Automation of memory-based
|OC analysis

Alberto Rico Simal

DTU

I

Kongens Lyngby 2015

Technical University of Denmark

Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Summary

The purpose of this thesis is to identify and implement an automation system
over the Volatility platform, providing a way to analyze memory images from
an array of hosts in an efficient manner, with the goal of detecting indicators of
compromise (IoC) within them, among a set of predefined malware traits.

To achieve this, an organizational context is assumed, where there’s an infras-
tructure of hosts within a typology, sharing therefore a set of security policies,
allowing the IT security manager to effectively maintain and verify the com-
pliance of the latter, as well as to respond to an incident in an efficient way.

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring an M.Sc. in Engineering.

The thesis deals with the possibilities of automatization of Indicator of Compro-
mise discovery, as well as ways of enforcing security policies for those hosts in
the context of an organization, fostering the capabilities of Volatility, a memory
analysis tool.

The thesis work here presented consists of the following parts:

e Introduction and State of the Art, ranging over the current possibilities
regarding memory-analysis, IoC discovery, and automation.

e Design, where different possibilities for such system implementation are
evaluated and criticized.

e Testing of the resulting system, rating the capabilities and results obtained
in a staging environment.

e Conclusions that can be drawn from the presented results, as well as future
work that can be envisioned from the final status of the work.

The presented work is original, and credit is given where due, especially to the
Volatility Foundation team, which tool is used here under its GNU General
Public License.

Lyngby, 26-June-2015

Alberto Rico Simal

Acknowledgements

I would like to thank my supervisor, Robin Sharp, for his guidance and insight,
throughout the completion of this project.

I’d also like to express my thanks to the NordSecMob Consortium and its team,
for the opportunity to take this master program under the Erasmus Mundus
Master Course scholarship.

And, of course, to my family and friends, without whose support and love, this
wouldn’t have been possible.

Contents

Summary i

Prefacd

—e
e
e

JAcknowledgementsg

<

U_Introduction
IL.I Indicators of Compromisg o .

L2 AP1T - Advanced Persistent ['hreatd

IL.o Memory-based analysis, Volatility]

L5 Projectplado
...............................

LW W N NN = -

2_>tate of the artl

E.1 Automated memory analysis tool§
| 2 | EnCase Forensid

212 MAGNET TEE

21a Mandiant KRedlimd00,
Eg.1.4 Volatility] oo

E.0 Manual analysis with Volatility]
R.o.1 Example: inding Wins2/PowerLoader

E.0.2 Automatizing the procesy

2.4 WININATY] « . v v v v e

—
e C N HEN BEN e i o> RN, V) |

—_

3 D o 15
BT Design deciSiong v i e e e e e 15
B.I.T Risk, probabilify and uncerfainty] 15

viii CONTENTS
B.I.Z Targetsystemd 16

1.3 Target traits, Volatility plugind 16

o1l 4 Chenf-server architecturd 16

p.2 lmplementation requirementy 17

§ DA . . e 17

B-2:2" Functional requirementd 17

B-2:3 Non-functional requirementy 20

3. UININATY] « « « « « v v e 21
Ad_Tmplementation and testing 23
E- I FEngine implemenfation 23
ET. T Volatiity integration 25

A.l.2 Algorithm e 25

T3 Webnferfacd 26

1.4 Memory image acquisition] 26

4 o . L e e e 27
2T Fonvironmenfl 27

g.2.2 lmage file compressiono L 27

EZ3 Tmage populafiod 28

EZ4 Benchmarking, 29

1. UMIMNATY] o« v v v v v v e e e e e e e e e e e e e e e e e e 36

b Conchisiond 39
p.- I Compliance with original goald 39
B Fufureworl L L L e e 40
[A_Deployment manual 43
AT Prerequisited 43
A2 Obtfaining the softward 44
A3 Server deployment]o 44
A4 Exampleofusagd 44
Bibliography 47

CHAPTER 1

Introduction

1.1 Indicators of Compromise

Indicators of Compromise, when related to Computer Forensics are defined as
"forensic artifacts of an intrusion that can be identified on a host or network" [I2].
This relates to the traces inherent or related to the attack vector followed to
compromise the host (e.g. an open network connection to a system under the
attacker control).

Abbreviated as IoC, they can fall under very different categories, and they can
be more or less descriptive of an attack, depending on the probability of such
traits making an appearance under a not-compromised system status. This is,
an IoC can be as simple as an unknown running process, in the case of a host
where there’s an explicit policy about those. In a system where a user can run
different applications, we would need more information about every unknown
running process, rather than deeming their existence as IoC.

For lack of better words, we can refer to such concepts as "resolution" and
"scope". Resolution would describe the probability of an IoC pertaining to an
actual attack, while scope defines how much of the attack behaviour can be
captured in the IoC description (e.g, a black-listed device driver existence, as
IoC, would have a high resolution, although might have a low scope rating, if

2 Introduction

the device can use different drivers).

Due to the variability and difficulty to express such ratings due to malware vari-
ability, and developing the current project focused on an organizational scope,
we’ll focus on those IoCs that can be described through security policies.

1.2 APT - Advanced Persistent Threats

In counterposition to general web security threats, where vulnerabilities are
exploited in mass through the usage of web-crawlers, and usually take place
after public release of the vulnerability details, APT security threats are those
targeting a specific entity, in a stealthy and continuous manner. They are defined
as advanced, due to the sophisticated techniques used to achieve them, usually
involving zero-day vulnerabilities (vulnerabilities not yet publicly known).

These are usually focused on targets where the reward for a successful intrusion
outweighs the research and work needed, such as government systems, or compa-
nies with valuable or strategic electronic assets; and/or when an attacker needs
a larger window between the attack and its consequent discovery and incident
response.

1.3 Memory-based analysis, Volatility

The type of analysis chosen to gather information about the target system sta-
tus, is memory-based, where an image of the running system will be taken and
run through the automated discovery tool.

This provides us, technically, with all the data as for how the system is currently
running, as well as residual artifacts of behaviors that executed sometime in the
past, provided the image includes all physical address spaces|i3, p. 57]. This is
of importance for the detection of advanced persistent threats.

1.4 Automation

Collection and process of memory images will follow a client-server scheme,
where a system will be receiving and queuing them through the analysis process.

1.5 Project plan 3

The rationale behind this is that network bandwidth is ample within the or-
ganization scope, while individual hosts might be of limited processing power.
This makes it logical to transfer large image files over the network, delegating
the analysis to a server, or servers, where the image analysis can be scheduled
and processed without disturbing the workload of the systems.®

Additionally, this scheme fits well into Incident Recovery situations, where a
set of servers can be spawned aside, without running anything but a memory
snapshot tool on the target systems.

