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Abstract 

Data privacy depends on the honesty of the source that has to be trusted during storage and/or 

exchange of said data. Users choose ISP, servers for storage and solutions to store data. The choices are 

based on a combination of functionality and credibility. An alternative is to decrease the need to trust an 

outside source for data management and give the user more control over it.  

This thesis presents an analysis of currently existing state of the art methods and tools for securing data, 

provides considerations for the choices made, details the implementation and analyses the results. 

Current problems are analyzed in addition to the tools and appropriate considerations for solutions are 

given. 

The project is performed in collaboration with “Soonr” - an external company, which is specializes in 

dealing with confidential data around the world. The company was founded in 2005 and deals with data 

from more than 150,000 companies worldwide. The project includes changes to part of their code to 

support additional features. The changes are analyzed to display how well they follow the outlined 

requirements. 

The information regarding the company’s data is disclosed to the extent needed to carry out the analysis 

of the implementation. 

A key management solution is designed, implemented and analyzed to fulfil its’ part of the 

requirements. 
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1 Introduction 

 

Storage and sharing of stored data is becoming more important as electronic devices become cheaper 

and more accessible to people. Every electronic device generates data and as the world is now, this data 

is stored and shared in some way. This includes storing it on local drives and using network technology, 

which is now covering a large part of the world. This is part of what is known as the internet of things.  

It does not necessarily require human interaction to generate data, so the speed at which data is 

created is far higher than what people generate manually.  This includes computers, cameras, phones 

and other everyday appliances everyone seems to have and less common devices, such as, washing 

machines and refrigerators with integrated internet connection. [1 ]The data generated relates to the 

status of the device, updates to the system or even command lists waiting to be executed.  As 

mentioned, every piece of data has to be stored in some location, so the choices come down to local 

storage or sending the data to online locations. In this situation the local storage becomes a temporary 

medium, which eventually leads to sending data to online locations.  

With all the tools connected to the network, several problems appear:  size of the data being generated 

and the size of the devices, complexity of the network needed to be able to use the devices, security of 

the data moving in every direction. While incorrectly chosen size of the device, the amount of data 

needed to be transferred in a short amount of time and complexity of the network can result in non-

functional equipment, which can be troubleshooted after unsuccessful installation, failure in security 

can result in deliberate damage to the equipment or the user at any point in time, when unauthorized 

people gain access to the devices. This includes tampering with the functionality and stealing data from 

the system.  

The security is considered enough to provide practical security, while maintaining overall functionality of 

the network intact. This means that while maintaining an acceptable level of security, which is different 

for individual scenarios, reliability of the network is another important issue.  Various solutions have 

been developed for data sharing over the network, which allow the data to remain reasonably secure 

while easily reachable to authorized parties. The reachability is covered by faster network connections 

with wider coverage, data compression and cloud storage. The data is considered to only be reasonably 
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secure. In order to achieve true security every piece of technology would have to be user developed - 

even the tools. As soon as a third party has a part in developing anything related to the technology, 

there is a possibility that they included a deliberate flaw, which allows access to extra data or cripples a 

feature to later benefit from that. So, data can only be reasonably secure.  

Data transfer speeds over global networks are getting higher with each passing year thanks to new 

technologies, such as, fiber optics by google and a lot of the world has not even caught up with the 

current technologies[2], so it should not reach a dead end anytime soon. In addition, data compression 

decreases the amount of data actually transferred. This leads to having more freedom when considering 

security model for data being transferred.  

Cloud storage in combination with data compression is considered as single element, since cloud 

storage solution has to take care of the data transfer either way – that is data compression and security. 

The Cloud is a popular choice for many users. It provides storage solutions for any device connecting to 

the web and can also provide computational power to the user. In case of computing, the user is given 

the possibility to unload processor or graphics card intensive workload to remote sources. The 

advantages of such an approach are increased computational power, which can be reached from any 

device or devices at once. By using these solutions, the user shows that he/she trusts the 

location/provider, where the work is done. Cloud computing also uses cloud storage as part of the entire 

package. This does not mean that the user is forced to use everything or nothing. The cloud storage can 

be used separately just as easily. 

When using the cloud storage, the users give data to a trusted party, who makes the data available to 

the users wherever they are and often also allows users to share data with other authorized users. 

These users are chosen by the original uploader. Such sharing of data happens through a web interface 

or locally installed applications. The next step gives the data to cloud storage provider, who then pushes 

it to their own storage locations. This is illustrated in Figure 1: 
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Figure 1. Cloud storage layout 

The users or their devices share data with the cloud storage provider, using security technologies, such 

as, TLS for data stream encryption. Then access control provides a way to manage the data, which at 

some later point can be encrypted with various tools and transferred to remote storage locations . The 

retrieval of data works in a similar fashion, only in reverse.  The tools used in all the steps are set and 

known to the cloud storage provider. This includes the keys and the encryption/transfer methods.  

The data in the cloud is managed by various parties, which make sure the data does not get destroyed, is 

always available to the users and provides various other utilities to manage the data. This is acceptable if 

the cloud storage provider is trusted.  When the data reaches them, the sender assumes that the data 

will be handled as agreed. Cloud storage providers are generally storing the data at facilities, which are 

not bound by country or even continent. These facilities can be part of the company or the data storage 

might be outsourced to unrelated companies. At each step more people are involved with the data and 

cases, where someone uses the data for personal gain, prove that the user cannot completely trust 

others with their data - it can be stolen by employees [3] or outsiders, who gain access to employees 

accounts [4] [5].  

The location, where the data is stored, the country, which the provider is based at have to follow the 

laws of the country. The relevant rules include the need to accept requests for data from government 
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officials [6], where the company has to provide data even from overseas locations [7].  The user has no 

control over the actions and it has no difference, where the data is stored physically. 

Cloud storage providers also have to trust their own sources. It has been revealed to the public that 

ISP’s, data storage solutions with their servers do not have enough control over the processes they 

handle to prevent governmental organizations, such as NSA, to can gain access to servers [8], install 

backdoors in routers [9] and computers [10] and cripple cryptographic algorithms [11].  

A concern of entrusting the data to cloud is that actual protection methods connecting the user to the 

data are mainly software based. This provides various different properties, such as, permissions to view, 

edit, the need to protect information in case of a failure in the system.  The user can store this data 

offline (flash drives, hard drives, etc.) and share it with others when the need appears by using cloud 

solution. The information is travelling over a public environment and is being stored in locations, which 

are managed by third parties. Cloud services provide methods to protect data going from the user to the 

servers and then the data is fully accessible to employees unrelated to the user when it reaches the 

servers. This is because the data is protected with the tools and keys, which are known to the company 

when stored. So, the information distribution can be controlled by settings for sharing, storage location 

and general privacy, but this is as effective as the solution decides to allow it. 

After the overview this emphasizes the following issues/problems: 

1. The data is accessible by several third parties without the permission or knowledge of the user. 

2. The user cannot actually approve who can gain access, only request storage providers to follow 

user decisions. 

3. The safety of the data is dependent on the cloud storage service the user chooses.  

4. The user does not have any verification of how well the security solutions function. 

One of these cloud service providers is a company by the name of “Soonr”. This company provides cloud 

storage service to various customers and the data is stored around the world, which is accessible by the 

employees around the world. The need for moving the trusted link closer to the user and increasing the 

power users have over their own data during the entire storage resulted in the Secure Deal Room 

project. It stands for keeping unauthorized parties out of the communication between users, while still 

providing data transfer services as before. 

 Secure Deal Room appears because of the need to: 
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1. Limit the access to data by third parties. Provide the users with data access control, where the 

user is the only one in control, so no access to server data with request of third party 

organizations, such as governments with warrants or unauthorized access by the employees, is 

gained. 

2. Limit the responsibilities of the company, when handling the interactions between the users. 

The user personally decides and invites other participants. This includes the transfer methods 

and sender/recipient verification. 

In addition to the direct requirements for Secure Deal Room, additional requirements are: 

1. Provide data integrity control, so the users’ access control cannot be physically tampered with. 

2. Provide simple controls for the user.  

3. The tools offered to the user must be trusted, so they have to be transparent for everyone to 

be able to verify the functionality. 

The sub-problems not considered are: 

1. Data storage and transfer methods. The company, collaborating with the project provides data 

storage and transfer methods. 

2. Data and access control protection from direct monitoring via key logging or looking over the 

shoulder. 

3. The stability of the tools used, such as crypto algorithms and their implementations, 

programming languages. 

The following parts of the report will look into currently existing state of the art technologies, analyze 

their advantages and shortcomings. In addition to the analysis, Soonr offering will be analyzed in 

separately and in more detail. After the analysis, the secure deal room problems and sub-problems will 

be identified. Following that, the design of the solution will be defined and the implementation will be 

described. Finnaly, the results are evaluated and the conclusion is given. 
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2 State of the art 

 

 

Figure 2. Trusted Computing Base in different types of file systems [12] 

Data flow in various systems is divided into four categories as displayed in Figure 2:   

 Centralized system has all the components in a trusted computing base, which is on the local 

operating system.  There is no transferring of data involved and the user can reach the physical 

storage location of the data. 

 LAN file server has both the file server and the intermediate network and the user must login. 

This covers web based interactions, where the user does not store any data on the local 

machine. 

 Distributed file system has an insecure network, but the server is considered secure. This covers 

the local client based interactions, where the user stores data on the local device and the server 

side takes care of the rest. 

  Cryptographic access control model only trusts the client. Covers the data being locked by the 

user and the server waits for the user to process the data before it is sent to the server. 

During the project, state of the art solutions are a base point against which the need for improvement is 

analyzed. The analysis is carried out on cloud storage, encryption and access control solutions.  

2.1 Cloud storage 
The cloud storage solutions are relatively similar among each other and the features will be analyzed 

further. They fall into the distributed file system category, since the service provider manages transfer 

and protection. 
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DropBox has cloud-based services for data storage and management, clients for data access and storage 

on desktop and mobile devices and web interfaces for data and service management. Desktop client 

supports synchronization, sharing, personal storage and revisions of files, so deleted files may be 

recovered from any linked computer. Dropbox uses Amazons’ storage system to store the files, though it 

may switch to a different storage provider at any time. SSL is used for synchronization and data transfer 

using AES-256 encryption with encryption keys, which belong to Dropbox, and not the user. This means 

that the user does not have any control over the encryption mechanisms.  The entire data transfer 

generally follows the flow from Figure 1, where user data is transferred to cloud storage after being 

encrypted with various tools to protect it during transfer. Then the data is decrypted and moved to 

Amazons’ storage locations. In 2011, it has been reported, that Dropbox system checks if a file has been 

uploaded before by any other user, and links to the existing copy. In addition, a single AES-256 key for 

every file on the system is used, so Dropbox can look at private files stored on the system, with the 

threat that any intruder, who gets the key, could decrypt any file if they had access to Dropbox's 

backend storage infrastructure.[13 ]In later events DropBox has been hacked, where private data has 

been leaked to the web.[14] The most popular solutions are usually targeted by a larger number of 

attackers, so a possibility of a successful attack is always exists. DropBox  gives priority to functionality 

and convenience in data management, which means that security is covered to the extent, that 

attackers would not gain access to the “user-dropbox” link.  

Competing solutions to dropbox employ similar solutions. AES encryption is used throughout and the 

main difference exists in the amount of storage offered to the user. These solutions are box, google 

drive, one drive, icloud. 

