ing ba s i c matr i ce s
16 f e t c h i n g data from db
17 i t e r a t i n g r e s u l t s e t
18 rows : 45797
19 runtime = 1613
20 bas i c 137/113 (914)
21 genera t ing zone matr i ce s
22 f e t c h i n g data from db
23 i t e r a t i n g r e s u l t s e t
24 rows : 45797
25 runtime = 754
26 zone 225/168 (3872)
27 sw i t che s
28 18
29 13
30 19
31 17
32 4
33 s en so r s
34 24
35 23
36 20
37 21
38 27
39 28
40 22
41 25
42 26
43 29
44 30
45

46 ∗∗∗
47 p r i n t i ng matrix on
48 ∗∗∗
49 (1/9) key : 21 27 25 17 va l u e : 0 .11111111
50 (4/255) key : 20 21 20 19 va l u e : 0 .015686275
51 (1/2) key : 28 [2 0 , 2 1] [2 0 , 2 1 , 2 4] 19 va l u e : 0 . 5
52 (1/1) key : 28 28 [2 0 , 2 1 , 2 7] 19 va l u e : 1 . 0
53 (1/11) key : 20 22 20 19 va l u e : 0 .09090909
54 (1/23) key : 27 [2 7 , 2 8] 28 18 va l u e : 0 .04347826
55 (1/1165) key : −1 −1 28 19 va l u e : 8 .583691E−4
56 (1/396) key : 25 25 25 17 va l u e : 0 .0025252525
57 (1/104) key : 21 23 24 13 va l u e : 0 .009615385
58 (1/1) key : 27 [2 1 , 2 7] 20 19 va l u e : 1 . 0
59 (1/57) key : [2 0 , 2 3] 21 20 19 va l u e : 0 .01754386
60 (1/112) key : 20 21 21 19 va l u e : 0 .008928572
61 (1/19) key : 27 21 28 19 va l u e : 0 .05263158
62 (1/389) key : 24 23 24 18 va l u e : 0 .002570694

120 Testing

63 (1/19) key : 27 21 28 18 va l u e : 0 .05263158
64 (2/23) key : 26 26 21 17 va l u e : 0 .08695652
65 (1/1) key : 20 21 [2 4 , 2 5] 17 va l u e : 1 . 0
66 (1/164) key : 28 28 27 18 va l u e : 0 .0060975607
67 (1/1) key : [2 1 , 2 2] 20 [2 0 , 2 1] 19 va l u e : 1 . 0
68 (1/1) key : 20 22 [2 0 , 2 1] 19 va l u e : 1 . 0
69 (1/57) key : −1 −1 [2 0 , 2 3] 13 va l u e : 0 .01754386
70 (2/389) key : 24 23 24 4 va l u e : 0 .005141388
71 (2/58) key : 29 29 21 19 va l u e : 0 .03448276
72 (1/25) key : 23 22 20 13 va l u e : 0 .04
73 (1/3) key : [2 1 , 2 8] 20 21 19 va l u e : 0 .33333334
74 (2/24) key : 20 29 29 19 va l u e : 0 .083333336
75 (1/3) key : [2 0 , 2 3] [2 0 , 2 1] 28 18 va l u e : 0 .33333334
76 (2/1) key : 21 [2 1 , 2 4] [2 3 , 2 4] 4 va l u e : 2 .0
77 (1/1) key : [2 0 , 2 3 , 2 4] 20 21 13 va l u e : 1 . 0
78 (5/20) key : −1 −1 −1 18 va l u e : 0 .25
79 (1/6) key : [2 0 , 2 1] [2 0 , 2 1] 21 19 va l u e : 0 .16666667
80 (1/4) key : 25 27 21 17 va l u e : 0 .25
81 (1/20) key : −1 −1 −1 4 va l u e : 0 .05
82 (1/14) key : 20 28 28 18 va l u e : 0 .071428575
83 (1/20) key : −1 −1 −1 13 va l u e : 0 .05
84 (1/7) key : 27 21 27 13 va l u e : 0 .14285715
85 (1/80) key : 28 20 21 19 va l u e : 0 .0125
86 (2/48) key : 25 26 21 19 va l u e : 0 .041666668
87 (2/80) key : 28 20 21 13 va l u e : 0 .025
88 (1/48) key : 25 26 21 17 va l u e : 0 .020833334
89 (2/66) key : −1 21 20 19 va l u e : 0 .030303031
90 (1/2) key : 21 21 [2 1 , 2 7] 17 va l u e : 0 . 5
91 (1/16) key : 22 21 20 19 va l u e : 0 .0625
92 (1/4) key : [2 1 , 2 7] 25 26 17 va l u e : 0 .25
93 (1/3) key : [2 1 , 2 7] 20 20 19 va l u e : 0 .33333334
94 (1/2) key : [2 0 , 2 1] 27 25 17 va l u e : 0 . 5
95 (1/255) key : 20 21 20 4 va l u e : 0 .003921569
96 (1/566) key : −1 −1 27 18 va l u e : 0 .0017667845
97 (1/1) key : 26 25 [2 0 , 2 1 , 2 5] 19 va l u e : 1 . 0
98 (1/2) key : [2 0 , 2 3] 20 24 4 va l u e : 0 . 5
99 (1/54) key : 23 21 21 17 va l u e : 0 .018518519

