
Integration of an intelligent home
control system to a central bus

architecture

Anders Jensen

Kongens Lyngby 2012 07-September

IMM-BSc

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Resumé

Denne rapport beskriver integrationen af et intelligent hjemme styrings
system til en central publish/subscriber baseret message bus arkitektur.
Projektet er motiveret af DTU's deltagelse i 2012 Europe Solar Decathlon
konkurrence hvor målet er at bygge det mest energirigtige og innovative
hus. I nyere tider er det blevet meget vigtigt at udvikle og bygge en-
ergi rigtige og intelligente huse. Forskellige hjemme styrings systemer
har været på markedet i lang tid men indtil videre har de ikke kunne
samarbejde ordentligt. Målet med vores gruppes system er at muliggøre
integrationen af �ere forskellige hjemme styrings systemer til et komplet
system. Denne rapport fokuserer på integrationen af LK Schneider's IHC
system til en central message bus. Bedømmelses kriterierne for systemet
er bl.a at systemet skal kunne udvides sådan så det ikke blot kan gen-
bruges når DTU deltager i fremtidige Solar Decathlon konkurrencer men
også hvis andre interreserede parter ønsker at integrere et IHC system
til en central bus arkitektur. Systemet skal være meget robust sådan så
run-time fejl kun sker meget sjældent. Desuden er en rimelig respons
tid på at fx tænde og slukke et lys også et krav. Det udviklede system
integrerer IHC'en fra LK Schneider Electrics til en bus med et interface
af forskellige forespørgsler der kan gives til IHC'en fra de andre systemer
på bussen. System henter og processerer automatisk en hvilken som helst
projekt�l på IHC'en og klargører den til brug med bussen. Få tests er
blevet udført i et tidligt stadie af systemet som viste at systemet møder
de kriterier som der blev sat.

ii Resumé

Keywords: IHC, Lauritz Knudsen, LK, Schneider Electrics, IHC Ope-
nAPI, Event-based communication, IHC integration.

Abstract

This paper describes the integration of an Intelligent Home Control (IHC)
system to a centralized publish/subscriber based message bus architec-
ture. The project is motivated by DTU participation in the 2012 Europe
Solar Decathlon contest on building the most energy e�cient and inno-
vative house. In modern times developing energy e�cient and intelligent
houses have become increasingly important. Several di�erent home con-
trol systems have been around for a while on the market but they cannot
cooperate. The goal of our groups system it to integrate a number of dif-
ferent home control systems into one complete system. The scope of this
report is the integration of LK Schneider's IHC system to a centralized
message bus. The criteria of the system is that the solution is extendable
so that it not only can be reused in the next iteration of the system when
DTU will participate in the next Solar Decathlon contest but also if other
interested parties wish to integrate an IHC System from LK Schneider
Electrics to a centralized bus architecture. The system should be very
robust so very few run-time errors occur. Additionaly a reasonable re-
sponse time on fx turning a light on/o� is also required. The proposed
system integrates the IHC from LK Schneider to a bus with an interface
of available requests for the other subsystems on the bus. The system au-
tomatically fetches and processes any project�le on the IHC and readies
it for use with the bus. Few early-stage tests have been made that proved
that the system meets the criteria set out.

iv

Keywords: IHC, Lauritz Knudsen, LK, Schneider Electrics, IHC Ope-
nAPI, Event-based communication, IHC integration.

Acknowledgements

I would like to thank LK Schneider Electrics for being very generous
with their support and equipment to our group - both for the testing and
the actual installment. Also for aiding our group with training sessions.
Thanks goes out to Jesper Plass, Liza Lindbjerg, Pelle Fischer Nielsen all
from Schneider Electrics. A special thanks goes out to Claus Jørgensen
from LK Schneider Electrics for precious know-how support regarding
how to program the project�le on the IHC Control module and for being
so helpful.

I would like to thank my fellow students working on the project, without
them this system would not have been possible to create. It has been a
valuable experience working with these people and one that i have learnt a
lot about teamwork from. A thanks goes out to my friend Patrick Dennis
Kassow and my colleague Morten Schnack for reading the report through
and commenting on it. A special thanks goes out to my supervisor Chris-
tian Damsgaard Jensen for his great supervision of the project and his
aid to this report.

vi

Contents

Resumé i

Abstract iii

Acknowledgements v

1 Introduction 1

1.0.1 Organization of report 4

2 Analysis 7

2.1 Motivation . 7

2.1.1 LK Schneider background 8

2.2 Overall system Architecture 9

2.2.1 Quality parameters of IHC integration layer . . . 10

2.3 IHC Hardware and �rmware 10

2.3.1 Hardware . 11

2.3.2 Firmware . 11

2.3.3 IHC OpenAPI . 13

2.3.4 IHC Enabled systems 14

2.4 Problem de�nition . 15

2.4.1 Middleware Layer 16

2.4.2 Firmware programming 16

2.4.3 Work tasks summarized 17

2.4.4 What is out of scope 17

2.5 Resource-type List . 17

viii CONTENTS

2.5.1 Input resources . 18

2.5.2 Output resources 19

2.6 Requirements . 19

2.6.1 System users . 20

2.6.1.1 End-user 20

2.6.1.2 Programmer 20

2.6.2 Functional requirements 20

2.6.3 Non-Functional requirements 21

3 Design 23

3.1 Room design in LK Visual 23

3.1.1 Conceptual design vs. Practical design 24

3.1.2 Room division . 25

3.1.3 Resource placement 28

3.1.3.1 Living space 30

3.1.3.2 Technical Core Rooms 34

3.1.3.3 Other "Rooms" 37

3.1.4 Virtual resources 41

3.2 Middleware . 41

3.2.1 Startup component 42

3.2.2 Communication components 43

3.2.2.1 De�nitions and types 43

3.2.2.2 Incoming bus communication (RequestEven-
tHandlers) 45

3.2.2.3 Outgoing IHC communication (IHC Event
Interface) 46

3.2.2.4 Incoming IHC communicaiton (Event Thread) 47

3.2.2.5 Outgoing bus communication (Resource-
ValueChangeEventHandler) 48

3.2.3 Communication diagrams 48

3.3 Common space Integration 51

3.3.1 Extensibility and simplicity 52

4 Implementation 55

4.1 Load Project�le component 55

4.1.1 Importing the project�le to middleware 56

4.1.2 Generating and mapping resources from project�le 58

4.2 Resource Base . 60

CONTENTS ix

5 Evaluation 63

5.1 Testing and unsolved issues 63
5.2 Future development and extensions 66
5.3 Initial conclusions . 67

6 Conclusion 69

6.1 Evaluation . 70
6.2 Communication role . 70

A Appendix 1 - Classdiagram 73

B Appendix 2 - LK Visual �le (top) 75

C Appendix 3 - LK Visual �le(bottom) 77

x CONTENTS

Chapter 1

Introduction

DTU is participating in a competition called Solar Decathlon 2012 in
which the goal is to create a house that is as energy e�cient and innovative
as possible. The house is called "FOLD" and this project is part of the
intelligent element of FOLD and therefore i will start by describing the
project and how my project relates to it.

The team building FOLD primarily consists of students. To provide us
with knowledge, know-how and materials there are also professors and
industry sponsors connected to the team. Together this makes up Team
DTU. In the team we are 8 students working on making FOLD an in-
telligent by building a control system for it. Each of us have di�erent
responsibilities and tasks. The overall architecture of the system is a
decentralized, decoupled system with many subsystems communicating
through a message bus. This architecture will be described further in
section 2.2. Some of us are working on the bus and some of us are work-
ing on integrating subsystems to the bus. The innovative element of this
system is that we will have subsystems from di�erent companies all in-
tegrated into the same system which has not bee done before. This will
give us the advantage of having one CCU (Central Control Unit) that

2 Introduction

can make decisions for the house based on information from many di�er-
ent subsystems from di�erent companies. One of the company sponsors
to FOLD is Schneider Electric who has sponsored their IHC (Intelligent
Home Control) system to our software control group. The IHC system
is a home control system that is specially good at controlling lighting,
power and alarms. This project focuses on integrating the IHC system
to the bus so that the CCU receives information from the IHC system
through the bus and is able to send requests to it fx turn on a light. The
integration of this system means that some middleware layer is needed
between the IHC and the bus system in order to o�er a common API for
the bus to communicate with the IHC system through.

When creating the middleware layer between the bus and the IHC system
my main goals are:

• Include as many features as possible making almost all actions the
IHC system can possibly do, available for the CCU through the bus.

• Giving the CCU as much control over the IHC system as possible
while still encapsulating unwanted behaviour.

• Automating as much of the IHC communication as possible, in order
to minimize coding in the future when other programmers are going
to develop the next iteration of this control system.

In this project i will need information from other student groups working
on FOLD. Interior furniture designers working on FOLD might have spe-
cial wishes for how the lighting will be, and electricians who are going to
install the actual lights or power might have some restrictions regarding
where it can be placed. Therefore i need to gather information from di�er-
ent parties working on FOLD in order to make decisions on how to design
the IHC system which means that i will partly act as a communications
person between our software group and the rest of Team DTU.

The IHC system is going to have many controllable elements connected to
it (lamps, power outlets, alarms and more). These elements are called re-
sources. We want these resources to function both like in a non-intelligent
standard house where you can turn on lights via buttons in the house fx

3

but we also want the CCU to be able to control these resources connected
to the IHC system. This means that the CCU must be able to change the
state of the resources but it also means that the CCU must be informed
when the resources state is changed by a button in the house. Addition-
ally we would also like other subsystems (not only the CCU) to be able
to know when a light has been turned on/o�. Based on these demands an
event-based control system is well suited as a solution. When a resource
is switched on in the house with a button an event will be �red that tells
the CCU that now the light has been switched on. Similarly if the CCU
sends a request to the IHC system to turn on a light, then an event will
be sent to the other subsystems informing them that this light has been
turned on. This resource-event system is part of the middleware layer
and will be described in detail in the design chapter 3.2.

The resources connected to the IHC are created inside the IHC system.
This means that they cannot be communicated with directly by the event
system in the middleware because they have not been translated yet.
Therefore the middleware layer must also contain a translation layer that
reads the resources inside the IHC system and process them so they can be
used by the event system. This processing of the resources must preferably
be done generically so if new resources are added or deleted then no new
coding is needed. This process is described in detail in the implementation
chapter 4.

Most of us in the group were very familiar with C# or at least Java which
resembles C# very closely therefore C# was chosen as the programming
language used. Programming languages could have been decided by the
speci�c subsystem designer, but to minimize additional translation layers
and making the system easy to maintain we chose to use C# all over the
system. Since a service oriented architecture is needed WCF in .Net was
chosen with Visual Studio as the work environment. We had all worked
with this before so not much attention was given to this decision. For
programming the IHC system there are two technologies developed by
Schneider Electrics that must be used in order to communicate with the
IHC. These are LK Visual and OpenAPI. LK Visual is used to program
the resources inside the IHC system described further in section 2.3.1.
OpenAPI is used by the event system to communicate with the IHC after
translation of resources has been done.

4 Introduction

The evaluation criteria for the integration layer are that it should be able
to control all resources in the IHC system meaning that it should be able
to receive requests on the resources to change their state. Vice versa it
should also send out events when resources change their state in the IHC.
The code generating the resources from inside the IHC system, should be
as generic and automated as possible encapsulating the underlying IHC
mechanics from the bus and making it easy to maintain the system. The
layer must try to facilitate as many wishes as possible from the di�erent
student groups.

At this point in the project almost all wishes from the di�erent student
groups at DTU have been met. Some of the wishes were not possible to
install due to space limitations in the physical house. A generic resource-
event system has been implemented and some functional tests have been
performed that show that a lamp can be turned on by a request from
the bus. The same goes for dimmable lamps and power outlets. Many
resource-types have however not been tested at all, since instalment of
many electrical appliances in the house were delayed for unknown reasons.
So some resource-types have been tested while others haven't. However
we do know that the general framework of the resource-event system
works since some of the resources have been functionally tested. And
since all resources use the same pattern and framework getting them to
function when they have been installed shouldn't prove too hard.