1.5 Project plan

The time allocated for the development of this project is in accordance to
the ECTS system, where 1 ECTS point equates to approximately 25 hours
of work.[8] Given 30 ECTS points, 750 hours are planned for all the project
phases, including:

e Research, state of the art, scope definition.

e Design.

Implementation.

e Testing, evaluation and documentation.

The schedule was devised following the Gantt diagram in figure I, for each of
the 20 weeks for the project.

1.6 Summary

We have defined what an IoC is, as well as how they can be discovered through
memory analysis, with a rough idea on how such system could be automatized.

Thus, we are ready now to describe the current state of the art of the field.

I Assumming those systems need to be continuously available, as in servers, or that the
analysis will be scheduled more than once a day, discarding the nightly processing.

Introduction

Initial research

Domain research

State of the art

Scope

Scope defined

Design

Generalities

Functional requirements

Non-functional requirements

Design outlined

Implementation

Volatility integration

Automation system

TIoC deciders

System implemented

Evaluation

Testing

Documentation

Project delivery

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10|11|12|13|14|15|16|17|18|19|20

\ 4
P

*
P
E—
*

Figure 1.1: Project schedule

CHAPTER 2

State of the art

2.1 Automated memory analysis tools

The market for memory analysis tools, focused in security, is a niche area, with
few representatives including:

e EnCase Forensic.[23]
o MAGNET IEF. [6]
e Mandiant Redline. [I7]

e Volatility.[§]

All these fulfil the analysis requirements for IoC discovery (performing struc-
ture/artifact search through provided memory images), but have different char-
acteristics that limit the possibilities regarding expansion or scripting, as re-
quired for a project as the present one.

The license with which the tools are published, as well as the availability of an
API, possibility to integrate custom modules/scripts, or a command-line feature
to customise searchs, are the features subject to comparison (see figure ET).

6 State of the art

[Tool I License | API | Custom mod. | Command-line |
EnCase Forensic Commercial No No No
MAGNET IEF Commercial No No No
Mandiant Redline || Freeware (closed-source) | No No No
Volatility GNU-GPL (open-source) | No Yes Yes

Figure 2.1: Memory analysis tools considered for the project, considering
scripting/automation potential, or extension with custom mod-
ules

2.1.1 EnCase Forensic

The first one, part of the EnCase solution, is probably the most popular frame-
work for forensics analysis in industry, providing as well the means to produce
evidence in court, according to the developers claim that it "preserves data in
an evidence file format (L01,Lx01 or E01, Ex01) with an unsurpassed record of
court acceptance"[22].

Although open/raw formats are readable by this solution, the mentioned formats
are proprietary, just as the product itself, limiting its possibilities for the present
project.

2.1.2 MAGNET IEF

As for MAGNET IEF (standing for Internet Evidence Finder), it provides an
intuitive interface for evidence gathering, focusing on the permanent storage,
but providing as well with a "RAM Capture" tool, allowing us to run a lim-
ited artifact analysis on the resulting memory dump. Nevertheless, the same
publishers refer[5] to Volatility and Mandiant Redline for further analysis.

2.1.3 Mandiant Redline

Mandiant Redline is closer to the kind of analysis required by this project,
specifically dealing with IOCs, and using an open file format for the description
of these, OpenIOC|I0]. This enables security analysts to run tests over a batch
of indicators of compromise, individually, per image.

2.2 loC definition format 7

2.1.4 Volatility

With Volatility, we find the first completely open solution in the field, allowing
us to run different kinds of analysis that can uncover IoCs, over memory images.
The offered analysis plugins are extendable, thanks to the open-sourced code[IT],
and although it doesn’t offer an API, it’s possible to develop one on top of the
existing code (in Python), calling the plugins selectively and, therefore, allowing
full automation®.

2.2 ToC definition format

Mentioned before, the OpenlOC framework is the only currently open-source
format, for IoC definition. It’s based on XML, meaning that it’s extendible, and
that its usage is eased by the availability of XML parsers in most languages.

It follows an AND/OR tree structure, where individual traits within the IoC
are specified, establishing a relationship between them and the relevance of their
co-existance.

This seems ideal for checking of individual indicators of compromise; however,
in the corporate scope, it doesn’t cover the possibility of defining white or black
lists for traits that have not been described before, but are part of a security
policy.

Due to the project context, the definition of such lists would enable the resulting
system to detect behaviours that haven’t been described as malicious, but should
trigger an alert due to policies or known preconditions, potentially enabling
discovery of advanced persistent threats.

2.3 Manual analysis with Volatility

To understand how to automate IoC discovery, it’s first relevant to expose how
a manual analysis is performed, looking for a set of traits in a potentially com-
promised memory image.

IPlease refer to "Implementation and testing" chapter for an overview about how integra-
tion between Volatility and our platform was achieved.

8 State of the art

2.3.1 Example: finding Win32/PowerLoader

Here we’ll start with a simple case—finding evidence of compromise by a typical
Windows trojan. In this case, Win32/PowerLoader[2].

The intelligence that we have previously gathered is a set of traffic samples[d],
where we can see that the trojan uses a hard-coded IP address to locate its relay
server: 172.16.253.130. We can see such sample below:

2013—-02—-03 22:51:29.389714 1P 172.16.253.130.53 >
8.8.8.8.53: 34738+ A? real—newslife[.]com. (35)

E..?7.@5.5.+.".real—newslife [.]com..

2013—-02—-03 22:51:29.389769 IP 172.16.253.130.53 >
4.2.2.2.53: 34738+ A? real—newslife [.]com. (35)

E..?.A5.5.+.j.real—newslife [.]com..

2013—-02—-03 22:51:29.533563 IP 8.8.8.8.53 >
172.16.253.130.53: 34738 1/0/0 A 213.57.77.220 (51)

E..Ohb5.5.;real—newslife [.]com.T‘9M.

2013—-02—-03 22:51:29.542478 TP 172.16.253.130.1067 >
213.57.77.220.80: Flags [S], seq 2345406742, win
64240, options [mss 1460 ,nop,nop,sackOK], length 0

E..0.Ca-OM..+.P..p.(.

2013—-02—03 22:51:29.564096 IP 4.2.2.2.53 >
172.16.253.130.53: 34738 1/0/0 A 213.57.77.220 (51)

E..Ohc..5.5.;P=.real—newslife [.]com9M.