100 (1/7) key : [2 0 , 2 1] 21 29 19 va l u e : 0 .14285715
101 (2/9) key : 24 23 [2 0 , 2 1] 19 va l u e : 0 .22222222
102 (1/54) key : 23 21 21 19 va l u e : 0 .018518519
103 (1/1) key : [2 2 , 2 3 , 2 9] 20 20 19 va l u e : 1 . 0
104 (2/17) key : 23 23 21 19 va l u e : 0 .11764706
105 (1/11) key : 21 [2 0 , 2 1] 23 13 va l u e : 0 .09090909
106 (1/15) key : 21 20 26 19 va l u e : 0 .06666667
107 (1/10) key : 25 27 27 17 va l u e : 0 . 1
108 (1/11) key : 28 21 27 19 va l u e : 0 .09090909
109 (1/7) key : 27 20 25 17 va l u e : 0 .14285715
110 (1/3) key : 26 20 27 18 va l u e : 0 .33333334
111 (1/9) key : 24 23 [2 0 , 2 1] 4 va l u e : 0 .11111111
112 (1/51) key : 27 28 [2 0 , 2 1] 19 va l u e : 0 .019607844
113 (1/114) key : 23 21 20 13 va l u e : 0 .00877193
114 (2/51) key : 27 28 [2 0 , 2 1] 13 va l u e : 0 .039215688
115 (1/81) key : 21 27 28 18 va l u e : 0 .012345679
116 (1/114) key : 23 21 20 19 va l u e : 0 .00877193
117 (1/11) key : 28 20 28 18 va l u e : 0 .09090909
118 (1/13) key : 27 27 [2 0 , 2 1] 19 va l u e : 0 .07692308
119 (1/13) key : 27 27 [2 0 , 2 1] 17 va l u e : 0 .07692308
120 (1/79) key : 20 24 20 4 va l u e : 0 .012658228
121 (1/7) key : 27 29 29 19 va l u e : 0 .14285715
122 (1/93) key : 21 20 27 19 va l u e : 0 .010752688
123 (1/93) key : 21 20 27 17 va l u e : 0 .010752688
124 (1/1) key : 21 27 [2 1 , 2 7] 13 va l u e : 1 . 0
125 (1/3) key : [2 0 , 2 3] 20 25 17 va l u e : 0 .33333334
126 (1/1) key : [2 0 , 2 4] [2 0 , 2 1] [2 1 , 2 5] 17 va l u e : 1 .0
127 (1/2) key : [2 0 , 2 7] 21 28 18 va l u e : 0 . 5