The online solutions, like “SendThisFile” or “DropSend”, provide the “entire package”: encrypting data 

with offered tools, sending it over the network to the other user. The desktop client solutions, similar to 

web interface solutions, offer encryption, transfer over the network and sharing with other side. These 

solutions store data on remote servers, where this data is protected with locks, which can be unlocked 

by the company and not necessarily by the original owner of the data. These solutions offer a trust 

based security.  The user trusts their honesty, that the data will not be misused or passed to another 

party. The information is protected with officially approved methods(encryption, transfer protocols), so 

this is currently accepted. The methods offered to the users are fully controlled by the service providers 

– the source code is hidden from the public, the external audits proving that the solution is correct also 

depend on external forces.  Even if the solution is open source, not every user can confirm the 
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correctness of the code, so they have to believe that storing, encryption is done behind the scenes the 

way it should be. The user does not take care of the tools needed for the entire process. Usually, a 

password is used as first and only line of defense when using the tools.  

2.2  Encrypted data storage 
Encrypted data storage allows the user to store information in the same location as the original source 

and the information is inaccessible to others without the users’ consent, so it belongs to the centralized 

system category. The encryption can be carried out on separate files or entire disks. Further choices 

define whether data on the current file system is encrypted or is an encrypted virtual drive used. The 

choices for encrypted data storage are: 

 TrueCrypt encryption suite, which is well known. It offers the possibility to lock the data from 

others and the user is given the choice to lock small parts of data or entire disks. It can create a 

virtual encrypted disk within a file or encrypt a partition or the entire storage device. This 

solution is open to auditing, which has been verified to have integrity [15].  TrueCrypt supports 

parallelized encryption for multi-core systems to reduce the performance hit of encryption and 

decryption. The system is not used for data sharing between various users automatically. It is 

possible encrypt data and manually put it on external media, but this is not part of the TrueCrypt 

system. The TrueCrypt solution supports key generation for encryption methods. The keys are 

stored in the RAM, when the methods are used to ensure that no unnecessary data remains 

after the computer is turned off. Still, the data remains in memory for several seconds, so 

successful attacks on this feature exists [16].  This is available only when the attacker has 

physical access to the machine.  As long as the user does not provide physical access to the 

machine or installs malware on the system, TrueCrypt guarantees its security measures. 

Unfortunately, TrueCrypt has been discontinued [17 ]and it is recommended to change to an 

alternative solution. Alternatives include DiskCryptor, which offers similar features and is still 

supported. 

 Another alternative to this is Windows Bitlocker, which offers a similar solution to TrueCrypt. 

Differences between Truecrypt and Bitlocker are that Microsoft solution is proprietary and has 

to be trusted by the user to function correctly. This solution is supported by the company and is 

integrated in Windows operating system, so the user is already equipped with it. It offers the 

possibility to encrypt full disks only, rather than giving the possibility to encrypt individual files.    
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The relevant difference between open source vs. proprietary is who needs to be trusted. In first case the 

online community determines the quality of software and in second case the users have to trust the 

word of the company that created the tool. After encrypting portable media, it is then physically 

transferred to another location. Transfer of data and key is a manual process – the participants must 

meet to exchange data and keys or use the network to pass data. If keys are passed over the network as 

is, it defeats the purpose of encryption in the first place, since encryption security depends on the 

attackers not knowing the key. 

2.3 Cryptographic access control 
Observing the popular and easily accessible management choices, the clear concerns are related to 

access control. The user does not control what happens to data, once it is sent to the servers or even 

while being sent. The data may be theoretically viewed by anyone, who is approved by the management 

solution provider. Thus the concerns are the ability for the user to limit the access to personal data. 

Secondary concern is the ability to let users decide, who can read the data without having to trust an 

outside party to do the work.   

Another concern is that at the same time access control can be completely removed from the users’ 

side, where the service provider blocks data access to users’ approved participants, the user included. In 

addition to that, the user lacks reassurance that the chosen participants are really who they claim to be. 

The service provider can always tamper with this information in compliance with government request 

[18]. The alternative choices in this scenario are locally generated and maintained methods to 

preapprove participants. The concern is how reliable the preapproving actually is. 

Since access control data should be closer to the user, i.e., the user machine, the machine itself becomes 

more prone to being attacked. Any program on the computer can potentially look at the access control 

keys without user consent, so instead of just storing access data in plaintext, access control data has to 

have a layer of protection. This includes physical access to data and remote access without user consent. 

The data has to be locked from prying eyes when the user is not present and other applications on the 

users’ device should not have access to access control data without user giving permission to do so. This 

comes down to a locking mechanism with a key, which is kept of the device when not needed and only 

revealed to chosen mechanisms when needed.  
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2.4 Symmetric encryption choice 
AES encryption has several modes, each with different advantages and disadvantages to meet different 

needs by the users [19]. 

 

Table 1. Electronic codebook mode - ECB 

Table 1 displays a message, which is divided into blocks, and each block is encrypted separately. Same 

blocks are encrypted to the same cyphertext, so this disadvantage makes this mode unusable in real life 

situations.  

 

Table 2. Cipher block chaining mode - CBC 

Table 2 shows each block of plaintext  XOR’ed with the previous ciphertext block before being 

encrypted. This way, each ciphertext block depends on all plaintext blocks processed up to that point. To 

make each message unique, an initialization vector must be used in the first block. The resulting 

encrypted message appears random even if each palintext data block is the same. 
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Table 3. Propagating cipher block chaining - PCBC 

The propagating cipher-block chaining or plaintext cipher-block chaining mode displayed in Table 3 

causes small changes in the ciphertext to propagate indefinitely when encrypting or decrypting. As with 

the previous mode, the resulting encrypted message appears random. 

 

Table 4. Cipher feedback mode encryption - CFB 

The cipher feedback (CFB) mode makes a block cipher into a stream cipher. CFB decryption is almost 

identical to CBC encryption performed in reverse. 
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Table 5. Output Feedback mode encryption - OFB 

The output feedback (OFB) mode makes a block cipher into a synchronous stream cipher. It generates 

keystream blocks, which are then XORed with the plaintext blocks to get the ciphertext. 

 

Table 6. Counter mode encryption - CTR 

Like OFB, counter mode turns a block cipher into a stream cipher. It generates the next keystream block 

by encrypting successive values of a "counter". 

The ECB mode is the only choice from the AES group that does not provide consistent secrecy when 

encrypting. 

Since the encryption modes are divided among block cyphers and stream cyphers, the stream cyphers 

are removed from the selection. This is decided, because stream cyphers are generally used, when a 

continuous flow of data is appearing, such as, chatting with another user.  This narrows the choices 

between two modes. CBC mode is more common than PCBC and provides an acceptable level of 

security, while PCBC increases complexity of the implementation and the load on the device.  So, CBC 

mode is considered to be the choice in AES encryption.   
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2.5 Asymmetric key encryption considerations 
 

A public key will be known to a large and, in practice, unknown set of users. All events requiring 

revocation or replacement of a public key can take a long time to take full effect with all who must be 

informed (i.e. all those users who possess that key). For this reason, systems that must react to events in 

real time (e.g., safety-critical systems or national security systems) should not use public-key encryption 

without taking great care. There are four issues of interest: 

 Recovery from a leaked key:  A user who the key belongs to decides to revoke that certain key. 

This is carried out because the private key gets compromised. Such a compromise has two 

implications. First, messages, which are already encrypted with the matching public key or will 

be encrypted later, can no longer be assumed to be secret. Second, signatures made with the no 

longer trusted to be actually private key after being compromised can no longer be assumed to 

be authentic without additional information (i.e. who, where, when, etc.) regarding the events 

leading up to the digital signature. They will not always be available, so these digital signatures 

will no longer be trusted.  

 Spreading the revocation: Anyone having the public key in question must be notified about the 

compromise as soon as possible. There are two ways to spread this notification: it is either 

pushed by the central location (server) or collected by the users (checking with the original 

owner before every use). Pushing the information is convenient, because the message is sent to 

all participants. However, there is no confirmation that all public key holders will actually be 

informed about the revocation of the key.  This can happen because of "denial of service" attack 

on the central service. The alternative is pulling the current state of the key. If the user cannot 

verify the current state of the key, the key will not be used until further notice.  

 Distribution of a new key: After a key has been revoked, a new key must be distributed to the 

users. In case the key is pushed from a central location, the user obtains the key, when the 

service is online. Otherwise, the user has to locate the key owner and request a status update. 

 Privilege of key revocation: Key revocation lies with the service, which stores the public key or 

with the user, in case no service is used. In the first case, the service is issuing a revocation 

command, so it is possible to call it without the user giving specific order. This is possible if the 

service is hacked. In the second scenario, only the original user has the right to revoke the key, 

since the participants would connect to the user for key status update.  
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2.6 Soonr 
 

A separate case of the solutions, which offer desktop clients and web interfaces, is Soonr. Since the 

project is carried out in collaboration with the company developing Soonr cloud storage tool, a clearer 

definition of the methods used is available. The solution is also part of the state of the art, so the 

description is relevant. 

The soonr data backup system is divided among the client and the server segments.  The server solution 

is not part of the project, so it will only be covered as much as it is related to the client side. The client is 

developed in c++ language for Microsoft Windows platform. The existing code on the client side will 

have minimal adjustments, while new features will be added as separate files/classes.  This will include 

GUI changes and security related elements from the project itself. 

2.6.1 Description 

The server side of the system contains the database for files and the user login information. The server is 

responsible for every interaction with the client side.   

The client side on the user device contains a syncing mechanism and an environment for storing data to 

be backed up to the servers.  The user is authenticated by sending necessary data encrypted with a 

predetermined key. 

The Soonr clients’ syncing mechanism consists of transfer module and sync core. The transfer module 

prepares the data, which needs to be sent to the server. This means moving the data to the cache 

location, splitting it into 64 kilobyte blocks necessary for encryption, encrypting data and hashing each 

block with an MD5 function for integrity. After this, each block is sent to the server. The transmission 

can be interrupted, multiple files can be transferred in each direction and the data is compressed along 

the way. The data is received in 64 kilobyte blocks as well. The blocks are combined and managed in the 

cache folder, where the data received is decrypted and assigned a random name. After the file is fully 

downloaded and verified, the data is transferred to the project folder with the original name. 

The sync core is constantly monitoring the data between the client and the server. When a change is 

detected, the sync core launches the transfer module to receive or transfer a file. When a file has been 

received, the sync core receives a hash of the file. This hash is compared to the result from hashing the 
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received file and if the results match, the file is given the original name and instruction to transfer 

outside of the cache location.  

The sync core has been designed to only accept commands from the server, meaning that as long as the 

client is online, it can be manipulated by commands from the server. The client cannot launch the sync 

core if there is a need to interact, it can only be the recipient of the action. 

 

Figure 3. Soonr solution architecture 

The graph displays the sync core comparing the data between the user space and data known from the 

server. The sync core gives the command to sync and points to the data needed to sync. The file is 

placed in the cache and after being processed, is sent block by block to the server. 

The server side obtains files in 64 kilobyte blocks, decompresses them and decrypts. The total data 

received and sent must have the same size. If not, the hashing verification is not even carried out, 

assuming that the file must be transferred incorrectly. 

The client side obtains multiple files during a single transmission, indicating multiplexing.  After the file 

has been reassembled, it is moved from the cache to the final destination. 
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3 Secure Deal Room 
 

The problems related to Soonr are defined from the general problems in the introduction: 

 The data is accessible by many third parties without the permission of the original user. Soonr 

system has multiple employees who deal with user data directly. This includes those who take 

care of data storing, customer complaints, network upgrades. These employees have signed a 

non-disclosure contract and do not have a criminal record, which would otherwise cause a 

concern for data secrecy. The people, who can access data, extend beyond the company and 

this data can be requested by government officials. In order for the company not to lose 

customers and get sued for data mismanagement, it follows the rules. The data going from the 

user travelling to the Soonr servers is encrypted, so unauthorized parties, which may be 

eavesdropping are blocked. Soonr is generally a secure location to store data as long as the user 

trusts the company and does not have issues with the any governments. This displays an issue 

for Soonr, who cannot provide a secure storage location regardless of the situation of the user. 