2013—-02—-03 22:51:29.732505 IP 213.57.77.220.80 >
172.16.253.130.1067: Flags [S.], seq 294311925, ack
2345406743, win 64240, options [mss 1460], length
0

E.. hd.9MP.|..‘E

2013—-02—-03 22:51:29.732618 IP 172.16.253.130.1067 >
213.57.77.220.80: Flags [.], ack 1, win 64240,
length 0

E..(.D@-QL.}.P..P|]|..

2013—-02—-03 22:51:29.732932 1P 172.16.253.130.1067 >
213.57.77.220.80: Flags [P.], seq 1:267, ack 1, win
64240, length 266

E..2.EQ,9M.. +.P..P

POST /postnuke/blog.php HTTP/1.1

User—Agent: Mozilla /4.0 (compatible; MSIE 7.0; Windows
NT 5.1; InfoPath.1)

2.3 Manual analysis with Volatility 9

Host: real—newslife [.]|com
Content—Length: 84
Cache—Control: no—cache

First, we want to check if any connection has been created towards that address.
We use the "connections" Volatility plugin to obtain a list of those (sample
abbreviated listing below):

18:26 (master) ~/Documents/Development/my—stuff/master
—thesis/src/client$ volatility connections —f DTU-5
A40BFDB6ES6 . raw

Volatility Foundation Volatility Framework 2.4

Offset (V) Local Address Remote Address Pid
0x8620d688 10.0.2.15:1195 2.16.63.24:80 2024
0x862a3458 10.0.2.15:1123 2.16.63.48:80 2340
0x8631¢c790 10.0.2.15:1179 2.16.63.24:80 2024
0x8659bcd8 10.0.2.15:1175 2.16.63.48:80 2024
0x86204440 10.0.2.15:1170 172.16.253.130:53 2340
0x86233528 10.0.2.15:1251 216.58.209.130:80 2024
0x8623a298 10.0.2.15:1227 50.31.164.166:80 2024
0x862ce6d8 10.0.2.15:1116 216.58.209.130:443 2808
0x86449988 10.0.2.15:1092 216.58.209.106:443 2808

The result yields the offset at which the connection structure is located, along
with the connection vector (IP addresses and ports), and the PIDs of the pro-
cesses that hold them.

At this point, we have detected that, in fact, the system is or has been connected
to the address (an indicator of compromise in itself). Nevertheless, we now want

to know which process established the connection.

From the entry, we see that the process ID is 2340. We can obtain a listing of

10 State of the art

the processes, along their PIDs using the "pslist" plugin. Let’s see the result
below:

18:26 (master) ~/Documents/Development/my—stuff/master
—thesis/src/client$ volatility pslist —f DTU-5
A40BFDBGES6 . raw

Volatility Foundation Volatility Framework 2.4

Offset (V) Name PID PPID Thds

Hnds Sess Wow64 Start
Exit
0x867c6830 System 4 0 54
546 ——— 0
0x86645740 smss.exe 368 4 3
19 —— 0 2015—06—25 04:04:27 UTC+0000
0x8651f128 csrss.exe 584 368 11
575 0 0 2015—06—25 04:04:28 UTC+0000
0x86595128 winlogon .exe 608 368 26
554 0 0 2015—06—25 04:04:28 UTC+0000
0x86681798 services.exe 652 608 15
273 0 0 2015—06—25 04:04:28 UTC+0000
0x86570dal0 lsass.exe 664 608 27
385 0 0 2015—06—25 04:04:28 UTC+0000
0x866aa8a0 VBoxService.exe 824 652 8
105 0 0 2015—06—25 04:04:28 UTC+0000
0x866732e8 svchost.exe 868 652 20
218 0 0 2015—06—25 04:04:28 UTC+0000
0x865623d8 svchost.exe 956 652 9
270 0 0 2015—06—25 04:04:29 UTC+0000
0x86432508 svchost.exe 1048 652 84
1457 0 0 2015—06—25 04:04:29 UTC+0000
0x863ce7a8 svchost.exe 1108 652 11
102 0 0 2015—-06—25 04:04:29 UTC+0000
0x863ae710 svchost.exe 1168 652 12
183 0 0 2015—06—25 04:04:29 UTC+0000
0x863a6020 explorer.exe 1580 1528 14
372 0 0 2015—06—25 04:04:30 UTC+0000

2.4 Summary 11

0x863a6020 cacax.exe 2430 1580 2
1134 0 0 2015—-06—25 17:51:47 UIC
+0000

Here we identify the owner of the connection as "cacax.exe", according to the
process ID. This gives us additional information to continue tracing the source—
the PPID, the spawning parent process ID.

This concludes that the trojan was executed by the "explorer.exe", PID 1580
process (since we have launched this manually, simply double-clicking on the
application executable).

2.3.2 Automatizing the process
To automate the analysis process, we need to decide:

e Input: intelligence/previous knowledge about the traits that are to be
found.

e Sequences: processing and decision flow.

e Output: generated intelligence—whether evidence has been found, and
useful information about it.

In the previous example, we have started from a single input (an IP address), and
we have concluded that the infringing process has the image name "cacax.exe"—
the output.

The sequence could be modeled as a flow chart (see Figure 272).

2.4 Summary

Different memory-analysis tools have been analysed, within the ones providing
IoC discovery capabilities, and the automation possibilities for each have been
evaluated.

12 State of the art

init
onnectio

IP address contt 1 n
analysis

not com- is address
. [
promised found?

yes

)

process

analysis

is PID

compromised found?

compromise
- with

process
info

Figure 2.2: Connection analysis flowchart, when performing a manual analy-
sis.

2.4 Summary 13

Volatility seems the natural tool with which to develop the present framework,
thanks not only to its custom modules functionality, but also thanks to it being
open-source, allowing us to build on top of it for a seamless integration.

With the example of a manual analysis, we can see how the automation could
be designed, through generalisation of the flow chart.

14

State of the art

CHAPTER 3

Design

3.1 Design decisions

3.1.1 Risk, probability and uncertainty

In IT Security, risk is defined as "the potential that a given threat will ex-
ploit vulnerabilities of an asset or group of assets and thereby cause harm to
the organization. It is measured in terms of a combination of the probabil-
ity of occurrence of an event and its consequence", according to the ISO27005
standard|I4].

When detecting indicators of compromise of advanced persistent threats, al-
though in certain cases it’s semantically possible to determine the minimum im-
pact caused by a particular discovered trait, the concept of probability doesn’t
apply—for the attack was already *possibly* conducted.