1.0.1 Organization of report

The report is organized into �ve chapters apart from the introduction.

The analysis chapter analyses the problem by describing the domain and
what solutions already exist. After this a description of the technologies
used are given and the chapter ends with a list of requirements for the
system.

The design chapter describes what the overall thinking pattern was when
the system was created. In this chapter the design of the virtual division
of the rooms are described along with the placement of the resources in
the house. After this the event-based communication system is described.

5

The implementation chapter describes in detail how the project�le is
fetched and processed so it can be used by the event system. This chapter
is more focused on the detailed implementation of the system.

The Evaluation chapter evaluates the tests carried out and the issues that
are unsolved. After this the possible future extensions are described and
some initial conclusions are made.

The conclusion concludes and wraps up the project describing brie�y
what the problem was and how it was solved and then a section with test
conclusions and experiences learnt are included.

6 Introduction

Chapter 2

Analysis

2.1 Motivation

During the last 20-30 years home control systems have been gaining in-
creasing attention from not only private home owners but also corpora-
tions and industries. Old fashioned simple relays and simple light bulbs
are getting replaced by smart relays that fx turn o� when leaving the
house and dimmable lights that can be adjusted according to the amount
of light needed. There are numerous companies worldwide working with
home automation and in Denmark some of the bigger players are Z-Wave,
X10, Insteon, Zigbee and IHC. Z-wave and Zigbee are both wireless com-
munication protocols utilizing mesh networks for exchanging data. X10
on the other hand is a communication standard that uses the already built
in power lines in the house to communicate through. Insteon is a mix be-
tween the mesh networks and x10 since both communication forms are
used. IHC requires specially installed wires in the house to communicate
through.

Home automation is very relevant in these times where saving energy is

8 Analysis

of great importance. In an automated house lots of energy can be saved
through lighting- and heating- control or programmed scenarios for when
people are present in the house and much more. Home automation also
o�ers comfort and convenient control of the house. pre-heating of a house
is fx highly usable during the winter, where you could completely turn of
all heating in the house when no residents are present and then start pre-
heating the house as soon as you leave work. Home automation also o�ers
an array of alarm systems available that serve to monitor fx �re/smoke,
intrusion or leakage.

Comparing the IHC solution from Schneider Electrics to some of the
other solutions we see that it is rather complex compared to fx Z-wave
or x10. The IHC solution takes much longer time to con�gure but has a
wider span of possibilities. The Z-wave and x10 solutions are both rather
simple-to-use autonomous systems but neither currently has an o�cial
API to communicate with the device through. Therefore a completely
new command library and communication protocol would have to be built
in order to use these systems. The IHC system comes with the OpenAPI
Beta developed by Schneider themselves to communicate with their IHC
saving us this part of the programming. In the end we didn't have a
choice in what technology to use since Schneider Electrics was a sponsor
already picked out for us when we started the project but it could have
been exciting to create your own API for Z-wave.

2.1.1 LK Schneider background

Since 1993 when the �rst generation of IHC systems were marketed,
through 2001 when a new generation was released and �nally in 2006
when the currently working generation was developed, the IHC system
has always been an autonomously controlled unit that could only be inter-
acted with through buttons and sensors. It allowed the user to program it
and then only use it via the buttons installed in the house or the sensors
used. In January 2012 LK Schneider created the OpenAPI and opened it
up for 3rd party users. This API allows the use of 3rd party programs to
interact with the IHC using an ethernet or USB connection. This means
that the IHC is no longer an autonomous system and that one can have
complete control over it through a 3rd party program. In our case this

2.2 Overall system Architecture 9

means we can design our own message bus and connect it to the IHC,
provided that the proper middleware between the bus and the IHC con-
troller is created. It is this exact middleware that is the biggest part of
my project.

2.2 Overall system Architecture

As mentioned in the introduction the overall goal of our system is to in-
tegrate many subsystems onto a bus allowing the di�erent subsystems to
communicate with each other not regarding which company or technol-
ogy the speci�c subsystem uses. We want one of the subsystems to be
the intelligent subsystem (the CCU). This subsystem must be informed
of almost all activity in the house because it needs to be able make intel-
ligent decisions and suggestions for the user. To facilitate this purpose we
decided to make the communication protocol event-based. This means
that a subsystem subscribes to a certain event from a speci�c subsystem
if information from this subsystem is desired. Subsystems publish events
when actions occur inside them and the subsystems subscribed to this
event will receive it and can do whatever they want to do with the in-
formation contained in the event. All this communication is done via a
custom-made message bus developed in our group.

In order to enable proper and easy communication between the subsys-
tems we have created a common interface that all subsystems need to be
integrated with.

One of the subsystems on the bus is the IHC system which this project
revolves around. The IHC system will need to be integrated with the
common event interface that is created. Along with this interface there
will be a common data model with some strong typing in it that will also
need to be integrated with. To do this a software layer between the bus
and the IHC is needed that facilitates communication from the bus to the
IHC.

10 Analysis

2.2.1 Quality parameters of IHC integration layer

The quality of the IHC integration layer can be measured by some pa-
rameters that will be described here.

Speed of the IHC system. This is the time between when a button in
the house is pushed and the action linked to that button is executed
and the bus is informed of the action. Alternatively it is the time
between when a request is sent from the bus to the middleware and
the request is carried out on the IHC and the bus is informed of the
action.

Features of the IHC system. This is the amount of resources and fea-
tures supported by the system. It is a measurement of how many
of the desired features for the system that has been achieved.

Extensibility and simplicity of the IHC system. This is a measure-
ment of how easy the system is to maintain and expand. Expansion
of a system is made easier for the programmer if code is written
generically and with easily recognized patterns.

Robustness of the IHC system. This is how smooth the system runs.
Ideally there shouldn't be any run time errors since this will imme-
diately be felt by the user.

2.3 IHC Hardware and �rmware

Here i will give an analysis of how the IHC hardware and �rmware works
in order to get an overview of what possibilities and limitations we have.

Before the mechanics of the hardware and software is described i will de-
scribe the input/output principle of the IHC system. The IHC hardware

2.3 IHC Hardware and �rmware 11

and software revolves around input and output resources. These serve
di�erent purposes and are used in di�erent ways. Generally output re-
sources are the resources that are controlled and input resources provide
information which is used to control the output resources. A nice example
is a motion sensor and a lamp. The motion sensor is the input resource
and the lamp is the output resource. The motion sensor provides infor-
mation to the system about whether or not motion has been detected and
with this information the system decides whether to turn on or o� the
lamp.

2.3.1 Hardware

The IHC home control system from LK Schneider Electric is the system
we have utilized for controlling many of the elements in Team DTU's
house in Solar Decathlon. The hardware of the IHC consists of three
elements: output-, input- and control modules. All output resources in
the house are connected to the output module via wires or wirelessly.
Likewise the input resources are connected to the input module. Both
of these modules are connected to the control module that contains the
logical mapping that controls the house (this mapping is described in the
next section). All resources have a control state. Either the resource is
a toggle resource that can be toggled on or o� or else it is a set-point
resource with a value from 1-100. When an input resources changes its
state the control module is informed of it and can make decisions on what
to do with the output resources.

2.3.2 Firmware

The control module of the IHC is the module that contains the "pro-
gramming" of the IHC (it is not real programming, more like advanced
mapping between input and output resources). It can only be mapped
using Schneiders own �rmware called LK Visual which gives the program-
mer a variety of options.

LK Visual operates with resources on the left side of the screen and

12 Analysis

function blocks on the right side of the screen. In order to connect any
resource with another resource, you need at least one function block to
dictate which kind of control there should be between the resources. This
means you can have a lamp and a PIR-sensor connected in the system with
one kind of control, and another lamp and PIR-sensor connected with
a completely di�erent kind of control because di�erent function blocks
are being used between them. Resources must always be connected to
other resources through function blocks, however a function block can
be connected to another function block if any properties from another
function block is desired.

Figure 2.1: LK Visual programming of IHC Control Module

Figure 2.1 on page 12 shows a little display con�guration with a lamp,
a button and a PIR-sensor is shown. The left part of the button is
mapped to one of the Input ports on the function block "simpel kip"
called "indgang" and the right part of the button is mapped to the other
input port on "simpel kip". Both of these input ports a�ect the output
port of the lamp turning it o� or on. In conjunction with this a PIR
sensor is connected to the lamp, turning it on if it detects any movement,
and o� if no movement has been detected for a con�gurable amount of
time. So this means that the lamp is both controlled by a physical button
but also by a PIR sensor.

2.3 IHC Hardware and �rmware 13

If you look closer at the input ports on the function block called "PIR-
Styring" you will notice an input port called "Ekstern skumringssensor".
This is an input port on the "PIR-Styring" function block, for a twilight
sensor that is placed outside and detects if it is bright or dark. This input
could be used as an additional input condition to decide if it is necessary
to turn on the light when motion is detected if it is already bright outside.

When the mapping is done the it can be saved as a project �le and trans-
ferred to the IHC control module. The project �le will contain information
regarding all resources, their placement and how they are controlled.

2.3.3 IHC OpenAPI

The IHC OpenAPI allows a 3rd party application to interact with the
IHC through a webservice containing an array of webservice methods
available. I will not give a thorough explanation of the API but only
introduce the most important methods.

The OpenAPI is built around the LK Visual programming tool. This
means that it is centered around resources and the changing of the state
of resources. Each input and outport port on each input/output resource
has its own unique ID. By calling the API method Setvalues with an
argument being the desired state, you can instruct the IHC to change the
state of a resource to the argument. If you want to be informed about
the change of the state of a resource you can subscribe to that resource
using the Enable subscription method. When you are subscribed to
a resource you call the Waitforevents method which places a "hook"
on the IHC returning when an event occurs on the IHC. An event occurs
when any resource changes its state. This means that resource-related in-
teraction with the IHC through the OpenAPI will be event-based through
asynchronous calls. How this API is used with the IHC is described ex-
tensively in the design section 3.2.

The OpenAPI also has some additional methods that provides valuable
information. In order to extract the project�le on the IHC Control mod-
ule (Created in LK Visual) you call getprojectsegment any number of
times depending on how big your project�le is which is further described

14 Analysis

in the implementation section 4. Finally the OpenAPI also contains meth-
ods for creating a session/connection with the IHC using TCP/IP.

2.3.4 IHC Enabled systems

Here i will give an overview of a typical setup in an IHC controlled house.

Somewhere in the house the IHC hardware modules will be placed (the
input-, output- and control modules). Throughout the house there will
be a number of input and output resources connected to the modules.
Input resources typically include button pads, motion-, lux-, smoke, door
and twilight sensors. These provide input information via the input mod-
ule to the control module. The control module controls the output re-
sources based on this information. Output resources typically include
lamps (dimmable and non-dimmable) and special power switches that
can be turned o� to save standby power.

Either the user of the house has "programmed" the IHC using Schneiders
�rmware or the electrician does it when he installs it. When the house
is programmed the �le is transferred to the control module and now the
house is controlled as it is programmed. This means that one button
might turn on kitchen lighting, another one might dim up/down on a
bedroom light and another one might turn o� all lights in the house and
set the alarm.

What is described above is a standard usage of an IHC system. When
the system is programmed you can't control the house in other ways than
the way it is mapped. There is no �exibility in this system. What we in
the control systems group is doing is adding a software layer on top of
this IHC system that grants a bus complete control over the IHC system.
It allows the bus to "push the buttons in the house" so to speak. But
not only does it allow the bus to push the buttons in the house, it grants
independent control over all output resources in the house. What is meant
by independent is that the bus is not limited to pushing the button, it
can just directly by-pass the button and select the exact output resources
that it wants to control meaning that it is not limited by what the button
is programmed to do. Additionally the bus is also fed all information

2.4 Problem de�nition 15

from the input resources. This information can then be used by other 3rd
party apps which another team member from the software control group
is creating.