 The user is not informed about who is accessing the data. Data stored on the servers is moved 

to different locations in order to provide high speeds and stable connections to the server. 

During these actions, data is analyzed to determine its size, type, frequency of access and similar 

information. The data itself can also be accessed to prepare it for streaming mode. During all the 

actions, the user is not bothered with status updates, since no information is leaked to 

unauthorized parties. This changes, when the government tries to gain access to user data. The 

data is moved to any part of the world if it is considered to be beneficial and the law applies 

from any of those countries. The governments can demand that the user would not be informed 

about the request or the user is notified after the request has been completed. In this situation, 

Soonr does not provide tools to constantly keep the user informed about the state of his/her 

data and move to different locations accordingly. 

 The safety of the data is dependent on the cloud storage service the user chooses. Soonr 

implements technologies necessary to ensure that user data does not leak at any step, where 

Soonr is involved – transfer and storage. Since no know technology provides all the possible 

features, the company makes a decision which technologies to use. The company keeps the 

tools up to date, but the tools might have a bug, which might pose a security risk. The company 
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cannot shift to a completely different set of tools because of that and cannot disable the system 

until the issue is taken care of.   

 The user does not have any verification of how well the security system functions. Soonrs’ tools 

are proprietary, which are audited by external companies regularly. This shows that the code 

meets the requirements needed for correct operation. At the same time the user has to trust 

the auditing company, rather than personally chosen sources. 

After analyzing general problems from the companies’ perspective, the following specific problems 

become visible: 

1. The level of data security the company can offer the user depends on the situation the user is in. 

2. The user does not impact the storage location and does not have the information on the status 

of personal data.  

3. Soonr does not have a layer of protection, which would not be affected by the remaining 

protection mechanisms.   

4. The user has to trust security verification methods Soonr chooses with no alternative. 

3.1 Solutions 
The possible ways to address the problems identified come down to having an addition to data 

management. The choices are: 

1. Introducing an extra tool to the Soonr system, which addresses the problems. 

2. Changing existing Soonr tools to address the problems.   

In both scenarios the same results must be achieved. In the case a new tool is introduced and integrated 

with existing tools, the user gains missing features with no changes to existing solutions. This is 

beneficial to Soonr, since the existing implementations are not rewritten. In case of the second choice, 

Soonr has to change a part of the code, which would consume extra time as compared to the first 

choice. This leads to accepting the first choice. 

The extra tool should use encryption/decryption and keys for carrying out cryptographic methods. The 

location of the keys has to be where Soonr cannot reach them. Otherwise, there is no difference 

compared to already existing methods. This points to the user storing the keys in a remote location. The 

encryption should be carried out in the remote location as well, since otherwise the keys would become 

known to a third party. The encryption method can be implemented by Soonr or another party, but the 
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user still has to trust one of those sources and by using a separate tool from Soonr system, the user has 

to manually take care of encryption and decryption. The Soonr system, on the other hand, provides the 

encryption implicitly, which does not force the user to do extra work. Soonr is a trusted source, so the 

implicit encryption method is preferred. 

After the data is encrypted, it is considered that it cannot be accessed by the third parties, so Soonr 

transfer mechanisms can be used. 

The keys used for encryption must remain for as long as the files need to be decrypted. The user has 

several methods for storing the keys:  

1. Using a removable media to disconnect the keys from the network completely. 

2. Using the same device where encryption is carried out. The keys are locked by using encryption 

on them. 

The first choice requires the user to import the keys on each use and after everything is finished, the key 

should be removed. The second choice does not move the keys around. The need for protecting the 

keys comes from cases, where a third party gains access to the device itself. The first choice has the risk 

that the user would keep the keys just on the device without any protection, while the second choice 

poses no difference. Therefore the second choice is preferred. 

The key used for encrypting data is given to other users, since the data is intended to be shared. Since 

the key should not be connected to Soonr system, the sharing mechanism should not depend on it. This 

leads to using a transfer mechanism, which is not limited to what method is used to send.   

The initial solution leads to: 

1. Keeping the keys and encryption methods on user device. 

2. Protecting the keys from unauthorized access. 

3. Using the Soonr system to transfer files. 

4. Transferring the keys without limiting the transfer method. 

3.2 Key management 
The keys used in cryptography are generated by taking a random number for symmetric keys or 

performing calculations to determine the key combination for the asymmetric keys. It is generally 

accepted that asymmetric encryption is several orders of magnitude slower than symmetric, so 
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symmetric encryption should be generally used for data encryption and asymmetric encryption should 

be used for key transport and digital signatures. 

3.2.1 Key distribution 

The choices for what type keys have to be shared are linked to the cryptographic methods, which are 

symmetric and asymmetric. Absolute choice for key being sent is in favor of the symmetric key, since it 

uses “special cryptographic methods” versus asymmetric key transportation method, where the security 

is based on difficulty to calculate a large prime number, which does not have a guarantee that this will 

remain this way in the future. The “special cryptographic methods” are a combination of symmetric 

encryption of small pieces of data with the key, shuffling several pieces of data before or after 

encrypting them, encrypting the result even further and using an extra piece of information for initial 

shuffle of the data. Asymmetric key, on the other hand encrypts the data by using the message as a 

single variable in a mathematical function. Real life situation has to take into account the storage of the 

key issue, where the symmetric key does not have any hiding advantage/factor. The asymmetric key, on 

the other hand has a high hiding factor, since it is made from two separate key parts. This hides the 

functional structure of the key from the other participant as well as from hijacking of one participating 

side. The communication is voided, but the damage is only to the hijacked side, not both parties as in 

the symmetric key case.  

The symmetric key itself has the issue of safe distribution. This usually would be done over a trusted 

third party, which is accepted by both participants. Since the project is handled in a way that the third 

party should not gain easy access to the conversation just by using the information at hand, the 

symmetric key transfer by using a trusted party is immediately ruled out for the key distribution 

segment. The asymmetric key can be easily stored on the trusted server, which is only trusted to the 

extent of forwarding data to the correct destination. The trusted party is only responsible of giving the 

correct keys to the participants. This key distribution can be limited to only one time and afterwards the 

participants will be able to avoid giving any key data to the trusted server.  

The keys distributed are symmetric since the symmetric key offers a higher level of cryptographic 

complexity then the asymmetric type. The key is a one-time transfer only element, so the participants 

are protected from the adversary analyzing the key data flow and getting the key. The asymmetric key is 

slower than the symmetric counterpart in encrypting and decrypting data, so it is at a disadvantage 

when it comes to transferring large amounts of data. This becomes more troublesome when bigger keys 

are used.  Although the case, where the longest asymmetric and symmetric keys are used, does not have 
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this problem. The other element is the sender authentication. It is partially covered by the asymmetric 

key, but the initial cases are completely overlooked. The users need to exchange the initial asymmetric 

keys in order to perform authentication of each other. The standard situation points to the user being 

forced to trust external party for authentication matters. At this point the whole disappearance from the 

trusted party becomes partially invalidated, unless we consider that the first usage is acceptable by 

everyone. The external party becomes any solution that transfers data, not just the one, which uses the 

one, which will be used to encrypt the data. In this case, choices, such as, gmail, dropbox, facebook or 

Soonr, become equally acceptable, since they must be trusted by the user. The exception to the 

situation is exchanging the keys, when meeting face to face. 

The last part to consider is the work environment itself.  

 The user can have a virtual localized segment in the “trusted” server, where only the key 

distribution is done outside of that environment. This way the server cannot monitor the 

exchange of the keys.  

 All processes are completed in the trusted servers’ environment. This way the server monitors 

every step the user takes, which includes the exchange of the key. Communication data is 

gathered in hopes that the session key gets unlocked when the asymmetric key gets 

compromised or some other flaw becomes visible. 

 Everything is done outside of the servers’ environment. This choice does not rely on the server 

at all, so any data transfer is a responsibility left for the user.  

3.2.2 The abstract solution 

The choice for user authentication will be outside companies’ authentication mechanism. This includes 

exchanging physical media, transferring over email and other similar methods. After this the user will 

have to choose between trying to get a new key for another communication or use the already acquired 

key.  The public key in itself will be the authentication verification. The user still has the option to go 

through the server mechanism, but this is on the same level of trustworthiness as using an email.  

The symmetric keys will be encrypted with asymmetric keys and sent to other users. The differences in 

various asymmetric encryption protocols are considered. The protocol should be trusted by having a 

mathematical proof of security or by remaining unbroken since its introduction(that being decades). In 

addition to that, speed, key space and widespread usage are considered. The exact asymmetric key must 
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be hidden throughout the execution and the copy used in the encryption must be securely destroyed 

after use.  

The data itself will be fully visible to the users, while the server either has no data at all or stores all the 

data fully encrypted. Generally the server will act as a middle point, where the data is stored, since 

constant connection between the users is unreliable. The difference between regular secure 

connections, as defined in state of the art chapter, is that the user will have to decrypt data, which is 

also encrypted with server keys. The need to use server keys is justified by the fact that the system 

already uses them and trying to avoid them would increase the amount of changes done to the system 

without giving extra protection.  Therefore, the new “sub-system” will keep using the same solutions. 

The big dilemma is where the data should be stored. This will impact how the data will have to be 

destroyed and treated before destruction. If the users are only responsible for the key, the server will be 

stuck with wiping the encrypted material(trust issue). If it is stored in some volatile memory, the issue of 

storage limit appears. Another problem is how to decide when data is no longer used and must be 

destroyed(What is the entire metadata of this). What are the issues during the notification phase – 

possibility to delay the deletion of data or even keeping it alive permanently, since the kill command was 

lost. It could be considered to be checked for keep alive state by regular connection to sever, but this is 

considered as monitoring the participants’ activities, the same as having activity log. But this is only a 

moral dilemma, since the users do not have a legal protection from having a log on them. Only the data 

itself must be protected from being discovered. So it all comes down to having a provable method of key 

distribution for data encryption and afterwards the data itself can be entrusted to the most convenient 

source. If this is proved to be a breach in security that means the encryption method used and the key 

generation itself is not optimal, since current generation choices already provide satisfactory results for 

the situation of untrusted environment. 

The data storage type will be spilt into data itself and the metadata. This way the user has the ability to 

see what is available without being forced to download the entire data beforehand. Otherwise this 

would rule out the use of server storage and introduce a partial risk for full data destruction. The use of 

communication between users will come down to messaging(simple structure) and other media found 

in the solution, even though some media would be considered to be less trusted for secret talks, even 

though it is user preconception.  
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3.2.3 Initial solutions to problems 

The problem of having third party managing access to users’ data is related to who has the tools to 

control the access. In non-private case, where everything is sent to server by using their 

protection(algorithms and keys), the access control is given to trusted third party. In this case, even if 

the user decides to remove data, there is no guarantee that third party will comply.[20 ] This leads to 

the situation where the user has to have the controls to personal data without a third party interfering: 

transferring the orders, monitoring the process or even adjusting the commands depending on the 

situation. The only method that hides the data from others is encryption while still maintaining access to 

the network, so the solution is for the user to have the encryption tools locally. The data is given to the 

server already in hidden format and the tools used are kept locally – this covers keys and the algorithm 

itself. In that case the keys are hidden and the algorithm is not modified in a harmful manner. The 

algorithm itself is not hidden, because if it needs to be hidden, this is a possible security flaw[21] - the 

algorithm might be unverified, eventually revealed and at the same time does not provide its 

functionality verification to the user. The keys can be locked or removed from the system. If they are 

locked, and extra locking mechanism is necessary for the keys themselves. This would be an extra key, 

which is removed from the system. This would not force the user to carry all the keys, when they are not 

in use. The most common “key” for this purpose is a password – provides an easy way to remove it from 

the system, when not needed.  

