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Summary (English)

Many languages uses a single expression to cover the two English terms: Safety
and Security. In Danish the term �sikkerhed� is used, in German they use
the term �sicherheit� and even in Chinese they use only one single expres-
sion [LRNT06].

The meaning behind the term �safety�, is to make sure that people and the
environment are protected from harm caused by a faulty system, e.g. to protect
the driver of a vehicle by releasing the airbags at impact or to prevent the
impact altogether by making sure that the breaks and ABS are working as they
are meant to. The de�nition of the term �security� is to protect information
in a given system from being leaked, manipulated or forged by third parties or
systems. For example we expect protection of our private information so it will
not fall into the wrong hands. So one might think of safety and security as two
nearly identical words which has a lot of similarities, but their objectives for
protection are each other's opposites.

Conventionally, safety systems have not been concerned with security, e.g. the
pressure in a steam engine secured by a safety valve, and the systems involved
contained no information that could be revealed. Security related system did
not have the need for using safety abilities, since security was something one
would handle with a vault.

As time went by, electric and computer controlled systems, such as automatic
factory machines, saw the day, but focus was mostly still on safety and not on
security. With the increased use of the internet, security has become a larger
part of the online universe. The internet are used to transport many sensitive
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information and they are now available on more media and devices, e.g laptops,
smartphones, etc. In other words, the internet allows us to communicate on
di�erent devices and exchange information. Safety systems might communicate
with other systems through the internet or wireless protocols. This fusion of
safety and security has made it necessary for industries that only had to think
of incorporating safety in their design, now also have to incorporate security.

The aim of this thesis is to shed light on the issue of incorporating security in a
safety system. Based on an existing safety system, I will come with a realistic
estimate on how it can expand and also cover the fundamental capabilities in
security.

I will base my work on a system called �Multiple Independent Levels of Security
(and Safety)� (MILS), which is already designed to keep the integrity of the
information, which is a capability in both safety and security.

Thus, security is already incorporated in the system in terms of protecting the
integrity, but security also has another property, which in many systems will be
described as the primarily property: con�dentiality.

�Con�dentiality� can be divided into two areas: Preventing information from
being passed on to unauthorized persons or systems, and preventing compre-
hension of information if it should fall into the wrong hands. The �rst area
creates a challenge because information should not �ow downwards to a lower
security level. This is exactly opposite of the integrity property in safety, where
information �ow is not allowed to move up a level. The second area needs to
prevent a person to get valuable knowledge, if he/she should forcefully gain
access to the information. This means that information has to be encrypted.

Both areas of security will be covered in the report and a proposal of how it can
be implemented and which consequences a design choice will have on a system.



Summary (Danish)

Begrebet �sikkerhed� kan traditionelt tolkes på to forskellige måder. Begrebet
�safety� dækker over det at sikre personer eller omgivelserne mod at tage skade
fra et givet system. Det kunne være at beskytte føreren af en bil, ved at udløse
airbags ved en ulykke, men det kunne også være at sikre at ulykken ikke vil ind-
træde i første omgang, ved at sikre at eksempelvis bremser og ABS virker efter
hensigten. Omvendt dækker begrebet �security� over det at beskytte informatio-
ner i et givet system fra at blive afsløret, manipuleret eller forfalsket af personer
eller systemer udefra. Eksempelvis vil vi gerne have vores private oplysninger
ikke falder i forkerte hænder. Så selvom man i første omgang tænker på safety
og security som to næsten identiske begreber som rummer mange ligheder, er
deres mål for beskyttelse modpoler til hinanden.

Traditionelt set har safety systemer ikke haft brug for security. Damptryk sikrede
man med en sikkerhedsventil og systemerne indeholdte ingen information som
kunne afsløres. Security relaterede systemer havde heller ikke brug for safety
egenskaber, da security ofte var noget man ordnede med en bankboks.

Sener �k man elektriske og computer styrede systemer, som automatiserede
fabriksmaskiner, men fokus var stadigvæk på safety og ikke på security.

Med internettets fremhersken er security blevet en større og større del af det
online univers. Internettet bruges til at kommunikere et utal af følsomme infor-
mationer og informationerne er tilgængelige på �ere og �ere medier og enheder.
Med andre ord, internettet tillader forskellige enheder at kommunikere sammen
og udveksle informationer.
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Også safety systemer gør brug af at kommunikerer med andre systemer over
lokale netværk, trådløse protokoller eller internettet. Denne sammensmeltning
at safety og security, er med til at en påkræve at en industri som før kun skulle
indtænke safety i deres design også skal til at indtænke security.

Målet med dette speciale er at belyse problemstillingen med at inkorporerer
security i et safety system. Med udgangspunkt i et eksisterende safety system,
vil jeg komme med et reelt bud på hvordan det kan udvides til også at dække
de basale egenskaber i security.

Jeg tager udgangspunkt i et system som hedder �Multiple Independent Levels of
Security (and Safety)� (MILS) og som allerede er designet til at varetage integri-
teten af informationer, hvilket er en egenskab i både safety og security. Dermed
er security allerede inkorporeret i systemet i form af beskyttelse af integrite-
ten, men security indeholder i midlertidig også en anden egenskab, som i mange
systemer vil blive betegnet som den primære egenskab, nemlig fortrolighed.

�Fortrolighed� kan deles op i to grene: At forhindre informationer i at blive
videregivet til uautoriseret personer eller systemer og at forhindre forståligheden
af information hvis de alligevel skulle falde i de forkerte hænder. Den første
egenskab byder på en udfordring, da det reelt betyder at informationer ikke
må �yde nedad til et lavere sikkerheds niveau. Dette er stik modsat integritets
egenskaben i safety, hvor informationer ikke må bevæge sig op i niveau. Den
anden egenskab skal forhindre en person i at få nyttig viden, hvis han selv
fremtvinger sig adgang til informationerne. Dette betyder at informationerne
skal krypteres.

Begge aspekter af security belyses i rapporten og jeg giver et bud på hvordan
det kan implementeres og hvilke konsekvenser et given design valg kan få for
systemet.
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Chapter 1

Introduction

The terms Safety and Security [LRNT06] have a lot in common, but they are
also each other's opposites and obstructing each other. The close relation can be
experienced in a lot of languages where safety and security is described together
in one single word, e.g. in Danish the word �sikkerhed� covers both safety and
security. In common they describe a �system� in an environment. Distinct from
each other, safety aims for protecting the environment from the system, while
security aims for protecting the system from the environment. Software designed
with a safety purpose focuses on handling random (and maybe some periodic)
faults caused by the system [HH09], while software designed for security focuses
on protecting the information in the system from malicious parties.

Traditionally, embedded systems are used in the safety industry without any
security, as the embedded systems operate in a closed environment, where direct
access has to be obtain by an intruder to compromise the system. Systems built
with focus on security are often associated with online systems with no relation
to safety. But in these days where embedded safety systems are growing in size
and complexity, with communication over open networks and possibly connected
with the internet, security is needed to ensure the safety mechanisms.
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1.1 Safety and Security Properties

Safety has two major properties; availability and integrity. In some systems,
e.g. avionics, availability is more important than integrity, as the aircraft would
otherwise crash. In other systems, e.g. medical instruments where the wrong
dosage may be lethal, integrity is of higher importance. Despite of the impor-
tance of availability in some systems, availability is out of the scope of this thesis
and I will only focus on integrity.

Security is mostly associated with its con�dentiality property, but integrity is
also a property in security. I will cover con�dentiality as well as the integrity. It
is worth to note that safety does not hold a con�dentiality property, as disclo-
sure of information would not a�ect the safety in a pure safety system. There
are two major ways to prevent information to be disclosed. One is to control
the information �ow, such that a trusted message carrying secret information
would never end at an untrusted endpoint. The other procedure is to prevent
an untrusted intruder from getting information from a snooped message, i.e.
cryptographic algorithms would prevent revealing of secret information.

Integrity is a property of both safety and security, but the meaning of safety
integrity and security integrity is not the same. Safety integrity is the ability
of a safety function to continue to be e�ective in spite of partial loss of its
implementation measures [LRNT06]. Security integrity requires that an altering
of the information must not be performed by unauthorised process or subject
and an authorised process or subject must not make any unauthorised altering
to the information. It is also required that the information will not change
due to events that happen inside or outside the system that are not meant to
change the information [KF09]. We can interpret safety integrity as a unit that
is introduced to the environment and the environment will remain in a safe
state after introduction of the unit, i.e. the environment will not change after
the introduction of the unit. Furthermore we can interpret security integrity as
a unit we can add information to and even if an intruder should try to change
the information it can never be changed and will remain unchanged. So both
safety and security wants to protect alternation (environment/information) after
introducing an event (the unit/an intruder). I will in the thesis interpret safety
integrity and security integrity as one single property: integrity, as violation of
the integrity will a�ect both safety and security.
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1.2 Security Models

As mentioned in 1.1, security is mostly associated with its con�dentiality prop-
erty and con�dentiality is often associated with cryptographic algorithms. An-
other part of con�dentiality is to avoid information to be leaked to untrusted
parties. In 1973 Bell and LaPadula [BL73] published a security model where a
downward information �ow was prohibited. The model is commonly known as
no read up, no write down and formed a basic security model that ensures the
con�dentiality of the information �ow, by disallowing a subject to read infor-
mation of a higher classi�cation and to write information to a lower classifying
object and thereby declassify information to a lower and less secure level.

Bell and LaPadula's model only focuses on con�dentiality without considering
integrity. In 1977 Biba [Bib77] proposed a complimentary model with a reverse
information �ow. Biba's integrity model is commonly known as no read down,
no write up and prevents low integrity information from being upgraded to a
higher integrity level.