This discards the usage of a risk metric when performing analysis, but still allows
us to account for the individual impact of each trait, qualitatively, instead of
using a numerical value.

16 Design

3.1.2 Target systems

Due to the nature of the APT, attacks are likely to take place through host
systems, where human interaction gives a lead on bypassing certain security
measures—such as foreign USB devices, where these ports can’t be disabled due
to the workflow, or specially crafted exploits wrapped in apparently harmless
documents.

Focusing on the organizational context, we account for a widespread usage of
Windows-based host systems|[T9]—making Windows the target OS of prefer-
ence for the development of our system, being supported by Volatility existent
plugins.

3.1.3 Target traits, Volatility plugins

The traits—or individual pieces of relevant information--should be chosen to
cover the most significance when analysing for APT.

We shall focus on network activity, processes and privileges, as they’re feasible
to characterise and scope, as opposed to scouring for other particular traits that
are only discoverable through heuristics.

3.1.4 Client-server architecture

The implemented system is envisioned to be deployed as a server within the
scope network, with queuing capabilities, so that the hosts can submit their
memory images on a scheduled basis—or manually, when deployed for incident
recovery.

The server will then report to the system administrator or security analyst,
notifying of discovered traits, if any.

3.2 Implementation requirements 17

3.2 Implementation requirements

3.2.1 Scope
The scope of the project should cover:

e Automation of IoC individual trait discovery, based on specific Volatility
plugins.

e Intefacing/extending Volatility, to accommodate the automated calls to
its plugins.

e Definition of black/white lists, and enforcement through automation, fo-
cused on APT discovery.

The requirements are here distinguished between functional and non-functional,
where:

e Functional requirements refer to the actual capabilities of the framework
to be implemented.

e Non-functional requirements detail how this capabilities will work, re-
garding technologies and methods to be followed and how they were con-
strained.

RFC 2119 is followed to indicate requirement level[].

3.2.2 Functional requirements
3.2.2.1 Trait/IoC characterization

Due to the varied nature of the advanced persistent threats, the loC character-
ization shall be expressed in the form of policies, known as:

e blacklists, when the traits should not appear within the target image, or

e whitelists, when the traits within the policy are the only ones allowed
within the target image.

18 Design

Figure 3.1: Disjoint sets of policies

Since both sets of traits are disjoint, their usage shall be mutually exclusive
within each analysis—only one behaviour shall be chosen for a given policy/-
analysis.

This differentiation is meant to help the establisment of policies, depending on
the previous knowledge about the system—if this knowledge is partial, or the
system is intended to find an IoC within a very specific area, blacklists shall be
used, whereas a strictly defined system will benefit from whitelist usage.

3.2.2.2 Connection analysis

The framework shall analyse the current and past connections, looking for
anomalous traits within those. These traits shall cover the originating IP ad-
dress, as well as the ports involved in the connection.

Additionally, when an anomalous trait is discovered within a connection, the
originating process identifier (PID) shall be extracted from its structure, and the
corresponding process structure queried within the same image, and analysed,
providing the user with information about the source of the infringing trait.

3.2 Implementation requirements 19

3.2.2.3 Running processes analysis

Current and past running processes shall be analysed, in search for anomalous
spawns. These checks shall cover image names, as well as security ID (SID).
SIDs are alphanumeric strings, used to enforce access control, unique for each
trustee (or user), but following a well-known type of convention [IR)].

This analysis shall provide regular expresion matching for such SIDs.

3.2.2.4 Rootkit analysis

Volatility enables the user, using one of the its default plugins, to perform an
automated search for rootkit software within an image. This includes detection
of hooks within the System Service Dispatch Table (SSDT)—these hooks allow
an attacker to capture system calls, and jump the resulting execution through
a different part of code.

Such functionality shall be leveraged to provide the user with information of
existing hooks, should they exist.

3.2.2.5 Drivers and devices analysis

Current corporate security policies tend to cover peripheral devices that are al-
lowed for usage, if any, usually physically disabling USB ports. However, certain
workstations provide USB as the only way of connecting a mouse and keyboard,
enabling a user to exploit that port to withdraw confidential information from
the organization systems, or as a vector to unknowingly introduce a piece of
malware. Additionally, malicious virtual devices can be set in place as well.

By profiling which drivers can or can’t be used in those systems, an automated
system can detect anomalies as to which pieces of hardware, or virtual devices,
are or have been present on a system.

The framework shall analyse in search for such devices, searching through the
image device tree.

20 Design

3.2.2.6 Automation

The analysis over a given image shall run unattended, its necessary parameters
put in place before execution, and giving the user a detailed result of the analysis
upon completion.

This means the system shall be able to gather information, and take decisions as
to where to conduct further analysis, driven by the deciders set in place. These
deciders shall be interchangeable and modular, for the end user to be able to

modify behaviour in a simple way.

The inputs for the analysis shall be:

e The target image, in a compatible format,

e a set of signatures, containing the policies in a standard format,

The result shall be expressed in a structured, but human readable way, enabling
both automated treatment and direct usage.

3.2.2.7 Extensibility

The framework shall take future developments into consideration, allowing the
user to extend the framework to cover artifacts other than those exposed in the
present work.

This shall follow a similar approach to Volatility, where different artifacts are
integrated as modules, providing a well-known interface for further development.

3.2.3 Non-functional requirements
3.2.3.1 Analysis platform

The chosen platform for image analysis is Volatility, thanks to its open source,
and modularity, that enables us to perform calls within its modules.

An interface shall be implemented for us to implement the discussed analysis,
as well as for a future user to easily extend on those, or create her own.

3.3 Summary 21

3.2.3.2 Target systems

The chosen target for image analysis is the Windows system, due to popularity
in an organisational context[ld]. Nevertheless, deciders may be developed on
top, that render the framework compatible with structures compatible with
hosts other than Windows.

The image shall be gathered from the target, and fed to the framework, which
shall be based on Python, meaning it shall be multiplatform.

3.2.3.3 Formats

The format of the input files shall be .RAW memory image files, although com-
patibility with different formats may be available, depending on current Volatil-
ity compatibility.

The format of the policy files shall be JSON, thanks to its easy compatibility
with different tools, web, and human readability.

3.3 Summary

In this section, we have explored the overall design decisions for the imple-
mentation of the discussed framework, defining both the behaviour, and the
interaction with the tool.