The solution of choosing and verifying participants is a multistep process, where the user has to create a 

packet and pass it on to the other user and the other participant must be capable of verifying the source 

of the packet. This way both parties have mutual verification. To combat the issue of sending data over 

unsecure channels needs the previously mentioned methods. In this situation third party solutions for 

transferring access data are not trusted, since it would mean that data, which is meant to be protected, 

would become visible to anyone who transfers the access control data. The sent packet is encrypted 

beforehand to remain hidden from third party, but at the same time must be available for decryption to 

the recipient. This comes to using asymmetric encryption, since it gives the possibility to share data 

without needing to meet for the initial information exchange. 

The solution to securing access control data on the user device is a choice between having a key, which 

has to be carried around or a password, which provides enough protection as long as the password 

creation requirements are followed. This information would be the only way used to lock access control 
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data. A symmetric encryption algorithm is a commonly accepted encryption choice, where a password 

conveniently serves the purpose of a key. 

 

Figure 4. Data management flow 

The table above shows the initial layout of the solution. The password/key is positioned outside the user 

device, while the keys are kept on the device. The data that needs to be protected is locked by using the 

stored keys.  The keys are prepared to be sent to the other party over unsecured link and the data is 

sent in a similar fashion. Once everything reaches destination, the recipient uses the received key to 

unlock the data. 

The chosen design is simple and cheap to implement. This comes from trying to add new elements to 

existing structures, rather than editing them. In the shown table, the transfer mechanisms will not be 

changed.   
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4 Design 

 

 

Figure 5. Cryptographic access control 

The project is divided among the access control management tool and the data transfer solution. The 

first is developed throughout the project. The second part is adjusted to work with access control 

solution. The table above shows the trusted computing base in a system with cryptographic access 

control, where only the client is trusted. Data can be sent from the server without prior authentication 

and the client must decrypt the data before it can perform any operations on them. The client then re-

encrypts the data before sending them back to the server, which stores the encrypted data back on disk. 

This design is following an example from “Cryptographic Access Control in a Distributed File 

System”.[22]  

4.1 Design of access control solution 

The access control is composed of keys for the data locking, locking mechanism, key sharing mechanism. 

The data locking mechanism is a symmetric encryption algorithm.  The choice is of block cipher. Block 

ciphers may be evaluated according to multiple criteria in practice. Common factors include: 

 Key parameters, such as its key size and block size, both which provide an upper bound on the 

security of the cipher. 

 The estimated security level, which is based on the confidence gained in block cipher after it has not 

been broken despite major efforts in cryptanalysis for extended periods of time, the design's 

mathematical proof, and the existence of attacks. 
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 The cipher's complexity and its suitability for implementation in hardware or software. Hardware 

implementations may measure the complexity in terms of energy consumption, which are 

important parameters for resource-constrained devices. 

 The cipher's performance in terms of processing throughput on various platforms, including 

its memory requirements. 

 The cost of the cipher, which refers to licensing requirements that may apply due to intellectual 

property rights. 

 The flexibility of the cipher, which includes its ability to support multiple key sizes and block lengths. 

The exact algorithm is AES with a 256 bit long key. Currently the key space for AES-256 is 2254.4, which is 

slightly smaller than the theoretical maximum of 2256, but is still larger than what current technology can 

look through. This algorithm is chosen, because it is considered to be the standard for symmetric 

encryption. It won “National Institute of Standards and Technology” competition, which provided 

enough openness to be approved by the cryptographic community.[23] The highest key length for the 

system is chosen because of user preference and their limited understanding of technology. The level of 

security does not suffer and there is less convincing the user about the choices.  

The exact AES-256 implementation is chosen from the Microsoft cryptography solutions. This is based 

on the compatibility with the methods used by the company dealing with data transfer. Microsoft 

encryption implementation is considered to be trustworthy, so this is an acceptable choice. The 

alternatives to this are open source implementations, such as, OpenSSL or Crypto++. They are also 

trusted by the community, but lack documentation for used methods. OpenSSL lacks documentation for 

the methods they provide and recent security flaws related to one of OpenSSLs’ methods revealed that 

the entire solution is maintained by few people and could lose support soon in favor of remaking the 

implementations. So the more supported choice is preferred, even if it remains partially hidden. High 

speed and low RAM requirements were criteria of the AES selection process. Thus AES performs well on 

a wide variety of hardware, from 8-bit smart cards to high-performance computers. The encryption 

algorithm is used for encrypting large amounts of data in a reasonable amount of time. 

http://en.wikipedia.org/wiki/Electronic_hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Intellectual_property_right
http://en.wikipedia.org/wiki/Intellectual_property_right
http://en.wikipedia.org/wiki/Smart_card
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Figure 6. AES key/encryption speed diagram[24] 

The table shows that the speed between different keys sizes is negligible and therefore there is no 

problem to be the use the longest key speed wise. 

Key sharing mechanism is composed of asymmetric encryption algorithm. The chosen algorithm is RSA 

with the longest used key – 4096 bits. Currently it is assumed that this length is enough to prevent the 

encrypted data to be decrypted. And it should remain so for the foreseeable future. Asymmetric 

encryption is relatively slow and not used for encrypting large amounts of data directly. In addition to 

that the data must be shorter than the key, so the encryption process becomes even slower. This 

encryption is used to deal with small amounts of data, so the speed is not a concern with modern 

computers. As an asymmetric encryption algorithm, it has two separate keys for both parties, it is more 

convenient to use for key sharing.  
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Figure 7. RSA key length/decryption speed diagram[25] 

The decryption time of RSA increases around six times, when the length of the key doubles. As 

mentioned, small data sizes make the encryption time tolerable. 

 

Figure 8. RSA factorization extent diagram[26] 

The length of the key has to be considered for the future as well. The table above displays how far the 

academic has come in factorizing the RSA keys. The conclusion is that the key must be above 1024 bits 

and seeing that data is small, so it takes a reasonably short time. At this point the largest size is used to 

convince the users of safety of data and provide the longest lifetime for a single encryption 

implementation.  
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The keys used for locking the mechanism on user device are also AES keys, so the length requirements 

must be fulfilled.  These keys are passwords of variable length, so the user is given the freedom to go 

from a much smaller key to the required size or even above the required size.  This is commonly solved 

by putting the password through a hashing algorithm to have a constant size for the AES key. The 

hashing algorithm choices are between MD5 and SHA variations. The MD5 is 128 bit in output and the 

SHA can go from 128 to 512 bits. The key for locking the control mechanism is in line with other 

purposes for the encryption, so the size must be 256 bit, therefore the SHA-256 algorithm will be used. 

The hashing algorithm is common in many systems, so its’ implementation is widely available. The 

hashing is only meant to provide a conversion from a password to an AES type of key. It does not have 

to take care of having the widest possible range of results, since this data is kept on the device in the 

form of data encryption keys.  

The data being transferred over insecure network must be presentable in the format readable to the 

user. This is a choice between the base64 and hex format. The first one converts the text by increasing 

the size by 50%. The second choice doubles the size of output text. In both scenarios the data that will 

have to be encrypted, are small, so the increase in size is negligible. The data is sent over the networks, 

where both encoding types are supported. Base64 is a standard in sending data related to asymmetric 

encryption, so it will be the one used in this scenario as well. This includes the keys themselves and the 

encrypted key data.  

The key creation for the symmetric algorithm is left to a random number generator, since the key is just 

random bits. The random number generator itself has to have a satisfactory randomness, since no 

currently available RNG is capable of true randomness. The cryptographically random pseudorandom 

number generator uses good block cipher as its method. The idea is to run the cipher in counter mode, 

then encrypt successive values using an incremented counter. On its own, this would produce 

statistically identifiable deviations from randomness, so the method has to have seeds, which are 

periodically changed. Currently it is changed on each request or when no more than 1 megabyte of data 

is generated. Computer cryptography uses integers for keys. Keys are randomly generated using a 

pseudorandom number generator (PRNG). In other situations, the key is created using a passphrase and 

a key generation algorithm, which involves a cryptographic hash function such as a variation of SHA as 

already mentioned.  For a seed to be used in a pseudorandom number generator, it does not need to be 

random. Because of the nature of number generating algorithms, so long as the original seed is ignored, 

the rest of the values that the algorithm generates will follow probability distribution in a 

http://en.wikipedia.org/wiki/Probability_distribution
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pseudorandom manner. Microsoft Windows editions newer than Windows 95 use CryptoAPI (CAPI) to 

gather entropy in a similar fashion to Linux kernel's /dev/random. The Linux kernel generates entropy 

from keyboard timings, mouse movements, and IDE timings and makes the random character data 

available to other operating system processes through the special files/dev/random 

Windows's CryptoAPI uses the 

binary registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\RNG\Seed to store a 

seeded value from all of its entropy sources. 

Early versions of Netscape's Secure Socket Layer (SSL) encryption protocol used pseudo-random 

quantities derived from a PRNG seeded with three variable values: the time of day, the process ID, and 

the parent process ID. These quantities are often relatively predictable, and so have little entropy and 

are less than random, and so that version of SSL was found to be insecure as a result. The problem in the 

running code was discovered in 1995 by Ian Goldberg and David Wagner, who had to reverse 

engineer the object code because Netscape refused to reveal the details of its random number 

generator. This is known as security through obscurity – a product is less likely to be attacked against 

random or automated attacks if the system has discovered vulnerabilities. A variant of the basic 

approach is to rely on the properties (including whatever vulnerabilities might be present) of a product 

which is not widely adopted, thus lowering the prominence of those vulnerabilities (should they become 

known) against random or even automated attacks.  

In August 2013, it was revealed that bugs in the Java class SecureRandom could generate collisions in 

the k nonce values used for ECDSA in implementations of Bitcoin on Android. When this occurred, the 

private key could be recovered, in turn allowing stealing Bitcoins from the containing wallet.[27] Looking 

at various possible attacks, it is divided into 

 Direct cryptanalytic attack - when an attacker obtained part of the stream of random bits 

and can use this to distinguish the RNG output from a truly random stream. 

 Input-based attacks - modify the input to the RNG to attack it, for example by "flushing" existing 

entropy out of the system and put it into a known state. 

 State compromise extension attacks - when the internal secret state of the RNG is known at 

some time, use this to predict future output or to recover previous outputs. This can happen 

when a generator starts up and has little or no entropy (especially if the computer has just been 
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booted and followed a very standard sequence of operations), so an attacker may be able to 

obtain an initial guess at the state. 

 

  The choice is between Microsoft  or OpenSSL random number generators, since these packages are 

used for other purposes as well.  Microsoft uses an unpublished algorithm to generate random values 

for its Windows operating system. In November 2007, Leo Dorrendorf published a paper 

titled Cryptanalysis of the Random Number Generator of the Windows Operating System. The paper 

presented serious weaknesses in the Microsoft approach. The paper's conclusions were based 

on disassembly of the code in Windows 2000, but according to Microsoft apply to Windows XP as well. 

Since the project solution should be available on Windows Xp as well, the pseudorandom number 

generator is taken from OpenSSL package. The OpenSSL implementation currently does not contain any 

publicly known attack as long as the newest API version is used.  