Translation layer Translation layer

BUS

Output
Module

Control
Module

Input
Module Lamps

Twilight
sensors

Motion
sensors

Lux
sensors

Smoke
snesors

Dimmable
lamps

Power
switches

Middleware

IHC System

Figure 2.2: Diagram of IHC system with middleware layer built on top
of it

So as can be seen on �gure 2.2 on page 15 our system is not preventing
or doing any changes to how the IHC system works. You can still have
an "old-fashioned" IHC system installed in your house where only the
physical buttons and sensors are used to control the house. Our system
comes on top of the regular system allowing 3rd party programs to interact
with the house, via fx an app, which will also give the user suggestions
for better power usage, weather forecast etc. based on information from
the IHC and other subsystems.

2.4 Problem de�nition

Here the two main challenges will be described and a short summation is
given.

16 Analysis

2.4.1 Middleware Layer

The middleware should essentially be a wrapper over the IHC control
module providing a common interface to all parties on the bus. It should
allow toggling and adjusting of all output resources (both on/o� resources
and set-point resources), so that lights can be turned on from the bus,
power switches can be switched o� and on and the alarm can armed or
disarmed. It should inform the bus whenever any input resource changes
its state e.g. a motion sensor is triggered. Note that everything is possible
with the OpenAPI, even things that intuitively should not be possible,
such as changing the state of the twilight sensor so it will inform the
house that its dark outside even though its bright daylight. Or changing
the state of the PIR sensor so the house will think motion is detected.
Therefore its important to encapsulate invalid actions from the bus so
other programmers wont think fx that they need to manually control the
state of sensors.

The middleware layer needs to communicate with the resources on the
IHC control module. This requires a translation layer that can fetch the
information from the project�le and translate it so the middleware knows
what resources are placed where in the house and how they are controlled.

2.4.2 Firmware programming

The house needs to be modelled and designed with Schneider's �rmware.
The resources should be intelligently placed in the house which means that
the house needs to be divided into rooms in a smart way. The resource
placement and room division should not only make it more comfortable
to live in the house but also to a large degree be systematically placed to
allow for future development of the house, since FOLD is purely built as
a display house.

The resources programmed in LK Visual should be done so in a way that
allows for easy translation.

2.5 Resource-type List 17

2.4.3 Work tasks summarized

Summing up the work tasks will consist of:

• Connecting the physical components in the IHC through wires or
wirelessly (an electrician will help with this part).

• Build the LK visual program with all the resources in it and map
the correct outputs to the correct inputs via function blocks etc as
described in IHC Firmware section.

• Create a translation layer in the middleware that can translate the
information from the project �le on the IHC control module.

• Create the middleware layer integrating it with the bus.

2.4.4 What is out of scope

This report will not focus on how the bus works or how any of the other
subsystems besides IHC is connected to the bus. I am assuming that there
is a functioning, fast, reliable and secure bus to send messages through.
There will be no focus on the other entities connected to the bus e.g.
the CCU-system, the App-Service, PLC etc. since these simply subscribe
to/send request through the bus to the IHC system if they want to interact
with it. Security will not be discussed in this report because we in the
group made the choice to trust the subsystems connected to the bus. If
a subsystems is connected to the bus we assume that it is programmed
and integrated by a trusted developer. In order to make this assumption
we have instead put all security in the bus meaning that communication
between subsystems on the bus is secure.

2.5 Resource-type List

The comprehensive list of resource types connected to the IHC are the
backbone of the entire IHC system and needs to be considered when

18 Analysis

programming the control module in LK Visual and when designing the
middleware. It is both an overview of what possibilities you have when
programming the system but also the limitations to the system since this
is all the resources there is. Here is a list of all the physical resource-
types available that is connected to the IHC with descriptions of what
their properties are.

2.5.1 Input resources

PIR-Sensor Passive Infrared Sensor is a motion sensor typically placed
near the ceiling in a house pointing downwards. It is mainly used for
turning o� the lights in a room if no motion in it has been detected
for a certain amount of time.

Magnet-Sensor is a small pair of magnets typically installed in windows
and doors. When the door/window is closed the magnets will face
each other creating attraction and generating a current. When this
current is broken it means that the door/window is open. It is
mainly used with the alarm system to detect intrusion but is also
used to ensure all doors/windows are closed when leaving the house.

Lux-Sensor is a sensor that detects the light level at a certain spot. It
can be placed anywhere one wants to measure the light level at. As
stated in the Solar Decathlon Competition rules1we must uphold a
minimum of 500 lux at a workstation in the house. A lux sensor
will therefore be placed near the workstation to cooperate with a
dimmable lamp.

Smoke-Sensor is typically placed near the ceiling in the kitchen of the
house and detects smoke/�re which is used to trigger the alarm
system.

1http://www.scribd.com/doc/47730341/SDE-2012-RULES-V-1-0 Rule 19, Page 52
of the document

2.6 Requirements 19

Twilight-Sensor is a kind of lux sensor but it is placed outside and
detects whether it's dark or bright. It is used to decide whether
the PIR sensors inside should turn on lights or not when motion is
detected.

2.5.2 Output resources

Power Outlet is a plug in the wall from which you draw power. Approx-
imately half of all the power outlets in the house can be controlled
to switch on/o�. This means that you could have many appliances
that use standby power plugged in to these power outlets. Then
when you leave the house all these power outlets are switched o� so
no standby power is consumed while nobody is in the house.

Dimmable Lamp outlet is a lamp outlet that has a setpoint value be-
tween 1-100 with 100 being the max load. This value determines
how much light the dimmable lamp outlet will produce.

Lamp outlet is a standard lamp outlet where the state is on/o�.

Sound generator is a small device for creating loud alarm sounds. It
can either produce an 80 dB warning sound or a 102 dB sound. The
102 dB sound is used in the case of intrusion or smoke.

2.6 Requirements

The system should be intelligent in the way that it intelligently turns o�
and regulates lights in the house. It should o�er both physical control of
the house through buttons in the house but also facilitate all functions for
the bus. The system should be able to communicate properly with the
bus. This means giving users on the bus the ability to change the state of
all output resources e.g. switching lamps on/o�, switching power outlets
on/o� and activating the sound generator. Likewise it should inform

20 Analysis

the bus whenever any resource changes it state. The system should also
provide an alarm system that is both controllable through the bus but also
through a code pad in the house. The system should also inform the bus
when the alarm system has been activated. The resources necessary for
the alarm subsystem might not be present at the moment and therefore
we might need some additional virtual resources (More on this in the
design chapter 3.1.4).

2.6.1 System users

Here the users of the system will be brie�y described

2.6.1.1 End-user

The end user is a user that lives in the house. He/she is in inhabitant
in the house and has no knowledge of the mechanics behind the scenes
but solely sees the functions as they appear in the house. An end-user
will care about how many features the system includes. He will want the
system to be as reliable and simple as possible so he can get way with as
little as possible maintenance.

2.6.1.2 Programmer

A programmer that is going to maintain, expand on, or use the IHC
middleware system will want it to be coded as simple as possible with
easily recognized patterns. He will want the system to be transparent
regarding information so nothing is hidden.

2.6.2 Functional requirements

Functional requirements from the end-user.

2.6 Requirements 21

1. The system should automatically turn on lights in rooms where this
is bene�cial.

2. The system should o�er lighting and dimmable lighting to the users
where this is appropriate.

3. There should be alarms in the house, both for intrusion and also for
�re/smoke.

4. Some power switches (ca 50%) in the house should be controllable
through the bus.

5. The system should be able to uphold a certain lux level at a certain
spot for a longer time.

6. The user should never feel that the system has more power than
them, therefore all functions that are available to the bus should
also be able to be manually overridden.

Functional requirements from the programmer.

1. The bus must be able to control all relevant output resources in the
house.

2. At least all functions that are o�ered to the user in the house should
also be o�ered to the bus.

3. When an input or output resource changes its state the bus should
be informed.

2.6.3 Non-Functional requirements

1. The system should be robust so very little or no run-time errors
occur since this will be felt immediately by the user in the house.

2. When a user turns on a light either through a physical button in
the house or through the bus, the response time shouldn't be more
than 1 second.

22 Analysis

3. It should be easy for future programmers to add additional resources
to the system and maintain it, meaning that a certain level of ex-
tensibility and simplicity is desired.

Chapter 3

Design

In this chapter i will walk through how the house is designed in terms
of room division and resource placement in LK Visual. I will also discuss
the placement of the resources, what their functions are and why they
are placed where they are. This mainly involves the programming of the
IHC through LK Visual.

After this the design of the middleware layer will be described in detail
including the event system between the middleware and the IHC and the
event system between the middleware and the bus.

3.1 Room design in LK Visual

In order to make the house smart and innovative when using an IHC
system, a good room design is important. It will not only ease the task
of mapping input resources to output resources but it will also give a
nice overview of the entire house making the maintenance of the system

24 Design

easier. What is meant by a room design is to divide the house up into
areas that are treated as virtual rooms. The big issue often is how many
virtual rooms it is lucrative to divide the house into.

Designing the house one has to �nd a balance between conceptuality and
practicality. In a practical design emphasis is put on the actual living in
the house. Only the necessary buttons will be placed in the house and all
resources will be placed where they are actually going to be used if people
lived in the house. This means that a practical design often will be a lot
cheaper than a conceptual design since only the necessary resources will
be used. The way the resources are used will also be as simple as possible
in a practical design since it is made for living in the house. A practical
design can however lead to limited extension possibilities of the system
and might be hard to maintain since no systematical approach is used.

In a conceptual design resources will be above all be placed systematically
in the house. If there is a button pad in one room that controls lighting in
a certain way then there will also be a button in other rooms controlling
lights in the same way. A conceptual design tries to use the same resource
placement pattern and the same control patterns for those resources. This
might lead to some more expensive solutions since excessive resources
might be necessary to uphold the patterns. On the other hand extending
a system conceptually designed is easy once the designer recognizes the
patterns used in the house for the resource placement and for the control
of the resources.

3.1.1 Conceptual design vs. Practical design

The biggest part of the process of programming the house in LK Visual
was to decide a way to divide the house into sections. Which is bet-
ter, a practical or conceptual approach ? The advantages of a practical
approach is that it makes the actual living in the house easier. There
will be fewer buttons and they will have a more intuitive control pattern.
There will be no redundant or unnecessary lights in the house. A concep-
tual approach allows for greater design possibilities. It creates advanced
and somewhat harder to understand control patterns but with a greater
potential for expansion of the house. The conceptual approach can feel

3.1 Room design in LK Visual 25

a bit like "overkill" in some situations. This especially becomes true if
the bedroom is placed right next to the work area in the same room 1,5
meters from each other. Then turning on the lights in the bedroom will
also illuminate the work area room thereby devaluating the concept of
"turning on the lights in the bedroom" when this clearly also illuminates
the work area. However in a standard house the bedroom and the work
area would normally be separated, at least enough so the lights wont ef-
fect each other, and therefore separating the bedroom and work area into
two rooms makes sense conceptually.

In our design of the house we put emphasis on the conceptual side because
with this project we think it's important that the design choices regarding
the house can be used in a wider format. fx if the house was to be
expanded or some of the rooms made bigger, then a conceptual design is
more useful than a practical one. Also if the design pattern were to be
used in another iteration of DTU's solar decathlon house. Another reason
for emphasizing conceptuality is that this house in essence is a display
house. It is built to show people what can be done with technology today,
not built for practicality. Therefore we think a conceptual design is more
important than a practical one.

3.1.2 Room division

Based on a conceptual design pattern we want to divide the house into a
number of virtual rooms.