Biba's integrity model is the foundation for most safety models, but is in its
pure form too strong and restrictive to use in practice. One of the issues with
Biba's integrity model is that information would be downgraded over time, as
information could only �ow from one integrity level to equal or lower integrity
levels. Totel [TBDP98] proposed in 1998 a model based on Biba, but where
Biba's model only has the ability to downgrade information, due to the write-
down policy, Totel's integrity model preserves the integrity level and can even
promote information of a lower integrity level to a higher integrity level. To do
that, he introduced three kind of objects, where an object is de�ned as an entity
providing one or multiple services to a subject or another object. The three kind
of objects are (1) Single-Level Objects (SLO)1 with a constant integrity level.
(2) Multi-Level Objects (MLO) with the ability to modify the integrity level to
re�ect the integrity level of the invoker. They have no �memory� and they restore
their integrity level when freshly created. The third (3) is a Validation Object
(VO), which has a single level of integrity, but takes input from redundant or
diverse objects with a lower integrity level. The output would be at the same
integrity level as the VO itself. E.g. a VO would take input from low level
sensors to validate them together to a single high level output.

There arises a big problem when systems grows bigger and more complex: The
certi�cation of the system. In Totel's integrity model the whole system would
be certi�ed as once. There was a need to divide the system up in smaller pieces,
easier to certify. Rushby [Rus81] introduced in 1981 the concept of separate

1A full list of abbreviations can be found in Appendix A.
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subsystems. A Separation Kernel (SK) isolates processes from each other and
the single subsystems could now be certi�ed individual. This made it much
easier to design and maintain more complex safety systems.

1.3 Multiple Independent Levels of Security (and
Safety) (MILS)

Based on the concept of separation, the Multiple Independent Levels of Security
(and Safety) (MILS) approach was described in 2005/2006 [AFHOT06]. MILS
consists of three layers [BDRS08], with the SK as the lowest layer. Next comes a
Trusted Subsystem (TSS) ensuring the communication between the applications.
On top of that is the last layer where the untrusted application services are
executed.

Where Totel's integrity model is designed to run on a single processor [WM12],
the MILS is designed for Multi-Processor System-on-a-Chip (MPSoC) devices.
To support the architecture a Time-Triggered Network-on-a-Chip (TTNoC) was
introduced in 2010 [WESK10] as the communication network. This ensures both
a spatial and temporal separation in the transportation of messages.

The Time-Triggered (TT) network is preferred over an Event-Triggered (ET)
network. An ET network may deliver the message from an asynchronous event
faster than TT, but the messages may also be delayed if many events are trig-
gered at the same time. TT may not send a message at the occurrence of an
event, but every process is guaranteed a sending slot in an a priori known point
in time and within a given deadline. This makes TT less �exible than ET, but
more deterministic, fault tolerant and manageable for the designer of the archi-
tecture [Alb04]. The deep integration of TTNoC makes MILS a Time-Triggered
Architecture (TTA).

MILS consists of components (or µComponents) [WESK10] connected together
by a TTNoC. The components can be assigned independent security levels,
which will a�ect the possible information �ow, but also a�ect the cost for vali-
dation in time and money. The higher the level, the higher the cost. A Trusted
Interface Subsystem (TISS) provides the interface between the components and
the TTNoC. A Trusted Network Authority (TNA) manages the routes in the
TTNoC and a Resource Management Authority (RMA) guards for unautho-
rised changes of the TNA. The routes are called Encapsulated Communication
Channels, which means they are unidirectional communication channels with
one sender and one or several receivers at a speci�c point in time. To cope with
the in�exibility of Biba's integrity model, a middleware can be placed between
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the application and the TISS. This middleware can be designed to validate re-
dundant input and functions in the same way as the VO in Totel's integrity
model.

MILS is basically an integrity model with a downward information �ow. Cryp-
tographic algorithms can be added to ensure the secrecy of information and
thereby adding a bit of con�dentiality to the system. It is possible to reverse
the information �ow [WESK10] from downward to upward and thereby get a
pure con�dentiality model, but then the integrity is neglected.

1.4 ACROSS MPSoC

MILS is only described theoretical and the industry lacks a MPSoC system
with focus on safety. An European project, the ARTEMIS ACROSS project,
was formed in 20102 to come up with such architecture [SEH+12]. The result
was the ACROSS MPSoC architecture; a MILS system. Small variations in
the descriptions of the architecture can be found, e.g. the TNA and RMA
described in [WESK10] are combined to a Trusted Resource Manager (TRM)
in the descriptions of the ACROSS MPSoC architecture [WM12].

Further in this thesis I will use the ACROSS MPSoC architecture and describe
it in extensive details.

1.5 Attacker model

But why is security and specially security con�dentiality needed in a safety
system? Of course the integrity needs to be preserved even after a malicious
attack or it would endanger the safety, but what information in a safety system
needs con�dentiality?

An intruder may have several interests in attacking the system. He might want
to drain the system for information by eavesdropping on the communication,
he might want to take control of the system or simply to put it out of function.
The intruder can choose to attack the components, the communication channel
or a combination of both.

A car is a safety system we also want to be secure. Most cars these days are

2The ACROSS project was closed again in 2013. http://www.across-project.eu

http://www.across-project.eu
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relying more and more on embedded systems, so called Electronic Control Units
(ECU), and in a near future most car will have steer- and brake-by-wire, i.e.
mechanical and hydraulic will be substituted by ECUs. As said, most modern
cars contain a lot of ECU, but the architecture binding the ECUs together o�er
no security. In new cars, it is possible to connect a mobile phone to manage and
upgrade the GPS, provide easy handfree communication, listen to music stored
on the mobile device, etc. This means that a you can connect a device that is
not validated for safety nor security, to the internal system. A mobile phone has
often access to the internet and an attack via the internet through the mobile
phone, could give a malicious intruder access to the internal systems. One
can also conceive that access to the internet integrated directly in the internal
system, is not of a distance future.

But an attack on a safety system may not only be at runtime. It is reasonable
to conceive that attacks take place in the development phase. A malicious
employer may implement a backdoor or malicious code may �nd its way through
the internet on the machine the system is developed on. Even the use of USB
sticks can cause malicious code to be implemented into the system.

But what makes a malicious attack on a car desirable for an intruder? By
eavesdropping, an intruder can listen to conversations in the car, as more and
more cars have a microphone integrated to enable the driver to talk handless
in his mobile phone. The information (e.g. the contact list or messages) on
a mobile phone connected to the cars integrated system can also be leaked.
Information on the cars position (GPS) or its general status (e.g. the speed or
odometer) can also be of interest of an eavesdropper.

If messages from the ECUs is kept in a black box for future investigations, e.g.
after a tra�c accident, altering messages can be used in assurance fraud. Alter-
ing messages can also be used to make a car appear less used by altering the
data of the odometer, which will result in a higher sales price if it is resold.

Deleting messages to the in�ater of an airbag, would cause the airbag to not
function. In a combination with deleting messages from the foot brake sensors
the result could be fatal, as the car could crash without in�ating the airbags. It
could also just be limited to an annoying character, by disable e.g. the heater,
air condition, windows or even the engine.

Adding information could result in executing commands and more or less taking
over the system. Annoying functions could be activated (e.g. activating the horn
in a car), but also potential dangerous functions as releasing the airbags at full
speed or turn o� the light of a car, can be activated. In cars with drive-by-wire,
an intruder can also take control by steering the car.
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With this in mind, tomorrow's safety systems cannot rely on safety alone any
more. Security need to be added to ensure the safety properties.

1.6 Contribution

The ACROSS MPSoC architecture is a safety architecture with a layer of secu-
rity integrity and described in 2012 [WM12]. It is based on the MILS architec-
ture from 2005/2006 [AFHOT06]. The architecture I use is therefore described
earlier and is not new knowledge. My contribution is to analyse and suggest a
method to add con�dentiality to the ACROSS MPSoC architecture. A similar
approach has been described in [WESK10], where a con�dentiality �ow is de-
scribed at the expense of the integrity �ow. In my system the integrity �ow is
preserved along with a con�dentiality �ow.

The information �ow is only one part of con�dentiality; the other part is the
secrecy. I bring a Secure Channel [IW13] into the system to provide end-to-
end encryptions for communication over external network. For long lasting
encryption I have proposed the use of a special Crypto Component and analysed
what has to be take into account.
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Chapter 2

Application Model

Integrity has been in focus in most MPSoC models. To extend such a model
to also focus on con�dentiality, we must provide some mechanisms to enforce
con�dentiality without compromising integrity. These mechanisms are primarily
in the architecture, but in order understand and improve the architecture, we
must understand the application model as well.

The proposed application model is an adoption and slightly reformulated version
of the application model in [TSP13]. An entire list of notations can be found in
Appendix B.

2.1 Notation

An application Ai is a direct, polar and acyclic graph Gi(Vi,Ei) and the set of
all applications is speci�ed as Γ. The application graph Gi consist of all nodes
Vi and all the edges between the nodes Ei in the given application subsystem
Ai. Each node represent one task τj ∈ Vi. All nodes are mapped to Processing
Elements (PE) by the functionM : Vi → N and a task in the node is associated
to exactly one partition slice φ(τj)→ pkij where τj ∈ Vi,φ : V → P .
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A partition is denoted Pj and a set of partition slices on Ni is denoted Pij . The
kth partition slice is denoted pkij . The scheduling of tasks to partitions is made
using Static-Cyclic Scheduling (SCS). In some cases two tasks are not allowed
in same partition, e.g. two redundant tasks may not share partition, as both
tasks could be a�ected of a failure in the partition. A Protection Requirement
Graph Π(V ,E), where V is a set of all tasks and E is the dependencies between
them, enforce prohibition of sharing partitions. The edge srij ∈ E means that
τi and τj are not allowed in the same partition.