The extra elements used by the company will be analyzed when it is reached. 

4.1.1 Specification of password and hashing 

The key used in AES encryption is expanded to accommodate various size data encryption and keep the 

data securely hidden.  Detailed analysis of each step is skipped, since it is irrelevant to the project. The 

following are the steps used to derive the key to a further state during encryption[28]: 

1. KeyExpansion—round keys are derived from the cipher key using Rijndael's key schedule.  

2. Initial round: 

1. AddRoundKey—each byte of the state is combined with a block of the round key using 
bitwise xor. 

3. Following rounds without the last one: 

1. SubBytes—a non-linear substitution step where each byte is replaced with another 
according to a lookup table. It is used to avoid linear patterns in the cipher. 

2. ShiftRows—a transposition step where the last three rows of the state are shifted 
cyclically a certain number of steps.  

3. MixColumns—a mixing operation which operates on the columns of the state, 
combining the four bytes in each column. 

4. AddRoundKey 

4. Final Round: 

1. SubBytes 

2. ShiftRows 

3. AddRoundKey. 
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These steps display that the key goes through multiple states of modification to reach the end result. 

The key modification is carried out for 14 rounds. [29]  

R0 (Key = 00000000000000000000000000000000)  = 00112233445566778899aabbccddeeff                                  
R1 (Key = 62636363626363636263636362636363)  = 011a85ba96049815cf655f97b088e9c0                                  
R2 (Key = 9b9898c9f9fbfbaa9b9898c9f9fbfbaa)   = 1beb461fff271da10d7a08ad1f01b177                                    
R3 (Key = 90973450696ccffaf2f457330b0fac99)  = 5f1e33b73856d349ab071e13816472be                                 
R4 (Key = ee06da7b876a1581759e42b27e91ee2b)  = 7f88a9b53495b7448c1fb3e2ebaedbd1                                  
R5 (Key = 7f2e2b88f8443e098dda7cbbf34b9290)  = ed214bdeffc2ebe9ba186c165c4945f6                                   
R6 (Key = ec614b851425758c99ff09376ab49ba7)  = 3bcc5d8ba7dd354f8aad99844c782ce3                                  
R7 (Key = 217517873550620bacaf6b3cc61bf09b)  = 5936c0b765930e7147e2a65d805a4483                                
R8 (Key = 0ef903333ba9613897060a04511dfa9f)  = 3411734ea04b62250cb785a63870abe5                                
R9 (Key = b1d4d8e28a7db9da1d7bb3de4c664941)  = 01ca3647fc5d4574b992586751bfef28                                
R10 (Key = b4ef5bcb3e92e21123e951cf6f8f188e)  = c8a331ff8edd3db175e1545dbefb760b 

Figure 9. 128 bit AES key expansion with NULL key 

R0 (Key = 61000000000000000000000000000000)  = 61112233445566778899aabbccddeeff                                  
R1 (Key = 03636363036363630363636303636363)  = 63960935f7049815ae655f97d188e9c0                                  
R2 (Key = fa989818f9fbfb7bfa989818f9fbfb7b)  = 6f6cc15c76bd43a726b55158e0bc5ae4                                   
R3 (Key = f197b981086c42faf2f4dae20b0f2199)  = 8cca691be876164d8c1d5c45520a1a3f                                   
R4 (Key = 8f6a57aa8706155075f2cfb27efdee2b)  = 30d5009e509c9fa50eab1b5dcbb2a6c4                                  
R5 (Key = cb42a6594c44b30939b67cbb474b9290)  = 09171d1c63b4d7ac48d02c05eb68f7f1                                   
R6 (Key = 580dc6f9144975f02dff094b6ab49bdb)  = 063f505f9d7691dd7341e565cddf23d3                                  
R7 (Key = 95197ffb81500a0bacaf0340c61b989b)  = bc102b674ab6d1c98233ec9ef4999e29                                 
R8 (Key = ba5f6b4f3b0f614497a0620451bbfa9f)   = c94a33315cdcf6fcb4a11a8f44c2eea7                                     
R9 (Key = 4b72b09e707dd1dae7ddb3deb6664941)  = 8519507e5decab8bfaf44dcfd07f951e            
R10 (Key = 4e4933d03e34e20ad9e951d46f8f1895)  = d987d0a2728bc8f9f43b02e91f5b7a1f 

Figure 10. 128 bit AES key expansion with single symbol key 

Figure 16 and Figure 17 displays that parts from modified key(left side) and data being encrypted(right 

side) match, when the key has small changes. The matching parts are marked in bold. AES 128 bit key is 

used instead of the 256 bit key to more easily display the relevant parts. The 256 bit key follows similar 

pattern. 

The hashing function in this scenario is used to increase the randomness of the key as seen by the 

encryption algorithm. The similarity of the keys is hidden by using the hashing function. The function 

changes the key bits to a great extent. One changed bit results in at least 50% changed resulting bits. In 

case the user changes a single symbol of the key, the attacker does not gain any additional information 

by comparing the hashes from the older key and the new one. This is confirmed by no know successful 

preimage attack on the sha-256 hashing function. A change in a single change in the key in addition to 

the hashing function, successfully shuffles the key when it is passed to the key expansion function.  
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By using a hashing function, the user can have a varying length password and slight changes to it will not 

be as easily noticeable. The most popular passwords remain more or less the same for multiple years, so 

hashing will make it harder to determine the password. 

4.2 The access control management system design 
The access control system design is divided into segments for creating a new symmetric key, asymmetric 

key, key import windows, key export windows and key locking/unlocking mechanisms. The various 

components make use of symmetric and asymmetric encryption.  

 

Table 7. Access control management component diagram 

Table 7 displays the controls in the bubbles and the underlying technologies in the boxes.  Symmetric 

key creation and locking mechanism does not use asymmetric encryption, while the remaining controls 

make use all three mechanisms. Symmetric key creation uses a separate method(random number 

generator), so it has the mechanism listed, while the asymmetric key is created using methods from 

asymmetric cryptology. Every control has a link to the hashing mechanism, since it is used in password 

preparation for use in the encryption and decryption of keys. Symmetric cryptology is used in locking 

down all the keys from unauthorized access and the asymmetric cryptology is used for key export and 

import actions. 

Next the individual controls are described.   
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Figure 11. Symmetric key generation box 

The symmetric key generation mechanism is used for creating keys for hiding personal data from 

outsiders. The key is created specifically for AES 256bit edition, so the user is not given the functionality 

to change the size of it. Since the key is not designed to be directly compatible with another tool, the 

naming and structure of stored key is not analyzed in this sense. The naming convention has to be 

understandable for the user and allowed on the Windows file system. The key file itself will have no 

specific extension to identify it. Since the created key is only available in memory in raw format, it can 

be stored only in locked format. The key is locked using another AES 256 bit key, which is made from the 

password. The key creation method must have the password specified as well.  

 

Figure 12. RSA key generation box 

The asymmetric key creation mechanism is used for creating asymmetric keys for RSA 4096 bit edition, 

so the user is not given the freedom to change the size. The naming is convention is the same as with 

the symmetric keys. Since the keys for symmetric and asymmetric methods are stored in separate 
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locations, the names for the keys can be the same as long as they are not the same in the same folder. 

The asymmetric keys are created in combinations of two(private and public), so the name during 

creation is appended with private and public words. The key pairs user creates have a separate folder 

from the keys, which are imported from other locations. The names have no need for a specific 

extension, since compatibility with other software is not taken into consideration and the access control 

system is looking into the folder location only.  

 

Figure 13. Invitation creation box 

The symmetric key export mechanism uses a single symmetric key and the public key obtained from 

another user. That user is the recipient of the exported key. The symmetric key is encrypted with the 

asymmetric key and the result is sent over the publicly available network interface. The keys must be 

unlocked with their passwords, since otherwise there would be a potential possibility of an outsider 

triggering the key export method and claim the result. Since the key must be transferable over public 

networks, it is converted from raw data format into base64 design. The user has a range of methods to 

transfer the key over the network, since the output is fully visible in text format. The data has to be 

verified by the user in on the other end, so the key is given a fingerprint. The fingerprint is a hash 

function result with a truncated output. The purpose is only to show both parties that the key has not 

been corrupted and that the intended key has been sent. The hash is truncated to 16 symbols from the 

32 symbols in sha256 hash algorithm. This hash algorithm remains mainly because the same hashing 
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algorithm is used for other work.  The speed differences are negligible in this scenario, so they are not 

regarded. 

 

Figure 14.Symmetric key import box 

Symmetric key import mechanism uses a single encrypted symmetric key to get a data unlocking key. 

The encrypted key is in base64 format, so it is pasted in and given name and password. The name serves 

the purpose of giving the path where to store the key and the password is for locking the key from 

unauthorized access. Before the key is saved, the user has to verify that the fingerprint matches the one 

provided by other party. The key is extracted by decrypting an asymmetric encrypted message. The 

users’ private key is used for key extraction, since the other party encrypted the symmetric key with the 

public edition of the users’ key. The decrypted key is saved in the same fashion as the symmetric key, 

which is created from scratch. The symmetric keys are not different depending on which users’ device it 

was created. 
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Figure 15.RSA key export box 

Asymmetric key export mechanism uses a single public key as the exported element. The user has to 

provide the password to protect from unauthorized usage. The key is given the base64 format for 

convenient output. The user is shown the fingerprint of the key as a confirmation of correct key transfer, 

meaning that the other user is going to compare both fingerprints.  

 

Figure 16.RSA key import box 
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Asymmetric key import mechanism uses the public key from the other participant received through a 

publicly available network. The key has a fingerprint value for convenient key verification. The key has 

the password for locking the received public key with a local mechanism. The name for the key must be 

unique only from other public keys.  

 

Figure 17. Key locking box 

The symmetric key permission mechanism uses symmetric keys in the folder and replaces the password 

they are locked with. This allows the keys to become available to the data transfer system without giving 

the personal password to it. The chosen key is re-locked with another password, which is known to the 

other system. The key itself is stored in another location, which is given to all the “unlocked” keys. The 

name remains the same, so that the system and the user can maintain a link between which key is 

which. Since the key is just pushed to another folder and does not have any trail in other system 

locations, the user just deletes the key, which has been shared with the system.  In the same fashion, 

the user can replace the password used for data transfer key. 
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4.3 The flow of the access management tool 

 

Figure 18. Symmetric key generation flow 

The generation of symmetric key is linked to the checking of the input into the password and name 

fields. If one of them is skipped, then the entire process is canceled. The user cannot change the inputs 

during execution, so the result of the check cannot change. The uniqueness of the name is necessary, so 

the already existing keys would not be lost. When the choices are made and approved, the internal 

processes finish the work.  

 

Figure 19. Symmetric key import flow 
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Symmetric key import is a two-step process. Both of the processes work individually, so there is no 

interference when it comes to data sharing. The fingerprint is executed as long as there is an input in the 

box. The result is displayed in a field, which cannot be edited, so no collision happens in the field. 

The import of symmetric key is executed when the name, text and password fields are filled. The 

checking is done for empty fields and the uniqueness of the name.  After this data is provided, the user 

cannot interrupt further execution. The internal methods stability is not dependent on the user input. 

The end result is provided in a file, which is not the same name as the other files. In this situation no 

accidental damage can be done. If after executing the import, another file is written under the same 

name, it will be overwritten, since the tool does not use multiple threads for the same process.  