B.2 DecisionMatrix dumps 121

128 (1/14) key : 20 25 20 19 va l u e : 0 .071428575
129 (1/1) key : [2 0 , 2 7] 21 [2 3 , 2 9] 19 va l u e : 1 . 0
130 (1/226) key : 22 22 23 13 va l u e : 0 .0044247787
131 (1/2) key : 21 28 [2 1 , 2 7] 19 va l u e : 0 . 5
132 (1/53) key : 21 20 28 18 va l u e : 0 .018867925
133 (1/12) key : 21 [2 0 , 2 1] 21 19 va l u e : 0 .083333336
134 (1/1) key : [2 2 , 2 9] 21 20 19 va l u e : 1 . 0
135 (1/2) key : 20 [2 1 , 2 3] 25 17 va l u e : 0 . 5
136 (1/44) key : 28 27 21 19 va l u e : 0 .022727273
137 (1/3) key : 20 [2 1 , 2 8] 20 18 va l u e : 0 .33333334
138 (1/80) key : 20 20 20 19 va l u e : 0 .0125
139 (1/34) key : −1 −1 [2 0 , 2 1] 19 va l u e : 0 .029411765
140 (1/28) key : 28 28 [2 0 , 2 1] 19 va l u e : 0 .035714287
141 (1/6) key : 27 23 21 19 va l u e : 0 .16666667
142 (1/27) key : 20 25 21 19 va l u e : 0 .037037037
143 (1/9) key : 26 [2 5 , 2 6] 21 19 va l u e : 0 .11111111
144 (1/2) key : [2 0 , 2 2] 25 26 19 va l u e : 0 . 5
145 (1/4) key : [2 1 , 2 4] 25 25 19 va l u e : 0 .25
146 (1/1) key : [2 1 , 2 4] 27 [2 7 , 2 8] 18 va l u e : 1 . 0
147 (1/4) key : 20 [2 0 , 2 1] 24 13 va l u e : 0 .25
148 (1/1) key : [2 0 , 2 1 , 2 7] 28 [2 0 , 2 7 , 2 8] 19 va l u e : 1 . 0
149 (1/177) key : −1 −1 20 4 va l u e : 0 .0056497175
150 (1/14) key : 21 21 27 18 va l u e : 0 .071428575
151 (3/36) key : 20 21 29 19 va l u e : 0 .083333336
152 (1/188) key : 21 20 23 13 va l u e : 0 .005319149
153 (1/177) key : −1 −1 20 19 va l u e : 0 .0056497175
154 (1/71) key : 27 28 21 4 va l u e : 0 .014084507
155 (1/51) key : 23 20 20 4 va l u e : 0 .019607844
156 (1/162) key : 23 24 20 13 va l u e : 0 .0061728396
157 (1/202) key : 26 25 25 17 va l u e : 0 .004950495
158 (1/83) key : 20 24 21 19 va l u e : 0 .012048192
159 (2/89) key : 24 [2 0 , 2 3] 21 19 va l u e : 0 .02247191
160 (1/193) key : 20 23 21 19 va l u e : 0 .005181347
161 (1/53) key : −1 23 20 19 va l u e : 0 .018867925
162 (1/3) key : [2 0 , 2 1] 23 [2 0 , 2 4] 13 va l u e : 0 .33333334
163 (3/72) key : 20 20 21 19 va l u e : 0 .041666668
164 (1/14) key : 26 23 26 17 va l u e : 0 .071428575
165 (1/74) key : 27 28 20 19 va l u e : 0 .013513514
166 (1/193) key : 20 23 21 13 va l u e : 0 .005181347
167 (1/95) key : 24 20 21 18 va l u e : 0 .010526316
168 (1/7) key : 28 [2 7 , 2 8] [2 0 , 2 1] 19 va l u e : 0 .14285715
169 (1/95) key : 24 20 21 13 va l u e : 0 .010526316
170 (1/188) key : 23 20 21 4 va l u e : 0 .005319149
171 (1/438) key : 29 29 29 19 va l u e : 0 .002283105
172 (1/1) key : [2 1 , 2 5] 20 20 19 va l u e : 1 . 0
173 (1/12) key : −1 21 [2 0 , 2 1] 19 va l u e : 0 .083333336
174 (1/6) key : 21 24 25 17 va l u e : 0 .16666667
175 (1/79) key : 20 24 20 19 va l u e : 0 .012658228
176 (1/126) key : 20 23 20 19 va l u e : 0 .007936508
177 (1/133) key : −1 −1 21 4 va l u e : 0 .007518797
178 (1/126) key : 20 23 20 18 va l u e : 0 .007936508
179 (1/188) key : 23 20 21 18 va l u e : 0 .005319149
180 (1/32) key : 23 21 25 17 va l u e : 0 .03125
181 (1/33) key : 21 25 25 19 va l u e : 0 .030303031
182 (4/188) key : 23 20 21 19 va l u e : 0 .021276595
183 (1/77) key : 21 20 25 18 va l u e : 0 .012987013
184 (1/58) key : −1 20 23 13 va l u e : 0 .01724138
185 (1/1) key : [2 7 , 2 8] 27 21 19 va l u e : 1 . 0
186 (1/13) key : [2 0 , 2 3] 21 27 19 va l u e : 0 .07692308
187 (1/69) key : 20 21 27 19 va l u e : 0 .014492754
188 (3/28) key : 21 21 25 17 va l u e : 0 .10714286
189 (6/77) key : 21 20 25 17 va l u e : 0 .077922076
190 (1/7) key : 22 20 20 19 va l u e : 0 .14285715
191 (1/17) key : 28 27 [2 0 , 2 1] 19 va l u e : 0 .05882353
192 (1/1) key : 20 [2 0 , 2 1 , 2 3] 24 13 va l u e : 1 . 0