The edge ejk ∈ Ei has output from τj and input in τk. A task must receive
all its input before its ready and will �rst output messages after termination.
Messages mi are used by tasks, located on di�erent PEs to communicate with
each other. The size smi

of mi are known. The deadline DGi
has be to reached

within the period TGi for each Gi, i.e. DGi ≤ TGi . The Worst-Case Execution
Time (WCET) Ci are known for task τi. Messages can only be sent at a priori
known point in time according to a time scheme. The period of the time scheme
Tcycle is repeated continuously. The Tcycle is divided in several Major Frames
(MF) with a length given by the designer and with a period denoted as TMF .
The partitions are grouped together in MFs.

An integrity level IL : Vi → {ILk}, where k ∈ {0, . . . , 4} (covering the integrity
of both safety and security) and a con�dentiality level CL : Vi → {CLk}, where
k ∈ {0, . . . , n} is assigned to every task in order to determine the restriction of
the information �ow and certi�cation. A task τi is assigned both an integrity
level IL(τi) and a con�dentiality level CL(τi) independent of each other.

2.2 Rules

There are some rules to follow to ensure the safety and security requirements.
The rules are an adaptation of the rules proposed in [WM12], with some addition
to cover not only integrity, but also con�dentiality.

Rule 1: A task is placed in exactly one partition slice and is allowed to share
partition with another task i� the two tasks do not share an edge in Π and they
have same integrity and con�dentiality level.

The integrity level and the con�dentiality level of a task may be set so low that
they will be non-critical and not impact the safety and security of the system.
Even though, both an integrity level and con�dentiality level must be assigned
a task.
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Rule 2: A task is assigned exactly one integrity level and exactly one con�den-
tiality level.

Communication between tasks is done by passing messages over the commu-
nication channel. To apply Biba's integrity model [Bib77] we must ensure a
downward information �ow.

Rule 3: The information �ow is allowed, only if the sending task has a higher
or equal integrity level than the receiving task; IL(τsend) ≥ IL(τreceive).

In a model dealing with both integrity and con�dentiality, the upward con�-
dentiality �ow proposed by Bell and LaPadula [BL73], apply as well as the
downward integrity �ow. The con�dentiality �ow is an extension of the original
rules proposed in [WM12]

Rule 4: An information �ow from one task to another is allowed only if the
sending task has a lower or equal con�dentiality level than the receiving task;
CL(τsend) ≤ CL(τreceive).

Rule 3 enforces a rigid downward information �ow, where information can only
�ow downward, and that is not practical to work with. The downward �ow
can be circumvented in rule 5 by allowing an upward �ow, if the information is
validated to a higher integrity level.

Rule 5: Messages from a task with a low integrity level to a task with a higher
integrity level must pass through a Validation Middleware (VaM). The VaM
must receive information from several di�erent redundant or (even better) di-
verse tasks, with a lower integrity level than the VaM. The information must be
received within a given time span.

While rule 5 relaxes the information integrity �ow in a safe and secure manner,
where information is validated and upgraded to a higher integrity level, the
con�dentiality �ow is relaxed in a way where sensitive information is �ltered
out of the information �ow.

Rule 6: Information can �ow from a task with a high con�dentiality level to
a task with a lower con�dentiality level i� sensitive data is �ltered out of the
messages or the message is protected by encryption with no possibility to decrypt
at the receiving task.

As long as tasks are communicating on-chip through the TTNoC, eavesdropping
is not possible. But o�-chip communication cannot guarantee the con�dentiality
of the information.
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Table 2.1: The three colons from left indicates a task and its con�guration.
The colon to the right indicate the possible �ow to other tasks. τ2
can only send messages to other tasks with the same con�guration,
while the con�guration of τ3 allows it to send messages to every
other task without regard to their con�guration.

τi IL(τi) CL(τi) τi → Vj

τ1 L L τ1 → {τ1, τ2}
τ2 L H τ2 → {τ2}
τ3 H L τ3 → {τ1, τ2, τ3, τ4}
τ4 H H τ4 → {τ2, τ4}

Rule 7: Information must be encrypted before sending through an external
network.

2.3 Safety and Security Level

Rule 2 dictates that a task is assigned exactly one Integrity Level (IL), covering
both the safety integrity and the security integrity, and one Con�dentiality Level
(CL). The consequence of these two separate levels is that messages can �ow
free from a task with a high IL and low CL, while information from a task with a
low IL and high CL are limited to send messages to other components with the
same con�guration. A simple example where the security levels can be either
High (H) or Low (L) is shown in Table 2.1. The table illustrates the allowed �ow
from one con�guration of tasks to another con�guration. The three colons to the
left indicates a task τi and its IL and CL con�guration. The colon to the right
indicates the possible �ow from τi to other tasks with di�erent con�gurations.
One could argue to combine the two security levels as one single level with four
con�gurations. But in reality the security levels are not limited to just a high
or low con�guration. It is easy to see the increased complexity in Table 2.2,
where three levels of IL and CL are used. To keep the allowed communication
routes simple and comprehensible, I have therefore chosen to keep the IL and CL
separated. The IL and CL do not a�ect each other, but they a�ect the overall
information �ow between two tasks, i.e. a restriction in the con�dentiality �ow
will not make any restrictions to the integrity �ow and vice versa.
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Table 2.2: A more complex model than Table 2.1, where τ3 can only send mes-
sages to other tasks with the same con�guration, while the con�g-
uration of τ7 allows it to send messages to every other task without
regard to their con�guration.

τi IL(τi) CL(τi) τi → Vj

τ1 1 1 τ1 → {τ1, τ2, τ3}
τ2 1 2 τ2 → {τ2, τ3}
τ3 1 3 τ3 → {τ3}
τ4 2 1 τ4 → {τ1, τ2, τ3, τ4, τ5, τ6}
τ5 2 2 τ5 → {τ2, τ3, τ4, τ5}
τ6 2 3 τ6 → {τ3, τ6}
τ7 3 1 τ7 → {τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9}
τ8 3 2 τ8 → {τ2, τ3, τ5, τ6, τ8, τ9}
τ9 3 3 τ9 → {τ3, τ6, τ9}

Table 2.3: ISO/DIS 26262 SIL decomposition scheme [TSP13]. Shows the pos-
sible decomposition of a SIL.

SIL Can be decomposed as
SIL 4 SIL 4 or SIL 3 + SIL 1 or SIL 2 + SIL 2
SIL 3 SIL 3 or SIL 2 + SIL 1
SIL 2 SIL 2 or SIL 1 + SIL 1
SIL 1 SIL 1

2.3.1 Safety Level

Industrial standards as the Safety Integrity Level (SIL) used to dictate the devel-
opment process and the certi�cation procedure of safety related functions [TSP13].
SIL are operating with four levels, with SIL 1 as the lowest level and SIL 4 as
the highest level. The higher the level, the lower the tolerable hazard rate, i.e.
the SIL can be associated with the tolerable hazard rate [LRNT06]. There is a
SIL 0, but it is assigned to non-critical tasks and are not covered by the stan-
dards [TSP13]. I will use the notation IL instead of SIL, as SIL refer to safety
and this thesis operates with both safety integrity and security integrity, i.e. IL
covers both safety and security.

A high IL ensures a high level of safety, but it also cost time and money to
develop high IL and get it certi�ed. To circumvent the high cost of a task with
a high IL, the task can be decomposed into two redundant tasks with lower
ILs in the same way SIL is decomposed, see Table 2.3 [TSP13]. A decomposed
IL would not a�ect the CL, i.e. the two new decomposed tasks will inherit the
original CL. By decomposing a task, the number of tasks in the system increases.
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This can potentially reduce the schedulability, due to the extra tasks that have
to be placed in the schedule table.

An IL can always be elevated to a higher IL, if it is not at the highest level yet.
A high IL costs more, but can be necessary to obtain a schedulable solution.
Two tasks of di�erent IL (or CL) cannot share a partition, and tasks with low
IL may need elevation in order share a partition with task with higher IL.

2.3.2 Security Level

There are no standards for the number of levels in CL. Various levels of con�den-
tiality can be applied to a system. A common toy-example is using three levels:
Unclassi�ed (UC), Secret (S) and Top-Secret (TS). I will use these three levels
in the further description of CL in this paper. Comparable, but not equivalent
to the concept of SIL for safety, the security has a concept known as Evaluation
Assurance Level (EAL) [LRNT06]. The EAL is a standard for certifying secu-
rity functions considering all the security properties, i.e. including integrity and
con�dentiality. There are seven EAL levels and they correspond to assurance
levels [CC12]: (1) Functionally tested, (2) Structurally tested, (3) Methodically
tested and checked, (4) Methodically designed, tested and reviewed, (5) Semi-
formally designed and tested, (6) Semiformally veri�ed design and tested and
(7) Formally veri�ed design and tested.

Where a safety function can be certi�ed to a SIL, the security function can be
certi�ed at an EAL, i.e. a particular level in EAL only tells us how much a
security function has been tested and how much we can trust it to be as secure
as it claims, but not how secure the function really is. Therefore I will not use
the EAL as a guaranty for the security in the CL. Another di�erence between
IL and CL is that a CL cannot be decomposed nor elevated as the IL.

2.4 Application Examples

The application model is illustrated in Figure 2.1. Here are shown two appli-
cation subsystems A1 and A2 and their dependencies. Tasks communicate by
sending messages along the edges. A message has exactly one sender, but can
have several receivers. In (a) τ1 sends messages to τ2 and τ3. The message from
τ1 can be a multicast message from one sender to two receiving tasks. It can also
be two di�erent messages sent at di�erent time from one sender to one receiver.
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Figure 2.1: The graph in (a) shows two �ows. A �ow in A1 from τ1 to τ4 and a
�ow in A2 from τ11 to τ12. (b) shows the tasks from (a) scheduled
to partition slices and mapped on two PE.