Figure 3.1 on page 26 shows a drawing of the house seen from above with
some of the furniture in it. Our group did not have any say in where the
furniture was placed so the room division had to be done based on where
the furniture was placed, not the other way around. Also the names and
locations of some of the rooms on the drawing were already decided before
our group started working on the project.

If you study the drawing you will notice that the house essentially can
be divided into two subsections. One section is the big living space with
all the furniture in it, and the other section contains the four rooms
behind the wall partition. The section behind the wall are called the

26 Design

Figure 3.1: Ground �oor drawing with furniture

3.1 Room design in LK Visual 27

Technical Core rooms and the big room we will call the living space (this
is later sub-divided into more virtual rooms). As mentioned earlier when
dividing the house into sections or rooms one has to consider how practical
vs. conceptual you want to design the house. This is often expressed in
how detailed the house is divided into virtual rooms. The more room-
divison the more conceptually designed the house is and also the more
systematically designed it is the more conceptually designed it is.

Regarding the Technical Core rooms we have the choice between merging
some of them to make fewer virtual rooms, further subdividing them, or
keeping them the way they are. Merging two of the virtual rooms makes
sense if we want to treat these rooms as a single room whilst further
subdividing them makes sense if the functionality in the room a�ects too
large a part of the room and hence needs to be focused on a smaller part
of that room.

As the drawing shows the technical room is separated from the storage
room and the toilet by walls and likewise the toilet is separated from the
bath area. Therefore it does not make any sense to for these rooms to
share motion sensors or lighting since motion cant be detected through
walls and lights cant pass through walls. Therefore merging them makes
no sense. The rooms themselves are not bigger than approximately 2x2
meters therefore subdividing them further also doesn't make sense. This
leads to the �rst natural step which is to leave the rooms as they are
and create four virtual rooms in LK Visual corresponding to these rooms.
This means a storage room, a technical room, a toilet and a bath room
is created.

Regarding the living space the balance between conceptuality and practi-
cality again comes in. The living space actually consists of one big room,
but the room serves a number of di�erent purposes. In the upper left
corner of the living space the kitchen in the house will be placed. On the
right side of the kitchen there is a dining table and below the dining table
is a work area followed by a bed. Next to the bed is an open space and
above the open space is a cushion arrangement with a TV on the wall
next to the toilet. The living space actually serves many of the tasks that
in a normal house would have been separated to rooms for themselves. As
mentioned earlier emphasis in this house is put on the conceptual side,

28 Design

we want the work we do on the house to be reusable and extendable.
Therefore we have divided the living space into six virtual rooms even
though it is one big room which is seen on �gure 3.2 page 29.

This division has its advantages and its disadvantages. It provides for a
very nice division where all the rooms that one would �nd in a normal
house is present. On the other hand some apparent inconveniences arise,
which include that when you turn on the light at the dining table it may
also illuminate the rest of the entire living space which means that the
room division is rendered unnecessary. The advantage of this division is
that the IHC integration system that we have developed more easily can
be transferred to other houses since many of the same rooms with the same
functional needs will be present. It also allows us from now on to consider
each rooms needs individually without considering the other rooms. As
mentioned earlier the rooms might a�ect each other since there are no
walls between them, but this is ignored to preserve the conceptuality.

3.1.3 Resource placement

Here i will describe what resources will be placed in each room in the house
and what their function is, which will result in a list of all resources used
by the IHC. It has not been easy compiling this list since it is constantly
changing when new ideas and demands arise from the architects and
construction engineers.

Common for all rooms in the house except the bath area, storage room
and outdoors is that they all have power outlets. This is because nowadays
most people have a lot of devices that use power and you want to have
access to power no matter where in the house you are. All rooms in the
house also have lighting in them though the kind of light di�ers which
will be further elaborated in the next section. In order for the user to not
feel dependant on controlling the house only through software, there are
buttons in most rooms to allow for manual control of the resources in the
house.

3.1 Room design in LK Visual 29

Figure 3.2: Ground �oor drawing with furniture and room division

30 Design

3.1.3.1 Living space

As discussed earlier the living space is one big room which means that
we have to address some issues. We would like to use motion sensors as
often as possible in the house since they can turn on lighting when people
aren't present saving energy. However if motion sensors are used in the
living space to turn on the lights in the di�erent rooms it will be almost
impossible to only turn on lighting in one room since the sensitivity of the
sensors are too great to be limited to certain areas of the same room (This
would require actual walls between the rooms). Furthermore it would also
be a nuisance for the inhabitant when the lights keep on turning o� and
he has to wave his hands to turn it on again.

Therefore we have decided not to use any motion sensors to control light-
ing in the living space since the sensitivity of the sensors are too great and
cannot be limited to one section of the living space. The use of motion
sensors in the living space would destroy the division of the rooms and
be a nuisance for the inhabitant.

Regarding lights in the living space dimmable and non dimmable lamps
were both considered and weighed for a long time. The advantages of
dimmable lights are that it saves power when it is turned on since the
power consumed is reduced when the light level is reduced. Further more
it is also a nice option for the inhabitant that he/she can dim the lighting
to his/her desired level in every single of the six rooms in the living space.
The cons are that dimmable lighting is a tiny bit harder to program and if
the dimmable lights is used very rarely it actually consumes more power
than standard lights since a tiny portion of standby power is consumed
by it. Considering these facts dimmable lights were chosen over standard
lights for the main reason that inhabitants will spend a great amount of
time in the living space which means that the light will be turned on a
lot of the time making dimmable lights the more energy e�cient solution.

To control the functions in the living space each of the six rooms has
its own button-pad placed on the wall to control the dimmable lights
in that room along with possible extra features. This button-pad can
be perceived as an interface for the user over what options he has with
that speci�c room. The same functions and much more will be provided

3.1 Room design in LK Visual 31

through the bus to the user. The button pads in each room will o�er the
user the option of turning on/o� lights in that room, dim up/down the
lights and in some rooms activate certain scenarios.

Here is an overview of the resources in the six rooms in the living space,
with a description of the functions of the speci�c rooms. A total overview
of all resources in the house can be seen on �gure 3.3 page 40. It should
be noted that some resources in the living space are not connected to
any room but is instead placed in another virtual room called "Common"
which contains shared functionality for all the six rooms in the living
space. This is described further in section 3.1.3.3.

Dining Room

The dining room is where the inhabitants eat, entertain guests etc. It is a
room where inhabitants will often sit for a longer period of time meaning
that dimmable lights will save energy. Dimmable lights will also be great
for dinner parties when guests are entertained which is actually relevant
since a dinner party must be hosted for the o�cial Solar Decathlon Jury
1. The resources required are therefore some dimmable lights along with
power outlets and a button pad to control the lights i.e turn them on/o�
and dim up/down.

• Dimmable lamp outlet is placed directly above dining table

• Power outlet is placed at ground level near eastern wall

• Button-pad is placed 110 cm above �oor level

Work Area

The work area serves as an o�ce for the inhabitants. This requires power
outlets for laptops and additional electric equipment. A dimmable lamp
is required to set just the right lighting level along with a lux sensor. This
is to be able to maintain a light level of 500 lux at all times when the light
in the work area is turned on which is one of the requirements from the
o�cial Solar Decathlon Jury 2. Along with this a button pad is needed

1http://www.scribd.com/doc/47730341/SDE-2012-RULES-V-1-0 Rule 42, Page 97
of the document

32 Design

to control lights in the work area.

• Dimmable lamp outlet is placed directly above work desk

• 2x Power outlet is placed at ground level near eastern wall

• Button-pad is placed 110 cm above �oor level at eastern wall

• Lux sensor is placed at a yet unknown location in work area

Bedroom

The bedroom is supposed to accommodate two people, this means that
power outlets in both sides of the bed is required. Dimmable ceiling light
is required in the bedroom along with a night stand light in each side
of the bed. We want all lights in the bedroom to be controllable from
both sides of the bed. Therefore button pads are placed at both sides of
the bed. Both of these button pads contain a toilet scenario button that
creates a path of light from the bed to the toilet.

• Dimmable lamp outlet is placed directly above bed

• 2x Power outlet is placed at ground level at each side of bed

• 2x Button-pad is placed 70 cm above �oor level at each side of bed

Kitchen

The kitchen is where cooking and cleaning is done along with various
other things. Like most of the other rooms we want to provide lights,
power and a button pad for the user in this room. In addition to this
we want a smoke sensor placed in this room since this is where a �re is
most likely to break out. The smoke sensor will trigger a sound generator
creating a load sound of 102 dB. The button pad controls the light in the
kitchen but can also disable the smoke alarm for a short period because
you may know there will be smoke the next couple of minutes. Likewise
there is also a button to stop the sound generator from making noise when
the smoke generator has been triggered.

2http://www.scribd.com/doc/47730341/SDE-2012-RULES-V-1-0 Rule 19, Page 52
of the document

3.1 Room design in LK Visual 33

• Dimmable lamp outlet is placed directly above kitchen table

• 2x Power outlet is placed just above kitchen counter in kitchen

• Button-pad is placed 110 cm above �oor at yet unknown location
in kitchen

• Smoke sensor is placed at ceiling in the kitchen

Entertainment

The entertainment area is for watching TV, playing games and general
relaxing. Inhabitants will often spend a lot of time in this area and
therefore dimmable lights are attractive. Also as a nice feature to when
you are watching TV. Along with this some power outlets are placed here
to support various Console/TV equipment and a button pad is installed
to control the lights.

• Dimmable lamp outlet is placed directly above square-shaped fur-
niture

• 2x Power outlet is placed at ground level near wall partition

• Button-pad is placed 110 cm above �oor level at wall partition

Open Space

The open space can be treated a bit like the entry hallway of a house.
This room does not have any special requirements except for lighting and
a button pad to control it. A power outlet is added to the room for
convenience.

• Dimmable lamp outlet is placed directly above open space area

• Power outlet is placed at ground level near wall partition

• Button-pad is placed 110 cm above �oor level at wall partition

The nice thing about the resource layout of these rooms in the living
space is that all resource types that are usually desired in the particular
rooms are present, meaning that if one wanted to expand the rooms, more
of the same resources could simply be added. If a new resource type is

34 Design

wanted in a room that doesn't already contain it this is no problem either
since this can simply be added and con�gured in LK Visual. All these
resources in the living space can be seen in appendix 2 and 3 where the
entire programming of the house in LK Visual is shown.

3.1.3.2 Technical Core Rooms

As mentioned earlier the Technical Core Rooms are divided into four
virtual rooms each being separated by walls. This means that motion
sensors is an option since motion in one room won't trigger from motion
in the other rooms. The disadvantages of motion sensors are if they either
turn on the lights when it isn't supposed to turn on thereby consuming
unnecessary power and possibly annoying the inhabitant. It is also an
annoyance if lights are turned o� because the inhabitant is simply still
without moving.

Considering these facts we decided that lights controlled by motion sen-
sors was still quite important, since the Technical Core Rooms are rooms
that one typically enters for a short time and leaves again many times
during the day. The motion sensors will help turn o� the lights for you
so you don't have to remember thereby saving a lot of energy when the
inhabitants accidentally forget to turn o� the lights. You are also saved
the annoyance of pressing a button to turn on the lights every time you
enter the rooms.

As for whether or not to use dimmable or non dimmable lights the same
cons/pros as mentioned in the living space section 3.1.3.1 applies. Non-
dimmable lights were chosen since people often won't spend a lot of time
in these rooms making the stand by power from dimmable lights a factor.
It was however considered to provide dimmable lights for the bath area
and toilet since this would be comfortable if the inhabitant were visiting
the bath room at night but in order to save more energy this wasn't
chosen.

I will whenever a motion sensor is used comment on the motion timer. If
the motion timer is set to 180 seconds this means that lights are turned
o� if no motion is detected within 180 seconds. The motion timer counts

3.1 Room design in LK Visual 35

down all the time from its setpoint to 0, and when motion is detected it
is reset to its setpoint again. All motion timers can be changed by the
user through LK Visual.