 

Figure 20. Invitation creation flow 

The invitation creation is done by doing a check on the keys, which will have to be used for the next 

processes. If one of the keys does not exist, the process will be aborted. After choosing the keys to use 

and the passwords are not empty, the invitation is generated. The user cannot change the values for the 

passwords, so the execution is not interrupted.  If the passwords provided turn out to be incorrect, the 

process is aborted and the user begins the set up again. So incorrect passwords do not return incorrect 

results. The output is in a separate field and the user causes no impact on it. 
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Figure 21. Key locking flow 

The key unlocking mechanism is one of the mainly used functions by the user. The passwords to use are 

listed in a dropdown list and the user cannot pick a non-existing key. The work is executed when the 

user gives the passwords to the tool. The process executes, if the provided password is correct, 

otherwise it will abort the process. No check can be carried out on the second password, since it is not 

used to unlock anything. If the file in the password location is not a password, it will be treated as a 

password during execution and the check will fail. 

The locking of the key is does not require any passwords, so the choice is only from the key dropdown 

list, where the keys are from the locked key folder. If the key no longer exists in the unlocked folder, the 

deletion will be executed either way. 

 

Figure 22. Asymmetric key generation flow 

Asymmetric key generation requires only a new password for the process to execute. The users’ choice 

does not cause the process to stop. The result overwrites any information with the same name, so 

nothing is aborted at this point as well.  
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Figure 23. Asymmetric key import flow 

Asymmetric key import is a two-step process, so the user does a fingerprint check with the text 

provided. As long as the field is not empty, the fingerprint will be displayed. The user does not have 

more options in this sense.  

The symmetric key import requires the text, so the user can provide incorrect data. In that case, the 

process is cancelled midway, when the data cannot be converted to a key. The execution starts, when 

the name and the password are provided and the name is the only field, which needs to be 

unique/correct. The password is set up for the first time, so the choice cannot be compared to any 

previous input.  

 

Figure 24. Personal public key export flow 

The success of personal key export relies on the value of the password provided and whether the 

password is provided at all. In case the key does not exist, the method is not launched at all. If 

everything is provided completely, the result is given in a non-editable box. 
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Figure 25. Fingerprint display flow 

The fingerprint needs the text of any kind to work with and the result is then provided to a non-editable 

box. 

4.4 The flow of Soonr interactions 

 

Figure 26. Secure project subscription flow 

The secure project is subscribed to, when the existing projects on the server side report a test string 

used to determine the correct key. The user is given a window to type in a password used for the key 

and the location is given in the form of a name. The name is shown as a dropdown list and the user 

chooses, rather than types the name in. The key is stored by overwriting any file in a predetermined 

location with the same name. This is used for the project; the final design will have a database to store 

the keys. The test data is decrypted with the key and if the key is correct, the project will be subscribed 

to.  The wrong choices the user makes will stop the subscription, so incorrect does not pass as correct. 
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Figure 27. Secure project creation flow 

The secure project is created, when the user chooses this command. The choices for the key are checked 

with the password and if the key fails to unlock, the creation is aborted. After this the entire process is 

done automatically. The saving of the key pointer is done in a way that any previous data will be 

overwritten. The test data is sent to the server, so storage is not a concern. 

 

Figure 28. File upload flow 

The file is uploaded after there is a secure project, so the key is already in a known location and the test 

data has already verified the key. The user provides the password, which only needs to be 

successfully decrypted. After that the system takes over – encrypts and uploads the file.  
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Figure 29. File download flow 

The file download is done in a similar fashion to the upload part. The user is only given the password as 

the element with errors. So, the decrypted key is checked and if it matches the test, it is considered that 

the remaining elements are correct. 
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5 Access management software implementation 

 

The first part of the implementation is the symmetric key generation, since it is the part, which is used 

for locking data and is also used in sending invitations to other parties. This method uses AES-256 for 

encryption and decryption. The encryption is done using Windows Crypto solution. The method is used 

to save generated keys, which as analyzed are generated using OpenSSL implementation. The key 

generation itself is left to the OpenSSL mechanisms entirely. The output from the generation is a 

sequence of bytes.  The acquired data is sent to the AES encryption method. In addition to the key data, 

an initialization vector is also acquired in a similar fashion, when the OpenSSL random method 

generates the necessary bits. In this case, the length of the data is 16 bytes. This data is also returned to 

the AES encryption method. The third element taken for the encryption is the password for securing the 

key. The password is pushed as a character array to the hashing function. The function is taken from the 

OpenSSL library. The hashed password is returned to the encryption algorithm with a 32 byte length. 

The data is copied in the encryption algorithm to a cryptographic blob format. The format is a structure 

containing data in the form of bytes and the length of the code in DWORD. In addition to the data, an 

extra piece of data is added. It is a string known in advance and which is a static variable throughout 

every encryption. This is done to have a way to verify whether the decryption is carried out successfully. 

The other way would be to decrypt a key, do the decryption or encryption of the data and then manually 

look at the result hoping that it is something reasonable. The encryption method itself is set up by 

getting the CryptAcquireContext with PROV_RSA_AES setting, which is the base for Windows AES 

encryption. Then the key data is copied into compatible structures, which are the blob type and then the 

key is imported into the encryption design. The initialization vector is copied from the byte format to 

CryptSetKeyParam. Finally, the data to encrypt is copied to the blob format. The encryption is carried 

out in one call, rather than keep pushing data continuously. In case the encryption fails, everything is 

cancelled and data is removed from memory. This includes the key and the information that needed to 

be encrypted. When the encryption is complete the data is saved to a text file in a predetermined 

location. This is done by appending the initialization vector to the beginning of the data and then data is 

saved using FILE method.  

The next step is the providing the key for external programs to use. The user provides a password for 

the locked key, chooses the key to use and then proceeds to decrypt the key. The password provided is 

hashed as in the case with the encryption key.  The key name is used to find the exact file to decrypt. 
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The path to the key is partly given in a predetermined location + the key name itself.  The encrypted key 

is read from the file into a buffer, where the key data is split from the initialization vector. Since the 

length of each part of the data is known because of the way the code is written, the length of the key 

data depends on the fact that this is a decryption part. The encryption part would have another size 

given in advance as well. After this data is set up, the CryptAcquireContext is called with a 

PROV_RSA_AES variable to use the AES decryption. The key and the initialization vector are set by calling 

CryptImportKey and CryptImportKeyParam.  The data to decrypt is copied to a buffer and passed to 

CryptDecrypt function in one call. If the decryption succeeds, the resulting data must contain the 

verification string, which is extracted from result and compared in the next step. If it matches, then it is 

assumed that the decryption is done correctly and the data is passed to further methods. This is done by 

copying it to the variables, which will be returned through pointers and then destroying the data in the 

temporary variables. The encryption of the key is done by passing the password used to prepare the key 

for external programs to the AES encryption method, then passing the decrypted key that needs to be 

encrypted. In addition to the password, an initialization vector is created by calling an OpenSSL method 

to generate random bits and passed to the encryption method. The key has the verification string added 

to it and everything becomes ready for encryption. The encryption method is set up by calling a 

CryptAcquireContext, CryptImportKey and CryptImportKeyParam.  The data is encrypted by calling 

CryptEncrypt once with all the data in one go. The result is appended with the initialization vector and 

then the data is saved to a new file, which is then handled with further functions. The location, where 

the file is saved is partly hardcoded, with the name of the file and the root folder being variables.  

The creation of personal RSA key is done by calling an RSA key creation method having provided a 

password for storing the results during the same call. The OpenSSL methods are called to do the key 

generation. The structure is set up by calling BN_new, BN_set_word, RSA_generate_key_ex methods. 

The result is split into public and private key by calling BIO_new, PEM_write_bio_RSA_PUBKEY, 

PEM_write_bio_RSAPrivateKey and after it both results are passed to the AES encryption method. Each 

part of the RSA key pair is given the encryption method with the password for locking them provided as 

well. The keys go through the set up steps as with the previous encryption cases: appending a 

verification string, copying data into buffers, giving new initialization vectors, encrypting, appending the 

vector to the result and saving the data to a predetermined location with a predetermined name. In this 

case only one pair of personal keys can be created. If a method is called again, then the old keys are 

overwritten and the new pair is saved under the same name. 
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The export of the RSA key to another destination needs the password, which was used to lock the keys 

in the first place. The key data is taken from a predetermined location and passed to the AES decryption 

method. There this data is read to the buffer, splitting the initialization vector from the data itself and 

then the hashed password is used to do the decryption – setting up the necessary structures, doing the 

verification of the decryption. The resulting data is given as a plaintext and then this data is passed back 

to the output console. In addition, the same data is passed to the hashing function, where the result is 

outputted to the console next to the public key itself.  

The invitation creation, which is the call to the symmetric key export, is done by hashing the password 

used to lock the key in the first place and then the acquiring encrypted data with a file name and a 

predetermined location for the file. The key is acquired by using the AES decryption method: getting the 

data, the vector, decrypting the data, verifying it. After the symmetric key is acquired, the external 

public key is extracted in a similar fashion.  The password used to lock this key is used as the key to do 

the decryption. It is hashed before passing it to the decryption. The external public key location is 

determined by the name given when calling the invitation creation function. When both keys are 

acquired – symmetric and public, the OpenSSL method for RSA encryption is called. This is the createRSA 

method. The method sets the acquired public key in the necessary structure to be able to use it in the 

RSA encryption. The structure is set up by calling BIO_new_mem_buf, BIO_set_flags, 

PEM_read_bio_RSA_PUBKEY.  The acquired RSA key is passed to RSA_public_encrypt method. At the 

same time the symmetric key is passed for encryption and the setting RSA_PKCS1_PADDING is provided 

to make the RSA encryption use padding for the remaining part of data. The key, which is encrypted, is 

shorter than the maximum length allowed by RSA, so there will always be a part of data filled by the 

padding.  The result from encryption is the length of the encrypted data. The data itself is returned as a 

pointer.  The size of the pointer is set to 4096, which is a little bit more than the encrypted text can 

occupy.  After the encryption, the encrypted data is passed to the base64 encoding method, which is 

also a part of OpenSSL library. The encodeb64mem method calls BIO_new, BIO_push, BIO_set_flags and 

BIO_write. After that the BIO_get_mem_data is called to store the length of the result and the result 

itself is stored in the output pointer. The result is returned to the output console. At the same time, the 

hashing of the result is carried out and the result of that is also given to the output console. The result of 

the hash is truncated to be more convenient for the user to read. The length of the hash is left at sixteen 

symbols.  
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The import of external symmetric keys is done by providing the password and the encrypted text to the 

decryption methods. At first, the encrypted data is run through the hashing method and the user is 

presented with a hash to verify that the received data is the correct one. The encrypted text is run 

through the base64 decoding to get a format, which can be used for decryption. The decoding is used by 

calling BIO_new_mem_buf, BIO_new, BIO_push, BIO_set_flags and BIO_read.  After this, the private 

RSA key is extracted from the predetermined location. For the extraction, the password, which was used 

to encrypt, is provided, run through the hashing function and the result of this is pushed to the AES 

decryption method. The location for the data to be decrypted is already known, since the private key 

can be in only one location. After the private key is acquired, the private key structure is created to be 

used with OpenSSL methods. This is done by calling BIO_new_mem_buf, BIO_set_flags, 

PEM_read_bio_RSAPrivateKey.  Finally, the decryption if the RSA is done by calling RSA_private_decrypt.  

The decrypted data is pushed to the AES encryption method, where a password to encrypt new key and 

the name of this key is provided. The key is saved following the encryption steps as with other 

situations. The result is saved in the symmetric key location. 