τ4 receives two individual messages at di�erent point in time. A task that take
input from other tasks cannot execute before all inputs are received.

The mapping assign one task τi to one partition slice pkij . The schedule is shown
in (b) with two PEs N1 and N2. τ1, τ3, τ4 and τ12 are placed on N1 while τ2 and
τ11 are placed on N2. Unused partition slices are greyed out. The message from
τ1 to τ2 and τ3 is multicast at the same timeslot, but as τ1 and τ3 are placed
on same PE, only the message to τ2 is going through the TTNoC. τ4 receives
input from τ2 and τ3. As τ3 shares the PE with τ4, only the message from τ2 is
going through the TTNoC. If the three tasks was placed on three di�erent PEs,
τ2 and τ3 would need two di�erent timeslots to send their messages to τ4. τ4
cannot start its execution before it has received all input messages.

The possible information �ows outlined in Table 2.1 is illustrated as a graph in
Figure 2.2. It is easy to see that the con�guration of high integrity level and
low con�dentiality level in τ3 has a free outgoing �ow, while it cannot receive
information from other con�gurations. In contrast, the con�guration in τ2 can
only receive information, but not send to other con�gurations (other than equal
con�gurations - not pictured).
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Figure 2.2: Illustration of the possible �ow between tasks with di�erent IL
and CL con�gurations introduced in Table 2.1. It is easy to see
that information from τ3 can �ow free, while information from τ2
has a restricted �ow.



Chapter 3

Architecture Model

I have chosen the ACROSS MPSoC architecture to support the application
model. The ACROSS MPSoC is designed as a combined safety and security
architecture built on a MPSoC platform [WM12]. The architecture consists of
multiple components connected together by a TTNoC. The term �component�
(or �µComponent� in some articles) is used in various articles, e.g. [AFHOT06],
[BDRS08], [ESOHK08] and [WESK10], to describe the part of the architecture
providing the application speci�c services. The component consist of a host and
the TISS, as I will discuss later in Section 3.1.1 and 3.1.2. None of the articles
have a deep description of the application model and I interpret the use of the
term �component� in the articles, as a label to talk about components in an
abstract way. If we remove the label �component� we could talk about the host
communicating with other hosts through the TTNoC via the TISS. I will use
the term �component� in its abstract form in this thesis and consider the host
of the component to be the application task.

The ACROSS MPSoC architecture is a Multiple Independent Levels of Secu-
rity (MILS) system [AFHOT06], [BDRS08], [WESK10], where the fundamental
idea is to separate subsystems. The concept of separation was introduced by
Rushby[Rus81] in 1981 and ensured by a trusted separation kernel. The archi-
tecture consists of three parts: the hardware layer with the separation kernel, a
trusted part and an untrusted part. The trusted part ensures the core services
and cannot be changed by the application speci�c services. The untrusted part
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performs the application speci�c services and can incorporate middleware to
relax the strict information �ow.

The security in the ACROSS MPSoC architecture only covers the integrity,
with a limited aspect of con�dentiality. The architecture's limitation is that it
will only support con�dentiality in form of cryptographic algorithms, but does
not support an upward information �ow, i.e. the information �ow would be
downward (integrity) and thereby excludes an upward �ow (con�dentiality). An
upward �ow was described in [WESK10], but the downward �ow was neglected.

3.1 The Architecture

The lowest layer in the architecture is the hardware and the Seperation Kernel
(SK) as mentioned in section 1.3. The hardware is out of the scope of this
thesis and will not be covered. The SK is the core concept in the ACROSS
MPSoC architecture and isolates processes in separate partitions on a shared
processor [WESK10], [Rus81]. The partitioning, which is both spatial and tem-
poral, enforces (1) data separation, (2) the information �ow by using inter-
partition communication, (3) sanitisation by cleaning any shared resources and
(4) damage limitation, as a fault in one partition would not a�ect other parti-
tions [AFHOT06].

Each component is assigned to a partition slice and has assigned exactly one level
of safety and exactly one level of security. The partition slices are scheduled on
PEs using Static-Cyclic Scheduling (SCS). In contrast [WESK10] writes: �Each
partition is mapped to exactly one component and each component hosts at most
one partition.� By doing so, a task in a component is separated from other
tasks and a failure in one partition will not propagate to another partition. The
information �ow is also ensured, as information cannot �ow outside the partition
from one task to another. But the scheduling would be hard to optimise, if
partitions cannot be shared and I choose to apply the tasks to partition slices
instead of partitions. There are some precautions to consider. Information can
�ow inside a partition and tasks sharing a partition must therefore be con�gured
with the same IL and CL. Some tasks may not share partitions and is connected
through an edge in Π as described in Section 2.1.

To function it is required that the SK is always available and invoked, tamper-
proof, non-bypassable and free of design faults. To ensure that, the SK must be
easy to certify and is thereby kept as small and simple as possible. The SK is
the Trusted Computing Base (TCB) of the system. Lampson [LABW92] is often
quoted for describing the TCB as a �small amount of software and hardware that
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Figure 3.1: The architecture of a component. It consists of two architecture
elements: the TISS which also is part of the TSS and the host
in which the application speci�c services are placed. Via the UNI
have the host a transparent interface through the TSS to other
hosts.

security depends on and that we distinguish from a much larger amount that can
misbehave without a�ecting security.�

3.1.1 The Trusted Architectural Layer

The application speci�c services are carried out by architectural elements called
components (or µComponents) as introduced in Section 3, and are connected
through a Time-Triggered Network-on-a-Chip (TTNoC). Figure 3.1 shows the
component and its elements.

The TTNoC is a part of a Trusted Subsystem (TSS). TSS is composed of: the
TTNoC, a Trusted Interface Subsystem (TISS) and the Trusted Resource Man-
ager (TRM). Together they form a black box for the components and is assumed
to be free from design faults. All communication is carried out by the TSS, trans-
parent to the component. By using the TTNoC as the internal communication
network provides us with some fundamental security functionalities [WESK10]
such as: data isolation, a controlled information �ow and damage limitation. For
further descriptions on how the TTNoC works, I recommend reading [Sch07].

The message routes in the TSS are called Encapsulated Communication Chan-
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nels and are unidirectional communication channels with one sender and one
or several receivers, which transport the message in a priori known point in
time. The endpoints of the encapsulated communication channels are called
ports and are located in the TISS. Ports leading out of the SoC to another SoC
are called gateways. Due to security reasons communication through gateways
is encrypted, as speci�ed later on in Section 3.1.2.2, and gateways are there-
fore limited to special IO-components, i.e. ordinary components cannot contain
gateways and can thereby not connect to an external network.

The routes and ports are managed by the TRM according to a Time-Division
Multiple Access (TDMA) scheme [OH11]. Only the TRM can re-/con�gure
the routes and ports, and acts as a guardian for recon�guration. In earlier
articles the TRM is often called Trusted Network Authority (TNA) and is of-
ten co-operating with a Resource Management Authority (RMA), where the
RMA recon�gures the communication and the TNA guards the activities of
the RMA [PPES09]. In ACROSS MPSoC the TNA and RMA are combined
into TRM. A component cannot change the encapsulated communication chan-
nels (this is exclusive managed by the TRM), but a component can suggest
a recon�guration to the TRM. To manage and recon�gure the encapsulated
communication channels, the TRM knows the TDMA, the components con-
�guration, the components safety and security level and the con�guration of
the TTNoC. The TRM makes sure that no safety or security policy is violated
during a recon�guration. The TRM has the communication channels under
constant surveillance, preventing unauthorised alternations. The TRM is also
checking the identity of the component and allows only authorised components
to communicate. With TTNoC, TRM and TISS combined in the TSS, the TSS
ensures a time-triggered communication, a common time among the system and
integrated resource management.

The TISS forms one part of a component, as shown in Figure 3.1, and act as
a guardian, by only accepting messages to be sent or received according to the
TDMA. This prevents a faulty component from being a �babbling idiot�1. Even
though the TISS is placed in the component, the TISS can only be recon�gured
by the TRM. The other part of a component is called the host, see Figure 3.1.
Where the TISS are part of the TSS and certi�ed as the highest level of the
system, the host is part of the untrusted area and must be individual certi�ed.
The TISS provides a Uniform Network Interface (UNI) to the host, so when a
task in the host want to communicate with other tasks it connects to the UNI
and the transportation of the message(s) are transparent to the task.

1A babbling idiot is a faulting node, �ooding the communication network and taking up

resources. It can potentially prevent correct functional nodes in receiving and sending messages

or making the node repeatedly executing its application service inappropriately many times.
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3.1.2 The Top-Layer

The designer of tasks is restricted from altering the TSS, but has access to the
host which is composed by an Application Computer (AC) and by Front End
(FE). As described in the introduction to Section 3, I consider the host to be the
application task. A task contains therefore both the AC and the FE. The AC
performs the application speci�c services and the FE services as an extension
to the communication services, i.e. the application speci�c parts of the task are
performed by the AC in the architecture, while parts of the task extending the
communication service are performed by the architectural FE.

Middleware services are extensions in the FE, which provide high level commu-
nication services to e.g. circumvent the unidirectional �ow. The partitioning of
tasks will therefore include both the application speci�c services and the ser-
viced performed by the middleware in one partition slice. That also means that
the WCET for a task increases by using middleware. Even though I consider
the host as a task when mapping tasks to partition slices, I will refer to tasks as
just the AC. The reason for this is to better explain the behaviour of the system
and focus on the application speci�c part of the task.