22

Design

CHAPTER 4

Implementation and testing

4.1 Engine implementation

The engine is implemented keeping in mind the aforementioned extensibility
requirement. It is conceived as a runner, taking a set of modules (named "de-
ciders") that will check for traits (named "signatures"), using an initialized
Volatility instance over the provided image (named "analyzer").

The deciders are simple classes that extend from the Decider class, and need only
to implement a method that ascertains a Decision, describing whether matching
traits have been found or not, along with a List of IndicatorOfCompromise
objects, describing those.

The signatures are expressed following the JSON format, following the conven-
tion in figure B72.

Both deciders and signatures are placed in their respective source folders, where
they will be automatically loaded from, on the framework initialization.

24

Implementation and testing

Decision

breach: boolean
ioc_list: List

Runner =
= analyzer: Analyzer =
= signatures: List -
= deciders: Decider][] -
= run(): Decision =

get_ioc_list(): List

get_breach(): boolean

add_ioc(ioc: IndicatorOfCompromise): void
add_ioc_list(ioc_list: List): void
set_breach(breach: boolean): void

Decider

= decide(): Decision

IndicatorOfCompromise

= decider_name: string
= raw_data: Dict
= readable_string: string

Figure 4.1: Framework class diagram

¢ "behaviour": "blacklist",
"trait_name": [
1,
"another_trait_name": [
1,

}

Figure 4.2:

Default trait format,

4.1 Engine implementation 25

4.1.1 Volatility integration

Volatility doesn’t provide an API as such, but since it’s open source, a make-do
API was implemented for interacting with its modules.

The overall initialization code for the framework was analyzed, and extracted
into an independent class. Here, the requested modules are imported and exe-
cuted following the Volatility module loading code[d].

Due to the different types of data provided, there’s no encapsulation for the
results obtained for each module—this is delegated to the deciders algorithms.

The procedure followed when loading and calling the created platform APT is:

1. The image is loaded onto memory:

(a) Location config is set
(b) Options are parsed (this causes the image to load)
2. Upon a received call:
(a) The module is obtained from the available plugins from our Volatility
installation.

(b) The target object within the plugin is gathered—containing the "cal-
culate" method.

(¢) The "calculate" method is executed. This returns a list of entities,
each including the offset and data depending on the type of the plugin
called (in the case of a process entity, it will contain the ImageName,
the UniqueProcessld, ParentProcessId, number of threads, etc.)

3. The list is returned to be consumed by the decider. A decider will typ-
ically iterate over the list, finding relationships with the provided inputs
(signatures).

4.1.2 Algorithm

The runner algorithm can be simplified as follows (please refer the the appendix
"Extending the framework", for details about the decider implementation):

analyze_image():

26 Implementation and testing

worklist = clone(AVAILABLE_DECIDER_LIST)
decision = new Decision()

while (worklist.length > 0):
decider = pop(worklist)
decision = decision + decider.decide(ANALYZER, SIGNATURES)

return decision

4.1.3 Web interface

The framework creates a web server upon initalization, accepting file uploads
from the hosts”, with the image file compressed in ZIP format.

Running multithreaded, it concurrently analyzes the received images, acting as
a black box to the submitting host—mno information is provided on the JSON
response, aside from a status message.

The information gathered is made available to the analyst through a different
channel®.

This interface is meant for the system administrator to be able to schedule host
imaging and submission, while being in control of the gathered information.

4.1.4 Memory image acquisition

The framework user can use a memory imaging tool of her choice, as long as
the resulting file is compatible with Volatility formats|7]. For the development
and testing, MoonSols Dumplt|6] was used, for simplicity.

As of version 2.4, the one used in the project, the formats are:

e Raw/Padded Physical Memory
o Firewire (IEEE 1394)

o Expert Witness (EWF)

1Sample code for the client is provided.
2Implemented as e-mail notification, in this case.

4.2 Testing 27

e 32- and 64-bit Windows Crash Dump

e 32- and 64-bit Windows Hibernation

e 32- and 64-bit MachO files

e Virtualbox Core Dumps

o VMware Saved State (.vmss) and Snapshot (.vmsn)
e HPAK Format (FastDump)

e LiME (Linux Memory Extractor)

QEMU VM memory dumps

4.2 Testing

For the evaluation of the present project, a set of proof of concepts were de-
signed to test whether the IoC traits were exposed by the framework, or ignored
otherwise.

The scope of this testing is limited by the fact that we are fostering functionality
provided by Volatility, and it is merely meant to show an idea of the type of
policy enforcement that can be achieved by the platform.

4.2.1 Environment

The running environment has been staged using Oracle VirtualBox, with the
intention of constraining dynamically the characteristics of the system—namely,
the available memory space, to test its effects in performance.

The relevant features for the environment are shown in figure B=3.

4.2.2 Image file compression

The system allows for submission of zipped files for analysis. This is meant
both to save storage space, in case an image archive is to be kept, as well as
to decrease the transmission time, and lower the network usage—allowing for
more frequent analysis.

28 Implementation and testing

(O] Microsoft Windows XP (32 bit)

OS version | Professional, 5.1, Build 2600.xpsp _sp3_gfe
RAM 256MB, 512MB and 1024MB

Host MacOSX(10.10.3) /UNIX

Figure 4.3: Target system features, where the population and execution of the
proofs of concept was conducted.

The structures in memory space are optimized for rapid access, rather than
smaller footprint, creating redundancy (primarily due to unallocated areas) that
makes for efficient compression of the memory image files. Using the populated
snapshots for benchmarking, space savings of around 50% were achieved. This
rate will be lower or higher depending on the actual memory usage.

4.2.3 Image population

It is important to introduce the concept of population, in order to obtain relevant
results. We shall understand population, as the simulation of a regular working
environment, through the execution of different processes, and user interactions
with those.

To keep metrics relevant among different tests, and considering our results are
entirely dependent on the memory structures present and past, this population
needs to be:

e Randomized—this initial state must include sufficient user interactions,
and running and killed processes, to create enough residue in the memory
space, as an actual workstation would typically have.

e Reproducible—the initial state of the system must be the same for every
test.

The randomization of the initial state was simulated manually, including the in-
stallation of an office automation suite, a Python platform, loading two different
browsers with different sets of open URLSs, along Flash-based websites. Interac-
tions were performed on these applications and websites, performing daily tasks
on them for a work day.

As for reprocibility, thanks to the usage of virtualization, it is achieved through
snapshotting[20]. This ensures the perfect consistency of the initial state.