The external public key import is done by providing this key in a console. The data is hashed and the 

user can compare, whether the values match with the intended result. After this, the acquired key data 

is passed to AES encryption along with a hash of a password used to lock this key. The key is given a 

unique name, when storing it and the initialization vector is generated along the way. The resulting 

encrypted data is stored in the predetermined folder. 

The fingerprint check is done by providing the related data to the console. This data is run through the 

hashing algorithm and the result is given as a sixteen symbol output in the window. 

The random bits generation for the keys and initialization vectors is done by calling OpenSSL method 

RAND_bytes and providing the length of the output, which is 32 or 16 characters.  

The inputs from consoles are received in LPTSTR format, which is long string pointer. This data is 

converted to character array by using wcstombs method to copy data from one type to another. This 

applies to encrypted data, passwords, names for the data and choices from the list of existing values. 

The checking is done for the empty values, where the method execution is halted. The check is carried 

out by comparing the first symbol with the empty value. At the same time, a check for duplicate names 

is carried out. In case of a match, the method is also cancelled. 
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The check for incorrect password is carried out during decryption stage. If the password is wrong, 

further methods are not carried out and every piece of data stored in the memory is removed. The user 

is given an error box, explaining the reason for cancellation of the methods. 

5.1 Key management method layout 

 

Figure 30. Class interaction diagram 

The layout of classes is displayed in the table above. The dependencies are displayed in a way, where 

the arrow is shown to go from the class that uses another class to another class. There are in total five 

classes, which contain all the used methods.  The classes are divided among public methods and private 

ones. They are displayed in top or bottom table respectively. 

The main class is YourKeyWizard class, which contains all methods linked to the user interface windows. 

MyRegisterClass and InitInstance are used to set up the communication with the windows the user is 

interacting through. WndProc is used to start the the control window, where the user will be calling all 

the methods from. The WndProc itself is linked to menu editor, which also has the exit command. The 

main controls are linked to the Control_box. 
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Ok_box controls are linked to the task completion window. When the command is called, it takes no 

extra parameters and just displays the successfully completed task notification. 

Error_box takes an extra parameter, which is the error text to display and the displays the error message 

to the user. 

Confirmation_box  takes no extra parameter, when called, but is an extra link before continuing with the 

tasks, such as creating asymmetric key pair. 

Asymmetric_key_export_box is called with no extra parameters. When the show button is clicked, the 

method proceeds to take the password value from the input box, convert it into a character array and 

compare whether it is empty. Then methods for personal key export are set up and called. In case of 

empty password, the error box is called. 

Asymmetric_key_generation_box is called with no extra parameters.  When the generation button is 

clicked, the password is converted and compared to an empty value. If it’s not empty, the key 

generation methods are set up and the key is generated. When the task is completed, the Ok_box is 

called. 

Control_box is called, when the application is started. The user chooses a method to call and the 

controls are redirected from control_box. The symmetric key generation, invitation creation, symmetric 

key import, symmetric key unlocking, asymmetric key generation, asymmetric key import, asymmetric 

key export and fingerprint windows are called from control_box. 

Fingerprint_box is called with no extra values. When the fingerprint button is clicked, the method checks 

whether the text is empty. If not, the methods needed for fingerprint creation are called and the result 

is outputted to an output box in the window. 

Invitation_box is called with no extra values.  When it is called, the method checks the state of the 

folder, where the keys are placed. If the check determines that there are no values in the location, the 

method is cancelled with an error message. This is carried out using FindFirstFile call for symmetric an 

asymmetric keys and the result is compared with an INVALID_HANDLE_VALUE. This is called twice. It 

checks the existence of the folder itself and then looks at the files in the folder. If keys are found, they 

are listed in a combobox for symmetric and asymmetric keys. When the generate button is clicked, the 

method compares the values from the password inputs and if they are empty, an error box is displayed. 

If the passwords are not empty, they are converted to characters, the necessary methods are set up and 
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called.  These methods are an invitation method and a fingerprint generation method. If during the 

method execution, the passwords are incorrect, the user is given an error_box and the execution is 

cancelled. 

Symmetric_key_locking_box is called with no extra values. When it is called, the existence of symmetric 

keys in the predetermined folder is assessed. If no keys are found, an error box is called and the method 

is cancelled. Otherwise, the method fills the values into a combo box. When the user clicks the allow 

button, the method checks whether the passwords are not empty. Then it sets up the methods for key 

locking and after everything is complete, the user is given an ok_box to confirm the success. If the 

password is incorrect during the method execution, the user is given an error_box and the method is 

cancelled.  If the user clicks on the lock button, the method calls the key locking mehods, which remove 

the key from the chosen location. 

Symmetric_key_generation_box is called with no extra values. When the generate button is clicked, the 

method checks, whether the password and name values are not empty. If they both have some values, 

the name is checked, whether it is not unique with any other file in the folder. Otherwise, an error box is 

displayed. Then the methods for key creation are set up and called and the user is given task completion 

box if everything goes successfully.  

Symmetric_key_import_box is called with no extra values. When the method is called, the existence of 

private key is checked. If no key exists, the method is cancelled with an error box. When the user clicks 

on the import button, the method checks, whether the passwords, name and text box have any values. 

If not, an error box is displayed. Then the uniqueness of the name is checked. If there already exists’ 

another file with the same name, an error box is displayed and the method is cancelled. Then the 

method sets up and calls the key import methods. If the password for asymmetric key is not unique, the 

user is given an error box and the execution of the method is cancelled.  If everything goes successfully, 

the user is given the task complete box. On check fingerprint button click, the method checks’, whether 

the text box is not empty and calls the method for fingerprint output. 

Asymmetric_key_import_box is called with no extra values. When the user clicks on the import button, 

the method checks, whether the password, name and text box have any values. If not, an error box is 

displayed. Then the uniqueness of the name is checked. If there already exists’ another file with the 

same name, an error box is displayed and the method is cancelled. Then the method sets up and calls 

the key import methods.  If everything goes successfully, the user is given the task complete box. On 
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check fingerprint button click, the method checks’, whether the text box is not empty and calls the 

method for fingerprint output.  

The CryptoItself class contains the methods for the symmetric encryption and the related methods for 

the preparation. AESEncrypt and AESDecrypt are linked to other classes and the other methods are just 

internal. 

AESEncrypt  takes the key for encryption, initialization vector, data to encrypt and output location. The 

method itself performs symmetric encryption.  

AESDecrypt takes the key for decryption, data for input or output, the input file location and the output 

file location. The method itself performs the symmetric decryption.  

The prepareData method is used to get the data from the files or the buffer used for encryption and put 

it into the correctly sized buffers. If the data is read from the buffer, the size of the buffer is determined 

by providing the size value before calling the method. The calculations are done by checking the size of a 

string and then passing the value itself. If the method is called for encryption, the data that is encrypted, 

is appended with a test string before returning to the encryption method. The buffer size is increased by 

11. If the method is called for decryption, the buffer size is as provided and the method calls the method 

for reading data from file – readFile. The return of the method is void. 

writeFile method is used for writing the result of the symmetric encryption. The data passed to it is the 

output location, the data to write into the file and the initialization vector.  The vector is written before 

the data itself.  The method is used only by the encryption algorithm. 

readFile method is used for reading data from a file and forming the buffer for data, which will be 

decrypted. It cannot be called for encryption. The method can also be called file size checking, which 

later will be used to set the buffer size. The file size is decreased by 16 to accommodate the size of a 

vector. The vector and the variables are pushed into different variables and pushed back to the 

prepareData method.  

Miscellaneous class contains the methods for hashing, file existence checking and various data type 

conversions. Every class in the method is public.  

Fingerprint method takes the text to hash and truncate and passes the data along to sha256 method. 

The return of the method is a string. 
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SHA256 method takes the text to hash, calls all the structures from OpenSSL library necessary for 

hashing and then proceeds with hashing. The method returns a string. 

Fexists method takes the location of the file and checks, whether it exists at the given location. The 

return is a Boolean. 

stringToWstring method takes a string value and converts it to wstring, which is the return value. 

Wstring_to_LPTSTR method takes a wstring and converts it to LPTSTR, which is the return value. 

LPTSTRTochar method takes LPTSTR data and converts It to char array, which is the return value. 

KeyGeneration class contains the methods needed for symmetric and asymmetric key generation. It also 

has a method for preparing a password. 

AESKey method takes the length of the key and uses OpenSSL random number generator to create the 

key, which is the return value. 

AESIv method takes no values and uses OpenSSL random number generator to create a 16 symbol long 

value, which is the return value. 

Password method takes the password coming from the yourkeywizard class and passes it through a 

SHA256 method to receive a 32 symbol long value, which is the return value. 

RSAKeys method uses OpenSSL library to generate the private and public key. After the values have 

been created, they are passed back to the return variables. 

KeyMovement class contains methods for the transferring the key from one state to another, which is 

for encryption, import and export. 

GetSymmetric is a public method that takes the value of the symmetric password, asymmetric 

password, location of symmetric and asymmetric keys and the encoded text. In case it is used for 

symmetric key creation, the method calls symmetric encryption with the key, vector generation and the 

location, where to save. If the key is imported from a console, the base64 decode is called to get raw 

encrypted key by using OpenSSL library method. Then symmetric decryption method is called to get the 

stored asymmetric private key. The result is converted into OpenSSL private key structure. After that 

RSA decryption method is called with the text. Finally the decrypted data is saved with symmetric 

encryption method. 
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GetRSA method takes the password for storing the data. If the keys need to be created, then the 

KeyGeneration classes’ method is called. The resulting keys are saved under the AESEncrypt methods, 

where each key gets a separate saving step.  

ExportPersonalRSA method takes the password for decryption of the public key. The method sets up the 

structure for symmetric decryption and returns the data to the console box. 

MakeInvitation method takes the locations of the symmetric and asymmetric key and their passwords. 

The structure for the keys is set up and AES decryption is run on both keys to get them in raw format. 

Then OpenSSL structures for RSA encryption are set up and the data is encrypted. The result is encoded 

in base64 for convenient output and this result is returned. 

LockKey method takes the location of the key to lock and deletes this key from that location. 

Encodeb64mem method is private and takes the text, which needs to be encoded. OpenSSL library is set 

up for the encode methods. The result is returned. 

Decodeb64mem method is private and takes the text, which needs to be decoded. OpenSSLs’ base64 

decode method is set up for this. The result of this decoding is returned. 

createRSA method is private and takes the key from RSA type. This key is converted to OpenSSL RSA key 

type and this result is returned to other methods. 

createFolders method is private and is used to create all the missing folders for the key storage. It takes 

no values and checks the locations of folders know in advance. 
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6 Soonr link implementation 
 

The next step is the encryption of the data, which has to be hidden from the external parties. The user 

provides a password for the locked key, chooses the key to use and then proceeds to decrypt the key. 

The password provided is hashed as in the case with the encryption key.  The key name is used to find 

the exact file to decrypt. The path to the key is partly given in a predetermined location.  The encrypted 

key is read from the file into a buffer, where the key data is split from the initialization vector. Since the 

length of each part of the data is known because of the way the code is written, the length of the key 

data depends on the fact that this is a decryption part. The encryption part would have another size 

given in advance as well. After this data is set up, the CryptAcquireContext is called with a 

PROV_RSA_AES variable to use the AES decryption. The key and the initialization vector are set by calling 

CryptImportKey and CryptImportKeyParam.  The data to decrypt is copied to a buffer and passed to 

CryptDecrypt function in one call. If the decryption succeeds, the resulting data must contain the 

verification string, which is extracted from result and compared in the next step. If it matches, then it is 

assumed that the decryption is done correctly and the data is passed to further methods. This is done by 

copying it to the variables, which will be returned through pointers and then destroying the data in the 

temporary variables. The encryption of the data is done by passing the key to the AES encryption 

method, then passing the location of the data that needs to be encrypted. This data is a file, which will 

be read to a buffer. Other sources of data are not considered, such as console input. In addition to the 

key, an initialization vector is created by calling an OpenSSL method to generate random bits and passed 

to the encryption method. The data has the verification string added to it and the data becomes ready 

for encryption. The encryption method is set up by calling a CryptAcquireContext, CryptImportKey and 

CryptImportKeyParam.  The data is encrypted by calling CryptEncrypt once with all the data in one go. 