A dual-ported memory denoted as Port Memory [PPES09] is also located in
the FE. Messages from the task have to be written into the Port Memory and
forwarded by the TISS onto the TTNoC at an a priori known point in time. A
component is applied the same IL and CL con�guration as the tasks, with the
same restrictions, as described in Section 2.3.

3.1.2.1 Middleware

Middleware is used to provide an extra layer to the communication services pro-
vided by TSS and does not a�ect the application. The extra layer is used to
relax the rigid information �ow (downward for integrity and upward for con�-
dentiality), by allowing a reverse �ow, i.e. middleware allows us to create an
upward integrity �ow and a downward con�dentiality �ow.

As discussed in Section 1.2, we need to be able to upgrade information. E.g.
three redundant braking sensors in a car has usually a low IL, but have great
consequences if not working properly. In a safety integrity manner a sensor is
�likely� to fail to output a value. In the perspective of security integrity, the
value produced may not be accurate, it might even be a false measurement or
could be produced by a deliberate action caused by a malicious intruder.
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Figure 3.2: Here the SC is implemented along with a piece of middleware.
Both the SC and the middelware are placed in the FE, such that
SC is placed between the network and the middleware. The mid-
delware is placed with SC and AC on each side.

To ensure a trustworthy measurement with a higher IL, we need to gather
information of several redundant or diverse sources. A Validation Middleware
(VaM) [WM12] gathers the redundant low IL input and runs a voting algorithm
among the values to output a single trustworthy high IL value. The VaM is
located at the receiving component and certi�ed at the same IL as the host
component.

The con�dentiality �ow can be circumvent by a Flow Control Middleware (FCM)
[WESK10]. Not all information in a component with a high CL may be sensi-
tive and can apply to a lower CL as well. As an example, only the information
to identify a person on his patient journal is sensitive, while the diagnose and
treatment are not of a sensitive nature and rather useless without the identi�ca-
tion of the patient. The FCM provides a �lter to remove sensitive con�dential
information and lets insensitive information through. In this way a downward
information �ow can be accepted. The FCM are located at the sending compo-
nent, allowing it to send information with a lower CL than the original CL of
the host component.
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3.1.2.2 Secure Channel

A Secure Channel (SC) [IW13] is a common design pattern that ensures the
secrecy in the information �ow to external communication. The message is sent
through the TTNoC to a special IO-component with a gateway to the external
network and SoC. The SC ensures the secrecy if the message is eavesdropped and
is placed in the FE and is a piece of middleware. If other middleware services
are assigned to the component, SC is placed between the middleware and the
TISS as shown in Figure 3.2.

A Secure Kernel manages and generates the cryptographic keys used by SC.
The key generation demands heavy computation, which could be a problem in a
resource limited MPSoC. For that reason it is hardware implemented to ensure
faster and resource-saving computation. The Secure Kernel must ensure that a
key is ready to use, at the point in time a message needs it. The Secure Kernel
is not to be confused with the Separation Kernel (SK) of the ACROSS MPSoC
architecture. It is not part of the TSS, but is the TCB for the SC.

A Secure Provider executes the encryption and decryption and provides the
task (or middleware if implemented) with a transparent channel with security
properties. The architecture also provides a standard communication channel
to bypass the SC for on-chip communication where encryption is not needed.

The SC encrypts information going through the TTNoC, but is used for o�-chip
communication to ensure con�dentiality on an unsecured external network. A
special IO-component with gateways to the external network, e.g. TTEthernet,
must be used for this case. Then messages must travel through the TTNoC,
to the IO-component, further to the external network and arrive at the desti-
nation SoC. More detail description is given in description of the behaviour in
Section 3.5.2.

The cryptographic algorithm used must be implementable in hardware. A hard-
ware implementation ensures fast computations, o�oads the resources and en-
sures better security, as hardware is harder to attack than pure software. A
simple XOR encryption2 is light and easy to implemented in hardware. It is
fast and messages will be encrypted in the same clock cycle [WES08]. Though,
XOR o�ers not much protection, as it is vulnerable to known-plaintext attacks3.
AES is a strong symmetric algorithm, provides a strong protection and can be
implemented in hardware as well [HAHH06]. The downside of encryption, and

2XOR encrypt a binary plain-text by xor it with a repeating binary key, e.g. by XOR the

key 1010 on the plaintext 1101 0011, we get the ciphertext 0111 1001.
3In known-plaintext attacks the intruder knows the ciphertext and some part of the plain-

text. He can then reverse the XOR and get the key.
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special strong encryption, is the increased computation time. By outsourcing
the key creation to special hardware components with dedicated partitions and
by ensure that a key will be available at the point in time a message has to be en-
crypted. In the software component, the message only has to be encrypted and
sent (without concern of key generation or key management), and the increased
computation time would be minimal. So even though an increased WCET must
be taken into account, the limitation of a hard real-time behaviour will not be
a�ected. Due to the strong protection of the AES algorithm and the minimal
increasing in the WCET, as the keys are created and managed by hardware, I
recommend AES for the encryption in the SC.

3.1.2.3 Crypto Component

If long lasting encryption is needed, a special Crypto Component can be im-
plemented in the design as a supplement or addition to the SC. The Crypto
Component will provide both the encryption and decryption and is designed
as an ordinary component with TISS and host. The cryptographic services are
carried out in the application computer. Where the SC only encrypt the mes-
sage in the transport and decrypt the message at end-destination, a Crypto
Component can apply cryptographic algorithms to information that is going to
be stored in other tasks, i.e. a low CL task can obtain encrypted information
without getting knowledge of its content.

To encrypt information, the Crypto Component receives a message from another
task. It encrypts the message and forwards the encrypted message to a receiving
task. The receiving task can be the same task that requested the encryption.
The same procedure applies for decryption. After encryption the information
are applied the lowest possible CL, regarding the original CL, and the IL is
remain unchanged. It is important to note that the original CL and IL of the
information must be restored after decryption. The CL at the receiving task
must be higher or at the same level as the original CL of the information.

The Crypto Component can be designed similar to the SC with special hardware
components to compute and manage the cryptographic keys. The encryption
and decryption will take longer time than the SC, as the Crypto Component is
a separate component and must have its own timeslot in the schedule.



3.2 Architecture Examples 25

Figure 3.3: A simple version of the ACROSS MPSoC architecture. The two
components is connected through the TTNoC network and the
TRM are managing the communication routes. The TSS consist-
ing of the TRM, the TTNoC and the TISS are coloured blue.

3.2 Architecture Examples

I will give tree simple examples of the architecture, the validation middleware
(VaM) and the partitioning by a system of mixed criticality.

3.2.1 The ACROSS MPSoC Architecture

Figure 3.3 shows the ACROSS MPSoC architecture with two components. The
�gure is colour coded for easy recognition and the elements of the TSS are shown
with blue colour. The components are of a gray colour and with a dashed frame.
The hosts are in white and contains of AC and FE. Middleware are placed
in both FEs. The task in the components communicates via the TTNoC by
sending messages. The UNI will provide a transparent interface through the
TSS. The component cannot change the time schedule in the TISS, but can
suggest the TRM to recon�gure the time schedule and routes. If the change
does not con�ict with the safety and security restrictions, the TRM can change
the con�guration of the TISS. The middleware can be implemented in the FE
and contain additional security functions for sending or receiving messages and
function as an extension to the TISS. The FE also provides a Port Memory
which houses the ports of the encapsulated communication channels [PPES09].
The port memory is not pictured.
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Figure 3.4: The VaM is placed together with a task τ1 with a high IL. The
VaM require input from redundant or diverse tasks, τ2 and τ3,
with lower IL. A voting algorithm among the input in the VaM
produces a high IL output to τ1.

3.2.2 Simple VaM Example

Figure 3.4 illustrates a simpli�ed version of the system containing two redundant
task, τ2 and τ3, with a low integrity level, sending messages to the high level
task τ1. To allow an upward integrity �ow a VaM is placed in τ1 to collect the
redundant low level input. The VaM runs a voting algorithm among the two
input and produces a output with a high level value to τ1.

3.2.3 The Partitioning

An example of partitioning of a system of three applications, A1, A2 and A3, with
13 tasks is illustrated in Figure 3.5. The tasks are mapped to on two PEs; N1

and N2 and are colour coded by their IL and CL con�guration (see Table 3.1),
e.g. τ13, τ22 and τ34 have the same purple colour.

As discussed in Section 3.1, tasks of same con�guration, i.e. same colour in this
�gure, can be placed into the same partition. This is done by τ13 and τ22, and
τ14 and τ23. An exception is the two redundant tasks τ31 and τ32, as they share
an edge in the protection requirement graph, Π. The middleware is a part of
the task and τ33 contains therefore both the application speci�c services and the
VaM. Parts with gray shading are not occupied by a partition slice and remain
unused. Tasks cannot start until they have received all its input information,
e.g. τ16 need the information from τ14 and τ15 before it can start. A task output
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Table 3.1: The colour coding of the tasks in Figure 3.5.

IL(τi) CL(τi) Colour
1 UC Red
2 UC Salmon
3 UC Yellow
2 S Purple
1 TS Green
2 TS Blue

Figure 3.5: Partitioning of three subsystems; A1, A2 and A3. The partitioning
is not optimised, but reached the deadline before the period ends.
The colouring indicated the same con�gurations of IL and CL and
tasks of same con�guration can share a partition. An exception is
τ31 and τ31, which has the same con�guration, but are redundant
tasks and prohibited to spare partitions. τ31 and τ31 share an
edge in Π. The messages is colour coded by the con�guration of
the sending and receiving task for easy visual identifying.
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information after it is terminated.