122 Testing

193 (2/93) key : 21 25 26 17 va l u e : 0 .021505376
194 (1/16) key : 20 21 [2 0 , 2 3] 13 va l u e : 0 .0625
195 (1/5) key : 21 29 23 19 va l u e : 0 . 2
196 (1/20) key : 24 23 [2 0 , 2 4] 13 va l u e : 0 .05
197 (1/124) key : 21 20 24 19 va l u e : 0 .008064516
198 (1/5) key : 23 [2 0 , 2 1] 25 17 va l u e : 0 . 2
199 (1/3) key : 29 28 27 18 va l u e : 0 .33333334
200 (1/1) key : 24 [2 1 , 2 4] 25 17 va l u e : 1 . 0
201 (1/218) key : 24 20 23 13 va l u e : 0 .0045871558
202 (1/37) key : 27 20 21 17 va l u e : 0 .027027028
203 (1/41) key : 20 20 24 4 va l u e : 0 .024390243
204 (1/124) key : 21 20 24 13 va l u e : 0 .008064516
205 (1/9) key : 20 21 [2 0 , 2 4] 19 va l u e : 0 .11111111
206 (1/1) key : [2 3 , 2 4] 22 20 13 va l u e : 1 . 0
207 (1/41) key : 20 20 24 13 va l u e : 0 .024390243
208 (1/1) key : [2 0 , 2 8] 25 [2 1 , 2 7] 17 va l u e : 1 . 0
209 (1/101) key : 23 20 23 13 va l u e : 0 .00990099
210 (1/4) key : 21 [2 0 , 2 1] [2 0 , 2 1] 13 va l u e : 0 .25
211 (1/14) key : 29 22 29 19 va l u e : 0 .071428575
212 (2/63) key : 20 21 25 17 va l u e : 0 .031746034
213 (1/51) key : −1 20 21 4 va l u e : 0 .019607844
214 (1/1) key : [2 5 , 2 6] 20 27 18 va l u e : 1 . 0
215 (1/51) key : −1 20 21 13 va l u e : 0 .019607844
216 (1/67) key : 21 23 20 13 va l u e : 0 .014925373
217 (1/17) key : 21 27 21 17 va l u e : 0 .05882353
218 (1/9) key : 29 20 21 19 va l u e : 0 .11111111
219 (1/32) key : 23 21 28 18 va l u e : 0 .03125
220 (1/57) key : 20 25 26 19 va l u e : 0 .01754386
221 (1/70) key : 26 25 21 19 va l u e : 0 .014285714
222 (1/51) key : −1 20 21 19 va l u e : 0 .019607844
223 (1/14) key : [2 0 , 2 1] 21 20 19 va l u e : 0 .071428575
224 (1/6) key : 27 [2 0 , 2 1] 20 19 va l u e : 0 .16666667
225 (1/137) key : 23 20 24 13 va l u e : 0 .00729927
226 (1/2) key : −1 [2 0 , 2 1] 25 17 va l u e : 0 . 5
227 (1/322) key : 28 27 28 18 va l u e : 0 .0031055901
228 (1/236) key : 24 23 20 13 va l u e : 0 .004237288
229 (1/3) key : 27 [2 0 , 2 1] [2 1 , 2 9] 19 va l u e : 0 .33333334
230 (1/113) key : 25 21 20 19 va l u e : 0 .0088495575
231 (1/252) key : 26 26 25 17 va l u e : 0 .003968254
232 (4/275) key : 27 27 28 18 va l u e : 0 .014545455
233 (2/64) key : 21 24 20 19 va l u e : 0 .03125
234 (1/11) key : [2 0 , 2 4] 21 20 19 va l u e : 0 .09090909
235 (1/1) key : [2 0 , 2 3 , 2 4] 21 [2 1 , 2 5] 17 va l u e : 1 . 0
236 (2/50) key : 25 25 21 17 va l u e : 0 .04
237 (1/76) key : 20 27 28 18 va l u e : 0 .013157895
238 (1/32) key : 25 20 21 19 va l u e : 0 .03125
239 (1/9) key : 24 21 25 17 va l u e : 0 .11111111
240 (1/23) key : 20 25 25 17 va l u e : 0 .04347826
241 (1/18) key : 23 20 25 17 va l u e : 0 .055555556
242 (1/4) key : −1 20 [2 0 , 2 1] 4 va l u e : 0 .25
243 (2/269) key : 24 24 23 13 va l u e : 0 .007434944
244 (1/1) key : −1 [2 0 , 2 1] 26 19 va l u e : 1 . 0
245 (2/298) key : 28 27 27 18 va l u e : 0 .0067114094
246 (2/49) key : 29 21 20 19 va l u e : 0 .040816326
247 (1/19) key : 28 [2 0 , 2 1] 21 19 va l u e : 0 .05263158
248 (1/1) key : 26 [2 1 , 2 5] [2 0 , 2 5] 18 va l u e : 1 . 0
249 (1/547) key : 27 27 27 13 va l u e : 0 .0018281536
250 (1/3) key : [2 1 , 2 7] 20 25 17 va l u e : 0 .33333334
251 (4/68) key : 27 21 20 19 va l u e : 0 .05882353
252 (1/285) key : 21 20 21 13 va l u e : 0 .003508772
253 (1/104) key : 28 21 20 18 va l u e : 0 .009615385
254 (2/104) key : 28 21 20 19 va l u e : 0 .01923077
255 (1/122) key : 20 21 23 13 va l u e : 0 .008196721
256 (8/285) key : 21 20 21 19 va l u e : 0 .028070176
257 (1/5) key : 21 [2 0 , 2 3] 20 18 va l u e : 0 . 2