Storage Room

The storage room is where home appliances are located. This includes
a washing and drying machine, a refrigerator and storage space. Inhab-
itants will mostly come here for short periods of time and then leave
again. Therefore lighting here will be motion sensor controlled and non-
dimmable. The motion timer is set to 60 sec because inhabitants will
visit this room very frequently for the refrigerator and leave again. The
storage room is placed right next to a glass facade through which natural
outside light will shine. Therefore the motion controlled lights are con-
nected to a twilight sensor that prevents the light being turned on in the
storage room when it is bright daylight outside (it can still be switched
on manually with a button pad).

• Lamp outlet is placed at ceiling in middle of room

• Button-pad is placed 110 cm above �oor level at north end of wall
partition

• PIR-Sensor is placed at ceiling in middle storage room

Technical Room

The technical room is a very important part of the house. In here a lot of
electrical hardware will be placed. Some of this includes pipes and valves
for heating/cooling of the house controlled by PLC and Uponor hardware,
IHC hardware, Windowmaster system controlling windows and a server
hosting our software groups entire software system. Because the technical
room is accessed from outside, magnet sensors are placed in the door to
this room that triggers the alarm system when the door is opened. This
is to prevent that a robber simply breaks down the door and destroys the
security system before entering the house through the main door. This
is a room that (Hopefully) is visited rarely since this means things are
running as they should. Lights here are therefore motion sensor controlled
but can also be activated with a button pad. The motion timer is set to
10 min, since when this room is visited it will often be for longer periods

36 Design

of time. Note that numerous power outlets are present in this room but
the one we refer to here is a free power outlet.

• Lamp outlet is placed at ceiling in middle of room

• Button-pad is placed 110 cm above �oor level right side of entrance

• PIR-Sensor is placed at ceiling in middle technical room

• Magnet sensor is placed inside door

• Power outlet is placed at unknown location in technical room

Toilet

The toilet is used for obvious reasons. It is visited very often during a
day and often at short intervals. This means that motion sensors are
very well suited to control the lights for the reasons mentioned earlier in
this section. Again a button pad is also provided so manual control is
possible. The motion timer is set to 7 min since it can be very annoying
if the light is turning o� all the time and you have to wave your hands.
The lights in here are not connected to the twilight sensor since only a
small portion of the daylight reaches this room through the glass facade.

• Lamp outlet is placed at ceiling in middle of room

• Button-pad is placed 110 cm above �oor level at right side of en-
trance

• PIR-Sensor is placed at ceiling at right side of entrance

• Power outlet is placed at 110 cm above �oor level at unknown lo-
cation

• Power outlet is placed at unknown location in technical room

Bath Area The bath area is used for obvious reasons. Because of the
architecture of the house inhabitants have to pass through the bath area
when visiting the toilet. Therefore inhabitants will visit the bath area at
least as often as the toilet making it suitable for motion sensor controlled
lights. The problem is that inhabitants typically use the bath area for
longer periods than the toilet, leaving us with the choice of how long
the motion timer should be. If the same motion timer as the toilet is

3.1 Room design in LK Visual 37

used inhabitants will be annoyed that lights may shut o� suddenly while
taking a bath. If a long motion timer is used unnecessary power might
be consumed when merely passing through the bath area to the toilet.
We decided that it was too annoying for the inhabitant if lights suddenly
turned o� while bathing and therefore set the motion timer to 15 min.
Lights in here are connected to the twilight sensor since a large portion of
the daylight reaches this room making lighting unnecessary during broad
daylight.

• Lamp outlet is placed at ceiling in middle of room

• Button-pad is placed 110 cm above �oor level end of wall partition

• PIR-Sensor is placed at wall partition near ceiling

3.1.3.3 Other "Rooms"

To make the programming of the IHC easier, some resources are not
assigned to any room but instead to a "room" called Common. This
is essentially resources that are located in the living space but doesn't
belong to any speci�c room.

We wanted to make the house comfortable providing intelligent ways of
controlling it fx by having certain pre-programmed setups that could be
activated. This can either be done through the bus from the app or
from a button directly in the house or both options. Since our goal is to
provide as much functionality as possible to the bus while also making
sure that the user doesn't feel that an app is an absolute requirement to
control the house we decided to do both things. Therefore we created two
button pads in the living space that contain six pre-programmed scenarios
(these can be changed by the user with LK Visual) that activate a set of
resources. These scenarios include a cooking-, TV-, welcome- and leave
house scenarios just to mention some of them. The cooking scenario fx
turns on the dimmable lights in the kitchen at 100 %, dining room lights
at 35 % while turning o� all other lights. The welcome scenario will create
a nice lighting, with lights spread out through the living space at 65 %.

Since saving energy is a major focus point with this house we wanted to

38 Design

o�er functions for the user that save power while the house is still easy
to use. Therefore one of the button on the the 6-scenario button pad is
dedicated to this. When this button is pushed for more than 0.7 seconds
all lights in the house will turn o�. This is to save the inhabitant the
hassle of having to manually turn o� all lights when he wants to. This
makes it very easy to save energy on sunny day or whenever you simply
don't need any lights turned on in the house. Furthermore when this
button is pushed for more than 5.0 seconds all power switches are turned
o�, all lights turned o� and the alarm system is activated. This function
is ideal when the inhabitant is leaving the house since it turns o� the IHC
controlled part of the house and saves energy.

Common

There are three extra dimmable lamp outlets in the living space. This
is created so future customization of the lighting is possible. Also so
electricians installing the lights have some freedom to use di�erent out-
lets if desired. The two button-pads here are the scenario button pads
mentioned earlier. Each button pad has six buttons that activates sce-
narios. The alarm system consists of special motion sensors installed in
the living space that only trigger the alarm when the alarm is activated.
In conjunction with this magnet sensors are installed in all the doors in
the house that trigger if the alarm is activated and a door is somehow
opened.

• 3x extra dimmable Lamp outlet is placed at ceiling in uppermiddle,
middlemiddle and lower middle of living space

• Button-pad is placed 110 cm above �oor level between the 2 doors
at north facade

• Button-pad is placed 110 cm above �oor level just right of southern
door

• 2x Alarm PIR-Sensor is placed at ceiling in corners of living space

• 2x Alarm Code Pad is placed at north and south end of wall parti-
tion

• Sound generator is placed at yet unknown location in living space

• Magnet sensors are installed inside all 4 doors (2 in double door, 1
in other doors)

3.1 Room design in LK Visual 39

Outdoor

The outdoor area is typically used whenever an inhabitant leaves or ar-
rives home or for grilling and various other activities outside. We want to
provide motion controlled lighting for the inhabitants when its dark since
this is convenient and nice to have. Therefore lamp outlets and motion
sensors are installed outside. We wanted the possibility of creating a light
show for by-walkers at the street to see and therefore not just one lamp
outlet is used for all the lights but six in total (with only one lamp outlet
all the lamps connected to it are either turned on or o� simultaneously).
As mentioned in the description of some of the other rooms the house
utilizes a twilight sensor placed outside to detect when its dark or broad
daylight. A sound generator is also installed that makes a loud noise
when the alarm system is triggered.

• 6x Lamp outlet is placed at ceiling outdoors, 3 south, 3 north

• 2x PIR-Sensor is placed at ceiling outdoors, 1 north, 1 south

• Sound Generator is placed outside at unknown location

• Twilight sensor is placed outside at unknown location

Figure 3.3 on page 40 shows a drawing of the entire house and the loca-
tions of the resources. This accompanied by the descriptions above should
give a complete overview of the exact location of all the resources in the
house.

Figure 3.3 on page 40 gives us a complete picture of all resources in
the system and where they are going to be placed (some of them only
approximately but that is �ne). we can program the IHC controller in
LK Visual precisely as this is shown. The complete and �nal project�le
in visual studio can be seen in appendix 3and the project�le will also be
available on the CD accompanying the report.

3Appendix der peger på LK Visual program

40 Design

PIR (Motion Sensor)

Lamp

Button(s)

Power Outlet

Lux Sensor

Magnet Detector (Open/
closed Doors and windows)

Smoke Sensor

Standard Light Fitting (Multiple
lamps can be conncted to this)

Alarm code buttons

PIR Burglar alarm

Figure 3.3: Ground �oor drawing with furniture and room division

3.2 Middleware 41

3.1.4 Virtual resources

Having the physical resources will get you a long way of programming
the IHC controller. However some functionality might not be available
unless you introduce some additional virtual resources that does not exist
physically but will make it easier for the middleware.

Concerning the alarm system in the house we in the software group
wanted a way to activate the alarm from the bus. In a standard IHC
installation the alarm is activated through the Code Pad (which can also
be done in our house). This means that the Code Pad is created in LK
Visual as a resource on the IHC Controller. However this resource can
programmatically in LK Visual not be interacted with in a simple way,
due to limitations from Schneider. Therefore a work around has been
done in which a virtual resource called "MainAlarm" is created as if it
was a real physical resource and mapped to the alarm system. This re-
source will then act as a codepad which is an output resource that when
set to On activates the alarm system and when set to Off deactivates the
alarm system which can be done from the bus.

A small extra feature was wanted when we designed the house in LK
Visual. We wanted the lights connected to PIR-Sensors to be able to be
switched o� from the motion sensor it was connected to i.e. the light is no
longer automatically turned o� after a certain time period. This means
that we somehow must prevent that lights are turned o� when the motion
timer reaches 0. To facilitate this an additional virtual resource connected
to all motion sensors were introduced and called "ConstantLight". When
this resource is set to On the lamp outlet connected to the motion sensor
will no longer switch o� when the motion sensor no longer detects motion.
When the ConstantLight is set to Off again the lamp outlet will again
react to the motion sensor.

3.2 Middleware

When we in the IMM-group started this project together we decided that
we were going to develop a communication system with a message bus in

42 Design

the center as the communication platform. All communication was going
to be through subscribing and publishing on this bus. Therefore this IHC
middleware that must integrate into this system. The middleware is split
up into two parts. One part is designed to handle all communication
between the bus and the IHC through an event based system and the
other part is designed to handle the booting of the IHC system. The
Layer has been designed to be as simple and segmented as possible in
order to facilitate easy bug �xing of the code.

3.2.1 Startup component

The startup component will be described in detail in the implementation
section 4, since it is rather simple in terms of what it does and what its
responsibilities are, but the implementation of it is interesting. So only a
brief overview will be given here.

The startup component consists of two sub components, one being the
IHC Connection component and the other the IHC Load Project compo-
nent. Both are run when the system boots up. The connection component
has two responsibilities. Establish the initial HTTP or HTTPS session
with the IHC and act as a simple security layer with a user/password
combo required.

The Load Project component has four responsibilites:

1. It synchronizes the project�le in the middleware with the current
one on the IHC. If the project�le has not changed since the last
boot up this task is unnecessary, if it has, the current project�le
from the IHC will be loaded into the middleware.

2. It generates the resources in the project�le programmatically for
the middleware.

3. It subscribes to all request types in the common-space that concerns
the IHC system.

4. It starts the event thread that polls the IHC for events. This is
described further in section 3.2.2.4.

3.2 Middleware 43

3.2.2 Communication components

The communication component of the middleware consists of four sub-
components wherein two of them handle in- and outgoing communication
with the IHC and the other two in- and outgoing communication with
the bus. This can be seen on �gure 3.4 on page 44.

Communication between the bus and the middleware consists of a lists
of requests that the middleware is subscribed to. When the middleware
receives a request, an action is wanted by the sending subsystem along
with a response from the middleware when the given resource has changed
its state. This response will be given by publishing an event on the bus
when the resource has changed its state.

Communication between the middleware and the IHC is done by having
the middleware subscribe to all the resources on the IHC it is interested
in. When the middleware wants to change the state of a resource, which
it may want when a request comes from the bus, the middleware sends
a request to the IHC about changing the state of some resources. When
the resources have changed their state the IHC responds by publishing
an event to the middleware about the new state of the resource.