Both the downward integrity �ow and the upright con�dentiality �ow are met.
In A2 the information �ow is clear and information �ows from τ21 with a high
IL and a low CL to τ23 with a low IL and high CL. In A3, the two redundant
tasks τ31 and τ32 have a upward integrity �ow to τ33. A VaM is implemented
in τ33 and runs a voting algorithm among the two input and produce an output
of a higher IL.

3.3 Safety Mechanism

The ACROSS MPSoC architecture is developed to support integrity and to
be easily certi�ed. A lot of mechanisms are build into the system to ensure
integrity. I have made no extension to the model to increase safety.

3.3.1 Separation and Partitioning

A safety system must guarantee the safety ability through validation. With-
out certi�cation the system cannot claim to be safe. In complex system the
certi�cation can be a hassle. The separation of subsystems [Rus81] makes the
certi�cations easier, as the subsystems can be certi�ed separate and not as one.
The separation also enforces the safety in the partition layer. The SK separates
the partitions both in the spatial and temporal domain. This prevent informa-
tion in one partition from �owing unintended to another partition and thereby
enforcing the information �ow, as discussed later on in Section 3.3.4.

The partitions are sanitised by the SK. This means that no old information
would be left in the partition to be revealed from one task to another, i.e.
information cannot �ow from one task to another, just because they are using
the same partition at di�erent time.

Partitioning also provides damage limitation, so fault in one partition will not
a�ect other partitions. The safety aspect of this is immediate, as a fault in e.g.
a sensor would not a�ect the safety of the system other than the missing or
faulty output from the sensor. As it is possible for tasks of same con�guration
to share a partition and thereby be a�ected of the same damage in a partition,
it is important for the designer to consider if some tasks should be prohibited
to share a partition. In Section 3.1 there is a discussion about the requirements
for separation.
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3.3.2 Redundancy / Diversity

Allowing a �ow from low integrity tasks to high integrity task, is the premise
for including redundant tasks. Redundancy enforces safety in two ways: (1)
it makes the system fault-tolerant, as if one redundant device fails, the other
device(s) would probably not fail of the same reason. For that reason it is impor-
tant redundant tasks does not share a partition. (2) the redundancy relaxes the
rigid information �ow, as redundant tasks can be validated to a higher level and
redundancy makes the system easier and cheaper to certify, because redundant
tasks have a lower level than one single task. Redundancy is often carried out
by hardware components. Diversity, where the same functionality is computed
using di�erent algorithms and likely by di�erent development teams, is often
preferred in software. This minimises the risk of a software bug in one task to
occur in another diverse task.

3.3.3 Time-Triggered Architecture

The ACROSS MPSoC is a Time-Triggered Architecture (TTA) and ensures
reliable and trustworthy hard real-time communication. It guaranties a sending
slot to all tasks in a cyclic period and at an a priori known time. Only in that
timeslot a given task can send its message. At the same time, the receiving task
knows it has to receive a message. This prevent a �ood of information in the
system that could potentiality make the system to malfunction in a non-safety
manner. The TTA enforces the properties of the SK and can be considered as
a realisation of the SK [WESK10].

3.3.4 Trusted Subsystem

The TSS ensures safety by transparently manage the communication between
the tasks. A task cannot change the TSS but has to suggest a recon�guration.
Only if the safety is still guaranteed, the change will apply. This makes the TSS
quite robust for unauthorized changes that could lower the safety of the system.

The encapsulated communication channels are unidirectional channels with a
single sender and one or more receivers. The channels with its endpoints and
it temporal presence, are known a priori and constantly checked by the TRM
[WESK10]. The encapsulated communication channels and TRM are both part
of the TSS. The encapsulation guaranties the information �ow, i.e. there can be
no �ow from a low IL task to a high IL task (unless it runs through a validation
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middleware). This prevents unsafe elements to be unintended promoted.

3.4 Security Mechanism

Security covers both integrity and con�dentiality. The security integrity is quite
similar to the safety integrity, but focus on protecting the system from malicious
attacks, i.e. protecting the system from the environment. The same mechanisms
that enforce the safety integrity also enforce the security integrity and I thereby
adopt the integrity approaches from the safety architecture. For con�dentiality,
the essential is that no information is revealed. Even though the ACROSS
MPSoC architecture is focussing on the integrity, lots of the properties provided
also enforce the con�dentiality.

The security mechanisms provide protection as a Lattice-based access control
with one label [San93], i.e. if you have the right security level according to the
IL and CL, you will be allowed to read or write information. In contrast Role-
based access control [SCFY96] could provide a more complex security, as access
control are assigned to di�erent roles instead of just a security level controlled by
the system. Role-based access control will not be taken into account or covered
by this paper. That means that we treat information as it has no special owners
or readers, but just a speci�c level of security.

3.4.1 Individual Integrity and Con�dentiality Level

To ensure the con�dentiality we have added a con�dentiality level to the original
design. The CL prevents the information from �owing from a high classi�ed
component to a lower classi�ed component [WESK10]. The con�dentiality level
is not merged into the integrity level to obtain one single combined security
level, but is an independent security level. This ensures the information �ow in
a secure and orderly manner.

I have earlier in Section 2.3 and 3.1.2 discussed the relation between the in-
tegrity level and the con�dentiality level and illustrated it in Figure 2.2. A more
complex �gure with four levels of integrity, where IL 1 is lowest and IL 4 is the
highest, and three levels of con�dentiality (UC<S<TS) are shown in Figure 3.6.
Component τ1 has a high integrity level and a low con�dentiality level and can
therefore send messages to all the other components. In the other end of the
scale is τ4 with a low integrity level and a high con�dentiality level. τ4 can only
send messages to other components with the same level con�guration, but as no
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Figure 3.6: This is a more complex con�guration than Figure 2.2. In this
example the tasks can have an IL from 1 to 4 and a CL of either
UC, S or TS. It complicates the information �ow, but still the
combination of the highest IL and lowest CL in τ1 has a free �ow
to the other tasks.

such exists, it cannot send messages to the other components. τ2 has a medium
integrity level but a high con�dentiality level, can therefore only send messages
to τ4; and τ3 has a medium level in both integrity and con�dentiality and can
send messages to τ2 and τ4.

3.4.2 Separation and Partitioning

The separation is an architectural foundation in the ACROSS MPSoC architec-
ture. By isolating the tasks of di�erent criticality, the integrity as well as the
con�dentiality are enforced, since information cannot be leak or damage other
partitions. Several tasks of same security con�guration can share a partition and
the information inside a partition can potential �ow from one tasks to another.
This will not be a problem, as information is not bound to an owner but to a
mutual security level and the tasks sharing the partition are at the same level.
If needed it is possible for the designer to prohibit tasks to share a partition.

The separation does not enforce the con�dentiality if an intruder gets access
to the information. But is prevent a covert channel, where information are
unauthorised leaked from one partition to another, to be formed. Neither can
old information, placed in a partition by a high CL task, be read at a later point
in time by a low CL task, due to the sanitation of shared partitions.
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3.4.3 The Trusted Subsystem

The mechanisms that provide safety in the TSS also provide security, as the
encapsulated communication channels improve both the integrity and con�den-
tiality. It controls the information �ow and guaranties the identity of the sending
and receiving component through the TRM. This guaranty of the identity, are a
security property. It ensures that a malicious component cannot take the place
of another component and thereby send malicious information or receive sensi-
tive information. It also enforces the safety, as only authorised components can
send messages and no malicious information can endanger the safety.

3.4.4 Secure Channel

Con�dentiality is ensured by the �ow control as long as an intruder does not
get access to the �ow by e.g. eavesdropped on a communication channel, i.e.
the information are only secure as long nobody gets access to it. To protect
the information from unauthorised access we can encrypt the information and
make it gibberish for the intruder. A SC adds cryptographic algorithms to the
information from end-to-end sent over the TTNoC [IW13]. The AES algorithm
is recommended. The Secure Kernel of the SC can be implemented in hardware
and manage the shared keys and key generation on a special hardware com-
ponent. As it is the key generation that takes the most computational power,
and applying the key to the information only increase the computational time
minimal, the SC ensures a strong and fast en-/decryption to the system. This
enforces the secrecy and con�dentiality. The SC does not a�ect the normal
con�dentiality �ow.

3.4.5 Crypto Component

For a longer lasting encryption, a Crypto Component can be used. The Crypto
Component is a special component that adds cryptographic algorithms to in-
formation, but is not decrypted at the receiving task, as is the case with the
SC. This ensures that the task cannot understand the information and thereby
reveal the secret information.

The Crypto Component ensures that output will have the same IL as the input
and only task with the same (or higher) CL can have the information decrypted
again, i.e. encrypted information will have the lowest CL, but return to its
original (or higher) CL when decrypted. This re-establishment of the CL is
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important to ensure the con�dentiality �ow.

3.5 Behaviour

Without the extensions to the communication services provided by middleware,
the information �ow would be quite rigid. The VaM relaxes the integrity �ow
by allowing redundant low IL tasks to send messages to a high IL task with a
VaM implemented.

Communication between two SoC uses a external network. Information on that
network is target for eavesdropping and needs to be encrypted in order to ensure
the con�dentiality. A Secure Channel is implemented in the middleware and
handles the encryption in a fast and e�cient manner.

To understand those two mechanisms I give two behavioural examples and follow
a message from the sending task to the receiving task.