4.2 Testing 29

4.2.4 Benchmarking
4.2.4.1 Proofs of concept

To test for the accuracy of the analysis, a series of experiments were conducted,
via PoC (proofs of concept). The approaches that were successfully tested for
this, were:

Networking

e Web browsing to blacklisted addresses.
e Network configuration to use blacklisted proxies/DNS servers.

e Samples of code creating or accepting network connections.
This covers cases where a piece of software accesses sensitive addresses (such as
the ones known to be in use as relay for a trojan malware package), or when a

DNS server is changed for an unknown one (translating URLSs into compromised
IP addresses, where phising attacks can be conducted, for instance).

Processes

e Spawning blacklisted processes.
e User applications impersonating reserved process names (for security ID

checking).

This checking enables discovery of processes executed out of policy, and checks
for the SID to match a given regex, based on the well-known possible IDs—
identifying processes owned by the user, admin or system.

Drivers

e Addition of an external USB hub.

e Rubber Ducky|[I3] driver presence.

30 Implementation and testing

Certain attacks take place through peripherals. A common case is the one
created by the Rubber Ducky—it disguises itself as a keyboard, able to execute
preprogrammed commands upon installation, with the same permissions as the
user currently owns.

Since it has a particular footprint, using the uncommon "usbccgp" driver, its
detection was included in this part.

Rootkit

e Detection of ZeroAccess/Sirefef presence (using ContagioDump samples|21]).

A common tecnique used by rootkits is attaching SSDT hooks. A test was
performed to verify that we were able to capture those, along with the non-
malicious system ones.

4.2.4.2 Analysis modeling

As discussed in the state of the art, when overviewing Volatility, a manual
analysis can be modeled as a flow graph, along with inputs and outputs.

This serves as a high-level translation towards an algorithmic, automatic ap-
proach, and is an indication of how the deciders were implemented in the frame-
work.

4.2 Testing 31

4.2.4.3 Networking analysis modeling

Input

Target memory image

List behaviour (black/white list)

IP addresses

Input/Output | Local ports

Remote ports

Output

The infringing connection, if any

If the spawning process is found, it will be included as evidence

connection
analysis

IP addresses

is port
found?

is address
found?

not con
promised

process
analysis

compromise

compromiset
- with
process
info

Figure 4.4: Connection analysis flowchart

32 Implementation and testing

4.2.4.4 Process analysis modeling

Input

Target memory image

List behaviour (black/white list)

P <
Input/Output rocess names

Regular expressions for security IDs, along related processes

Output

The infringing processes

The processes with non-matching security ID

init
: process

compromise infringing
- process process
info found?

not com-
promised

Figure 4.5: Process analysis flowchart

4.2 Testing 33

4.2.4.5 Driver analysis modeling

Input

Target memory image

List behaviour (black/white list)
Set of driver IDs

Output

The infringing driver list

Input/Output

init

1

driver
analysis

remaining
drivers in
set?

q not com-
compromise .
promised

Figure 4.6: Driver analysis flowchart

34 Implementation and testing

4.2.4.6 Rootkit analysis modeling

Input

Target memory image

List behaviour (black/white list)
Set of SSDT hooks

Output

The infringing hooks

Input/Output

init
analysis

. no not com-
compromised X
promised

Figure 4.7: Rootkit analysis flowchart

4.2 Testing 35

30
[decompression
[analysis
20 |- []
10
0 H I
256MB 512MB 1024MB

Figure 4.8: Plotted benchmark results, in seconds—compression time is dis-
tinguished from analysis time, for predicted growth differences

4.2.4.7 Performance

Performance is based on a single metric—timing. Using memory images from
three different snapshots, for each memory size, the analysis time is computed.
The framework server was deployed on a 3.06 GHz Intel Core 2 Duo machine,
with 8 GB 1067 MHz, DDR3 SDRAM, providing 8.5 GB/s bandwidth[Z4] (rel-
evant, due to the I/O intensive Volatility analysis).

Memory image creation time and network transmission grow linearly along mem-
ory space size, and therefore are not included in these results. Every image was

timed three times, and the average time was taken.

The benchmarked results are exposed on figure B-8°.

4.2.4.8 Benchmark conclusions

The crafted PoCs were detected as expected, in most of the cases. In the
case of the 256 MB memory host, there were failures to detect certain previous

3Testing performed on the default populated images.

36 Implementation and testing

network connections. This is an expected behaviour, when memory is freed and
reallocated due to low space available.

In the case of advanced attacks, such as the rootkit case, the success of the
detection lies on the previous knowledge about the attack, since a specific set
of traits needs to be known, in order to discard false positives.

Analysis time increases under less than linear growth, along image size.

This was at first unexpected due to types of sequential analysis conducted in
the process, that are of quadratic, O(n?) complexity.

Referring again to the network decider, the moment a infringing structure is
detected, the process holding the connection is to be located through its PID,
in order to get its image name—involving two sequential searches.

We can safely assume this is due to the way Volatility traverses the image
files, using the available pointers to traverse linked structures when possible[LH,
p. 156] (when still allocated). With more analysis modules or deciders accessing
deallocated structures, we can expect this to change.

As for the decompression, it takes a significative percentage of the time in the
process, when the images are large enough. This decreases the incentive for com-
pression, but it’s up to the system administrator to optimize resources disabling
or enabling compression.

4.3 Summary

The specifics about the platform implementation have been discussed, giving
an overview over the overall decisions, and analyzing the performance when
analysing images of different sizes (previously populated).

The reasoning behind the results is discussed in the benchmark conclusions.

4.3 Summary 37
tepip.sys
PE Header Hash Tables
0 _ADDRESS_OBJECT list
0 | |
Pointer —> | Next l—) | Next |—>
.text 0 T T
_AddrObjTable
.data
_TCBTable
0 | |
Pointer > | Next |—> | Next |—>
.rsrc 0 T |
...... _TCPT_OBJECT list
Figure 4.9: Socket and connection objects, structured as linked lists, as present

in memory, illustrating how Volatility can traverse them in an
efficient way[i5, p. 315].

38

Implementation and testing

CHAPTER 5

Conclusions

5.1 Compliance with original goals

When first approaching the project, it was originally intended to design a plat-
form that could discover advanced persistent threats, through indicators of com-
promise, in an automated way.

For this, the procedure followed by a security analyst was the target of our
automation. Innovation posed two different challenges:

e An advanced persistent threat conventionally uses zero-day exploits, and
is custom crafted, therefore it’s extremely difficult to detect such threats
without knowing its specific traits, or returning a very high false positive
rate.

e It is already possible to detect IoC using a batch, such as the functionality
provided by Mandiant Redline—again using previous knowledge, with a
still small public library of IOC files”.