3.2.2.1 De�nitions and types

Before describing the four communication components some de�nitions
and communication types needs an explanation.

Resource state A resource can be in di�erent states and will frequently
change its state. However three instances of a resources state exist
in the di�erent layers of the IHC integration system. One in the
common space, middleware and IHC. The �rst one is referred to as
the "common space resource" and this is the state of the resource
known to other subsystems on the bus. The next is called the
"internal resource state" which is the one known by the middleware.
The last one is the "IHC resource state" which is the actual state
of the resource only known by the IHC. Whenever an update to

44 Design

Communication components

Startup components BUS

Middleware

IHC

Su
b

scrib
e

P
u

b
lish

R
eq

u
est

Su
b

scrib
e

R
eq

u
est

P
u

b
lish

Outgoing bus
communication

Incoming bus
communication

Incoming IHC
communication

Outgoing IHC
communication

IHC Connection Load IHC project

Consists of

Figure 3.4: Component diagram of how the middleware communicates
with the bus and the IHC and also illustrating the middle-
wares subcomponents

the state of given resource is made the internal and common space
resource states are sought to be synchronized with the IHC resource

3.2 Middleware 45

state. These resource states and their interaction with the rest of
the system is depicted in �gure 3.5 on page 49.

Hook What is meant by a hook is simply that the middleware has called
the "WaitForEvents" method and is now awaiting the event threads
return.

Request route A request route is a tracepath through the system of
where the request started from. It can start from two places in this
system. Either from the bus or directly from the IHC (Via a button
in the house).

Internal event An internal event is an event that is only used inside the
middleware layer when an internal resource state is updated by the
event thread. The internal event will be picked up by the Resource-
ValueChangeEventHandler which is described in section 3.2.2.5.

After this brief introduction to the communication components and some
de�nitions and explanations the communication components will be de-
scribed in detail in the following subsections. After the detailed de-
scriptions a summarizing component-communication diagram 3.5 will be
shown on page 49 along with a sequence diagram 3.6 on page 50 of a
request coming from the bus. I recommend viewing these while reading
the following four sections about the communication components.

3.2.2.2 Incoming bus communication (RequestEventHandlers)

This component takes care of all incoming requests to the IHC from the
bus. These are requests to change the state of output resources in the
system e.g. switch a lamp On/O�. The middleware is subscribed to a list
of requests in the common space. This list of requests de�nes what the
bus is capable of doing with the IHC. If the middleware isn't subscribed
to a certain request, that request won't be received by the middleware
when this request is published on the bus. Therefore when the system

46 Design

starts up, the middleware subscribes to all request types in the common
space regarding the IHC system.

The logic within each RequestEventHandler (there is one for each re-
quest subscribed to) di�ers depending on what the goal for that handler
is. The "ChangeAlarmRequestHandler" fx, implements some logic to con-
�rm that the user knows the old password before changing it to the new
password, therefore it receives both an old and a new password within the
request. Common for all handlers are that they after having performed
some logic, do two things.

1. Update the state of the given resource in the common space. All
subsystems can potentially access this resource, so one might con-
sider making sure this is thread safe. But since there will be no
other subsystems on the bus with access to resources connected to
the IHC this is not an issue.

2. Call their own update method (there is one for each RequestEven-
tHandler) that tells the given resource to update its internal state.
This will automatically trigger a call to the IHC Event Interface
which is described in the next section.

3.2.2.3 Outgoing IHC communication (IHC Event Interface)

The IHC Event Interface is the component that handles outgoing requests
from the middleware to the IHC. It is here that requests from the middle-
ware to the IHC is given i.e. change a resource state, wait for an event to
occur or subscribe to a resource. This component is essentially a wrapper
to the part of the OpenAPI that handles event-driven communication
with the IHC.

In the previous section we saw that the middleware on startup subscribes
to a list of requests that the bus is able to execute. In the same way the
middleware also on startup subscribes to all the resources on the IHC that
it wishes to be alerted of when they change state. When a resource on the
IHC subscribed to by the middleware changes its state the middleware is
alerted through the Event Thread described in the next section. When

3.2 Middleware 47

the middleware wishes to change the state of a resource it gives a requests
to the Event Interface to change the state of the resource. This results
in an asynchronous event based system between the middleware and the
IHC. Synchronous communication is not available through the OpenAPI
provided by Schneider and nor is it needed since all calls to the IHC is
treated in sequence.

3.2.2.4 Incoming IHC communicaiton (Event Thread)

The Event Thread handles incoming events from the IHC. It is a com-
ponent that acts as a channel for changes of resources subscribed to by
the middleware. It is a thread that is started at bootup of the system
and runs all the time in the background polling the IHC for events. This
is done by constantly placing "hooks" on the IHC that returns when an
event occurs i.e. a resource changes its state (A hook equals a "Wait-
ForEvents" call through the IHC Event Interface). If no resource state
changes happen, the hook returns after a con�gurable amount of time. If
the client is "gone" i.e does not have a hook on the IHC then the events
will be queued on the IHC and returned (in sequence) when the next
WaitForEvents method is called.

When an event occurs and is picked up by the event thread it will inform
the internal state to update itself which will trigger the ResourceVal-
ueChangeEventHandler described in the next section. Now depending
on where the request to change the given resource value came from, the
internal resource state might already have been updated. If the "request-
route" started at the bus, the internal state will have been updated by the
Request event handler. If the "request-route" started at the IHC from a
physical button in the house then the internal state will not have been
updated �rst and hence the Event Thread will need to update it. See
�gure 3.5 on page 49 for an overview of the request routes.

When the internal state has been updated by the event thread an internal
event is �red that is picked up by the ResourceValueChangeEventHandler
described in the next section. If the internal state was updated by the
Request Handler it will also be updated by the event thread (though
simply to the same value). This is to ensure that an event to the bus is

48 Design

�red no matter if the request to change the resource came from the bus
or from a physical button in the house.

3.2.2.5 Outgoing bus communication (ResourceValueChangeEven-

tHandler)

The ResourceValueChangeEventHandler's responsibility is to handle out-
going communication from the Middleware to the bus. The handler is
called when the internal resource updates its own state due to an update
call from the event thread. It is important to notice that the internal
state has two di�erent update methods. One for updates coming from
the event thread and one for updates from the request handler. The Re-
sourceValueChangeEventHandler will not be called if the internal state is
updated by the request handler only when updated by event thread.

Note that it will not be called when the request handler updates the
internal resource state, but since this update by the request handler will
afterwards go through the event interface, the IHC and then the event
thread then the ResourceValueChangeEventHandler will eventually be
called.

At startup all resources in the IHC system is registered to the Resource-
ValueChangeEventHandler. The handler reacts when the internal state
of a resource is updated by the event thread. When an event is picked
up it �rst determines which kind of resource the event is on. When this
is done the common space resource state is updated to match the inter-
nal state of the resource. Then a new event is created corresponding to
the resource-type detected. The necessary data desired by the subscrib-
ing subsystems on the bus is populated to this new event and then it is
published on the bus.

3.2.3 Communication diagrams

Figure 3.5 on page 49 compactly illustrates the communication pattern
between the bus, the middleware components and the IHC. If a request is

3.2 Middleware 49

Middleware

IHC

IHC resource
state

Event thread

Request event
handler

BUS
Event Request

Common Space
Common

resource state

WaitForEvents

WaitForEvents(return)

SetValues

ChangeValues

UpdateAndSetValue

UpdateAndInform

Resource-Value-
change- Event

UpdateUpdate

WaitForEvents

Internal resource
state

IHC Event Interface

Resource-Value-
Change event handler

Figure 3.5: Component diagram showing the outgoing and ingoing com-
munication from the middleware

50 Design

received from the bus the long request route around the system is taken.
The request is �rst handled by the matching Request event handler. Here-
after the Internal resource state is updated to the new value triggering a
call to the IHC event interface. The interface calls the OpenAPI method
SetValues which sets the actual resource value on the IHC. This will trig-
ger the event thread that is constantly polling the IHC for events and
when the event thread picks up the event it will update the internal value
if it has not already been updated. The resource updates itself and then
�res a resource-value-change-event which is picked up by the Resource-
ValueChangeEventHandler. Here an event matching the resource type
is created to inform subsystems on the bus that the given resource has
changed its state. The events data �elds are populated and the event is
published on the bus.

BUS Request event
handler

IHC API
Internal
resource

IHC Event Thread
Resource value
change event

handler

Common
Space

UpdateInternalRes
ourceState

Request

ChangeIHCValue

SetValues

WaitForEvents

WaitForEvents
(return)

UpdateInternalRes
ourceState

ResourceValue
Change event

UpdateCommonSpace
ResourceState

Publish Event

UpdateCommonSpace
ResourceState

Figure 3.6: Sequence diagram showing the communication route be-
tween the di�erent processes when a request is sent from
the bus

This sequence diagram shows the same communication pattern as the
component diagram �gure 3.5. Note that if the request to change the
resource state comes from the IHC, the calls before the IHC being active
can be ignored i.e. the SetValues call and all calls before it.

3.3 Common space Integration 51

3.3 Common space Integration

The architecture of our groups entire system involves a common inter-
face that all subsystems must integrate into. This was done to make it
easier for new subsystems to integrate into the system. One issue that
we discussed in the group was to what degree we wanted to normalize
data before it was sent over the bus. It was a possibility to simply send
resource data in its raw form over the bus or we could try and normalize
it as much as possible before sending it over the bus. Since we want the
system to easily interact with new subsystems and to be easy to work with
for future programmers the latter approach was chosen. Therefore each
subsystem has a number of service contracts in the common space that
data sent from the subsystem needs to be converted to before sending it
over the bus. The service contracts concerning the IHC system are:

1. A class for each request type to the IHC. There is a request type for
each output resource type in the IHC plus one for requesting the
state of the entire IHC system.

2. A class for each resource type in the IHC.

3. A class for each event type in the IHC.

For the IHC middleware integration that we are creating this means that
it must subscribe to each of these request types in the common space.
Events that are published from the IHC middleware must also contain
information on which event-type it is and what resource-type it is a�ecting
(in addition to containing the resource ID).

Facilitating these requirements makes for a lot similar code but is neces-
sary in order to provide the required information. The similar code occurs
three times in the source code (mathcing to the three service contracts
that must be met).

In this system a requesthandler for each requesttype is necessary. It
is possible to have more than one requesttype registered to the same
handler, but then you wont know which requesttype invoked the handler.

52 Design

Part of the requesthandlers responsibility in this system is to update the
common space resource state which has a resourcetype. Therefore each
requesttype must contain information on which resourcetype it wishes to
interact with. The alternative would be to have all requesttypes registered
to one single requesthandler losing the information on which resourcetype
it wants interact to with. This would require that the rest of the system
is designed without resourcetypes.

As we have just discussed the resource-type is required. Therefore when
creating the resources from the project�le on startup it is necessary to
check which resource type it is since the type is required when creating
the resource. The alternative would be to only di�er between boolean
and set-point resources but this merely moves the problem of �nding out
the resource type to the other subsystems.

The same challenge is seen when the IHC publishes events on the bus.
An event type is required. The alternative would be to send out either
boolean events or set-point events no matter what happens on the IHC.
This is possible since the event still contains the resource id and the
state it has changed to, but again the problem of �nding out the type of
resource will simply be moved to the subscribing subsystem.

It would be simpler for the IHC subsystems if it didn't have to care
about resource types since as can be seen on the �gure above, only the
control type of the resource would have to be known. In this way the
only information that would have to be stored for each resource was its
ID and how to control it i.e. setpoint or boolean. However as discussed
earlier this would only push the problem higher up in the layers to the
other subsystems.