The result is appended with the initialization vector and then the data is saved to a new file, which is 

then handled with further functions.  
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6.1 Soonr system method description 

 

Figure 31. Soonr class interaction diagram 

The soonr system TwoWaySyncMain class is used for the notifications of file download, upload, storing 

in cache and the errors that happen during any of the steps. In addition to that, the creation commands 

of new projects also passes through this class, so any code additions happen inside. This is a soonr class.  

The method OnRequestFinished is called, when the file is successfully transferred to the cache location 

from server. The method has an internal call to another method by the name of 

OnDownloadRequestFinished, which handles the notification itself, but when the file has been fully 

pushed to cache from server, the controls go through this method, so the newly inserted statement 

goes inside the method. The method is used for projects, which have already been subscribed to and the 

state(private/secure or not) is already determined. Inside the method a request for testString is called 

when the file comes in. If this gives some value, then it is assumed that the file is from secure project 

and the encryption method FileDownloadPart is called. The return of the method is the size of the 

encrypted data along with pushes of older data back to the sync core(old size).  
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The method OnCacheRequestCompleted is called, when the file is copied from folder to cache location. 

The method has an internal call to OnUploadRequestFinished, but before that the method records the 

values of the uploaded data. That includes size, md5 values and timestamps. Before listing the values, a 

request for testString is called. If the testString is not empty, then the encryption method by the name 

of FileUploadPart is called. After it finishes, the method proceeds to notify the sync core to continue. 

The method CreateProject is called, when a new project needs to be created. This method takes the 

encrypted string as an optional value and if the value is provided, the project is created as secure type. 

Otherwise it is created as a standard project with no extra encryption.  

AndriusActions class is used for the encryption related methods. All the classes, which are added to the 

project, are accessed through this class. 

CreateSecureProject method is used, when the Soonr client is trying to set up a new project, which has 

to be secure type. The method takes testString, password for the key and key location as variables. The 

method converts the password into byte type, sets up the link to the other classes used(described in 

later part) and then extracts the key from the location linked to the access management tool. After that, 

the test string is created and it is encrypted by using an AES algorithm with the key extracted. The 

resulting data is encoded to base64 to have a string output. The return is a Boolean value based on 

whether there were errors in the process. 

SubscribeSecureProject method is used, when the client is synchronizing with an already existing 

encrypted project.  The method takes testString, projectID and the password to the key. The password is 

converted to a byte array and the key from the access control management folder is extracted. The 

testString is decoded from base64 to regular string and then it is decrypted with the extracted key. The 

resulting data is compared with a predetermined testString and if they match, the key is considered to 

be valid. If they do not match, the password is considered incorrect and false is returned to the upper 

method.  

FileUploadPart method is used for encrypting data and providing changed data values(size of the data). 

The method takes the values of the project ID, the path to the file that needs to be encrypted and the 

password. The key is decrypted using the same way as mentioned before and the data is encrypted 

using the extracted key and the file location. The encrypted data is saved in the same location as the 

original. If the method completes the steps successfully, a true value is returned. 
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FileDownloadPart method is used for decrypting the received files if the project is of secure type.  The 

method takes the project ID, the location of the file and the password of the key. The key is extracted 

and the file is decrypted. The result of the file is placed in the same location as the encrypted file. The 

return is a Boolean value indicating, whether the method successfully completed the decryption.  

MoveTheKey method is a continuation of the project creation. The method takes the location of the key 

and records it in the soonr location. 

 AndriusCrypto class is used for the encryption algorithms. This has the AES cryptography methods. 

AESEncrypt method is used for the encryption of the files, which need to be uploaded and the test 

string. The method takes the key used for encryption and the initialization vector for the encryption. The 

data, which needs to be encrypted, can be provided from a buffer or as a file location. A sub-method is 

called to put the data in a buffer. Then a CryptAcquireContext, CryptImportKey, CryptSetKeyParam and 

CryptEncrypt is called to do the encryption itself. If the data was provided as a file name, the writeFile 

method is called to write the data to some location. If it was called from a buffer, then this is returned as 

a variable to the calling method. If everything goes well, the method returns a true to the method, 

which called. 

AESDecrypt method is used for the decryption of the downloaded files, stored keys or test strings. It 

takes the key and the data as its variables. The data can be provided as a buffer or a file location. A sub-

method is called to prepare the data for decryption. Then CryptAcquireContext, CryptImportKey, 

CryptSetKeyParam and CryptDecrypt is called to do the decryption. If the data is a regular file, then the 

result is written to a file. If the data was a key file, it is returned as a buffer. Before that, the key goes 

through test data check to see, if the key was correctly decrypted. If the data was a test string, it is 

returned as a buffer as well. The difference from key return is that, the verification data in the key file is 

removed from the copying to the buffer. The test string has no verification data to remove. 

prepareData method is used to prepare the given information for encryption or decryption. The method 

takes the data from the buffer or file location. If the filename is provided, the method calls a sub-

method to read the data from a file. If there is no filename and the method is called from encryption 

method, then the data is taken from a buffer. Last case with no filename and decryption, reads the data 

into the buffer and extracts the initialization vector.  
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readFile method is used for reading the data from a file to the buffer. The method takes the location of 

the data and the state, whether it’s encryption or decryption. In case of encryption, the data is read as it 

is into the buffer. If the file will be decrypted, the vector is extracted separately from the rest of the 

data. Both elements are returned as variables. 

writeFile method is used for writing the data to a file.  The method takes the location for output, the 

data to write to the file and the type of method, which called – encryption or decryption. If the output is 

for encrypted data, the initialization vector is written before the rest of the data. Otherwise, only the 

data is written to the file.  

KeyImport class contains the methods for saving the key location to Soonr folder and setting the 

initialization vector.  

GetKeyLocation method is used to create a pointer in soonr folder. The file is used to point to a related 

key file after the project has been created or assigned. The method takes the location to key folder, the 

key location in the key management solution and the project ID. The method creates the folder for key 

pointer storage if it’s not yet created. Then the file is created and the location of the key is stored inside. 

After that the same method is used to read the key location. The return is a string, which contains the 

key location.  

SetIV method does not take any variables. It creates the initialization vector for AES encryption. The data 

is created randomly by calling Microsoft Crypto method – CryptGenRandom. The Microsoft 

implementation is chosen to provide compatibility with the rest of the Soonr software. The method 

returns the random data. 

Miscellaneous class has the methods for data encoding and decoding. This is used for the test string 

transfer. 

Base64_encode method takes the data that needs to be encoded and returns a base64 string. 

Base64_decode method takes the encoded data and returns it as a string.  
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7 Evaluation 

7.1 Performance of crypto in Soonr 
 

In order to have a successful implementation of data encryption and decryption, the process must be 

completed in an acceptable time frame. This time frame is determined by personally chosen values. The 

following measurements were carried out by reading data, then encrypting it and finally storing it in the 

final location after which the upload process will begin. The time is measured in this interval, since the 

modifications and additions impact this segment only. 

Size (MB) Time (ms) 

0.000977 0 

1 16 

10 47 

98.6 812 

507 4578 
Table 8. Symmetric encryption speed 

The data is measured for files measuring from one kilobyte to approximately 507 megabytes. The time 

taken to finish the encryption process providing various sizes indicates that this is a linear progression. 

Symmetric encryption design does not contain any increases or decreases in encryption time depending 

on the size, so this is considered to be “correct” implementation, correct meaning, that the appropriate 

order of the processes has been maintained, not that the chosen methods have the best performance 

values. The average sizes are difficult to determine because of various scenarios the tools are used in. 

The time for 507 megabyte file is 4.5 seconds and is considered to be acceptable. 

 

Figure 32. Symmetric encryption speed 
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In case of decryption, the following measurements were carried out by reading data, then decrypting it 

and finally storing it in the final location after which the transfer process to the final location will begin. 

The time is measured in this interval, since the modifications and additions impact this segment only.  

Size (MB) Time (ms) 

0.000977 0 

1 15 

10 47 

98.6 812 

507 4328 
Table 9. Symmetric decryption speed 

The data is measured for files measuring from one kilobyte to approximately 507 megabytes as in the 

case of encryption. The time taken to finish the encryption process providing various sizes indicates that 

this is a linear progression as well. Symmetric decryption design does not contain any increases or 

decreases in time depending on the size, so this is considered to be “correct” implementation, correct 

meaning, that the appropriate order of the processes has been maintained, not that the chosen 

methods have the best performance values. The time for 507 megabyte file is 4.5 seconds and is 

considered to be acceptable. The values between encryption and decryption are comparable to each 

other, so the implementation is also considered to be “correct”. 

 

 

Figure 33. Symmetric decryption speed 
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encrypting. The speed is displayed in kilobits rather than kilobytes to avoid conversion for comparison 

data used later. 

Time (min) Size (MB) Speed (Kb/s) 

0 0.000977 976 

1.5 10 816 

16 98.6 744 

90 507 784 
Table 10. Transfer time 

The data for download is comparable to upload when the speed is the same range. In order to put this in 

perspective, average network speed is taken from “netindex.com”[30], which is 19 megabits per second 

and upload is 8.4 megabits per second for global average speed.  The fastest case scenario is the 

download part. The speed of download in this scenario would be approximately : 

Time 
(seconds) Size (MB) Speed (Kb/s) 

0 0.000977 

19456 
3.7 10 

36.7 98.6 

217.6 507 
Table 11. Approximate transfer speed 

Using global average speed data, it is possible to calculate the percentage of the time it takes to do 

encryption/decryption during the entire transfer to/from server from/to user device. 

 

Time (%) Size (MB) 

1 10 

2.2 98.6 

2 507 
Table 12. Time taken to encrypt/decrypt in relation to transfer time 

The increase in transfer time is negligible and unnoticeable by the user, unless he/she is benchmarking 

the entire transfer. 
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8 Conclusion 
 

The project consisted of analysis of the state of the art technology, problem identification, possible 

solution proposal and the implementation of the design following the proposed solution. Then the 

evaluation of the implementation was carried out. This included the flow of the controls and the 

transfer speed analysis. 

8.1 Achieved results 
The goal of the project to build an addition to the Soonr system, which offers a secure communication 

room, has been carried out. 

The implementation of the model confirmed that it was possible to transfer the data management 

control from the server side to the user. The data storage location remains the same as initially, but the 

user becomes the only one capable of accessing the data. In addition to that, the user is provided with 

an extra layer of protection on the local device to lock out other people using the same device.  The 

implementation maintains acceptable speed values, which do not increase the overhead drastically 

compared to pre-implementation state. 

8.2 Future work 
Since the initial design of the implementation proves the concept, further improvements to the design 

rely on making the implementation more convenient to the user. Additions to the key transportation 

and storage would increase the flexibility of the secure room by allowing more devices to use it. The 

design of the key management is linked to a single standard, which is not the only one used. Expansion 

to include more choices to the key would provide the user higher compatibility with more software 

solutions.  Modifications to the implementation could allow users to use chatting or calling functions, 

while keeping the conversation hidden from the service provider. 
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