1336 available schemas, on iocbucket.com, as of June 2015

40 Conclusions

The lacking knowledge about the possible threats had to be garnered from a
different source, and assumming an homogeneous environment such as the one
APT are focused on—organisational systems—the solution was to define a set
of lists that contained information about what a system should or shouldn’t
perform.

Therefore, the result could be described as a policy compliance tool, but with
two key advantages:

e The analysis is external to the target host, and an archive of images can
be kept in storage for a period of time, in case a new trait is discovered.
This way, detection can take place retroactively

e Thanks to unallocated memory areas analysis, as provided by Volatility, it
is possible to detect threats designed to have short interaction periods, as
long as the are where the structure of interest lies hasn’t been reallocated.

However, usage of memory images for automated analysis and policy enforce-
ment is an unusual approach, due to weaknesses such as high resource usage, in
terms of network, storage and processing. It is counterbalanced by the amount
of information that can be obtained from the analysis, but it has a significant
footprint on the systems.

The memory snapshots should be regarded as highly sensitive data, due to the
memory imaging capturing data that is meant to be kept encrypted, hashed,
or directly avoid its storage, such as passwords—temporarily present on RAM,
once typed by the user.

5.2 Future work

The project has been designed with extendibility as a requirement. It is expected
that a system administrator, or security analyst deploying this tool, will update
such system with deciders that fit the organisation interests and resources to
defend.

There are plenty of data structures that can be assessed through Volatility
(currently with over 50 different implemented modules), so there’s much room

for improvement

Another interesting way to develop this work, would be complementing memory

5.2 Future work 41

analysis with storage analysis, checking for differences between loaded and stored
modules, to check for modifications that can be evidence of an attack.

42

Conclusions

APPENDIX A

Deployment manual

A.1 Prerequisites

The main requirements for running the framework are:

e A working Python 2 installation,
e Volatility 2.4,

e SMTP server (for notification via e-mail)

Additionally, the platform uses the following Python plugins:

e Flask (server functionality)

e Werkzeug (id tools)

44 Deployment manual

A.2 Obtaining the software

The software is publicly available on GitHub, available under GPL license, and
can be obtained from https://github.com/AlbertoRico/volatility-o-matic.

You may obtain the package as a compressed folder, at:

https://github.com/AlbertoRico/vol-o-matic/archive /master.zip

Or using Git on a terminal:

$ git clone https://github.com/AlbertoRico/vol-o-matic.git

A.3 Server deployment

The first thing to do, prior to execution, is configuring the server with our
own parameters (particularly, the e-mail address where we intend to receive the
reports). This is located on the "config.json" file.

To run the server, simply execute the following, from the installation directory:

$ python server.py

At this point, an endpoint will be available on http://<host _ip address>:<port>/upload

It will be expecting compressed (ZIP) memory images, submitted through multi-
part HT'TP POST. An example client is included, for illustration purposes.

A.4 Example of usage

To begin with, we start the Vol-o-matic server:

A.4 Example of usage 45

6 (master) ~/Documents/Development/my-stuff/master-thesis/src/server$ python server.py
Vol-o-matic @.1 - Alberto Rico Simal - hello@albertori.co
Technical University of Denmark, 2015 - Under GNU GPL license

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

We have previously obtained an image from a host that we want to analyse. We
can use the included "submit dump.py" script to submit it:

21:10 (master) ~/Documents/Development/my-stuff/master—thesis/src/client$ python submit_dump.py -f DTU-5A48BFDB6E6—
20150625-040558.raw —d http://localhost:5000/upload
Compressing dump file...
Submitting file for analysis...
Done.
(master) ~/Documents/Development/my-stuff/master-thesis/src/client$

Analysis will then take place on our server, submitting a report to the configured
mail. In this case, we receive:

-Breach report-

Breach detected! - —Processes IoC— - cacax.exe - Blacklisted name - —
Processes IoC— - cmd.exe - Pattern: S-1-5-21(]
S

S])+-513%8 - SID: S-1-5-21-1220945662-113007714-854245398-513 -
Connections IoC— - cacax.exe - 2408 - 0x81235828 - 108.162.232.205

Successfully identifying a trojan running on our stage system.

46

Deployment manual

Bibliography

(1]

2]

3]

[4]

[5]

[6]

Scott Bradner. Key words for use in rfcs to indicate requirement levels.
1997.

Microsoft Security Center. Trojan:win32/powerloader. http:
//www.microsoft.com/security/portal/threat/encyclopedia/
entry.aspx?Name=Trojan/%3AWin32/2FPowerLoader#tab=1. [Online;

accessed 25-06-2015].

European Commission. European credit transfer and accumulation system
(ects). http://ec.europa.eu/education/ects/ects_en.htm. [Online;
accessed 25-06-2015].

ComputerSecurity.org. Powerloader trojan down-
loader cacax.exe malware traffic sample. http://
WWW.computersecurity.org/malware-traffic-samples/
trojan-downloaders-malware-family-types/
powerloader-trojan-downloader-cacax-exe-malware-traffic-sample/|.
[Online; accessed 25-06-2015].

Magnet Forensics. Acquiring memory with magnet ram cap-
ture. http://www.magnetforensics.com/computer-forensics/
acquiring-memory-with-magnet-ram-capture. [Online; accessed
25-06-2015].

Magnet Forensics. Magnet ief, overview. https://www.magnetforensics.
com/digital-forensics-software/internet-evidence-finder. [On-
line; accessed 25-06-2015].

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%3AWin32%2FPowerLoader#tab=1
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%3AWin32%2FPowerLoader#tab=1
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Trojan%3AWin32%2FPowerLoader#tab=1
http://ec.europa.eu/education/ects/ects_en.htm
http://www.computersecurity.org/malware-traffic-samples/trojan-downloaders-malware-family-types/powerloader-trojan-downloader-cacax-exe-malware-traffic-sample/
http://www.computersecurity.org/malware-traffic-samples/trojan-downloaders-malware-family-types/powerloader-trojan-downloader-cacax-exe-malware-traffic-sample/
http://www.computersecurity.org/malware-traffic-samples/trojan-downloaders-malware-family-types/powerloader-trojan-downloader-cacax-exe-malware-traffic-sample/
http://www.computersecurity.org/malware-traffic-samples/trojan-downloaders-malware-family-types/powerloader-trojan-downloader-cacax-exe-malware-traffic-sample/
http://www.magnetforensics.com/computer-forensics/acquiring-memory-with-magnet-ram-capture
http://www.magnetforensics.com/computer-forensics/acquiring-memory-with-magnet-ram-capture
https://www.magnetforensics.com/digital-forensics-software/internet-evidence-finder
https://www.magnetforensics.com/digital-forensics-software/internet-evidence-finder

48

BIBLIOGRAPHY

7]

18]

[10]

1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Google Code Volatility Foundation. Volatility, supported for-
mats. https://code.google.com/p/volatility/wiki/FAQ21#What_
memory_dump_formats_are_supported. [Online; accessed 25-06-2015].