B.2 DecisionMatrix dumps 123

258 (1/8) key : 20 21 [2 0 , 2 7] 17 va l u e : 0 .125
259 (1/2) key : 23 [2 1 , 2 7] 28 19 va l u e : 0 . 5
260 (1/6) key : [2 7 , 2 8] [2 7 , 2 8] 27 18 va l u e : 0 .16666667
261 (1/1) key : [2 1 , 2 8] [2 5 , 2 7] 27 17 va l u e : 1 . 0
262 (1/17) key : 24 [2 0 , 2 3 , 2 4] 21 19 va l u e : 0 .05882353
263 (1/1) key : [2 0 , 2 9] 21 20 19 va l u e : 1 . 0
264 (1/3) key : 23 20 26 17 va l u e : 0 .33333334
265 (1/8) key : 20 21 [2 0 , 2 7] 19 va l u e : 0 .125
266 (1/3) key : [2 5 , 2 6] 23 26 17 va l u e : 0 .33333334
267 (1/1) key : [2 0 , 2 4] [2 0 , 2 3 , 2 4] 21 18 va l u e : 1 . 0
268 (2/285) key : 21 20 21 4 va l u e : 0 .007017544
269 (1/7) key : 21 21 [2 0 , 2 1] 4 va l u e : 0 .14285715
270 (6/93) key : 21 20 20 19 va l u e : 0 .06451613
271 (1/91) key : 21 21 20 4 va l u e : 0 .010989011
272 (2/27) key : 21 27 20 19 va l u e : 0 .074074075
273 (1/6) key : [2 0 , 2 1] 25 21 19 va l u e : 0 .16666667
274

275

276 ∗∗∗
277 p r i n t i ng matrix o f f
278 ∗∗∗
279 (1/1) key : [2 7 , 2 8] 20 20 19 va l u e : 1 . 0
280 (1/1) key : 29 21 [2 0 , 2 1 , 2 3] 19 va l u e : 1 . 0
281 (2/255) key : 20 21 20 19 va l u e : 0 .007843138
282 (1/5) key : 23 20 28 19 va l u e : 0 . 2
283 (1/89) key : 24 [2 0 , 2 3] 21 4 va l u e : 0 .011235955
284 (1/1) key : [2 4 , 2 7 , 2 8] 21 20 18 va l u e : 1 . 0
285 (1/177) key : −1 −1 20 19 va l u e : 0 .0056497175
286 (1/247) key : 25 26 26 17 va l u e : 0 .004048583
287 (1/23) key : 27 [2 7 , 2 8] 28 18 va l u e : 0 .04347826
288 (1/51) key : 23 20 20 4 va l u e : 0 .019607844
289 (1/12) key : −1 [2 0 , 2 1] 21 19 va l u e : 0 .083333336
290 (1/1) key : [2 1 , 2 3 , 2 4] 26 [2 3 , 2 4] 17 va l u e : 1 . 0
291 (1/188) key : 21 20 23 4 va l u e : 0 .005319149
292 (3/1165) key : −1 −1 28 18 va l u e : 0 .0025751074
293 (1/396) key : 25 25 25 19 va l u e : 0 .0025252525
294 (1/15) key : 29 29 20 19 va l u e : 0 .06666667
295 (1/193) key : 20 23 21 19 va l u e : 0 .005181347
296 (1/72) key : 20 20 21 17 va l u e : 0 .013888889
297 (2/72) key : 20 20 21 19 va l u e : 0 .027777778
298 (1/205) key : 27 28 28 18 va l u e : 0 .004878049
299 (1/53) key : −1 23 20 13 va l u e : 0 .018867925
300 (1/8) key : 24 27 24 4 va l u e : 0 .125
301 (1/389) key : 24 23 24 18 va l u e : 0 .002570694
302 (1/389) key : 24 23 24 17 va l u e : 0 .002570694
303 (1/57) key : −1 −1 [2 0 , 2 3] 18 va l u e : 0 .01754386
304 (1/23) key : 26 26 21 17 va l u e : 0 .04347826
305 (1/1) key : 27 [2 3 , 2 8] [2 0 , 2 1] 19 va l u e : 1 . 0
306 (1/3) key : [2 7 , 2 8] 28 20 19 va l u e : 0 .33333334
307 (1/58) key : 23 24 21 4 va l u e : 0 .01724138
308 (1/193) key : 20 23 21 4 va l u e : 0 .005181347
309 (1/164) key : 28 28 27 18 va l u e : 0 .0060975607
310 (2/188) key : 23 20 21 4 va l u e : 0 .010638298
311 (1/1) key : 26 [2 3 , 2 6] [2 5 , 2 6] 17 va l u e : 1 . 0
312 (2/57) key : −1 −1 [2 0 , 2 3] 13 va l u e : 0 .03508772
313 (1/2) key : [2 0 , 2 1] [2 3 , 2 4] 21 4 va l u e : 0 .5
314 (1/12) key : −1 21 [2 0 , 2 1] 19 va l u e : 0 .083333336
315 (1/1) key : 29 26 [2 1 , 2 9] 19 va l u e : 1 . 0
316 (2/58) key : 29 29 21 19 va l u e : 0 .03448276
317 (1/30) key : 28 28 20 19 va l u e : 0 .033333335
318 (1/188) key : 23 20 21 13 va l u e : 0 .005319149
319 (1/283) key : 26 25 26 17 va l u e : 0 .003533569
320 (1/3) key : 27 [2 0 , 2 1] 25 17 va l u e : 0 .33333334
321 (1/188) key : 23 20 21 19 va l u e : 0 .005319149
322 (1/3) key : 24 [2 7 , 2 8] 27 13 va l u e : 0 .33333334