3.5.1 VaM

Figure 3.7 describes the message path from task τ1 in component C1 to task τ4
in component C4. τ1 have a lower IL than τ4, so a VaM are implemented in C4.
τ1 writes a message m1 (1) into the port memory (2) in the FE. The schedule
SS in the TISS (3), control when the message from the port memory (4), can
be sent out on the TTNoC (5). The mechanisms and routing in the TTNoC
will not be discussed here and can be interpreted as a black box managed by
the TRM. When the message arrives at the receiving component C4 (6), the
schedule SR (7) in the TISS will check that the message m1 arrive at the correct
time from the correct sender. As the sending task τ1 has a lower IL than the
receiving τ4, the message goes through the port memory (8) to the VaM (9).
In the VaM the messages have to wait until redundant/diverse messages arrives
from the redundant/diverse tasks τ2 and τ3 in components C2 and C3. The
VaM runs a validation algorithm when all messages have arrived, to produce a
higher IL output. The new message m2 (10) is received by the task τ2, which
now can start to provide its application service.
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Figure 3.7: Illustrates the behaviour of the VaM. The message path for m1

with IL 1 is followed through the system. The VaM takes three
redundant messages, arriving at di�erent timeslots, to produce a
new message m2 with IL 3.

3.5.2 Secure Channel

Figure 3.8 describe the usage of the Secure Channel (SC) and the gateways in
IO-components. I will not take IL or CL into account as it brings nothing to the
understanding of the behaviour of the system when using a SC. The description
is of the system and not of the SC itself nor is the behaviour inside the SC
described.

A task τ11 placed in C11 want to send a message m2 to τ12 in C12 and a message
m1 to τ22 in C22. τ11 and τ12 is placed on the same SoC and uses therefore the
standard communication channel and is comparable to the behaviour described
in VaM. The standard communication channel o�ers no encryption and will not
increase the WCET for the tasks. It is used in on-chip communication, as it is
assumed eavesdropping on the TTNoC is not feasible.

I will in the following simplify the description of the behaviour in the FE and
refrain from describing the standard communication channel, as it has already
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Figure 3.8: Illustrated the behaviour of the system with a SC implemented.
The red message path shows the message m2 using a standard
communication channel in an on-chip communication between τ11
and τ12. The green message part form1 is using the SC to establish
o�-chip communication between τ11 and τ22. A TTEthernet are
used to combine the two SoC.
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been done for the VaM in Section 3.5.1. For the same reason will I not describe
the message path for m2 (the red path) and only describe the path for m1 (the
green path), as τ22 are placed on another SoC and m1 thereby goes through the
Secure Channel. The two SoCs are linked together with an external network, in
this case a TTEthernet.

The message �ow (1) from τ11 to the SC where it is encrypted with a symmetric
key. The key management and generator are outsourced to a dedicated hardware
component and are transparent to the tasks. The a priori known temporal
schedule SS (2) in TISS allows message m1 (3) to �ow to the internal TTNoC
(4). An equivalent receiving scheme SR (5) allows messagem1 to arrive (6) at the
specialised IO-component. A gateway is placed in the IO-component, providing
an interface to the external network. The encrypted message (7) �ows through
an output gateway and out to the external network (8). An IO-component in
the receiving SoC (9), receives the message through an input gateway. The
message �ows through the new SoC (10-13) in the same way described in (2,
4-6) and is received by C22 (14). The message �ows through the SC (15) and
�nally (16) ends it �ow at τ22.

3.6 Assumptions

The paper is purely theoretical and some assumptions are important for the
design of the system. The �rst three assumptions are crucial for the safety and
security of the system, while the last two have more character of relaxing the
description.

3.6.1 TSS Is Free For Design Faults

Even though it is common knowledge that no software is free for bugs, it is
assumed that the separation kernel (SK) and TSS are free for bugs and design
faults. To realize this assumption, the trusted parts (the SK, TISS, TRM and
TTNoC) are designed as simple and with as small piece of code as possible. This
makes them easy to analyse and validate. Furthermore the TSS is transparent
to the architects of tasks, who programs up to an interface with no possibility
to change the TISS. If SK or TSS is compromised, the foundation of the safety
and security of the architecture collapses.
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3.6.2 No Malicious Attack Before Runtime

As an addition to the previous assumption, it is assumed that a malicious attack
has not taken place in the design phase, i.e. the TSS is free from design faults
caused by both the designer and a malicious attacker.

Possible attack in the design phase could be to add a backdoor to get access
to the system at runtime or implement a covert channel to obtain information
of the system. Virus could also be implemented by malicious persons, causing
the system to misbehave or leaking information. Even though the threat is real
(a virus on the computer the system are developed on, could implement itself
to the TSS), these attacks in the design phase are assumed not to happen and
therefore it will not be covered.

3.6.3 No Malicious Attack on TTNoC

It is assumed that it is not feasible to attack the TTNoC or reading the memory
of the components [IW13]. However is it possible to manipulate or eavesdrop
upon the physical connections and the pins on the physical device. Combined
with assumption of no attacks before runtime, the SoC cannot be tampered if
the SK and TSS works as intended.

3.6.4 Not Looking Into the TTNoC

I regard the TTNoC as a closed and trusted system, i.e. a black box. I have
looked at the time-triggered properties but not how it works in details or how
the messages are routed inside the TTNoC. The reader is redirected to [SEH+12]
where the TTNoC are described in some details or to [Sch07] for deeper details.

3.6.5 One Combined Safety-Security-Level

Safety integrity and security integrity are both interpret as one combined safety-
security-level. By that the integrity level (IL) covers both safety and security in
one label. It is allowed as both safety and security wants to protect alternation
and a violation against one kind of integrity also violates the other kind of
integrity. Furthermore the decomposition of safety integrity would not a�ect
the security integrity.
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Chapter 4

Design Tasks

In this chapter I will try to elucidate the consequences a design decision will
have on the system.

4.1 How design decisions in�uence the system

For every action there will be a reaction, as Newton's third law says. This
applies at some point to the architecture of the system. We must make some
considerations and decisions to improve the system, but those decisions may
cause some restrictions. By improving the safety or security of the system, the
cost in development time and money will increase. And a use of strong security
on a real-time safety system, the computation of messages may be slowed so
much down, that it may a�ect the real-time and thereby the safety.

4.1.1 Safety

The problem the ACROSS MPSoC had to solve, was the di�cult certi�cation of
large and complex safety systems. Earlier integrated safety systems, as Totel's
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integrity model [TBDP98], were certi�ed as a whole at the highest integrity
level of the system. The ACROSS MPSoC solve this problem by the concept of
separation of subsystems [WESK10], so that the subsystems could be certi�ed
separately. As certi�cation means time and money, the cost of a ACROSS
MPSoC system was cheaper than earlier systems. Even though, raising the
safety of a system, by increasing the integrity level of a subsystem, still means
a system is certi�ed at a higher level and thereby at a higher cost.

A task can be decomposed to two redundant tasks with lower integrity levels
according to Table 2.3. This means the cost to certify the system will decrease,
but also means there are more tasks to be placed on the partition slices and
the schedule table. A Tabu Search-based approach is proposed in [TSP13] for
optimisation and calculates the optimal con�guration to lower the development
cost. Without the optimisation the task would be hard to schedule. To schedule
tasks without optimisation the period could be extended, but that is not a
solution and could compromise the hard real-time properties and thereby the
safety. Due to the longer Tcycle a single task would be assigned access to the
communication network less often and would not meet its deadline.

Even though a lower price in the development is desirable, it come with a cost
in the unit price, as a lower cost in the design phase caused by decomposition of
tasks, will result in more units. A higher unit cost is probably more a�ordable
and preferable than a high development cost.

The safety of the system can also be increased by using more redundancy on the
SoC, but it would increase the number of tasks and units as discussed above.
Redundancy of the SoC, with o�-chip communication is alto a possibility, but
is out of the scope of this thesis. The reader is redirected to [OKS08].

4.1.2 Security

Security can be crucial to ensure safety. Adding strong security to safety systems
may compromise the safety properties, e.g. longer WCET caused by heavy secu-
rity computations. It is important to remember that the system fundamentally
is a safety system with a layer of security and not the other way around.

4.1.2.1 Encryption

Encryption will add secrecy and thereby some con�dentiality to the safety sys-
tem. It is easy to apply, as it does not interfere with the integrity �ow. But
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encryption is not just encryption. The level of security can vary from light en-
cryption, easy to compute but also easy to break, to strong encryption which
demand heavy computations but is hard (if not impossible of today's standard)
to break. Embedded systems have limited computational resources and strong
encryptions could start a race for resources, so encryption is a payo� between
powerful secrecy and fast computation.

Light encryption, e.g. XOR, is less invasive than strong encryption and need
less computational power. With strong encryption, e.g. AES, follows heavy
computations, which costs a lot of resources and is time demanding. The simu-
lation in [WES08] shows us that AES is harder to compute than XOR. Most of
the hard computations is creating and managing the keys. The secure channels
proposed by [IW13] o�oads the key generation and key management out of the
SoC to special system components. By doing so and by ensuring that a key will
always be ready to use when needed, the temporal extension will be minimal,
as the key only has to be applied to the message. This make the encryption less
invasive, but a little increment in the WCET must be taken into account and
the schedulability will decrease a bit.

4.1.2.2 Flow and Con�dentiality Levels

Encryption are only one part of security con�dentiality, the other part are the
con�dentiality �ow. The upward con�dentiality �ow clashes with the downward
integrity �ow. For that reason every task has two independent security levels,
the IL and CL. A con�dentiality �ow interfere therefore not with the integrity
�ow. However a high CL will interfere with the overall information �ow, as a
low CL �ows freely to other CL, while high CL is restricted to �ow to other
CL at the same level. Adding a unnecessary high CL to a task could cause
problems in the information �ow and the designer must carefully decide the CL
for each task. E.g. if redundant sensors are assigned a unnecessary high CL,
the receiving task must be at a equally or higher CL.