3.3.1 Extensibility and simplicity

Providing these extra informations hurts the extensibility and the sim-
plicity a bit. If the user suddenly decides to add an extra lamp or even a
new room with resources to the system no coding at all to the middleware
is needed. The only thing required would be to add it to the project�le in
LK Visual and the auto generation of resources in the middleware takes

3.3 Common space Integration 53

Resource

Dimmer Lux
Lamp
outlet

PIR-Sensor
Magnet-
Sensor

Power
outlet

Set-point
resource

Boolean
resource

Figure 3.7: Shows what subtypes some resources are. Not all resources
in the system are included

care of the rest. This is because a lamp is a resource-type that already
exists. If however the user decides to install a controllable radiator system
in the IHC (a new resource-type), some additional code would need to be
added to the middleware. This code includes a check for this new type of
resource in the LoadProject component, a new event type for events con-
cerning this resource and a new request type so the bus can give requests
to the new resource-type. These are the changes to the IHC system that
needs to be done. The new resource-type would also need to be added to
the common space and the other subsystems on the bus might also need
some updates.

It is not possible to completely avoid having to add some code in the
middleware when new resourcetypes are introduced, but the code work
is easy to do since the template used by the other resources can be used
with very few changes needed.

54 Design

Chapter 4

Implementation

In this chapter i will walk through the boot-up components describing
which coding patterns they use and how they work. A description and
explanation of how the resource base is implemented will also be given.

4.1 Load Project�le component

When the IHC integration system was initially implemented we used a
manual setup where we had a resource-settings �le wherein all resources
were manually typed in. The resources ID's had to be fetched by man-
ually inspecting the project�le for the resource and its ID. Also if any
additional resource information e.g. "location" was wanted you had to
further inspect the �le for that too. This quickly became very cumber-
some and hard to overview when we added more resources with additional
information attached since the slightest change to the project�le would
mean that the settings �le needed to be updated. This was even if the
change was only and additional resource of a type that already existed.

56 Implementation

Therefore an automatic way of importing to and creating the resources in
the middleware is needed. When the IHC system is booted we want the
resources in the project�le to be automatically created in the middleware
even if new resources has been added since the last boot-up.

4.1.1 Importing the project�le to middleware

Importing the project�le basicly consists of four steps:

1. Check if a new there is a new project�le on the IHC. If yes -> go
to step 2. If no -> go to step 4.

2. Retrieve project segments from IHC and write them to a binary �le.

3. Decompress the binary �le to an xml �le and store it locally on the
server.

4. Deserialize the locally stored xml �le on the server to xml class
trees.

On bootup the �rst thing to happen (after establishing connection to the
IHC) is the check to see if there is a new project�le on the IHC. This
check is simply done by comparing the version numbers of the project�le
on the client-side and the one on the IHC. These version numbers are
fetched via the OpenAPI method getProjectInfo. If the versions di�er
the new project�le on the IHC is loaded, if not the old project�le is used.

If a new project�le needs to be loaded the getIHCProjectSegmentmethod
is called to the OpenAPI. This returns a single segment of the projet�le.
Therefore this call is put inside a for loop that runs as many times as there
are segments. The amount of project segments is retrieved by calling the
API method getIHCProjectNumberOfSegments. In each iteration of the
loop a segment is loaded and written to a binary �le. When the entire
project�le is written to this binary �le we end up with a compressed
�le which is unzipped programmatically using Gzip. The result is an
unzipped XML-�le describing the entire project�le from the IHC. This

4.1 Load Project�le component 57

�le is saved in the clients folder appcon�g (Which is created if the folder
does not exist already).

The project�le is now imported to the middleware and can be read di-
rectly as an XML �le. This means that now we can programmatically
access the resources on the IHC through this XML. This can be done
through simple xmlnode querys. However we want to avoid fetching data
directly from an XML �le. The reason to not read values directly from the
XML �le is that if/when changes occur to the project�le it may change
the structure of the XML �le, thereby a�ecting the way you access the
data in the XML project�le. This would mean that the programmer
would have to change the xmlnode querys every time the project�le was
changed. So a generic solution is wanted that saves the programmer this
hassle.

We decided to normalize all loaded project�les from the IHC using a
solution as described by the �gure below:

IHC

Retrieve project
segments & write

binary file

Decompress

Deserialize with
complete XML class tree

Figure 4.1: Diagram of the entire process of loading the IHC project
into the middleware

58 Implementation

The �rst three steps are described above, where the project segments
are retrieved from the IHC, written to a binary �le and decompressed
with gzip resulting in an XML project �le. However instead of retrieving
resource data directly from this XML �le we choose to deserialize the
�le �rst using a large almost comprehensive XML Class tree as the target
type. This ensures that the project �le will always have the same structure
making the solution generic and the access to its data structured.

To do this i contacted Schneider Electrics to get an IHC project�le from
them that theoretically contains all resource types and control scenarios
possible. From this �le we used Visual Studio's built in XSD tool to
generate an XML schema de�nition from the XML �le. This is done by
running XSD.exe tool from the visual studio command prompt typing:
xsd projectfile.xml, resulting in an XSD �le generated from the xml
�le describing the structure of the XML �le. From this XSD �le visual
studio again has built in tool to generate XML class trees describing the
structure of the XML �le.

This means that we can generate XML class trees that theoretically
should be comprehensive in terms of structural possibilities of the project-
�le retrieved from the IHC. This XML class tree is used to deserialize the
project�le resulting in a uniformed project�le that always has the same
structure. This solution gives the most generic approach to the prob-
lem of uniforming the project�le relieving the programmer of constantly
having to maintain this part of the software. The disadvantage of this
solution is if you haven't used a comprehensive �le to generate the class
tree i.e. there is a node in the XML �le that is not covered by the XML
class tree.

4.1.2 Generating and mapping resources from project�le

One of the responsibilities of the Load Project component is to generate
resources from the project�le (From now on when "project�le" is written
we simply refer to the project�le after it has been completely deserialized
to an XML data object). When generating resources in the middleware
we need to fetch three pieces of information from the project�le. The ID
of the input- or output resource, the type of the resource and the location

4.1 Load Project�le component 59

of the resource. To facilitate this, a massive for-loop is constructed that
iterates through the entire project�le. It does so in two levels, the �rst
level being the resource location (a location equals fx "Entertainment
Area"). For each location in the project�le we have a for-loop iterating
over each resource within that location. Whenever a resource is encoun-
tered we enter a switch statement that checks the name of the resource
and maps it to the corresponding resource generation code. Here is an
example of a PowerOutlet resource in the Entertainment area that has
been mapped to the PowerOutlet resource generation code:

case 'S ' : //Power ou t l e t

i f (S t r ing . IsNullOrEmpty (data . groups [0] . group [group] .
product_datal ine [d a t a l i n e] . datal ine_output [0] . id))
{

Console . WriteLine ("Skipped Resource in l o c a t i o n : " +
data . groups [0] . group [group] . name + "with

re source type : " + ResourceType .
PowerOutlet) ;

cont inue ;
}

DecimalID = UInt32 . Parse (data . groups [0] . group [group] .
product_datal ine [d a t a l i n e] . datal ine_output [0] .

id . Subst r ing (3) ,
System . G loba l i z a t i on . NumberStyles . A l lowHexSpec i f i e r) ;

guid = Common. Helpers . GuidMapper . GetGuid (DecimalID .
ToString ()) ;

r e sourceBoo lean = new ResourceBoolean (DecimalID ,
ResourceType . PowerOutlet , l o ca t i on , guid) ;

re sourceBoo lean . Val id = true ;

SubsystemItem item = new PowerOutlet () ;
item . Id = guid ;
item . Loca l Id = DecimalID . ToString () ;
item .Name = l o c a t i o n ;

break ;

The code creates a new boolean resource containing four parameters. The
1st parameter DecimalID is the exact ID that must be parsed to the IHC

60 Implementation

when interaction with the resource is wanted. The DecimalID is fetched
from the XML Data object. The 2nd parameter is the resource type.
This type does not need to be fetched from the XML but can be directly
set since we know that the resource is a powerOutlet when executing this
code. The 3rd parameter is the location which is fetched during the outer
for-loop and is used for all resources in each iteration of the outer for-
loop. The last parameter is another ID for the resource used globally by
all subsystems on the BUS.

After the creation of the resource for the middleware the resource also
needs to be created for the common space. This is done by creating
an object of the type SubsystemItem. This item is the common space
resource that was described in the design section which is updated by the
request- and eventhandlers.

When the big for-loop is �nished the entire XML object has been iterated
and each resource in it has been generated for the middleware and the
other subsystems. While the for-loop was running the middleware also
subscribed to all the resources on the IHC corresponding to the resources
created in the middleware. When all resources have been created they are
also registered to the ResourceValueChangeEventHandler so when their
internal state is updated the handler will be informed.

4.2 Resource Base

The resource base is the classes that are instantiated when new resources
are created. Currently it consists of three classes one of them being the
abstract class ResourceBase from which the others inherit from. The two
resource-classes that can be instantiated are the ResourceBoolean- and
ResourceSetpoint classes. These resource classes represent the di�erent
types of resource-control present in the system, which at the moment
only consists of on/o� and setpoint resources. If the need for a new type
of resource-control arises one simply creates a new class inheriting from
ResourceBase with a new set of control methods. To illustrate what the
shared logic is between the resource types a class diagram of the resource
base is shown here:

4.2 Resource Base 61

Figure 4.2: Class diagram of the resource base

The diagram shows that all resource-types contain the three pieces of
information: ID, type and location mentioned in the Load Project�le sec-
tion 4.1.2 on page 58 and therefore these are inherited from ResourceBase.
Where the classes di�er is in the control of the resource state. In the
ResourceBoolean class we see that it has the three methods: On(), O�()
and Toggle() to control it, while the textttResourceSetpoint class has only
one method called Set(). These control methods directly change the state
of the internal resource in the middleware triggering setValue() a call to
the event interface as described in section 3.2.2.4 on page 58.

You will also notice that each resource has a valueChangeEvent that
is called when the UpdateResourceValue() method is called by the event
thread. The valueChangeEvent is picked up by the ResourceValueChangeEven-
tHandler as described in the section 3.2.2.5 on page 48.

62 Implementation

Chapter 5

Evaluation

In this chapter i will evaluate the project re�ecting on the experiences
made throughout it as well as discussing possible additions and future
plans for the Solar Decathlon house.

5.1 Testing and unsolved issues

Testing of the IHC integration system has been very limited since nei-
ther the IHC resources or the server operating our entire software control
system for the house was installed in the house before around the mid-
dle of June. Therefore testing with the IHC system has been done on
a test-IHC connected to a single lamp and a single motion sensor. This
however proved that the IHC integration system works perfectly �ne with
a response time around 300 ms. A lamp connected to the IHC (both wire-
lessly and wired) could be turned on both through a bus request coming
from a 3rd party app or through a physical button or a motion sensor.
Both requests resulted in the lamp being turned on and an event �red
onto the bus containing information about the a�ected resource and its

64 Evaluation

state after the request. Booting of the system works as intended. The
IHC middleware layer correctly connects to the IHC and generates all
resources from the project�le and informs the other subsystems of them.

It should be noted that not all resource-types utilized in the system have
been tested since they were not installed early enough to test. But all re-
sources in the middleware are implemented using the same coding pattern
so if some of them functions properly the chance that the other do too
are high. A table of tests conducted and some that should be performed
in the future are listed in table 5.1 on page 65.

There has also not been performed any stress tests on the system e.g.
sending 1000 switch on/o� requests from the bus to a lamp without any
delay in between. This is not something that will come up at all when the
system is implemented in the house since a user cannot generate requests
fast enough for this to be a problem (even if he clicks the button in the
house as fast as he can), since there is a built in delay timer in the IHC
for how fast input-resources (e.g. Buttons and motion sensors)can a�ect
an output resource. This is not the case when communicating through
the bus though, but since this is being encapsulated by providing our own
app developed by ourselves for the user to interact with the system this
should not be a problem. Still this is something that should be tested
further not only in order to further stabilize the system making it more
robust but also for when other programmers are going to work with the
system and play around with sending requests to the IHC.