124 Testing

323 (3/20) key : −1 −1 −1 19 va l u e : 0 .15
324 (1/1) key : 21 21 [2 2 , 2 8] 18 va l u e : 1 . 0
325 (2/73) key : 24 21 20 4 va l u e : 0 .02739726
326 (2/58) key : −1 20 23 13 va l u e : 0 .03448276
327 (1/13) key : 27 27 23 19 va l u e : 0 .07692308
328 (9/20) key : −1 −1 −1 18 va l u e : 0 .45
329 (1/9) key : 24 23 25 17 va l u e : 0 .11111111
330 (1/77) key : 21 20 25 17 va l u e : 0 .012987013
331 (1/44) key : 21 24 21 18 va l u e : 0 .022727273
332 (1/17) key : 28 27 [2 0 , 2 1] 19 va l u e : 0 .05882353
333 (1/73) key : 24 21 20 19 va l u e : 0 .01369863
334 (1/3) key : 25 23 [2 2 , 2 3] 17 va l u e : 0 .33333334
335 (1/195) key : −1 −1 26 17 va l u e : 0 .0051282053
336 (1/20) key : −1 −1 −1 13 va l u e : 0 .05
337 (1/7) key : 28 20 20 19 va l u e : 0 .14285715
338 (1/14) key : 20 27 24 18 va l u e : 0 .071428575
339 (2/1) key : [2 0 , 2 1] [2 0 , 2 4] [2 1 , 2 3] 4 va l u e : 2 . 0
340 (1/48) key : 25 26 21 17 va l u e : 0 .020833334
341 (1/1) key : [2 1 , 2 4] [2 0 , 2 4] [2 1 , 2 4] 19 va l u e : 1 .0
342 (1/13) key : 26 20 21 19 va l u e : 0 .07692308
343 (3/66) key : −1 21 20 19 va l u e : 0 .045454547
344 (1/7) key : 22 25 25 17 va l u e : 0 .14285715
345 (1/52) key : 22 24 20 13 va l u e : 0 .01923077
346 (1/166) key : 20 24 23 13 va l u e : 0 .006024096
347 (1/218) key : 24 20 23 18 va l u e : 0 .0045871558
348 (1/1) key : 24 [2 5 , 2 6] 26 17 va l u e : 1 . 0
349 (1/37) key : 27 20 21 19 va l u e : 0 .027027028
350 (1/52) key : 20 28 27 13 va l u e : 0 .01923077
351 (1/34) key : 28 27 [2 7 , 2 8] 18 va l u e : 0 .029411765
352 (2/566) key : −1 −1 27 18 va l u e : 0 .003533569
353 (1/101) key : 23 20 23 13 va l u e : 0 .00990099
354 (1/1) key : 26 29 21 19 va l u e : 1 . 0
355 (1/255) key : 20 21 20 18 va l u e : 0 .003921569
356 (1/10) key : −1 [2 0 , 2 1] 24 4 va l u e : 0 . 1
357 (1/483) key : 23 23 22 17 va l u e : 0 .0020703934
358 (1/68) key : 24 24 [2 0 , 2 3] 13 va l u e : 0 .014705882
359 (1/174) key : 25 25 26 17 va l u e : 0 .0057471264
360 (1/132) key : −1 28 27 18 va l u e : 0 .007575758
361 (1/315) key : 23 24 24 18 va l u e : 0 .0031746032
362 (1/28) key : 28 27 20 19 va l u e : 0 .035714287
363 (2/5966) key : −1 −1 24 13 va l u e : 3 .35233E−4
364 (1/70) key : 26 25 21 17 va l u e : 0 .014285714
365 (1/1906) key : 24 24 24 18 va l u e : 5 .2465894E−4
366 (1/43) key : 21 29 29 19 va l u e : 0 .023255814
367 (1/137) key : 23 20 24 19 va l u e : 0 .00729927
368 (1/17) key : 22 23 21 13 va l u e : 0 .05882353
369 (1/3) key : 28 29 28 19 va l u e : 0 .33333334
370 (1/4) key : 29 29 [2 0 , 2 1] 19 va l u e : 0 .25
371 (1/1) key : 27 [2 0 , 2 1 , 2 8] [2 4 , 2 7] 18 va l u e : 1 . 0
372 (1/236) key : 24 23 20 13 va l u e : 0 .004237288
373 (1/322) key : 28 27 28 18 va l u e : 0 .0031055901
374 (1/64) key : 21 24 20 13 va l u e : 0 .015625
375 (1/252) key : 26 26 25 17 va l u e : 0 .003968254
376 (1/7) key : 29 20 20 4 va l u e : 0 .14285715
377 (1/275) key : 27 27 28 19 va l u e : 0 .0036363637
378 (2/3) key : 29 [2 0 , 2 1] 20 19 va l u e : 0 .6666667
379 (1/275) key : 27 27 28 18 va l u e : 0 .0036363637
380 (1/12) key : 28 21 21 19 va l u e : 0 .083333336
381 (1/1) key : 21 28 22 18 va l u e : 1 . 0
382 (1/2) key : [2 0 , 2 1 , 2 4] 20 21 17 va l u e : 0 . 5
383 (1/248) key : −1 −1 25 17 va l u e : 0 .004032258
384 (1/9) key : −1 27 [2 7 , 2 8] 18 va l u e : 0 .11111111
385 (1/13) key : 27 27 [2 0 , 2 1] 19 va l u e : 0 .07692308
386 (1/2) key : [2 0 , 2 1] 20 [2 0 , 2 1] 19 va l u e : 0 . 5
387 (1/11) key : 28 20 28 17 va l u e : 0 .09090909