Volatility Foundation. Volatility foundation - releases. http://www.
volatilityfoundation.org/#!releases/component_71401. [Online; ac-
cessed 25-06-2015].

Volatility Foundation. Volatility vol.py code. https://github.com/
volatilityfoundation/volatility/blob/master/vol.py. [Online; ac-
cessed 25-06-2015].

The OpenlOC Framework. Openioc. http://www.openioc.org/. [Online;
accessed 25-06-2015].

GitHub. Github - volatilityfoundation/volatility. https://github.com/
volatilityfoundation/volatility. [Online; accessed 25-06-2015].

Will Gragido. Understanding indicators of com-
promise (ioc) part i. https://blogs.rsa.com/
understanding-indicators-of-compromise-ioc-part-1i/. [Online;

accessed 25-06-2015].

HakShop. Usb rubber ducky deluxe. http://hakshop.myshopify.com/
products/usb-rubber-ducky-deluxe?variant=353378649. [Ouline; ac-
cessed 25-06-2015].

ISO/IEC. Information technology — security techniques — information se-
curity risk management, 2011.

M.H. Ligh, A. Case, J. Levy, and A.A. Walters. The Art of Memory Foren-
sics: Detecting Malware and Threats in Windows, Linuz, and Mac Mem-
ory. Wiley, 2014.

MoonSols Ltd. Moonsols dumpit goes mainstream. http://wuw.
moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/. [On-
line; accessed 25-06-2015].

FireEye Mandiant. Redline, accelerated live response. https://www.
mandiant.com/resources/download/redline. [Online; accessed 25-06-

2015].

Microsoft. Well-known security identifiers in windows operating systems.
https://support.microsoft.com/en-us/kb/243330. [Online; accessed
25-06-2015].

NetMarketShare. Desktop operating system market share.
http://www.netmarketshare.com/operating-system-market-share.
aspx7qprid=10&gpcustomd=0. [Online; accessed 25-06-2015].

https://code.google.com/p/volatility/wiki/FAQ21#What_memory_dump_formats_are_supported
https://code.google.com/p/volatility/wiki/FAQ21#What_memory_dump_formats_are_supported
http://www.volatilityfoundation.org/#!releases/component_71401
http://www.volatilityfoundation.org/#!releases/component_71401
https://github.com/volatilityfoundation/volatility/blob/master/vol.py
https://github.com/volatilityfoundation/volatility/blob/master/vol.py
http://www.openioc.org/
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://blogs.rsa.com/understanding-indicators-of-compromise-ioc-part-i/
https://blogs.rsa.com/understanding-indicators-of-compromise-ioc-part-i/
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe?variant=353378649
http://hakshop.myshopify.com/products/usb-rubber-ducky-deluxe?variant=353378649
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
https://www.mandiant.com/resources/download/redline
https://www.mandiant.com/resources/download/redline
https://support.microsoft.com/en-us/kb/243330
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0

BIBLIOGRAPHY 49

[20]

[21]

[22]

[23]

[24]

Oracle. Virtualbox snapshots. https://www.virtualbox.org/manual/
chO1.html#snapshots. [Online; accessed 25-06-2015].

Mila Parkour. Contagiodump samples. http://contagiodump.blogspot.
dk/2012/12/zeroaccess-sirefef-rootkit-5-fresh.html. [Online; ac-
cessed 25-06-2015].

Guidance Software. Encase enterprise overview. https:
//www.guidancesoftware.com/products/Pages/encase-enterprise/
overview.aspx. |Online; accessed 25-06-2015].

Guidance Software. Encase forensic v7. https://www.guidancesoftware.
com/products/Pages/encase-forensic/overview.aspx. [Online; ac-

cessed 25-06-2015].

Transcend. Ddr sdram data transfer rate. http://www.transcend-info.
com/Support/FAQ-292. [Online; accessed 25-06-2015].

https://www.virtualbox.org/manual/ch01.html#snapshots
https://www.virtualbox.org/manual/ch01.html#snapshots
http://contagiodump.blogspot.dk/2012/12/zeroaccess-sirefef-rootkit-5-fresh.html
http://contagiodump.blogspot.dk/2012/12/zeroaccess-sirefef-rootkit-5-fresh.html
https://www.guidancesoftware.com/products/Pages/encase-enterprise/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-enterprise/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-enterprise/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
http://www.transcend-info.com/Support/FAQ-292
http://www.transcend-info.com/Support/FAQ-292

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Indicators of Compromise
	1.2 APT - Advanced Persistent Threats
	1.3 Memory-based analysis, Volatility
	1.4 Automation
	1.5 Project plan
	1.6 Summary

	2 State of the art
	2.1 Automated memory analysis tools
	2.1.1 EnCase Forensic
	2.1.2 MAGNET IEF
	2.1.3 Mandiant Redline
	2.1.4 Volatility

	2.2 IoC definition format
	2.3 Manual analysis with Volatility
	2.3.1 Example: finding Win32/PowerLoader
	2.3.2 Automatizing the process

	2.4 Summary

	3 Design
	3.1 Design decisions
	3.1.1 Risk, probability and uncertainty
	3.1.2 Target systems
	3.1.3 Target traits, Volatility plugins
	3.1.4 Client-server architecture

	3.2 Implementation requirements
	3.2.1 Scope
	3.2.2 Functional requirements
	3.2.3 Non-functional requirements

	3.3 Summary

	4 Implementation and testing
	4.1 Engine implementation
	4.1.1 Volatility integration
	4.1.2 Algorithm
	4.1.3 Web interface
	4.1.4 Memory image acquisition

	4.2 Testing
	4.2.1 Environment
	4.2.2 Image file compression
	4.2.3 Image population
	4.2.4 Benchmarking

	4.3 Summary

	5 Conclusions
	5.1 Compliance with original goals
	5.2 Future work

	A Deployment manual
	A.1 Prerequisites
	A.2 Obtaining the software
	A.3 Server deployment
	A.4 Example of usage

	Bibliography