Related to stress testing the IHC system, thread safety is another issue.
Fixing this issue is however very hard due to the nature of how the IHC
works. The problem brie�y described is that when a request is sent from
the bus then if the state of the resource is requested for some reason
whilst the request is being processed in the IHC integration layer the
wrong state might be read leading to race conditions and deadlocks. The
same problem could also occur if a request is sent from the bus and in
the small time frame it is being processed a physical button in the house
is pressed a�ecting the same resource. Granted this will practically never
come up since this would require extreme timing from the inhabitant in
the house, but still this is something that should be looked into.

5.1 Testing and unsolved issues 65

Scenario Tested Evaluation/prediction

A lamp is turned on via a button in
the house or from the bus.

Yes Succes. The light turns on within
300 ms

A lamp is dimmed up/down from
the bus or by a button in the house

Yes. Succes. The lamp is dimmed 20 %
down as is con�gured by standard in
the project�le.

A lamp is turned on when a motion
sensor is triggered.

Yes Succes. The light turns on within
300 ms

A power outlet is switched o�/on Yes Succes. The source connected to the
power outlet does not receive any
power after approximately 300 ms.

A lux sensor automatically adjusts
the light level on a lamp

No The lamp should at all times main-
tain a lux around 500. It is expected
the lux level will swing up and down
around this level.

The alarm system is activated No Within a second the alarm system
should be activated and the user will
have 20 seconds to leave the house.

The alarm system is triggered
through motion sensors

No The alarm system should be trig-
gered and the sound generator re-
sources should be activated that
produces a 102 dB sound.

The alarm system is triggered
through magnet sensors.

No The alarm system should be trig-
gered and the sound generator re-
sources should be activated that
produces a 102 dB sound.

The project�le on the IHC is fetched
and auto processed.

Yes The resources in the project�le are
generated programmatically with
properties matching exactly with
the project�le.

The auto generation of the resources
from project�le is generic.

To some
extent

We have tested with a lot of di�er-
ent kinds of project�les on the IHC
which all worked �ne, but since the
possible number of project�les are
very big it cannot be a 100 % guar-
anteed that ANY project�les is pro-
cessed correctly.

Table 5.1: Test table showing test scenarios, whether they were tested
and the evaluation of the test or prediction if not tested.

66 Evaluation

5.2 Future development and extensions

Here possible extensions to the IHC integration system will be described
as well as what the future of the Solar Decathlon project looks like.

Easy adding of resources is a feature that future users as well as pro-
grammers could bene�t from. By this i mean developing an app
that does two things. First it should serve as encapsulation from
the LK Visual program saving the user the hassle of having to learn
how to use LK Visual in order to add new resources to the system.
Additionally the app could even support adding of new resource-
types by auto generating the necessary source-code to the system.

Automatic adjusting of light level is something that is only done at
the workstation at the moment. By installing Lux-Sensors through-
out the house automatic adjustment of indoor light level compared
to the sunlight could be done. This could further reduce unnec-
essary lights in the house. Of course this needs to be able to be
manually overridden like all other functions in the house.

Robustness through further testing is very important and is de�nitely
one of the key points to work on in future iterations of this soft-
ware system. This has already been achieved somewhat by striving
to make the startup component and communication component as
simple as possible in order to easily debug them. But actual testing
still lacks since the equipment to do so was only recently installed
in the house.

On the 1st of September 2012 instalment of our groups software system
in the o�cial house began. This takes place in Madrid where the o�-
cial Solar Decathlon 2012 Europe competition will be held. Here further
testing of the system will be done in order to improve the robustness of
it and to make sure everything runs smoothly for when the jury will be
judging and measuring the house. 1

1http://www.solardecathlon.gov/sd_europe.html

5.3 Initial conclusions 67

Current status on the project as of the 7th of september 2012 is that the
competition is already underway and the system proposed in this report
is already being installed in the house. It feels like we have achieved an
overall well designed system that will serve the house well by saving lots
of energy and making it intelligent which also makes for a good potential
for future usage.

5.3 Initial conclusions

Evaluating the project some initial conclusions can be made.

Communication is very important when up to around 140 people from
DTU are working together on the same project. People whose only job is
to communicate are needed so developers don't need to attend meetings
all the time but can focus more on the technical side of their project.

The IHC integration system works as intended by creating all the re-
sources from the project�le and o�ering the bus almost complete control
over them. Further work on the IHC system should be focused on test-
ing since this will increase the robustness of the system which is a very
important quality.

The future of the project looks very promising with the competition in
Madrid starting in September. We will need to test the system further
and this is being carried out by our group as this thesis is being written,
but i am positive that we will have a functioning system that will impress
crowds, jury members and student groups as well as the administration
working on the project.

68 Evaluation

Chapter 6

Conclusion

This report is motivated by DTU's participation in Solar Decathlon Eu-
rope contest 2012 on building the most energy e�cient and innovative
house. Part of this task was installing an intelligent home control system
in the house which was carried about by myself and the other members
of the Control Systems group. The speci�c task this report covers is the
integration of the IHC system to the central message bus. To support us
we had �ve di�erent sponsors that provided us with system hardware/-
software and know-how to install it.

The proposed solution consists of an event-based integration between the
IHC and the bus. This is facilitated by creating an event-based com-
munication both between the middleware and the IHC and between the
middleware and the bus. Regarding the project�le on the IHC we have
made a solution that always synchronizes with the current project�le on
the IHC so the latest project�le is used in the middleware. Furthermore
resources are automaticly generated from the newest project�le and reg-
istered with the event system. The reading of the project�le is done in
a generic way that should be able to read any project�le created in LK
Visual.

70 Conclusion

6.1 Evaluation

The basic resources that are used most often such as a lamp, dimmable
lamp, motion sensor and power switch have been tested and proved to
function properly. Conluding on the small amount of tests made on the
system described it looks promising. The basic resources in the system
have been tested and proved to function properly. The more advanced
resources are implemented with the exact same coding pattern and inte-
gration with the bus so these should theoretically also function properly.

As mentioned in the evaluation the system has been hard to test since the
physical resources in the house were not installed until around mid-july.
Therefore testing has not been the main priority of this system but rather
the extendibility and robustness of it. We can conclude that the system
is very extendable since new resources very easily can be added/removed
and new resource types can be added/removed with a small amount of
work based on coding patterns already implemented. Regarding the ro-
bustness very little can be concluded since the system has not been in-
stalled and tried out in a real house yet.

6.2 Communication role

During the creation of our groups control software system for the house,
i have acted partly as a communications person acquiring needed infor-
mation for the group from other student groups working on the house,
company sponsors and project administrative information. This job con-
sists of two parts. One is to gather administrative information for the
group e.g. meetings everyone from our group needs to attend and gen-
eral information regarding the competition. The other part is to gather
information from other student groups and sponsors regarding the actual
resources that are going to be placed in the house.

It started out when i was the only one in the group who was able to
attend the weekly Monday meetings that was held from around February
all the way through to somewhere in the middle of May. These meetings

6.2 Communication role 71

provided administrative information for our group. During this period it
became a natural transition that i also had contact with the companies
and other student groups who attended these meetings since i needed
information from them regarding which resources we were going to use
in the house and how they were best utilized. One needs to consider
that this information is relevant for everyone in our software group but
since i am dealing with the lowest software-layer it was me who needed the
information �rst since i could not disregard from it like the people creating
the higher-layers could. In order to program the IHC Control module in
LK Visual i needed to know exactly which resources we were going to
have in the house and where they were going to be placed. Therefore it
was natural that i was the one to have the contact with the students and
other student groups which i did not mind at all.

Contact with the other student groups mainly concerned what their wishes
for the house were regarding lighting. The interior designers had a long
list of wishes for where and how lighting in the house should work. Some
of these wishes included an outside preprogrammed light show and spe-
cial placement of lamps and when they would turn on. When wishes from
the student groups was gathered i contacted the sponsors delivering the
materials and discussed to which extent these wishes could be met with
their products. Also if and how their products was compatible with the
IHC system.

After working on this project for more than half a year now i have realised
that communication is a huge part of a project this size and can take up
a lot of time. It's very important that the di�erent groups working on
the project talk to each other about their wishes and to what extent they
can be met. This has been somewhat of a big problem on this project
when the di�erent student groups keep on changing what they want and
adding new things last minute. When future iterations of this project
is undertaken i would greatly recommend communication is emphasized
more than it has been on this project.

Wrap up

Overall the system seems to meet the overall requirements set out which
were to integrate an IHC system to a central bus architecture. The parts

72 Conclusion

of the system that have been tested have been tested have a reasonable
response and function properly. The system correctly and generically
fetches the project�le from the IHC and generates resources programmat-
ically ready for integration with the bus through an event-bases system.

In the future further testing of resource functioning and the general ro-
bustness of the system should be carried out. It would also be very in-
teresting to extend the system so new resource types easily can be added
via some auto generation of code.

Appendix A

Appendix 1 - Classdiagram

This appendix contains the class diagram for the big single class that
contains all the main functionality.

74 Appendix 1 - Classdiagram

Figure A.1: Class Diagram of the big central class with most function-
ality

Appendix B

Appendix 2 - LK Visual �le
(top)

Top half of Resources in LK Visual shown.

76 Appendix 2 - LK Visual �le (top)

Figure B.1: The top half of all the resources in the house

Appendix C

Appendix 3 - LK Visual
�le(bottom)

Bottom half of Resources in LK Visual shown.

78 Appendix 3 - LK Visual �le(bottom)

Figure C.1: The bottom half of all the resources in the house

	Resumé
	Abstract
	Acknowledgements
	1 Introduction
	1.0.1 Organization of report

	2 Analysis
	2.1 Motivation
	2.1.1 LK Schneider background

	2.2 Overall system Architecture
	2.2.1 Quality parameters of IHC integration layer

	2.3 IHC Hardware and firmware
	2.3.1 Hardware
	2.3.2 Firmware
	2.3.3 IHC OpenAPI
	2.3.4 IHC Enabled systems

	2.4 Problem definition
	2.4.1 Middleware Layer
	2.4.2 Firmware programming
	2.4.3 Work tasks summarized
	2.4.4 What is out of scope

	2.5 Resource-type List
	2.5.1 Input resources
	2.5.2 Output resources

	2.6 Requirements
	2.6.1 System users
	2.6.1.1 End-user
	2.6.1.2 Programmer

	2.6.2 Functional requirements
	2.6.3 Non-Functional requirements

	3 Design
	3.1 Room design in LK Visual
	3.1.1 Conceptual design vs. Practical design
	3.1.2 Room division
	3.1.3 Resource placement
	3.1.3.1 Living space
	3.1.3.2 Technical Core Rooms
	3.1.3.3 Other "Rooms"

	3.1.4 Virtual resources

	3.2 Middleware
	3.2.1 Startup component
	3.2.2 Communication components
	3.2.2.1 Definitions and types
	3.2.2.2 Incoming bus communication (RequestEventHandlers)
	3.2.2.3 Outgoing IHC communication (IHC Event Interface)
	3.2.2.4 Incoming IHC communicaiton (Event Thread)
	3.2.2.5 Outgoing bus communication (ResourceValueChangeEventHandler)

	3.2.3 Communication diagrams

	3.3 Common space Integration
	3.3.1 Extensibility and simplicity

	4 Implementation
	4.1 Load Projectfile component
	4.1.1 Importing the projectfile to middleware
	4.1.2 Generating and mapping resources from projectfile

	4.2 Resource Base

	5 Evaluation
	5.1 Testing and unsolved issues
	5.2 Future development and extensions
	5.3 Initial conclusions

	6 Conclusion
	6.1 Evaluation
	6.2 Communication role

	A Appendix 1 - Classdiagram
	B Appendix 2 - LK Visual file (top)
	C Appendix 3 - LK Visual file(bottom)