B.2 DecisionMatrix dumps 125

388 (1/1) key : [2 0 , 2 1] [2 3 , 2 4] 25 17 va l u e : 1 . 0
389 (1/1) key : 25 [2 5 , 2 6] [2 0 , 2 1] 19 va l u e : 1 . 0
390 (2/79) key : 20 24 20 4 va l u e : 0 .025316456
391 (1/269) key : 24 24 23 18 va l u e : 0 .003717472
392 (2/11) key : [2 0 , 2 4] 21 20 4 va l u e : 0 .18181819
393 (2/93) key : 21 20 27 19 va l u e : 0 .021505376
394 (1/7) key : 27 29 29 19 va l u e : 0 .14285715
395 (1/3) key : 24 [2 0 , 2 3 , 2 4] 24 18 va l u e : 0 .33333334
396 (1/8) key : 21 [2 0 , 2 7] 21 19 va l u e : 0 .125
397 (1/269) key : 24 24 23 13 va l u e : 0 .003717472
398 (1/91) key : 21 21 21 18 va l u e : 0 .010989011
399 (1/1) key : 24 [2 0 , 2 3] [2 0 , 2 8] 19 va l u e : 1 . 0
400 (1/19) key : 28 [2 0 , 2 1] 21 19 va l u e : 0 .05263158
401 (1/1) key : 20 [2 3 , 2 8] 24 13 va l u e : 1 . 0
402 (4/49) key : 29 21 20 19 va l u e : 0 .08163265
403 (1/104) key : 28 21 20 13 va l u e : 0 .009615385
404 (1/91) key : 21 21 21 19 va l u e : 0 .010989011
405 (1/547) key : 27 27 27 13 va l u e : 0 .0018281536
406 (1/7) key : 26 23 24 17 va l u e : 0 .14285715
407 (1/68) key : 27 21 20 19 va l u e : 0 .014705882
408 (1/547) key : 27 27 27 18 va l u e : 0 .0018281536
409 (1/104) key : 28 21 20 18 va l u e : 0 .009615385
410 (1/68) key : 27 21 20 18 va l u e : 0 .014705882
411 (5/285) key : 21 20 21 19 va l u e : 0 .01754386
412 (1/14) key : 20 25 20 17 va l u e : 0 .071428575
413 (1/3) key : 25 [2 5 , 2 6] [2 5 , 2 6] 17 va l u e : 0 .33333334
414 (1/53) key : 21 20 28 18 va l u e : 0 .018867925
415 (1/91) key : 21 21 21 4 va l u e : 0 .010989011
416 (1/7) key : 28 24 23 13 va l u e : 0 .14285715
417 (1/1) key : −1 [2 7 , 2 8] [2 0 , 2 1] 13 va l u e : 1 .0
418 (1/2) key : 28 24 [2 0 , 2 1] 19 va l u e : 0 . 5
419 (1/12) key : 27 20 27 18 va l u e : 0 .083333336
420 (1/4) key : 29 21 [2 0 , 2 1] 19 va l u e : 0 .25
421 (1/285) key : 21 20 21 4 va l u e : 0 .003508772
422 (1/1) key : 21 [2 0 , 2 7] 27 18 va l u e : 1 . 0
423 (1/5) key : 20 24 27 18 va l u e : 0 . 2
424 (1/91) key : 21 21 20 19 va l u e : 0 .010989011
425 (4/2572) key : −1 −1 23 18 va l u e : 0 .00155521
426 (1/56) key : [2 7 , 2 8] 27 27 18 va l u e : 0 .017857144
427 (1/9) key : [2 1 , 2 5] 20 23 4 va l u e : 0 .11111111
428 (1/17) key : 23 [2 0 , 2 4] 23 18 va l u e : 0 .05882353
429 (1/1) key : 20 28 22 18 va l u e : 1 . 0
430 (1/80) key : 20 20 20 19 va l u e : 0 .0125
431 (1/42) key : [2 3 , 2 4] 24 24 18 va l u e : 0 .023809524
432 (2/34) key : −1 −1 [2 0 , 2 1] 19 va l u e : 0 .05882353
433 (3/93) key : 21 20 20 19 va l u e : 0 .032258064
434 (1/91) key : 21 21 20 4 va l u e : 0 .010989011
435 (2/39) key : 24 21 23 4 va l u e : 0 .051282052
436 (1/28) key : 28 28 [2 0 , 2 1] 18 va l u e : 0 .035714287
437 (1/27) key : 20 25 21 17 va l u e : 0 .037037037
438 (1/4) key : 20 21 [2 0 , 2 8] 18 va l u e : 0 .25
439 (1/1) key : 26 [2 0 , 2 1 , 2 6] [2 0 , 2 3 , 2 4] 19 va l u e : 1 . 0
440 (2/29) key : 20 27 21 19 va l u e : 0 .06896552
441 (1/20) key : 24 24 21 19 va l u e : 0 .05
442 (1/113) key : 20 21 24 4 va l u e : 0 .0088495575
443 (1/6) key : [2 7 , 2 8] [2 7 , 2 8] 28 18 va l u e : 0 .16666667
444 (1/419) key : 27 28 27 13 va l u e : 0 .002386635
445 (1/5) key : 23 28 24 13 va l u e : 0 . 2
446 (2/419) key : 27 28 27 18 va l u e : 0 .00477327