A system with lots of high CL tasks might not necessary be a problem to the
schedulability due to restrictions of the information �ow. If all tasks are at
the same level, the information can �ows freely if integrity is not taken into
account. But a security system with only a single level of security would not
need CL at all and could just adding encryption. A widely variation of the CL
(and IL) can on the other hand decrease the schedulability, as the dependencies
became more complex. The information between the tasks is given before the
scheduling, but it is important that task placed in the same partition is at the
same CL. Elevation of a task to a higher CL is not possible as it is with IL.
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Figure 4.1: A toy example of the increasing WCET by using middleware,
caused by a poor decision in the assignment of CLs. In Ex. 1
the information have a clean upward con�dentiality �ow, while in
Ex. 2 the τ1 and τ4 need the implementation of a FCM in order
to circumvent a downward con�dentiality �ow. The use of mid-
dleware increases the WCET causing the deadline to be delayed.

The levels in CL are not limited to a speci�c number and so far in this paper I
have operated with three levels; UC, S and TS. It is possible to apply each task
with its own unique CL. This will improve the security as we will have a strict
unidirectional con�dentiality �ow through the system. With unique CL tasks
cannot share partitions, witch also improve the security, as information cannot
�ow between two tasks in separate partitions, unless they communicate through
the conventional communication routes.

With unique CL for each task, the designer need to have a complete overview
of all the tasks. In some cases encryption or a �ow control middleware (FCM)
must be applied in order to circumvent the upward information �ow, but both
solutions will extend the WCET of the tasks, as a task covers bothe the ap-
plication speci�c services and the middleware. A toy example to illustrate the
extended WCET is given in Figure 4.1. Here Ex. 1 illustrates a system with
clean upward con�dentiality �ow and Ex. 2 illustrates an identical system, but
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with a poor decision of assigning CLs, causing a downward con�dentiality �ow
from τ1 to τ3 and from τ4 to τ6. To circumvent the �ow a FCM are added to τ1
and τ4, which resulting in increased WCET for the two tasks.

4.1.2.3 Optimisation

The Tabu Search-based optimisation algorithm proposed by [TSP13] is not de-
signed for con�dentiality. The addition of the con�dentiality to the system has
a direct impact on how to schedule the tasks and messages. An additional com-
putation time for middleware and encryption increases the WCET, the upward
information �ow must be taken into account and the prohibition of two tasks
with di�erent CL sharing a partition; must all be added to the algorithm.

4.1.2.4 Security or Safety

Our system o�ers security decisions made in the design phase of the systems.
When the architecture is in use, it is not feasible to change or update the security.
At update, the system must be taken o�ine. I have assumed that the trusted
part of the system is free of design faults and no malicious attack has taken
place before runtime. In reality such assumptions might not hold, as malicious
code can be smuggled into the system at the design phase or via an update of
the system. A virus or a Trojan horse can be added and endanger the safety
and security of the system. To react upon such malicious code, we need some
updated antivirus. But it is a endless race with the malicious code on one side
and the antivirus on the other, as threats are freshly discovered all the time and
the scanner must be updated to recognise them.

This brings another problem. We can guarantee the safety or the security, but
not both. Safety requires slow updates to validate the system and ensure it
is still safe. Security needs quick updates to ensure the antivirus to recognise
the threats. The safety validation could easily take weeks or months, and in
that time the system is exposed for the known threads. Even new threats may
be discovered during the validation and the system needs to be updated and
validate once again. In other words, if the system is validated caused by a
security update, it is not completely secure during the time the validation takes
or if the system is updated without a validation, it might not be safe. This
leaves us with the question: �Do we want our system to be completely safe or
completely secure?�, because we cannot have both. Due to the assumptions of
no such attack, this is out of scope of this thesis, but could be a future research
project. The system I propose is a safety system, with some security properties
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in form of secret communication and unidirectional information �ow between
tasks in relation to their safety and security con�guration.

4.1.3 Schedulability

The ability to schedule the tasks is important for the system. Decisions made
for safety or cost can increase the number of total tasks and that will a�ect the
schedulability. It could happen by introduce many redundant tasks for safety
reasons or by deduction to reduce the cost.

Tasks can share partitions if the con�gurations of the IL and the CL are the
same and the tasks not sharing edges in Π, as described in Section 2.1. The
more the tasks can share a partition, the easier it is to schedule. To increase
the schedulability, a task can be elevated to a higher IL. By elevating the task
it can be placed in the same partition as other tasks with the same IL and are
thereby easier to schedule. The cost will increase with elevation.

Figure 4.2 gives a example of �ve tasks and the sharing of partitions. The tasks
IL and WCET are shown in Table 4.1 and have no input nor output. The
processing element N1 has two partitions in a MF; one of IL 1 and one of IL
2. In a) τ5 is not mapped to the N1, as τ5 is of IL 1 and the free space in the
partition on N1 is of IL 2. In b) τ5 is elevating and it can share partition with
τ4. A toy example are illustrated in c) where all tasks are of IL 2. The tasks can
now share all the partitions, and make the scheduling easier for the designer.

Decisions made for security may a�ect the schedulability as well. The require-
ment of the same CL among tasks sharing the same partition decreases the
schedulability. The restricted information �ow makes the system more complex
with fewer possible communication paths, but those paths are designed before
the scheduling and will not a�ect the schedulability.

To increase the schedulability, it is desirable to have as many equal tasks with
the same safety and security con�gurations as possible. But it would in most
cases increase the cost and would not be desirable for the safety or security
requirements.
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Table 4.1: The con�guration of the tasks used by Figure 4.2.

τi IL(τi) WCET (τi)
τ1 1 2
τ2 2 2
τ3 1 2
τ4 2 1
τ5 1 1

Figure 4.2: Illustrates the the scheduling of the tasks from Table 4.1. In a) τ5
cannot be mapped as there is no free partition for IL 1. In b) τ5
is elevated and can share partition with τ4. c) is a toy example
where all tasks are elevated to IL 2 and can share partitions with
each other and makes it easier to schedule.
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Chapter 5

Conclusion

I have in this thesis discussed some methods to add security to a safety system.
The security layer is applied the ACROSS MPSoC architecture, which is based
on integrity and therefore already have security integrity applied.

Adding con�dentiality to an integrity system, need some consideration and de-
sign decisions. To overcome the challenge of two opposing �ow, I have present
a design that allows both an integrity �ow and a con�dentiality �ow. A task
has already been applied an integrity level in the ACROSS MPSoC architec-
ture, which determine the downward �ow in the integrity domain. By adding a
supplementary con�dentiality level determining the upward �ow in the con�den-
tiality domain, a task can be con�guration with restrictions both the integrity
and con�dentiality �ow. The two levels are not a�ecting each other.

Con�dentiality covers the secrecy as well, for what I have suggested the use of
a secure channel. By applying end-to-end cryptographic algorithms to informa-
tion going outside the SoC, an eavesdropper would not be able to comprehend
the leaked information on an external network. I suggest the usage of AES
cryptographic algorithm, as it can be implemented in hardware and ensure a
minimal increase in computation and WCET.

The usage of a special dedicated component for cryptographic, has been dis-
cussed, as a supplement or replacement for the secure channel. It has the ability
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to provide long lasting encryption compared to the end-to-end approach of the
secure channel, but also creates more messages and tasks to the system. The
importance of recreate the security level con�guration of an encrypted message,
is also discussed in this paper.

I have made some pointers to consider for the partitioning, the schedulabitity
and for adjusting the Tabu Search-based optimisation algorithms, in order to
take the con�dentiality into account. The con�dentiality level of a task has a
direct impact on how to share partitions. The extra time in the WCET caused
by encryption, must also be taken into account.

For future work it could be interesting to consider attack before runtime and
analyse the issue of a security system with a short update interval, combined
with the slow certi�ed safety system. Another topic for future work could be
to investigate how Role-based access control, in contrast to the Lattice-based
access control used in this thesis, would a�ect an embedded safety system.



Appendix A

Abbreviations

Application Computer AC
ARTEMIS CROSS-Domain Architecture ACROSS
Component C
Con�dentiality Level CL
Evaluation Assurance Level EAL
Flow Control Middleware FCM
Front End FE
Integrity Level IL
Multiple Independent Levels of Security (and Safety) MILS
Multi-Level Object MLO
Multi-Processor System-on-a-Chip MPSoC
Processing Element PE
Resource Management Authority RMA
Secret (level in CL) S
Secure Channel SC
Static-Cyclic Scheduling SCS
Safety Integrity Level SIL
Separation Kerne SK
Single-Level Object SLO

continues. . .
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System-on-a-Chip SoC
Trusted Computing Base TCB
Time-Division Multiple Access TDMA
Trusted Interface Subsystem TISS
Trusted Network Authority TNA
Trusted Resource Manager TRM
Top Secret (level in CL) TS
Trusted Subsystem TSS
Time-Triggered Architecture TTA
Time-Triggered Network-on-a-Chip TTNoC
Unclassi�ed (level in CL) UC
Uniform Network Interface UNI
Validation Middleware VaM
Validation Object VO
Worst Case Execution Time WCET
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Notations

A set of all the applications Γ
An application subsystem in Γ Ai

The application graph Gi(Vi,Ei)
A set of all tasks V
A set of all nodes Vi

A set of all edges in Gi Ei

A task in Gi τi ∈ Vi

The mapping of tasks to partition elements M : Vi → N
Assignment of task to partitions φ : V → P
Set of partitions P
Partition Pj

Set of partition slices of Pj on Ni Pij

The kth partition slice of Pj on Ni pkij
A set of the processing elements N
An edge in Gi ejk
A protection requirement graph Π(V ,E)
τi and τj are not allowed in same partition srij ∈ E
An message in Gi mi

Size of mi smi

continues. . .
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WCET for task τi Ci

Deadline for Gi DGi

Period for Gi TGi

Integrity level of τi il(τi)
Con�dentiality level of τi cl(τi)
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