Listing B.5: EventList.java

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	2 Analysis
	2.1 Smart House Survey
	2.1.1 Controllable houses
	2.1.2 Programmable houses
	2.1.3 Intelligent houses
	2.2 Our solution
	2.3 Gathering data on the user
	2.4 Analyzing the collected data
	2.5 Controlling the house
	3 Design
	3.1 Theory
	3.1.1 Machine learning
	3.1.2 Markov chains
	3.1.3 Markov chains with memory
	3.2 The passive learning stage
	3.2.1 Event patterns
	3.2.2 Configuration
	3.2.3 Decision Table
	3.2.4 Zones
	3.2.5 Evaluating the passive learning stage
	3.3 The active learning stage
	3.3.1 Switch Timeout

	3.4 Controlling the house
	4 Implementation
	4.1 The physical setup
	4.2 General system structure
	4.3 Simulator /AI interface
	4.4 Configuration
	4.5 Event patterns
	4.5.1 Zone events
	4.6 Decision Matrix and KeyList
	4.7 Correlation table
	4.7.1 Correlation statistical generation
	4.7.2 Correlation correction

	4.8 Timers and timeout
	5 Evaluation
	5.1 Software testing
	5.1.1 Unit testing
	5.1.2 Integration testing
	5.2 Evaluation based on passive learning data
	5.2.1 Decision matrix
	5.2.2 Correlation
	5.2.3 Correlation based timeout

	6 Conclusion
	6.1 Future work
	6.1.1 Active learning of switch patterns
	6.1.2 Multiple users
	6.1.3 Switch and sensor correlation
	6.1.4 Decision matrix persistency
	6.1.5 Additional hardware
	.1 Source Listings
	A Source Listings
	A.1 Package: smarthouse
	A.1.1 SmartHouse.java
	A.1.2 AI.java
	A.2 Package: timer
	A.2.1 Sleeper.java
	A.2.2 Timer.java
	A.2.3 TimeoutListener.java
	A.2.4 TimeoutEvent.java
	A.3 Package: events
	A.3.1 EventList.java
	A.3.2 Event.java
	A.3.3 SensorEvent.java
	A.3.4 ZoneEvent.java
	A.3.5 SwitchEvent.java
	A.4 Package: config
	A.4.1 Config.java
	A.5 Package: core
	A.5.1 Correlation.java
	A.5.2 DecisionMatrix.java
	A.5.3 KeyList.java
	B Testing
	B.1 Source Listings
	B.1.1 UnitTests.java
	B.2 DecisionMatrix dumps
	B.2.1 Pattern length 2, without zones
	B.2.2 Pattern length 2, with zones
	B.2.3 Pattern length 3, without zones
	B.2.4 Pattern length 4, without zones

